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Abstract

The present paper is devoted to the solution of the three-dimensional
fracture mechanics problem for linearly elastic, homogeneous and isotropic
solid with two coaxial penny-shaped cracks under normally incident harmonic
tension-compression wave with allowance for the contact interaction of cracks’
adjoining edges.

The considered nonlinear problem with the Signorini unilateral constraints
is solved by the method of boundary integral equations using the iteration al-
gorithm, which is based on the variational principles of the elastodynamics.
The dependence of the normalized stress intensity factor (opening mode) ver-
sus the mutual arrangement of cracks is studied for different wave numbers.

The present numerical results are compared with corresponding those ob-
tained without allowance for the contact interaction of cracks’ edges.

1 Statement of the problem

In the present paper we consider two coaxial penny-shaped cracks without any initial
opening, which are contained in unbounded, isotropic, homogeneous and linearly
elastic solid. The cracks are described by the middle surfaces

Ω1 = {0 ≤ x1 ≤ a cos β, 0 ≤ x2 ≤ a sin β, β ∈ [0, 2π), x3 = 0},

Ω2 = {0 ≤ x1 ≤ a cos β, 0 ≤ x2 ≤ a sin β, β ∈ [0, 2π), x3 = c}.
The solid is subjected to time-harmonic motion, the normally incident tension-

compression wave is defined by

Φ(x, t) = Φ0e
i(k1x3−ωt),

where Φ0 is the amplitude; ω = 2π/T is the angular frequency, T is the period of
oscillation; k1 = ω/c1 is the wave number; c1 =

√

(λ + 2µ)/ρ is the velocity of the
longitudinal wave; λ and µ are the Lamé elastic constants, ρ is the mass density.

Under time-harmonic loading the adjoining cracks’ edges come into contact. The
nonvanishing contact forces arise in the time-dependent contact domain Ωcont(t),



which is unknown in advance. Thus the traction on the edges of the cracks has the
form [1, 2]

p(x, t) = p∗(x, t) + q(x, t), x ∈ Ω := Ω1 ∪ Ω2, t ∈ T := [0; T ],

where the load p∗(x, t), which is caused by the incident wave, is given by

p∗(x, t) =
(

0, 0,−k2
1Φ0( cos(k1x3) cos(ωt) + sin(k1x3) sin(ωt))

)

, x ∈ Ω, t ∈ T ,

and q(x, t) is the vector of contact forces.
According to the normal incidence of the tension-compression wave, to solve the

considered problem we have to define only the normal components of all mentioned
vectors, because the tangential components are absent.

We impose the Signorini unilateral constraints for the normal components of the
contact forces and the displacement discontinuity of the adjoining cracks’ edges

[u3(x, t)] ≥ 0, q3(x, t) ≥ 0, [u3(x, t)]q3(x, t) = 0, x ∈ Ω, t ∈ T . (1)

2 Boundary integral equations

According the approach proposed in [1, 2], we expand the normal components of
the displacement discontinuity and traction vectors into the trigonometric Fourier
series

p3(x, t) =
p0

3,cos(x)

2
+

+∞
∑

k=1

(

pk
3,cos(x) cos(ωkt) + pk

3,sin(x) sin(ωkt)
)

,

[u3(x, t)] =
[u0

3,cos(x)]

2
+

+∞
∑

k=1

(

[uk
3,cos(x)] cos(ωkt) + [uk

3,sin(x)] sin(ωkt)
)

,

where ωk = 2πk/T and

pk
3,cos(x) =

ω

π

T
∫

0

p3(x, t) cos(ωkt)dt, pk
3,sin(x) =

ω

π

T
∫

0

p3(x, t) sin(ωkt)dt,

[uk
3,cos(x)] =

ω

π

T
∫

0

[u3(x, t)] cos(ωkt)dt, [uk
3,sin(x)] =

ω

π

T
∫

0

[u3(x, t)] sin(ωkt)dt.

The Fourier coefficients are related (see [1-7]) by the following complex-valued
boundary integral system for k = 0, +∞

pk
3,cos(x) − ipk

3,sin(x) =

= −
∫

Ω

(

FRe
33 (x,y, ωk) + iF Im

33 (x,y, ωk)
) (

[uk
3,cos(y)] − i[uk

3,sin(y)]
)

dy, (2)



where FRe
33 (x,y, ωk) and F Im

33 (x,y, ωk) are the real and imaginary components of the
integral kernel F33(x,y, ωk), which can be obtained from the Green displacement
tensor. The kernel has in the case on study the following form (see [3-7])

F33(x,y, ωk) =
µ(λ + µ)

2π(λ + 2µ)
r−3 +

ω2
k

8πµ

(

µ2

c2
2

+
(

2λ2 + 4λµ + 3µ2
)c2

2

c4
1

)

r−1−

+∞
∑

n=4

(−iωk)
n(n − 1)

4πµn!(n + 2)

(

4µ2(n − 1)

cn
2

+
[

λ2n(n + 2) + 4λµ(n + 2) + 12µ2
] c2

2

c2+n
1

)

rn−3,

where r =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 is the distance between the obser-

vation point and the load point, c2 =
√

µ/ρ is the velocity of the transverse wave.

3 Numerical solution procedure

To solve the systems of boundary integral equations (2), we approximate the surface
of cracks Ω by a set of plain polygonal elements Ωh

j , j = 1, N . We use the constant
approximation within an element and the collocation method with collocation points
at the centroid of the elements [8]. Then we obtain for all k = 0, +∞ the following
approximate system of complex-valued equations

pk
3,cos(xj) − ipk

3,sin(xj) =

= −
N

∑

l=1

∫

Ωh
l

(

FRe
33 (xj,y, ωk) + iF Im

33 (xj,y, ωk)
)

dy
(

[uk
3,cos(yl)] − i[uk

3,sin(yl)]
)

, (3)

where points xj and yj are located in the centroid of the element Ωh
j .

Rewrite system (3) in the matrix form

Fk
nU

k
n = Pk

n, k = 0, +∞, (4)

where

Fk
n =

[

−F
k,Re
33 −F

k,Im
33

F
k,Im
33 −F

k,Re
33

]

, Uk
n =

[

Uk
3,cos

Uk
3,sin

]

, Pk
n =

[

Pk
3,cos

Pk
3,sin

]

and

F
k,Re
33 =































∫

Ωh
1

FRe
33 (x1,y, ωk)dy

∫

Ωh
2

FRe
33 (x1,y, ωk)dy . . .

∫

Ωh
N

FRe
33 (x1,y, ωk)dy

∫

Ωh
1

FRe
33 (x2,y, ωk)dy

∫

Ωh
2

FRe
33 (x2,y, ωk)dy . . .

∫

Ωh
N

FRe
33 (x2,y, ωk)dy

...
...

. . .
...

∫

Ωh
1

FRe
33 (xN ,y, ωk)dy

∫

Ωh
2

FRe
33 (xN ,y, ωk)dy . . .

∫

Ωh
N

FRe
33 (xN ,y, ωk)dy































,



F
k,Im
33 =































∫

Ωh
1

F Im
33 (x1,y, ωk)dy

∫

Ωh
2

F Im
33 (x1,y, ωk)dy . . .

∫

Ωh
N

F Im
33 (x1,y, ωk)dy

∫

Ωh
1

F Im
33 (x2,y, ωk)dy

∫

Ωh
2

F Im
33 (x2,y, ωk)dy . . .

∫

Ωh
N

F Im
33 (x2,y, ωk)dy

...
...

. . .
...

∫

Ωh
1

F Im
33 (xN ,y, ωk)dy

∫

Ωh
2

F Im
33 (xN ,y, ωk)dy . . .

∫

Ωh
N

F Im
33 (xN ,y, ωk)dy































,

Uk
3,cos =











[uk
3,cos(y1)]

[uk
3,cos(y2)]

...
[uk

3,cos(yN)]











, Uk
3,sin =











[uk
3,sin(y1)]

[uk
3,sin(y2)]

...
[uk

3,sin(yN)]











,

Pk
3,cos =











pk
3,cos(x1)

pk
3,cos(x2)

...
pk

3,cos(xN)











, Pk
3,sin =











pk
3,sin(x1)

pk
3,sin(x2)

...
pk

3,sin(xN)











.

Observe that boundary integral equations (2) are hypersingular, since the integral
kernel F33(x,y, ωk) behaves as r−3 when x tends to y. Thus we have to consider
the mentioned integrals in the sense of the Hadamard finite part. To calculate the
coefficients of system (4) it is necessary to evaluate the following weakly singular
and hypersingular integrals

J0,0
1 (x, Ωh

j ) =

∫

Ωh
j

dy
√

(x1 − y1)2 + (x2 − y2)2
, (5)

J0,0
3 (x, Ωh

j ) =

∫

Ωh
j

dy
(

√

(x1 − y1)2 + (x2 − y2)2
)3 . (6)

In [7, 9] it has been shown that the second Green theorem can be used for
regularization of the divergent integrals. Following this approach, the divergent
integrals (5) and (6) can be converted to regular curvilinear integrals of the first
kind

J0,0
1 (x, Ωh

j ) = −
∫

∂Ωh
j

(x1 − y1)n1(y) + (x2 − y2)n2(y)
√

(x1 − y1)2 + (x2 − y2)2
dy,

J0,0
3 (x, Ωh

j ) =

∫

∂Ωh
j

(x1 − y1)n1(y) + (x2 − y2)n2(y)
(

√

(x1 − y1)2 + (x2 − y2)2
)3 dy,

where ∂Ωh
j is the frontier of the element Ωh

j .



In the case of polygonal boundary elements, these regular integrals can be easily
evaluate by using following indefinite integrals

I1,0 =

∫

dξ
√

Aξ2 + Bξ + C
=

1√
A

Arsh
2Aξ + B√
4AC − B2

,

I3,0 =

∫

dξ
(

√

Aξ2 + Bξ + C
)3 =

2(2Aξ + B)

(4AC − B2)
√

Aξ2 + Bξ + C
.

Finally, in order to determine the normal components of the contact forces and
displacement discontinuity, that satisfy the constraints (1), we use the iteration
algorithm, which is similar to the one introduced in [6, 10, 11].

4 Numerical examples

As a numerical example we consider the cracked solid with the Young elastic modulus
E = 200 GPa, the Poisson ratio υ = 0.25, the mass density ρ = 7800kg/m3.

Information on the distribution of the normal components of the displacement
discontinuity and the contact forces vectors on the central sections of the cracks

S1 = {x : −a ≤ x1 ≤ a, x2 = 0, x3 = 0},

S2 = {x : −a ≤ x1 ≤ a, x2 = 0, x3 = c}
is presented in Figure 1 for the dimensionless wave number k2a = 1.0 and c/a = 2.
Note that the Signorini constraints (1) clearly hold.
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Figure 1. Normal displacement discontinuity and contact forces,

A and B - the second crack, C and D - the first crack



Once the normal component of the displacement discontinuity of the cracks’
edges has been calculated, the elastodynamic stress intensity factor (opening mode),
which describes the remaining strength of the cracked body, can be evaluate by using
the relation [12]

KI(x, t) =
µ
√

2π

4(1 − ν)
lim
δ→0

[u3(x, t)]√
δ

,

where δ is the shortest distance from point x to the crack’s front.
In solving the problem numerically, we use the value [u3(x, t)] obtained on the

first element from the crack’s front.
The dependence of the normalized stress intensity factor |Kmax

I (x)/K̃stat
I | versus

the dimensionless distance between cracks is presented in Figures 2 and 3 for two
different dimensionless wave numbers. Here,

Kmax
I (x) = max

t∈T
KI(x, t),

and the static value for the unique penny-shaped crack is K̃stat
I = 2σ

√

a/π.
In case of a penny-shaped crack and a normal loading, the maximal stress in-

tensity factor Kmax
I (x) does not vary along the the crack’s border. So, the present

results are obtained at the points (a, 0, 0) and (a, 0, c) for the first and the second
cracks respectively.
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Figure 2. |Kmax
I /K̃stat

I | versus c/a, the wave number k2a = 0.5
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Figure 3. |Kmax
I /K̃stat

I | versus c/a, the wave number k2a = 1.0

In the covered frequency band the mutual influence of the cracks gets stronger
as cracks approach each other, with allowance for the contact interaction as well as
without allowance (for instance, see [1, 2, 12, 13]). On the contrary, for long distances
the stress-strain state in the vicinity of both cracks tends to the stress-strain state
for the solid with the unique penny-shaped crack.

The contact interaction of the cracks’ adjoining edges considerably changes the
solution. The distribution of the components of the stress-strain state becomes more
complicated as the wave number increases. For relatively small distances and certain
wave numbers the difference between results, which are obtained with allowance for
the contact interaction and without, can achieve 50 percents.
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