

Executive Summary of the 2017 ESCMID-ECMM Guideline for the Diagnosis and Management of Aspergillus Disease

Journal:	Clinical Microbiology and Infection
Manuscript ID	CLM-17-12576
Article Type:	Supplement Article
Date Submitted by the Author:	29-Sep-2017
Complete List of Authors:	Ullmann, Andrew; Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik II Aguado, Jose Maria; University Hospital 12 Octubre, Infectious Diseases Unit Arikan, Sevtap; Hacettepe University Medical School, Department of Medical Microbiology Denning, David; Wythenshaw Hospital , Education and Research Centre University of Manchester Groll, Andreas; University Children's Hospital Münster, Department of Paediatric Hematology/Oncology, Center for Bone Marrow Transplantation Lagrou, Katrien; Universitaire Ziekenhuizen Leuven, Laboratory Medicine; KU Leuven, Microbiology & Immunology Lass-Florl, Cornelia; Innsbruck Medical University , Hygiene and Med. Microbiology; Lewis, Russell; S.Orsola-Malpighi University Hospital - University of Bologna, Infectious disease; University of Bologna, Department of Medical Sciences and Surgery Muñoz, patricia; Hospital General Gregorio Marañón, Clinical Microbiology and Infectious Diseases Verweij, Paul; Radboud University Medical Center, Medical Microbiology Warris, Adilia; University of Aberdeen, Institute of Medical Sciences Akova, Murat; Hacettepe University School of Medicine, Department of Infectious Diseases Arendrup, Maiken Cavling; Statens Serum Institute, Denmark, Unit of Mycology Barnes, Rosemary; Cardiff University School of Medicine, Medical Microbiology Blot, Stijn; Ghent University Hospital, Intensive Care Dept. Bouza, Emilio; Hospital General Universitario Gregorio Marañon , Clinical Microbiology and Infectious Diseases Brüggemann, R.J.M.; Radboud university medical center, Departement of Pharmacy Buchheidt, Dieter; Mannheim University Hospital, Hematology and Oncology cadranel, jacques; University Hospital of Tenon and Sorbonne, University of Paris, Thoracic Oncology, Rare Diseases, Infectious Diseases Chakrabarti, Arunaloke; PGIMER, Chandigarh, Medical Microbiology

Reference Laboratory

Dimopoulos, George; University Hospital "Attikon", 2nd Department of Intensive Care Medicine

GANGNEUX, Jean-Pierre; Faculté de Médecine de rennes, Laboratoire de Parasitologie-Mycologie

Garbino, Jorge; University Hospitals Geneva, Infectious Diseases Heinz, Werner; University of Wuerzburg Medical Center, Department of Internal Medicine II

Herbrecht, Raoul; Hopital de Hautepierre, Département d'hématologie et d'oncologie

Kibbler, Christopher; Centre of Clinical Microbiology, University College London, Department of Medical Microbiology, Royal Free Hospital Klimko, Nikolai; St. Petersburg Medical Academy of Postgraduate Education, Department of Clinical Mycology, Allergiology and Immunology Kullberg, Bart-Jan; RadboudUMC, Department of Internal Medicine Lange, Christoph; Research Center Borstel, Clinical Infectious Diseases Lehrnbecher, Thomas; Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Division of Paediatric Haematology and Oncology

Loeffler, Juergen; University Hospital Wuerzburg, Medical Hospital II Lortholary, Olivier; Children's Hospital, University of Paris, Department of Infectious and Tropical Diseases

Maertens, Johan; UZ Gasthuisberg, Hematology Cornely, Oliver; University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD); University of Cologne, Department I of Internal Medicine, Clinical Trials Centre Cologne (ZKS Köln); University of Cologne, German Centre for Infection Research (DZIF)

Key Words:

Haematology, Transplantation, Invasive Fungal Infection, Treatment, Aspergillosis, Diagnosis

The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of major forms of aspergillosis. Only a few of the numerous recommendations can be summarized here. The performance of a chest computed tomographic scan as well as a bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) is strongly recommended. For diagnosis, direct microscopy preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan is recommended as accurate marker for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species level by molecular methods is strongly recommended for all clinical relevant Aspergillus isolates; antifungal susceptibility testing should be done in patients unresponsive to treatment, or in regions with a high prevalence of azole resistance. Isavuconazole and voriconazole are the preferred agents for first line treatment of pulmonary IA, followed by liposomal amphotericin B. In refractory disease we strongly recommend a personalized approach considering therapeutic drug monitoring (TDM), reversal of predisposing factors, switching drug class and surgical intervention. Primary prophylaxis with posaconazole is strongly recommended in patients with haematological malignancy, secondary prophylaxis in high risk patients. TDM is strongly recommended for patients receiving posaconazole suspension or voriconazole for IA treatment. Combinations of antifungals as primary treatment options are not recommended. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.

Abstract:

SCHOLARONE™ Manuscripts

Executive Summary of the 2017 ESCMID-ECMM Guideline for the Diagnosis

and Management of Aspergillus Disease

4 Andrew J. Ullmann^{1,61}, Jose M. Aguado^{2,61}, Sevtap Arikan-Akdagli^{3,61}, David W. Denning^{4,5,6,61},

- 5 Andreas H. Groll^{7,61}, Katrien Lagrou^{8,61}, Cornelia Lass-Flörl^{9,61}, Russel E. Lewis^{10,61}, Patricia
- 6 Munoz^{11,12,13,61}, Paul E. Verweij^{14,61}, Adilia Warris^{15,61}, Florence Ader^{16,17,61}, Murat Akova^{18,61}, Maiken
- 7 C. Arendrup^{19,61}, Rosemary A. Barnes^{20,61}, Catherine Beigelman-Aubry^{21,61}, Stijn Blot^{22,23,61}, Emilio
- 8 Bouza^{11,12, 13,61}, Roger J. M. Brüggemann^{24,61}, Dieter Buchheidt^{25,61}, Jacques Cadranel J^{26,61}, Elio
- 9 Castagnola^{27,61}, Arunaloke Chakrabarti^{28,61}, Manuel Cuenca-Estrella^{29,61}, George Dimopoulos^{30,61},
- 10 Jesus Fortun^{31,61}, Jean-Pierre Gangneux^{32,61}, Jorge Garbino^{33,61}, Werner J. Heinz^{1,61}, Raoul
- Herbrecht^{34,61}, Claus P. Heussel^{35,61}, Chris Kibbler^{36,61}, Nikolay Klimko^{37,61}, Bart-Jan Kullberg^{24,61},
- 12 Christoph Lange^{38,39,40,61}, Thomas Lehrnbecher^{41,61}, Jürgen Löffler^{1,61}, Olivier Lortholary^{42,61}, Johan
- Maertens^{43,61}, Oscar Marchetti^{44,61}, Jacques F. G. M. Meis^{45,61}, Livio Pagano^{46,61}, Patricia Ribaud^{47,61},
- 14 Malcolm Richardson^{4,61}, Emmanuel Roilides^{48,49,61}, Markus Ruhnke^{50,61}, Maurizio Sanguinetti^{51,61},
- Donald C. Sheppard^{52,61}, János Sinkó^{53,61}, Anna Skiada^{54,61}, Maria J. G. T. Vehreschild^{55,56,57,61}, Claudio
- 16 Viscoli^{58,61}, Oliver A. Cornely^{55,57,59,60,61}
- 18 1 Department of Infectious Diseases, Hematology and Oncology, University Hospital Wuerzburg,
- Wuerzburg, Germany, Ullmann A@klinik.uni-wuerzburg.de, heinz w@klinik.uni-wuerzburg.de,
- 20 Loeffler J@ukw.de

- 21 2 Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain, jaguadog1@gmail.com
- 22 3 Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey,
- 23 sarikanakdagli@gmail.com
- 24 4 The National Aspergillosis Centre, University Hospital of South Manchester, Manchester, UK,
- ddenning@manchester.ac.uk, malcolm.richardson@manchester.ac.uk
- 26 5 The University of Manchester, Manchester, UK,

27	6	Manchester Academic Health Science Centre, Manchester, UK
28	7	Department of Paediatric Hematology/Oncology, Center for Bone Marrow Transplantation,
29		University Children's Hospital Münster, Münster, Germany, grollan@ukmuenster.de
30	8	Department of Microbiology and Immunology, University Hospital Leuven, Leuven, Belgium,
31		katrien.lagrou@uzleuven.be
32	9	Institute of Hygiene, Microbiology and Social Medicine, Medical University Innsbruck, Innsbruck,
33		Austria, cornelia.lass-floerl@i-med.ac.at
34	10	Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy,
35		russeledward.lewis@unibo.it
36	11	Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario
37		Gregorio Marañón, Madrid, Spain, pmunoz@micro.hggm.es, ebouza@microb.net
38	12	CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid Spain
39	13	Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
40	14	Department of Medical Microbiology, Institute for Infection, Inflammation and Immunity,
41		Radboud University Medical Centre, Nijmegen, Netherlands, paul.verweij@radboudumc.nl
42	15	MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen,
43		Aberdeen, UK, a.warris@abdn.ac.uk
44	16	Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France, florence.ader@univ-
45		lyon1.fr
46	17	French International Centre for Infectious Diseases Research, Lyon, France
47	18	Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School,
48		Ankara, Turkey, akova.murat02@gmail.com
49	19	Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen,
50		Denmark, maca@ssi.dk
51	20	Department of Medical Microbiology and Infectious Diseases, Institute of Infection and
52		Immunity, School of Medicine, Cardiff University, Cardiff, UK, BarnesRA@cardiff.ac.uk

53	21	Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois
54		(CHUV), Lausanne, Switzerland, catherine.beigelman-aubry@chuv.ch
55	22	Department of Internal Medicine, Ghent University, Ghent, Belgium, stijn.blot@ugent.be
56	23	Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia
57	24	Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands,
58		Roger.bruggemann@radboudumc.nl, BJ.Kullberg@radboudumc.nl
59	25	Medical Clinic III, University Hospital Mannheim, Mannheim, Germany,
60		Dieter.Buchheidt@umm.de
61	26	Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris,
62		Paris, France, jacques.cadranel@tnn.aphp.fr
63	27	Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy,
64		eliocastagnola@gaslini.org
65	28	Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research,
66		Chandigarh, India, arunaloke@hotmail.com
67	29	Mycology Reference Laboratory, National Center of Microbiology, Madrid, Spain, mcuenca-
68		estrella@isciii.es
69	30	Department of Critical Care Medicine, Attikon University Hospital, Athens, Greece,
70		gdimop@med.uoa.gr
71	31	Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain, fortunabete@gmail.com
72	32	Institute for Research in Environmental Medicine, University Rennes, Rennes, France, jean-
73		pierre.gangneux@univ-rennes1.fr
74	33	Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland,
75		jgarbino@bluewin.ch
76	34	Department of Hematology and Oncology, University Hospital of Strasbourg, Strasbourg, France,
77		raoul.herbrecht@chru-strasbourg.fr

78	35	Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg,
79		Heidelberg, Germany, heussel@uni-heidelberg.de
80	36	Department of Medical Microbiology, Royal Free Hampstead NHS Trust, London, UK,
81		christopher.kibbler@nhs.net
82	37	Department of Clinical Mycology, Allergology and Immunology, St-Petersburg Medical Academy
83		of Postgraduate Education, St. Petersburg, Russia, n_klimko@mail.ru
84	38	International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany, clange@fz-
85		borstel.de
86	39	Clinical Infectious Diseases, Research Center Borstel, Leibniz Center for Medicine & Biosciences,
87		Borstel, Germany
88	40	German Center for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems
89		Site, Lübeck, Germany
90	41	Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann
91		Wolfgang Goethe-University, Frankfurt, Germany, Thomas.Lehrnbecher@kgu.de
92	42	Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris,
93		France, olivier.lortholary@nck.aphp.fr
94	43	Department of Haematology, University Hospital Leuven, Leuven, Belgium,
95		johan.maertens@uz.kuleuven.ac.be
96	44	Department of Infectious Diseases, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne,
97		Switzerland, oscar.marchetti@chuv.ch
98	45	Department of Medical Microbiology, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands,
99		jacques.meis@gmail.com
100	46	Department of Hematology, Universita Cattolica del Sacro Cuore, Roma, Itlay,
101		Livio.Pagano@unicatt.it
102	47	Department of Haematology, Saint Louis Hospital, Paris, France, patricia.ribaud@aphp.fr

103	48	Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University
104		School of Health Sciences, Thessaloniki, Greece, roilides@med.auth.gr
105	49	Hippokration General Hospital, Thessaloniki, Greece
106	50	Department of Hematology and Oncology, Paracelsus Hospital, Osnabrück, Germany,
107		markus.ruhnke@paracelsus-kliniken.de
108	51	Institute of Microbiology, Università Cattolica del Sacro Cuore, Roma, Italy,
109		msanguinetti@rm.unicatt.it
110	52	Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill
111		University, Montreal, Canada, don.sheppard@mcgill.ca
112	53	Infectious Diseases Unit, Szent Istvan and Szent Laszlo Hospital, Budapest, Hungary,
113		janos.sinko@gmail.com
114	54	Department of Infectious Diseases, Laikon General Hospital, University of Athens, Athens,
115		Greece, askiada@otenet.gr
116	55	Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany,
117		Maria.vehreschild@uk-koeln.de
118	56	Center for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany
119	57	German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany
120	58	National Institute for Cancer Research, University of Genova, Genova, Italy, viscolic@unige.it
121	59	CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
122	60	Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany
123	61	ESCMID Fungal Infection Study Group (EFISG) and European Confederation of Medical Mycology
124	(ECI	MM)
125		
126	Ack	nowledgement: Professor William Hope was a member of the TDM group, however, he stepped
127	dow	n during the process of guideline development due to his new post as guideline director of

128	ESCMID to avoid any conflicts of interest. His contributions were very much appreciated to the entry
129	guideline group. We are thankful for his help.
130	
131	Funding: European Society of Clinical Microbiology and Infectious Diseases (ESCMID), European
132	Confederation of Medical Mycology (ECMM) and European Respiratory Society (ERS)
133	
134	Corresponding author
135	Prof. Oliver A. Cornely, MD, FECMM, FIDSA
136	Department I for Internal Medicine
137	University Hospital
138	Kerpener Str. 62
139	50937 Cologne
140	Germany
141	Tel. +49 221 478 85523
142	Fax +49 221 478 1421 445
143	E-mail: Oliver.cornely@uk-koeln.de
144	
145	

Abstract

The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of major forms of aspergillosis. Only a few of the numerous recommendations can be summarized here. The performance of a chest computed tomographic scan as well as a bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) is strongly recommended. For diagnosis, direct microscopy preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan is recommended as accurate marker for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species level by molecular methods is strongly recommended for all clinical relevant Aspergillus isolates; antifungal susceptibility testing should be done in patients unresponsive to treatment, or in regions with a high prevalence of azole resistance. Isavuconazole and voriconazole are the preferred agents for first line treatment of pulmonary IA, followed by liposomal amphotericin B. In refractory disease we strongly recommend a personalized approach considering therapeutic drug monitoring (TDM), reversal of predisposing factors, switching drug class and surgical intervention. Primary prophylaxis with posaconazole is strongly recommended in patients with haematological malignancy, secondary prophylaxis in high risk patients. TDM is strongly recommended for patients receiving posaconazole suspension or voriconazole for IA treatment. Combinations of antifungals as primary treatment options are not recommended. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.

Introduction

This is the third fungal diagnosis and management clinical guideline published in cooperation with various European scientific societies. This part of the guideline regarding invasive and chronic aspergillosis, despite its lengthiness, is a condensation of all the recommendations made by the group and are put into tables for easier and faster reading. More details on how the recommendations were arrived at will follow in a supplementary publication. This *Aspergillus* guideline will follow the style of other guidelines by including diagnostic and therapeutic guidance. Guidelines on this topic have been published previously by other scientific groups and all follow the common goal to provide clinicians with best guidance in their everyday working environment. Our goal was to provide a comprehensive European guideline focusing on the life-threatening diseases caused by *Aspergillus* spp.

Methods

Author panel recruitment and organisation is similar as done previously [1]. In brief, experts in the field were defined and approved by the three societies ESCMID, ECMM, and ERS. The total of 54 authors were grouped into their special fields of expertise. Subgroup coordinators were responsible for the first draft of recommendations. There were two face-to-face meetings followed by numerous electronic exchanges. Some of the first recommendations were presented at ECCMID 2014. This summary was reviewed and approved by all participating authors and sent to the ESCMID guideline director for public review. Then the final version was submitted to the Journal of Clinical Microbiology and Infection for additional peer review and subsequent publication. Only the rationale of the chronic pulmonary aspergillosis guideline was published ahead of time [2].

quality of evidence was slightly modified (Table 1).

Diagnostic Procedures

Early diagnosis of invasive aspergillosis (IA) is a challenge and should be based on the integration of clinical, radiological and microbiological data.

In patients at risk for IA with fever of unknown origin or clinical symptoms of lower respiratory tract infection who remain febrile despite broad-spectrum antibacterial treatment, thin-section chest computed tomography (multidetector (MDCT), multislice (MSCT), spiral CT, high resolution CT) at optimized dose (according to ALARA (As Low As Reasonably Achievable) principle) is the imaging modality of choice (AII) [3-13]. Pulmonary CT angiography may be of interest in the early diagnosis of IA by depicting directly vessel occlusion at the level of a suspicious fungal lesion with a potential high negative predictive value regarding imaging evaluation [14-16], and is required in case of haemoptysis (AII). In selected patients where CT is not wanted or feasible, MRI of the lungs may represent an alternative imaging to thin-section MSCT [17-22], PET-CT being of modest interest in the diagnostics of IA [23, 24].

No CT scanning technique is 100% sensitive or specific for IPA [25-27]: Classical CT findings of angioinvasive aspergillosis including macronodule(s) >1 cm, which may be surrounded by a halo of ground-glass attenuation (halo sign, early phase, inconstant) [26, 28-30], pleural based wedge-shaped areas of consolidation [31], alveolar consolidations [26, 32, 33], masses (especially in SOT recipients) [5, 28], internal low attenuation[34], reverse halo sign [35], cavity or air-crescent sign (delayed finding), ground glass opacities and pleural effusion [7, 25, 36]. Bronchoinvasive forms may appear as tracheal or bronchial wall thickening, centrilobular nodules with tree in bud appearance [4] in a patchy distribution, predominant peribronchial areas of consolidation [37] or bronchopneumonia [36].

Other diagnostic procedures include early bronchoalveolar lavage (BAL) (AII) [38-44], guided by CT-findings [45, 46], and less frequently CT-guided transthoracic biopsies, video-assisted thoracoscopic surgery (VATS), open lung biopsies, transbronchial biopsies [18, 47-59] or convex endobronchial

ultrasound transbronchial needle aspiration (EBUS-TBNA), the latter technique appearing to be a promising procedure in this setting [60-62]. Moreover, according to clinical symptoms, paranasal CT, CT or MRI of the CNS as well as abdominal CT may also be required (Table 2). In particular, findings of sinusitis with bone erosion may be observed, intracranial and/or intraorbital extension of the disease being best evaluated by MRI [63-65]. In the brain, due to direct spread from paranasal sinuses or haematogenous dissemination, meningeal enhancement or empyema, cerebral abscess, mycotic aneurysms as well as haemorrhagic lesions and rarely stroke may be seen (Table 2) [66-69]. Both microscopy and culture should be attempted on appropriate specimens from patients at risk for IA with a priority for culture in case insufficient material is available (AII). Demonstrating tissue invasion by hyphae through microscopic examination of biopsy or autopsy material provides a diagnosis of proven invasive fungal infection. However, the sensitivity of microscopy for IA is 50% at best. Specimens may be examined as a wet mount preparation with or without the addition of 10% potassium hydroxide. Fluorescent dyes such as Calcofluor white or Blankophor have the advantages of relatively high sensitivity, rapid turnaround time, and broad applicability but are not specific (AII). Gomori's methenamine silver stain (GMS) and periodic acid-Schiff (PAS) can be applied to histological sections and smears and should be conducted in all cases in which IA is considered a diagnostic possibility (Table 3). Respiratory secretions from patients with suspected aspergillosis must be processed rapidly for culture to prevent overgrowth by bacteria and yeasts. To achieve optimal recovery of Aspergillus from BAL fluid, centrifugation of the sample is advised with investigation of the sediment (AIII). It is recommended that high volume untreated sputum and BAL cultures are performed as opposed to culturing small volumes of digested, liquefied samples [70] (Table 4). Specific media for fungal culture are recommended (Table 5). Galactomannan (GM) detection in fluids (especially BAL) is more sensitive than culture for diagnosis of IA. GM is reported as optical density index (ODI). In serum samples an ODI cut-off of 0.5 (currently under review by the EORTC/MSG-ERC) results in high sensitivity in haematological patients in the absence of mould-active

prophylaxis (AI) (Table 6). Serial screening for GM in prolonged neutropenia and in allogeneic stem cell transplantation recipients during the early engraftment phase has an excellent sensitivity and negative predictive value (NPV) for IA (AII) [71]. It is not recommended in patients on mould-active prophylaxis [72]. Sensitivity of serum GM testing is significantly lower in non-neutropenic versus neutropenic patients [73]. Decrease of the GM index during the first two weeks of antifungal therapy is a reliable predictor of a satisfactory response in cancer patients [74]. GM detection in BAL specimens has an excellent performance with evidence that GM index of 0.5-1.0 has decreased predictive values compared with results of >1.0 [75] (AII) (Table 7). (1-3)-β-D-glucan (BDG) is a constituent of the cell wall of many species and genera of fungi and is released into body fluids in association with fungal infection. A limited role is given for the exclusive testing of the BDG in diagnosing IA (BII) (Table 8), however, the combination with GM or PCR improves specific detection[76]. The Aspergillus lateral flow LFD assay can be performed on serum and on BAL samples. However, at the time of writing this test kit is not yet commercially available. According to the evidence so far, the recommendation to perform the LFD assay on BAL samples is moderate (CIII) [77] (Table 9). Aspergillus PCR has been applied to blood and BAL fluid, and is currently being considered by the EORTC / MSG-ERC for inclusion into the definitions of invasive fungal disease. For both sample types, a combination with other biomarkers increases the likelihood of IA [78, 79]. The performance of serum PCR is not significantly different from that of whole blood [80]. Prospective screening of high-risk haematological patients by a combination of GM and PCR improves the diagnostic accuracy and is associated with an earlier diagnosis [81, 82] (Table 10 and 11). Molecular detection of fungi in biopsy samples is more sensitive on hyphal positive samples compared to hyphal negative samples (AII) (Table 12). Recommendations for storage of original samples and isolates are given in table 13. Antibody detection test are only marginally supported for the diagnosis of IA (CII) (Table 14).

Challenges in resistance development

Resistance to antifungal agents is an increasing problem in *Aspergillus* diseases [83, 84]. *Aspergillus* species can be intrinsically resistant to polyenes and azoles [85], or may acquire resistance following exposure to azole compounds [86]. Resistance may develop during azole therapy, and mainly occurs in patients with chronic (cavitary) pulmonary aspergillosis (CPA), especially those with aspergilloma [87, 88]. Individual *Aspergillus* colonies from a single specimen may harbour different resistance profiles [89]. Resistance may also develop through exposure to azole fungicides in the environment [90-93]. As resistant spores are present in ambient air, patients may present with azole-resistant *Aspergillus* disease without previous azole therapy [94, 95]. Acquired resistance to azoles is mainly found in *Aspergillus fumigatus* and is reported globally [83, 84, 96-99] (Table 15).

In clinical laboratories, species identification to complex level is recommended for all clinically significant isolates (BIII). Some species are intrinsically resistant to either azoles or amphotericin B

Aspergillus fumigatus species complex

(AmB) (Table 16 and 17).

It is recommended that the MIC should be determined for all clinically relevant *Aspergillus* isolates (AIII) (Table 15), specifically if grown from patients previously exposed to or on antifungal therapy. If MIC-testing is not available, routine agar screening can be used to detect azole resistance, but there are no validated assays (Table 16). If growth is observed on the screening agar, the isolate should be referred to a mycology reference laboratory for MIC testing. Periodic MIC testing of at least 100 *A. fumigatus* is recommended for determination of local epidemiology of azole resistance (Table 15). Clinical breakpoints for interpretation of azole and AmB MICs against *Aspergillus* are currently available for European Committee on Antimicrobial Susceptibility Testing (EUCAST) microdilution method but remain undetermined for Clinical & Laboratory Standards Institute (CLSI) methodology. Accordingly, EUCAST (AII) or CLSI broth microdilution methods (BII) can be used for determination of routine MICs for clinical guidance and for epidemiological resistance surveillance (AII). Low to moderate correlation between Etest® and CLSI method has been reported, and in-house validation

and confirmation by reference method is warranted if Etest™ is used. Both itraconazole and voriconazole (AII) should be tested to ensure detection of the voriconazole-resistance mutation TR₄₆/Y121F/T289A (Table 3). Posaconazole resistance without itraconazole resistance has not been reported (Table 17). EUCAST (BIII) or CLSI broth microdilution methods (CIII) can be used to determine AmB MICs, but a correlation between MIC and clinical outcome is generally lacking, with exception of A. terreus and A. flavus (Table 17). Voriconazole and isavuconazole are recommended for the treatment of IA due to species showing high AmB MICs (Table 18). Liposomal AmB (L-AmB) or AmB lipid complex (ABLC) are recommended for species with intrinsic high azole MICs (Table 19 and 20). In aspergillosis due to A. fumigatus, voriconazole is recommended if the isolate is voriconazole susceptible (EUCAST MIC ≤1 mg/l) (AI). If resistant (voriconazole MIC >2 mg/l), L-AmB therapy is recommended (All_u). It is unknown if patients infected with A. fumigatus with voriconazole MIC 2 mg/l (intermediate), respond less well to voriconazole monotherapy. These patients may have an increased probability of failing voriconazole monotherapy, and combination therapy with an echinocandin or L-AmB monotherapy should be considered for invasive disease (AIII) (Table 20). In azole-resistant chronic pulmonary aspergillosis (CPA), L-AmB or micafungin can be considered (BII) if surgical intervention is precluded [2]. Inhaled AmB is an option for azole-resistant airway aspergillosis. In settings with environmental azole resistance, no change to the primary regimen for IA is recommended when resistance rates are <10% (AIII). If azole resistance rates are >10%, primary therapy with voriconazole plus echinocandin (BIII) or L-AmB (BIII) is recommended.

Therapeutic drug monitoring (TDM)

Patients with IA often have multiple conditions associated with their underlying disease and its treatment that affects the absorption, distribution, metabolism, and clearance of antifungal medications [100]. As a result, standardized dosing recommendations for antifungals used in the prevention or treatment of IA may not achieve effective or safe drug exposures in all patients.

Moreover, a subset of patients with severe infections or difficult to treat sites (e.g. CNS) or infections caused by *Aspergillus* spp. with elevated MICs may require higher drug exposures. Therapeutic drug monitoring (TDM) is often the most direct laboratory approach for identifying patients at jeopardy for treatment failure or toxicity because of inadequate or excessive drug exposures, and can be used to fine-tune antifungal dosing to improve the probability of optimal outcomes (Table 21).

For itraconazole, a serum trough of 0.5-4 mg/L (measured by HPLC) is recommended for prophylaxis (All [efficacy], BII [safety]) and a trough of 1-4 mg/L is recommended during the treatment of IA (All [efficacy], BII [safety]) [101-106]. Itraconazole has an active metabolite, OH-itraconazole that is present in similar (1:1) concentrations as the parent itraconazole compound when patients are at pharmacokinetic steady state. OH-itraconazole concentrations may be reported separately when samples are analysed by HPLC or LC/MS/MS, but will included in the overall report of "itraconazole" concentrations if samples are analysed by bioassay [107, 108]. Therefore, the target range for itraconazole is higher when reported by bioassay (i.e. 3-17 mg/L) but may vary by lab depending on the reference standards used. Samples should be acquired within 5-7 days of starting therapy, and repeated as clinically indicated if there are changes in the patient's clinical condition, concomitant medications, or suspected toxicity (Table 22). Steady-state concentrations can often be predicted from earlier (non-steady) state samples through pharmacokinetic models or computerized dosageassistance. In centres where these tools are available, sampling before day 5-7 may be preferable. Repeat TDM is recommended the following week to confirm the patient remains in the therapeutic range. A plasma trough concentration of 1-6 mg/L is considered adequate for most patients receiving voriconazole prophylaxis or treatment (AII, safety and efficacy) [109-114]. However, a trough of 2-6 mg/L (AII, safety and efficacy) is recommended in patients treated for severe infections (multifocal or disseminated disease, CNS infections, infection with pathogen with elevated MICs) [111, 112]. TDM is strongly recommended in paediatric patients due to the much higher rates of drug

elimination and potential for underdosing, especially with the lower voriconazole doses recommended in the past (AII) [115, 116]. Plasma levels should be monitored between 2-5 days after initiation of therapy, and ideally repeated the following week to confirm the patient remains in the therapeutic range. Repeated monitoring is indicated if there are changes in the patient's clinical condition, concomitant medications, or suspected toxicity (Table 23). For patients receiving posaconazole suspension, a plasma trough of >0.7 mg/L is recommended during prophylaxis (BII efficacy) [117, 118]; and a trough of >1 mg/L is recommended if the patient is receiving treatment for suspected or documented IA (All efficacy) [119]. Currently, no studies have defined an upper plasma target that is associated with toxicity, although pharmacokinetic studies supporting the registration of the new posaconazole tablet formulation with the EMA used a provisional cut-off of 3.75 mg/L [120-122]. Posaconazole plasma trough levels should be monitored on day 5 of therapy or soon thereafter, and repeated as clinically indicated. For most patients prescribed posaconazole, we recommend using the newer tablet formulation (or intravenous formulation if indicated) rather than the suspension (AII), as tablets are more likely to consistently achieve target plasma levels and are less affected by GI-dependent drug interactions [120]. Currently, there is limited evidence to suggest that all patients receiving posaconazole tablets or IV formulation for prophylaxis require routine TDM; however, our opinion is that when treating suspected or documented Aspergillus infections, TDM could still be useful if the pathogen has elevated MICs, is unresponsive to treatment, or in the event of unexplained toxicity (BIII). Until further data are available, we recommend using TDM monitoring strategies and plasma trough targets as detailed above suggested for the suspension formulation (Table 22). Although dose-response and plasma concentration-response relationships for isavuconazole have been reported in animal models, limited data are currently available to define a target through therapeutic range or support the need for routine TDM for this agent [123]. Our opinion is that TDM could still be useful in the clinical assessment or monitoring of patients receiving isavuconazole

therapy (CIII) if patients are unresponsive to treatment, have unexpected toxicity, pharmacokinetic

drug-drug interactions, or if isavuconazole is being used to treat pathogens with elevated MICs or sanctuary sites such as the CNS. In the absence of well-defined therapeutic targets, documentation of a plasma trough in the range of 2-3 mg/L (mean concentration range from phase II/III clinical studies) after day 5 (including loading doses) suggests adequate drug exposure (Table 24). In rare circumstances, flucytosine may be used in combination with other antifungals for the treatment of triazole-resistant *Aspergillus* spp. In this scenario, weekly measurement of peak serum concentrations 2 hours following an oral dose (AII) are needed to confirm that peak concentrations are 50-100 mg/L in order to reduce the risk of toxicity. Trough concentrations of 25-50 mg/mL are

IA in the paediatric population

required for efficacy [124, 125].

Presenting symptoms, distributions and patterns of diseases and vulnerability to IA are similar between children and adults. However, differences exist in epidemiology and underlying conditions, usefulness of newer diagnostic tools, pharmacology of antifungal agents and evidence from interventional phase III studies. Recommendations for paediatric patients are based on efficacy in phase II and III trials in adults (corresponding to adult ESCMID recommendation), the availability of paediatric pharmacokinetic data, safety data and supportive efficacy data. In addition, regulatory approval is considered as well. Therapeutic drug monitoring is always recommended when mould-active azoles are used as prophylaxis or treatment.

Primary antifungal prophylaxis may be indicated in paediatric patients at 'high risk' for developing invasive fungal diseases, and specifically IA. A natural incidence rate of IFDs of ≥10% is usually considered as high risk. High-risk populations include children with de novo or recurrent leukaemia (e.g. AML, ALL depending on treatment protocol), bone marrow failure syndromes with profound and persistent neutropenia (e.g. MDS, VSAA), allogeneic HSCT recipients, patients with chronic granulomatous disease and those undergoing lung transplantation. For patients with haematological disorders, the mould-active oral azoles are the first choice to prevent IA in children, although both

unknown [140-144].

itraconazole and posaconazole are not licensed for use in patients <18 years of age. Due to the lack of paediatric data, recommendations for lung and high-risk liver transplant patients correspond to those made for adults [126, 127]. Secondary prophylaxis to prevent recurrence of IA when risk factors are persisting is recommended with an antifungal targeted at the previous *Aspergillus* species, which caused the first episode (Table 26).

Diagnostic procedures used in children are not different from those used in adults but their performance may differ. Typical abnormalities (e.g. halo sign, air crescent sign) on CT-chest as described in adults are less common in children in which unspecific masses or infiltrates predominate [128-130]. The GMI test on blood and BAL samples has a similar sensitivity and specificity profile

compared to adults [131-139]. The BDG test is not specific for Aspergillus and is not validated in

children. Higher baseline levels are reported in healthy children and therefore the cut-off is yet

General management principles of IA are consistent with those in adults and include prompt initiation of antifungal therapy, control of predisposing conditions (e.g. reduction or discontinuation of glucocorticosteroids in immunosuppressed, administration of colony-stimulating factors in neutropenic patients), and surgical interventions on a case by case basis using a multidisciplinary approach. Voriconazole is recommended as the first line agent to treat IA in all paediatric patients except for neonates (Allt). L-AmB is first choice for neonates (Alll) and may replace voriconazole as first line treatment in areas or institutions with a high prevalence of azole-resistant *A. fumigatus*. Upon diagnosis of invasive pulmonary aspergillosis thorough evaluation for further sites of infection is required and should include the CNS. The optimal duration of therapy is determined by the resolution of all signs and symptoms and reversal of the underlying deficit in host defences. For salvage therapy and breakthrough infections, a switch to a different class of antifungals is recommended [104, 113, 119, 145-154] (Table 27).

If a fever-driven (empiric) strategy is used in at risk paediatric haematological patients, caspofungin

or L-AmB are recommended until resolution of fever and neutropenia [155-157]. Treatment

recommendations for a diagnostic-driven (pre-emptive) strategy correspond to those made for targeted treatment [158-161].

Aspergillosis in haematological malignancies including haematopoietic stem cell transplantation In patients treated for haematological diseases, prolonged severe neutropenia is the most important risk factor for the development of IA. T cell depleted grafts, glucocorticosteroids and other immune suppressive drugs have been identified as further risk factors for IA in the later course after HSCT, even in non-neutropenic patients [162]. In fact, up to two thirds of patients with IA diagnosed after allogeneic HSCT are not neutropenic [163], and the median time of diagnosis of IA after allogeneic HSCT is 82 days (range, 3 - 6542 days) [164].

Environment

Standards for the hospital environment in this patient population (adults and paediatric) requires special attention. Patients need to be segregated from construction or renovation (AII_h), potted plants (BII), and flowers in wards and in patients' rooms (CIII) [165-170]. Published data support the recommendation to accommodate patients in special hospital rooms with positive air pressure and HEPA filters (BII) or laminar airflow (BII_h). However, data were with historical controls, underpowered, or described by multivariate analysis describing high-risk situations for IA [171-174]. Protective masks for patients are proven not to be effective outside of the protected area (CII) [175], filters for water supply especially in showers are recommended (BII) [176-180]. No data are available to support the regular environmental air sampling to prevent infections. However, indoor sampling is advisable to monitor filter efficacy (BIII) [181, 182].

Treatment

Providing a definite diagnosis of IA is a continuously challenging endeavour for clinicians. The EORTC definitions are only designed for clinical studies. For clinical decision-making, these definitions could

have a deleterious outcome since confirmation of a proven or probable diagnosis would delay the start of therapy [183]. Any patient at risk considered by the responsible clinician as having IA should receive therapy (AIII) (Tables 28-29). A consensus statement was made regarding duration of therapy. Physicians should consider IV to oral switch in stable and PK-reliable patients. Treatment duration depends on clinical response and on immune reconstitution or recovery from graft-versushost disease (GvHD). Good partial or complete remission (radiographic imaging) requires no clinical (by radiographic imaging: scarring allowed) or microbiological evidence of disease. The range of the duration of treatment (3 to >50 weeks) is huge and the evidence base to support any particular recommendation is weak [146, 149, 184, 185]. Close monitoring (e.g. radiographic imaging [186, 187] or, if applicable, biomarkers) is suggested once antifungal treatment is discontinued. Additional adjunctive therapy such as the administration of G-CSF or G-CSF-primed granulocyte infusions (data mainly from paediatric populations) received only a weak supportive recommendation (CIII). In refractory cases, G-CSF (or IFNy) has immunomodulatory effects [188-193]. No controlled trials have been performed and only anecdotal data with small numbers of patients exist. Persistent neutropenia is related with treatment failure, recovery from neutropenia enhances the efficacy of antifungal agents. A recent Cochrane review investigating the efficacy of granulocyte transfusions indicates no mortality difference for any kind of infection in patients with neutropenia [194].

Secondary Prophylaxis

A further consensus statement regards the use of secondary prophylaxis: Secondary prophylaxis is a treatment strategy to prevent recurrence of IA during a subsequent risk period of immunosuppression. Patients with a history of IA previously successfully treated with antifungals entering a subsequent risk period of immunosuppression, e.g. allogeneic HCT (early phase), chemotherapy resulting in severe neutropenia (i.e. <500/µL and at least for 7 days), acute GvHD >1°

or extensive chronic GvHD, or T-cell suppressing therapy, including steroids, are at risk. Agents for secondary prophylaxis are listed in Table 30.

Other Treatment Options: Primary Prophylaxis, Fever-driven (Empiric), and Diagnostic-driven (Pre-

emptive) Therapy

Two published studies by Chamilos and Sinko describe a number of patients who succumbed with IA missed prior to death [195, 196]. Current diagnostic procedures are apparently not satisfactory. For this reason, patients known to be at high risk for IA receive primary prophylaxis, especially patients with profound and prolonged neutropenia or with active GVHD (Table 31).

As an alternative to prophylaxis, patients could receive the classical empirical administration of antifungal agents during fever refractory to broad-spectrum antibacterial agents. Empiric treatment is defined as a fever-driven treatment approach. Patients who would qualify for this approach are patients receiving induction or remission chemotherapy for acute leukaemia or MDS or conditioning chemotherapy for haematopoietic stem cell transplantation. Empiric antifungal treatment is expected to reduce morbidity [158, 159, 197-200] and mortality [201] (Table 32). In our consensus statement the duration of empiric antifungal treatment is set by the following rules: If the patient is afebrile and has no active infection or infiltrates, then antifungal therapy can be discontinued after recovery of leukocyte counts.

Pre-emptive treatment is defined as a diagnostic driven procedure. In most cases, it is defined by positive GM testing. However, (low-dose) chest CT with pulmonary infiltrates would apply as well. The use of ß -D-glucan and PCR testing as alternative biomarkers for galactomannan have considerable merit [202, 203], though ß-D-glucan is not specific for *Aspergillus* disease. Some authors wait for *Aspergillus*-associated typical radiological signs (including nodules, halo sign, wedge-shaped areas of consolidation, or air crescent signs) before starting antifungal treatment (agents recommended as in targeted treatment).

The guideline group does not provide any recommendation, which approach is the most appropriate since various backgrounds, histories, and epidemiology drive that decision, in a given centre. Basically, there remain two possible ways to manage or monitor a patient besides vital signs (e.g. fever). The two classical options are that 1) patient receives primary prophylaxis or 2) a patient receives no prophylaxis but needs monitoring of biomarkers. The guideline group appreciates that breakthrough fungal diseases may appear through either symptoms or a disease-identifying biomarker or imaging result. Figure 1 depicts a consensus algorithm for patient management if the minimum recommended diagnostic tests are positive or negative.

Therapy for refractory disease

Refractory IA is defined as progression of disease and should be differentiated from stable disease [204]. Patients with radiological evidence of progression and persisting elevated GM have a very high probability of treatment failure resulting in death. Assessment of response should use composite outcome parameters including clinical, radiological, and mycological criteria. Radiological progression following or closely preceding neutrophil recovery should be carefully evaluated and is not necessarily indicative of failure. Keeping this in mind, assessing response 2 weeks after treatment initiation generally allows predicting the response, especially recognizing oncoming failure [205]. In case of GM negative IA, early assessment of response may be trickier and could require a longer time of therapy. If failure ascertained, look for poor vascular supply (i.e. sinusitis requiring surgical treatment), microbiological confirmation is recommended since identification of the fungus at the species level is pivotal. If a viable organism is recovered, susceptibility testing is recommended, especially regarding azole resistance. On the other hand, azole concentration should be monitored as well (see chapters on resistance and therapeutic drug monitoring within this guideline) [28, 204, 206-214]. The choices of antifungal agents in refractory disease are listed in Table 33.

IA in adults without haematological malignancies (e.g. solid organ transplantation)

Approximately 43-80% of the cases of IA appear in patients without a haematological malignancy [42, 215-218], although these patients are rarely included in the seminal studies of antifungals [146, 149, 185]. The proportion of these patients is even increased when exposed to spore concentrations of >25 cfu/m³ in hospital air [219-222]. The non-haematological populations at risk for IA include among others solid organ transplant recipients (SOT), patients treated with prolonged high dose glucocorticosteroids, or with other immunosuppressants, patients with advanced AIDS or neoplasia, COPD, liver failure, liver cirrhosis as well as critically ill patients requiring ICU admission [42, 215-217, 223-226]. These patients frequently do not fulfil the EORTC criteria. Confirmation of diagnosis may be delayed resulting in high mortality rates. At the same time drug-drug interactions and toxicity can occur more frequently compared to haematological patients [42]. Physicians need to be aware of the specific risk factors, clinical manifestations and management challenges in order to improve outcome. In SOT recipients the average incidence of IA ranges from 0.1 to 3% [227, 228], with the highest risk in small bowel (11.6%) and lung (8.6%) transplant recipients, followed by patients receiving liver (4.7%), heart (4.0%), pancreas (3.4%), and kidney (1.3%) grafts [227-229]. Half the cases will occur in the first three months after transplantation, in patients with post-surgical risk factors. Late aspergillosis is more common in elderly recipients, and patients with pronounced immunosuppression due to rejection or post-transplant neoplasia or chronically impaired graft function [228, 230]. With the exception of lung transplantation, in which universal prophylaxis is still common, antifungal prophylaxis will target SOT recipients with additional risk factors [229]. Risk factors for early IA in all SOT recipients - Including heart transplants - comprise renal failure requiring replacement therapy, re-intervention, CMV disease, and high environmental exposure to mould spores [126, 229, 231, 232]. In liver transplantation, high MELD score, transplantation in fulminant hepatic failure, high intraoperative transfusion needs or re-transplantation are considered indications for post-surgical prophylaxis [233-241]. In lung transplant recipients, risk factors include previous respiratory tract colonization with Aspergillus, single lung transplant, CMV disease and

acquired hypogammaglobulinaemia [242-244]. In kidney transplantation risk factors include COPD, delayed graft function, bloodstream infection, and acute graft rejection [245] and an >1.25 mg/kg/day average dose of prednisone [246]. Finally, some polymorphisms in defence genes have also been suggested to increase risk in transplant recipients [247, 248].

The incidence of IA in HIV patients has decreased since the advent of new antiretroviral therapy (2.2)

cases per 10,000/year), but mortality remains high (38%) [249]. IA typically appears in patients with low CD4 counts and associated conditions such as neutropenia, advanced cirrhosis, liver transplantation or glucocorticosteroid therapy [250-258]. As in other non-haematologic populations, EORTC criteria only detect half of the IA cases diagnosed among HIV-infected patients [249] and in a recent series of autopsies, only 12% of the patients had been diagnosed ante mortem [259] (Table 34).

IA may affect 0.3% of patients with liver cirrhosis [260]. Both acute liver failure and advanced cirrhosis, mainly alcoholic hepatitis treated with glucocorticosteroids, have been recognized as risk factors for IA [223, 261-263]. Low level of suspicion explains that 53% of the cases of IA in cirrhotic patients are only recognized post-mortem [264] and that liver disease is independently associated with IA-related mortality [217, 265].

IA has also been described in apparently immunocompetent patients in a critical condition as a complication of ARDS, COPD, pneumonia, burns, severe bacterial infection, surgery, and malnutrition. Incidence is 4-6/1,000 ICU admissions and the mortality is higher than 70% in most series [262, 266-268]. Glucocorticosteroid treatment was the major host factor [269, 270] and as in cirrhotic or HIV positive patients delayed diagnosis is common [271, 272]. COPD patients requiring glucocorticosteroids represent a group with especially high mortality [266, 273, 274]. Risk factors include admission to ICU, chronic heart failure, and antibiotic treatment and, above all, the cumulative dose of glucocorticosteroids [273].

Classic pulmonary and CNS aspergillosis predominates in these populations, but disseminated disease, fulminant and atypical forms may occur [221, 231, 242, 268, 275-283]. The sensitivity of

most diagnostic methods is lower in non-haematological patients. Isolation of Aspergillus from respiratory cultures has a much lower positive predictive value so overdiagnosis has to be prevented [215, 284-288]. Regarding imaging findings, angioinvasive presentation included in the EORTC criteria is uncommon in this setting [289]. Airway invasive radiological presentation was present in 37% of heart transplant recipients and was associated with delayed diagnosis and poorer prognosis [231, 290]. In COPD and HIV-positive patients, the most common radiological presentation was an alveolar infiltrate [289, 291, 292]. Experience with biomarkers and PCR is still scarce in these populations, but the combination of at least two different methods appears to be the best diagnostic approach [293-301] (Table 35). Despite no comparative studies of antifungal therapy in non-haematologic patients voriconazole remains the first option, since it has been related to reduced mortality [233, 302-304] (Table 36). Combination therapy is uncommon, although retrospective data was encouraging in SOT recipients [305]. The risks of drug-drug interactions and toxicity are very important in these populations and TDM is especially advisable [306-311]. In patients with liver insufficiency, L-AMB is usually the first therapeutic option. Antifungal resistance is not a common problem despite prophylaxis [312, 313], although some cases have been reported [314-316]. Finally, immune reconstitution syndrome may occur after therapy initiation [317]. Most lung recipients receive antifungal prophylaxis. Targeted prophylaxis is preferred in the remaining SOT with risk factors [126, 229, 318-321]. However, significant variation in practice has been noted [238, 320, 322, 323]. In order to avoid drug-drug interactions and toxicity, echinocandins or inhaled amphotericin are preferentially used [324-327], although voriconazole has also demonstrated its efficacy and safety in this setting [234, 237, 328-330]. Duration of prophylaxis is adjusted to the presence of risk factors and, with the exception of lung recipients, is usually limited tor 3-4 weeks [232] (Table 37).

Chronic pulmonary aspergillosis (CPA)

CPA is an indolent destructive disease of the lungs usually complicating other pulmonary conditions occurring in non- or mildly immunocompromised patients [331]. Its manifestations include chronic cavitary pulmonary aspergillosis (CCPA), which if left untreated may progress to chronic fibrosing pulmonary aspergillosis (CFPA), *Aspergillus* nodule and single aspergilloma [2, 332]. Subacute invasive pulmonary aspergillosis (previously chronic necrotizing pulmonary aspergillosis) is also a cavitating destructive lung disease usually found in moderately immunocompromised patients which progresses more rapidly, typically over 1 to 3 months. The diagnosis of CPA requires a combination of characteristics: one or more cavities with or without a fungal ball present or nodules on thoracic imaging, either direct evidence of *Aspergillus* infection (culture or microscopy from biopsy) or an IgG antibody response to *Aspergillus* spp. and exclusion of alternative diagnoses (especially mycobacterial infection), all present for at least 3 months [2]. Over 90% of patients have circulating *Aspergillus* antibody (precipitins) (AII) [333]. A positive culture of *Aspergillus fumigatus* respiratory tract secretion (BAL, bronchoscopy aspiration) is not diagnostic because many different pathologies are attributable to the fungus, and it may be an airway colonizing fungus or a plate contaminant in the laboratory.

If a fungal ball is seen, then only a positive test of *Aspergillus* IgG or precipitins confirms pathogenicity. Patients may have CPA and other infections concurrently (see below).

The distinctive hallmark of CCPA is new and/or expanding cavities with thick or thin walls in those with chronic lung disease. An intracavitary fungal ball may be present, often with pleural thickening and extensive parenchymal destruction and/or fibrosis. Patients may have CPA and other infections concurrently, especially bacterial including *Pseudomonas aeruginosa* infection or tuberculosis and non-tuberculous mycobacterial infection. *Aspergillus* nodules, which may be single or multiple, are very similar in appearance to malignancy as well as those seen in rheumatoid arthritis, coccidioidomycosis, tuberculosis, non-tuberculous mycobacterial infection and – rarely – actinomycosis or rheumatoid arthritis. Typically, *Aspergillus* nodules appear rounded, some with low attenuation or cavitation within. Some are spiculated, a common feature of carcinoma [332].

If technically feasible single aspergilloma should be surgically removed, preferably via video-assisted thoracic surgery technique with due consideration to risks as recommended [334]. Long term oral antifungal therapy is strongly recommended in patients with CCPA, partly to reduce general and respiratory symptoms [335, 336], but also to minimise haemoptysis and prevent lung destruction and fibrosis (AII) itraconazole or voriconazole are effective for CCPA (AIII) [2]. Oral posaconazole is a potential alternative treatment (BII) [2]. Six months of therapy is the recommended minimum (AI) [2]. Relapse is common after discontinuation. Intravenous therapy for CPA is useful in patients who fail or are intolerant of triazoles or have triazole resistant *A. fumigatus*. Prednisolone may be considered for underlying symptom control only if patients are adequately treated with antifungals. Mild and moderate haemoptysis usually responds to tranexamic acid; severe haemoptysis should be arrested with bronchial artery embolization (Table 38).

Conclusions

This executive summary is a comprehensive guideline covering many aspects of *Aspergillus* diseases. It provides guidance for clinicians on prevention of disease, diagnostic procedures, resistance issues and treatment of IA as well as chronic pulmonary aspergillosis. The guideline group will provide

Finally, the guideline group provides comprehensive tables explaining various options for specific situations. A follow-up manuscript is planned in approximately 5 years to update this guideline.

additional publications supporting the rational of given recommendations.

654 Table 1. Strength of recommendation and quality of evidence

Strength of	Definition
Recommendation	
(SoR)	
Grade A	Societies strongly support a recommendation for use
Grade B	Societies moderately support a recommendation for use
Grade C	Societies marginally support a recommendation for use
Grade D	Societies support a recommendation <u>against</u> use
Quality of Evidence	Definition
(QoE)	
Level I	Evidence from at least 1 properly* designed randomized, controlled trial
	(orientated on the primary endpoint of the trial)
Level II	Evidence from at least 1 well-designed clinical trial (incl. secondary
	endpoints), without randomization; from cohort or case-controlled
	analytic studies (preferably from >1 centre); from multiple time series; or
	from dramatic results of uncontrolled experiments
Level III	Evidence from opinions of respected authorities, based on clinical
	experience, descriptive case studies, or reports of expert committees
Added Index	Source of Level II Evidence
r	Meta-analysis or systematic review of RCT
t	Transferred evidence i.e. results from different patients' cohorts, or
	similar immune-status situation
h	Comparator group: historical control
u	Uncontrolled trials
a	For published abstract presented at an international symposium or

	meeting
* poor quality of plann	ing, inconsistency of results, indirectness of evidence etc. would lower the
SoR	

Table 2. Diagnostic imaging procedures

657 FUO, fever of unknown origin; CT, computed tomography; MDCT, multi-detector CT; BAL, bronchoalveolar lavage; PCR, polymerase chain reaction

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Neutropenia, fever or clinical	Diagnostic Imaging	Chest CT and	Α	II	Within 12-24h after the beginning of fever	[11, 21,
symptom of pneumonia, empiric		thin section				25, 337]
antibiotics, failing to achieve		MDCT				
defervescence, e.g. FUO						
Any	To identify possible	BAL	Α	II		[11]
	underlying fungal or					
	other infectious disease					
Hemoptysis or feeding vessel		Chest angio-	Α	II		[14-16]
	erosion	СТ /				
		pulmonary CT				
		angiography				
Life-threatening haemoptysis	Bridging until neutrophil	Arterial	В	III		
	recovery	embolization				

Any	To send appropriate	CT-guided	Α	III	
	specimens for	BAL			
	microscopy, culture and				
	PCR				

659 Table 3. Microscopic examinations

Popula	Intention	Intervention	SoR	QoE	Comment	Ref.
tion						
Any	To identify fungal	Histological examination	Α	III	Histopathology is an essential investigation	[338-
	elements in	Haematoxylin and eosin			Inability to definitively distinguish other filamentous fungi	341]
	histological sections	Gomori's methenamine			HE: difficult	
	and stains	silver stain			GMS: removes cellular background; more sensitive to hyphal	
		Periodic acid-Schiff			elements	
					PAS: advantage of counter stain to check cellular detail	
Any	To identify fungal	Fluorescent dyes:	Α	II	Not specific to Aspergillus but high sensitivity and the	[342-
	elements in	Calcofluor white, Uvitex			micromorphology may provide info on the fungal class	346]
	histological sections	2B, Blancophor			(Mucorales, dichotomous 90% angle branching, budding)	
	and stains				Rapid turnaround time	
					Broad applicability	
					May be applied to frozen sections, paraffin-embedded tissue	

Any	To identify fungal	Immunohistochemistry	В	II	In total 130 CNS cases with 73 cases of aspergillosis (56%)	[342-
	elements in	Monoclonal antibody WF-			Culture positivity in only in 25% samples	346]
	histological sections	AF-1 or EB-A1			Have the potential to provide genus and species specific data	
	and stains	In situ hybridization			Commercially available monoclonal antibodies	
					WF-AF-1 is specific for A. fumigatus, A. flavus, and A. niger	
Any	To identify fungal	Application of fluorescent	Α	II	Essential investigation	[340,
	elements in fresh	dyes Calcofluor white or			Not specific for <i>Aspergillus</i> species	341, 347]
	clinical specimens	Uvitex 2B or Blancophor			High sensitivity	
	(e.g. BAL)				Rapid turn-around time	
					Broad applicability	
					Inability to definitively distinguish other filamentous fungi	
		T. In a constant line and a CAAC			DAG Data live and Calciff CAIC and the	

BAL, bronchoalveolar lavage; HE, haematoxylin-eosin; GMS, Gomori's methenamine silver stain; PAS, Periodic acid-Schiff; CNS, central nervous system

Table 4. Sample selection and pre-analytical respiratory sample treatment

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Any	To achieve a homogenous	Liquefaction using a	Α	III	Essential investigation	[70, 348]
	sample of viscous samples	mucolytic agent, e.g.			High volume sputum culture (entire sample)	
	such as sputum	Pancreatin®,			shown to significantly increase recovery	
		Sputolysin®			Combination increased PCR yield, with PCR being	
					substantially more sensitive than culture	
		Liquefaction using				
		sonication and 1,4-				
		dithiothreitol				
Any	To achieve optimal	Centrifugation of BALs	А	III	Essential investigation	[70]
	recovery of Aspergillus	or bronchial aspirates			Isolation of Aspergillus dependent on volume	
	from BAL by				cultured	
	centrifugation and					
	investigation of the					

sediment		

BAL, bronchoalveolar lavage; PCR, polymerase chain reaction

665 Table 5. From culture to *Aspergillus* species identification

Popula	Intention	Intervention	SoR	QoE	Comment	Ref.
tion						
Any	Primary isolation from deep sites samples (e.g. biopsies, blood, CSF)	Culture on SDA, BHI agar, PDA or PFA at 30°C and 37°C for 72 h	A	III	Blood inhibits conidiation; BHI can help to recover some isolates; Isolation of several colonies or isolation of the same fungus from a repeat specimen enhance significance	[70, 349, 350]
	Primary isolation from non-sterile samples, e.g. sputum, respiratory aspirates, skin	Culture on SDA, BHI agar, PDA with gentamicin plus chloramphenicol at 30°C and 37°C for 72 h	A	III	High volume sputum culture (entire sample) shown to significantly increase recovery; Quantitative cultures are not discriminative for infection or colonization	
	Identification of species complex	Macroscopic and microscopic examination from primary cultures	A	II	Colony colour, conidium size, shape and septation. Colour of conidia and conidiophore and conidiogenesis (tease or tape mounts are preferred); Expertise needed for	
	Identification of species complex	Culture on identification media at 25-30°C and	A	II	interpretation	

	37ºC (2% MEA and				
	Czapek-Dox Agar) and				
	microscopic examination				
Identification at species	MALDI-TOF MS	В	II	In house databases are often used to improve identification	[351-354]
level	identification			rates	
Identification at species	Sequencing of ITS, beta-	А	III	Essential investigation in some clinical cases	[355, 356]
level	tubulin and calmodulin				
To study outbreaks	Microsatellite and CSP	С	II	To study outbreaks	[357-359]
	analysis	В	II	To study colonisation patterns	[360]
		<u> </u>		and DDA in a tast and a stress a construction of the stress to account MAN DI	

CSF, cerebrospinal fluid; SDA, Sabouraud dextrose agar; BHI, brain heart infusion; PDA, potatodextrose agar; MEA, malt extract agar; MALDI-TOF MS,

matrix-assisted laser desorption ionization time-of-flight mass spectometry identification; ITS, internal transcribed spacer

667 Table 6. Blood galactomannan testing in diagnosing IA

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Patients with prolonged	Prospective	GM in blood*	А	I	Highest test accuracy requiring 2 consecutive samples with an	[71,
neutropenic and allogeneic stem	screening for IA	Draw samples	С	III	ODI ≥ 0.5 or retesting the same sample	80,
cell transplantation recipients		every 3-4 days			Prospective monitoring should be combined with HRCT and	361-
not on mould-active prophylaxis					clinical evaluation	365]
Patients with prolonged	Prospective	GM in blood*	D	II	Low prevalence of IA in this setting with consequently low PPV	[366,
neutropenic and allogeneic stem	screening for IA				of blood GM test	367]
cell transplantation recipients on					Prophylaxis may have a negative impact on sensitivity of the	
mould active prophylaxis					test	
Patients with a haematological	To diagnose IA	GM in blood*			Significantly lower sensitivity in non-neutropenic patients	[131,
malignancy						362,
Neutropenic patients			Α	Ш		368,
Non-neutropenic			В	Ш		369]
patients						

ICU patients	To diagnose IA	GM in blood*	С	II	Better performance in neutropenic than in non-neutropenic patients	[370, 371]
Solid organ recipients	To diagnose IA	GM in blood*	С	II	Low sensitivity, good specificity. Most data for lungTx (few other SOT patients with IA included)	[131, 372, 373]
Any other patient	To diagnose IA	GM in blood*	С	II	Diagnosis should be based on integration of clinical, radiological and microbiological signs False positive results reported due to ingestion of ice-pops, transfusions, antibiotics, Plasmalyt® infusion Piperacillin/tazobactam is no longer responsible for false positive results in recent studies Cross reactivity in case of histoplasmosis, fusariosis, talaromycosis (formerly: penicilliosis)	[369, 374- 381]
Cancer patients	To monitor treatment	GM in blood*	А	II		[74,

382]			

*, serum or plasma; GM, galactomannan; IA, invasive aspergillosis; ICU, intensive care unit; ODI, optical density index; PPV, positive predictive value; SOT,

solid organ transplantation

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Any	To diagnose	To apply GM test on	Α	II	GM in BAL is a good tool to diagnose, optimal cut-off to positivity	[75, 383-
	pulmonary IA	BAL fluid			0.5 to 1.0	387]
Any	To diagnose	To apply GM test on	В	II	No validated cut-off	[388, 389]
Table 7. Gala	ectomannan testing f	for diagnosing IA in other	clinical	sample		

Table 7. Galactomannan testing for diagnosing IA in other clinical samples

	cerebral IA	cerebrospinal fluid				
Any	To detect GM in tissue	To apply GM test on lung biopsies	В	II	Cut-off 0.5; high sensitivity (90 %) and specificity (95%); specimens need to be sliced, precondition for doing so is that sufficient material is available; dilution in isotonic saline	[341, 390]

BAL, bronchoalveolar lavage; GM, galactomannan; IA, invasive aspergillosis

Table 8. *\(\beta\)*-D-glucan assay in diagnosing IA

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Mixed population: adult ICU,	То	Diagnostic	С	II	5 different assays. Fungitell FDA approved and available in US and Europe,	[76,
haematological disorders,	diagnose	assay			others only available in Japan	391]
SOT	IFD				Overall sensitivity of 77% and specificity of 85%	
					Specificity limits its value in this setting	
		Screening	С	II	Two or more consecutive samples: sensitivity: 65%; specificity: 93%	[76,
		assays			Studies included once to thrice weekly. Varies with assay and cut-off:	391]
					Wako assay sensitivity: 40-97%, specificity: 51-99%	
Adult haematological	То	Diagnostic	С	II	Overall sensitivity: 50-70%, specificity: 91-99%	[392-
malignancy and HSCT	diagnose	assay				397]
	IFD					
ICU – mixed adult	То	Diagnostic	С	II	Overall sensitivity: 78 -85%, specificity: 36-75%, NPV: 85-92%	[398,
immunocompromised	diagnose	assay			Specificity increased at higher cut-off values	399]
patients (haematology, SOT,	IA					

	Screening	С	III	Sensitivity: 91%, specificity: 58%, PPV: 25%, NPV: 98%.	[400]
	assays			Positive mean of 5.6 days before positive mould culture	
				High false positive rate in early ICU admission	
То	Diagnostic	С	II	Overall sensitivity: 57-76%, specificity: 95-97%	[391,
diagnose	assay				392,
IA	Screening	C	II	Overall sensitivity: 46%, specificity: 97%	398]
	assays			Confirmation with GM increases specificity	
				Data suggests BDG is unsuitable for ruling out diagnosis of IA	
	diagnose	To Diagnostic diagnose assay IA Screening	assays To Diagnostic C diagnose assay IA Screening C	assays To Diagnostic C II diagnose assay IA Screening C II	assays Positive mean of 5.6 days before positive mould culture High false positive rate in early ICU admission To Diagnostic C II Overall sensitivity: 57-76%, specificity: 95-97% diagnose assay IA Screening C II Overall sensitivity: 46%, specificity: 97% assays Confirmation with GM increases specificity

fungal disease; PPV, positive predictive value; NPV, negative predictive value; GM, galactomannan; BDG, ß-D-glucan test; IA, invasive aspergillosis

679 Table 9. Lateral flow device for IA

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Haematological malignancy	To diagnose IA	LFD for IFD diagnosis	В	II	Retrospective study. Sensitivity and specificity of BAL LFD	[401]
and solid organ transplant	Evaluation of	in BAL samples			tests for probable IPA were 100% and 81% (PPV 71%, NPV	
	LFD using BAL				100%), 5 pts with possible IPA had positive LFD, no proven IA	
	samples					
Haematopoietic stem cell	To diagnose IA	LFD for IFD diagnosis	В	II	Prospective screening in 101 patients undergoing allogeneic	[402]
transplantation		in serum samples			нѕст	
	Evaluation of				Comparison to Asp-GM serum, IA: 1 proven, 9 probable, 20	
	LFD using serum				possible cases	
	samples				1 serum vs 2 serum samples positive:	
					Sensitivity: 40%/20%	
					Specificity: 86%/97%	
					Diagnostic odds ratio 3.03/11.13	

Immunocompromised	To diagnose IA	LFD for IFD diagnosis	В	II	Retrospective study. Sensitivities for LFD, GM, BDG and PCR	[403]
patients (haematological		in BAL samples			were between 70 and 88%. Combined GM (cut off >1.0 OD)	
malignancies 64%)	Evaluation of				with LFD increased the sensitivity to 94%, while combined GM	
	LFD using BAL				(cut off >1.0 OD) with PCR resulted in 100% sensitivity	
	samples				(specificity for probable/proven IPA 95-98%).	

IA, invasive aspergillosis; BDG, β-D-glucan test; BAL, bronchoalveolar lavage; GM, galactomannan; HSCT, haematopoietic stem cell transplantation; IFD,

invasive fungal diseases; LFD, lateral device flow; NPV, negative predictive value; PCR, polymerase chain reaction; PPV, positive predictive value

$\,683\,$ $\,$ Table 10. PCR and bronchoalveolar lavages or CSF in diagnosing IA $\,$

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Patients undergoing	To predict	BAL PCR	В	II	In house assay	[404]
allogeneic stem cell	pulmonary IA					
transplantation						
recipients not on						
mould-active						
prophylaxis						
Patients with	To diagnose IA	BAL PCR	В	II	Methodically different in-house assays, better performance in	[214,
pulmonary infiltrates					patients without antifungal treatment, PCR and galactomannan:	384,
and haematological					increases specificity	403,
malignancies and						405-
prolonged						425]
neutropenia						
ICU patients, mixed	To diagnose IA	BAL PCR	В	II	Methodically different assays: SeptiFast® and MycAssay Asp®	[70],[3

populations						83],[42
						3],[426
],[427],
						[428]
Patients with	To diagnose CNS	CSF PCR	В	II	113 CSF samples from 55 immunocompromised patients	[388,
haematological	aspergillosis or				sensitivity 100%, specificity 93% (retrospective)	429-
malignancies	meningitis					432]
					, , , , , , , , , , , , , , , , , , ,	

IA, invasive aspergillosis; BAL, bronchoalveolar lavage; PCR, polymerase chain reaction; ICU, intensive care unit; CNS, central nervous system; CSF,

cerebrospinal fluid.

Table 11. PCR on whole blood, serum and plasma in diagnosing IA

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Patients with	To diagnose IA	PCR on blood	В	II	Meta-analysis: 16 studies, 1618 patients at risk, >10000 blood samples	[433]
haematological		samples			PCR single positive test: Sensitivity: 88%; Specificity: 75%; PCR 2	
malignancies					consecutive positive tests: Sensitivity: 75%; Specificity: 87%	
	To diagnose IA	PCR on serum			97% of protocols detected threshold of 10 genomes/ml serum volume	[434]
		samples			>0.5 ml, elution volume <100 µl, sensitivity: 86%; specificity: 94%	
	To diagnose IA	PCR on whole blood	В	II	First blood PCR assay to be compatible with EAPCRI recommendations,	[435]
		samples			fever driven: Sensitivity: 92%; Specificity: 95%; Negative PCR result to be	
					used to rule out IA	
Haematopoietic	To diagnose IA	Prospective	В	II	Combination of serum and whole blood superior, sensitivity 85 in serum,	[80]
stem cell		screening PCR on			sensitivity 79% in whole blood	
transplantation		whole blood				
		samples				

To diagnose IA	Prospective	В	II	Addition of GM and PCR monitoring provides greater accuracy, PPV 50-	[81]
	screening PCR on			80%, NPV 80-90%	
	blood samples				
To diagnose IA	PCR and GM in BAL	Α	II	randomized standard or biomarker-based diagnostic strategy, 32%	[364]
				patients in standard group, 15% in biomarker group, antifungal therapy	
				(p=0.002), GM and PCR to direct treatment reduced empirical antifungal	
				treatment, GM detection and PCR on blood	

IA, invasive aspergillosis; PCR, polymerase chain reaction; EAPCRI, European Aspergillus PCR Initiative; GM, galactomannan, PPV, positive predictive value;

NPV, negative predictive value; BAL, bronchoalveolar lavage

Table 12. Molecular diagnostics on biopsy

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Biopsy with	To detect and	Broad range PCR in	Α	II	High sensitivity (> 90 %) and high specificity (99 %); various	[341,
visible	specify a fungus	microscopic hyphal-			molecular based techniques available	436]
hyphae		positive and hyphal-				
		negative specimens				
Biopsy with	To detect and	Broad range PCR in	С	II	Sensitivity (57 %) and specificity (96 %); ability to distinguish other	[341,
no visible	specify a fungus	microscopic hyphal-			fungi; performance only in addition to other tests	436]
hyphae		positive and hyphal-				
		negative specimens				
Biopsy with	To detect and	Broad range PCR on	Α	II	TaKaRa DEXPAT kit and QIAamp DNA mini kit detected less than 10	[437,
visible	specify a fungus	wax embedded			conidia/sample	438]
hyphae		specimens				
Any	To detect and	Fresh tissue samples	В	II	Aspergillus PCR performance analysis yielded sensitivity/specificity	[48]
	specify a fungus				rates of 86% / 100% (79 patients, retrospective study)	

692 PCR, polymerase chain reaction

694 Table 13. Storage of original samples and isolates

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Any	To prevent loss of	Clinical samples for culture -	А	III		[81, 349]
	viability of Aspergillus	short-term storage: 4°C to				
	in clinical samples, and	prevent loss of viability and to				
	to reflect the original	reflect the original fungal				
	fungal content	content				
	To prevent	Complete assay soon after	А	I	GM in serum degrades with short-term and long-term	[338-
	degradation of	delivery to laboratory. Avoid			storage at 4°C; BAL fluid GM ODI remain stable; testing of	341,
	biomarkers, e.g. GM in	short or long-term storage of			pos./neg. serum and BAL fluid pools showed no decline	363]
	serum or BALs or	serum at 4°C			in GM index over 11 months at -20°C	
	bronchial washes					
	Short-term	Repeated sub-culture	А	I	Viability maintained for several years by frequent sub-	[81, 349]
	maintenance of				culture; Transfer once a month; Maintain at average	
	Aspergillus isolates				ambient room temperature	

Long-term	Water storage/storage under	Α	I	Long-term storage means storage periods of 5 years or
preservation of	mineral oil/silica gel			longer; No further transfers required during this period
Aspergillus isolates	storage/freeze-drying freezing			
	(-80°C/ceramic beads/liquid			
	nitrogen)			

GM, galactomannan; BAL, bronchoalveolar lavage; ODI, optical density index

697 Table 14. Antibody based diagnosis in diagnosing IA

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Patients with IA	To diagnose IA	Detection of Aspergillus-specific	С	II	Antibodies take a mean of 10.8 days to develop after	[439-
		Antibodies by EIA: Serion			onset of illness	446]
		(Germany), Omega (France), Bio-			Detectable in 29% to 100% of patients during course	
		Rad (France), Dynamiker (China)			of acute IA	
		Detection of precipitating	С	III		[447]
		antibodies by agar gel double				
		diffusion (Microgen Ltd. UK) or				
		counterimmunoelectrophoresis				
		Detection of agglutinating	С	II		[447]
		antibodies by indirect				
		haemagglutination				
		(EliTech/Fumouze, France)				

immunoglobulins to Aspergillus	Detection of specific C III No data	
	immunoglobulins to Aspergillus	
by ImmunoCap®	by ImmunoCap®	

698 EIA, enzyme immunoassay; IA, invasive aspergillosis

Table 15. Indications for testing for azole resistance in clinical *Aspergillus* isolates

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
All clinically						
relevant, Aspergillus isolates (in patient groups or regions with known azole resistance)	Identify isolates with intrinsic resistance	Species identification to complex level	А	III	Some species are intrinsically resistant – e.g. A. calidoustus (azole resistant), A. terreus and A. flavus (AmB resistant)	[85, 448]
Clinically relevant A.	Identify azole resistant A.	Routine azole agar	В	III	If MIC is not available, but no validated	
fumigatus isolates	fumigatus	screening			assays	
Azole-resistant isolates	Determine nature and trends in Cyp51A mutation distribution	Cyp51A-gene mutation analysis	А	II	Test resistant isolates from surveillance survey	[98]

AmB, Amphotericin B; MIC, minimum inhibitory concentration

Table 16. Azole MIC testing: Timing, optimal number of colonies tested, method

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Any	Detect azole-resistant A.	MIC testing of multiple			Multiple genotypes, i.e. azole-	[87, 449,
	fumigatus genotypes in a	colonies	В	III	susceptible and azole-resistant, may be	450]
	single culture	(several colonies >5)			present.	,
Any	MIC testing of various				Not prone to very major errors, but	
		Etest®	С	Ш	major errors; confirmation by reference	[451-455]
	Aspergillus spp.				test recommended.	
MIC, minimum inhik	pitory concentration		0		94	

MIC, minimum inhibitory concentration

703 Table 17. Which azole compounds need to be tested?

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Any	To determine susceptibility to	MIC (EUCAST/CLSI)	Α	III	In general, a sensitive marker for azole	[456-462]
	itraconazole				resistance in Aspergillus; test itraconazole and	
					voriconazole as a minimum	
Any	To determine susceptibility to	MIC (EUCAST/CLSI)	Α	III	Resistance/reduced susceptibility to other	[95, 457, 460-
	voriconazole				azole(s) may accompany that of voriconazole;	464]
					isolated voriconazole resistance described	
					related to TR ₄₆ mutation	
Any	To determine susceptibility to	MIC (EUCAST/CLSI)	В	III	Posaconazole resistance without itraconazole	[316, 456,
	posaconazole				resistance not reported so far; current EUCAST	457, 460-462,
					breakpoint will misclassify approximately 15%	464-467]
					susceptible isolates as I/R	
Any	To determine susceptibility to	MIC (EUCAST/CLSI)	Α	III	MIC often similar to voriconazole, but needs	[456, 460,
	isavuconazole				testing separately, if isavuconazole is to be	461, 464,
					used; lower MIC of isavuconazole as compared	468-470]

		to itraconazole and voriconazole for A. lentulus	
		and A. udagawae (A. fumigatus complex)	
		(CLSI)	

MIC, minimum inhibitory concentration; EUCAST, European Committee on Antimicrobial Susceptibility Testing; CLSI, Clinical & Laboratory Standards

705 Institute

707 Table 18. Which antifungal regimen is recommended in intrinsic resistance?

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Amphotericin B MIC≥1	To cure IA	Replace AmB with azole, if azole tested	В	II		[7, 146, 471-
mg/L		susceptible				476]
IA due to <i>A. terreus</i>	To cure IA	Voriconazole	Α	II	Avoid AmB	[182, 477,
		Isavuconazole	Α	II		478]
		Posaconazole	В	III		
		Itraconazole	В	III		
IA due to <i>A. calidoustus</i>	To cure IA	Lipid formulation of AmB	Α	II	Avoid azoles	[85, 479]
IA due to <i>A. tubingensis</i>	To cure IA	Other than azole monotherapy	С	III	Higher azole MIC common, but no data	[455, 480,
(A. niger complex)					on clinical impact	481]
IA due to <i>A. lentulus</i> (<i>A.</i>	To cure IA	Other than azole monotherapy				
fumigatus complex)						
IA due to A. alliaceus (A.	To cure IA	Other than AmB monotherapy	С	III	Avoid AmB	[482]
flavus complex)						
IA due to <i>A. niger</i>	To cure IA	Other than itraconazole and isavuconazole	В	III	Isavuconazole, posaconazole, and	[455, 470]

complex					voriconazole MIC in general 1 step	
					higher compared to A. fumigatus;	
					itraconazole MIC in general 2 steps	
					higher; limited clinical data	
IA due to <i>A. nidulans</i>	To cure IA	Voriconazole	С	III	AmB MIC elevated, poor clinical	[483, 484]
					responses in chronic granulomatous	
					disease	

AmB, amphotericin B; IA, invasive aspergillosis; MIC, minimum inhibitory concentration

709 Table 19. Recommendations for amphotericin B susceptibility testing for *Aspergillus* strains

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Clinically	Confirm or reject AmB	MIC test	С	III	Limited correlation with clinical outcome could be	[485-488]
relevant	resistance when				demonstrated in general; high MIC associated with poor	
isolate	antifungal treatment is				outcome (Etest®)	
	considered					
Clinically	Interpretation of MIC	MIC test using	В	III	MIC break points proposed for A. fumigatus and A. niger	[456, 489,
relevant	(EUCAST)	EUCAST method and			Epidemiologic cut-offs established for A. flavus, A. fumigatus,	490]
isolate		EUCAST break points			A. niger and A. terreus	
		(S, I, R)			A. terreus is not considered a good target for AmB. A concern	
					is raised for <i>A. flavus</i> due to higher MIC	
Clinically	Interpretation of MIC	MIC test using CLSI	В	III	ECVs proposed for A. fumigatus, A. flavus, A. nidulans, A.	[491]
relevant	(CLSI)	method and CLSI			niger, A. terreus, A. versicolor. No clinical break points. A.	
isolate		ECVs (wild-type/non-			terreus and flavus, e.g. with MIC below the ECV are not good	
		wild-type)			targets for AmB. No clinical data that <i>A. fumigatus</i> with MIC 2	
					will respond to AmB although classified as wildtype according	

		to CLSI ECVs.	

AmB, amphotericin B; CLSI, Clinical & Laboratory Standards Institute; ECV, epidemiological cut-off value; EUCAST, European Committee on Antimicrobial

711 Susceptibility Testing; MIC, minimum inhibitory concentration

713 Table 20. Optimal therapy for documented azole-resistant IA

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Isolate with	To cure IA	Voriconazole + echinocandin or L-	Α	III	The probability of voriconazole treatment	[492-494]
voriconazole MIC =2		AmB for IA (as well as for CPA)			failure may be higher than in voriconazole MIC	
mg/ml					<2.	
Isolate with	To cure IA	L-AmB	Α	II _u		[94, 95, 496]
posaconazole MIC		AmB lipid complex	С	III		
>0.5 mg/ml [495]		Voriconazole & anidulafungin	В	III		[492]
		Posaconazole & caspofungin	С	III	Posaconazole not licensed for primary	[497]
					treatment	
		Caspofungin or micafungin	С	III	Patients with contra-indications to AmB &	
					other azoles	

AmB, Amphotericin B; CPA, chronic pulmonary aspergillosis; IA, invasive aspergillosis; L-AmB, Liposomal amphotericin B; MIC, minimum inhibitory

715 concentration

717 Table 21. TDM to be considered

Clinical scenarios where antifungal	
therapeutic drug monitoring may be	Examples, comments
indicated	
Populations with increased	Impaired gastrointestinal function; hepatic dysfunction; paediatric patients, elderly patients, obese patients,
pharmacokinetic variability	critically-ill patients
Changing pharmacokinetics	Intravenous to oral switch, changing gastrointestinal function, changing hepatic or function, physiological-
Changing pharmacokinetics	instability
	Patient receiving medication known to induce cytochrome P450 enzymes especially CYP3A4, antacids,
	proton-pump inhibitors (itraconazole capsules, posaconazole suspension), antiretroviral medications.
Interacting medications	Patients should have medication records screened using drug interactions screening database before starting
	and stopping antifungals (example: www.fungalpharmacology.org, fungal-druginteractions.org, or
	http://www.aspergillus.org.uk/content/antifungal-drug-interactions
Poor prognosis disease	Extensive or bulky infection, lesions contiguous with critical structures, CNS infection, multifocal or
Proof progressis disease	disseminated infection
Compliance concerns	Important issue with longer-term consolidation therapy or secondary prophylaxis in outpatient setting

Suspected breakthrough infection	TDM can establish whether fungal disease progression occurred in the setting of adequate antifungal
	exposure
Suspected drug toxicity, especially	Exposure-response relationships are described for other toxicities (e.g., hepatotoxicity), the utility of TDM to
neurotoxicity (voriconazole)	prevent their occurrence is less well established

CNS, central nervous system; TDM, therapeutic drug monitoring

720 Table 22. Itraconazole therapeutic drug monitoring

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
All patients receiving itraconazole treatment for IA	Improve efficacy	Measure serum trough level on day 5 of therapy or soon after	A	II	Target itraconazole level >1 mg/L to 4 mg/L by HPLC. Hydroxy-itraconazole metabolite concentrations generally reported separately by HPLC or LC/MS/MS methods, but included in "itraconazole" concentration report by bioassay. Therapeutic range by bioassay may vary by laboratory but typically fall in the range of (3-17 mg/L). Need for repeat determinations should be determined by clinical status, or change in concomitant medications; may be less important with suspension however compliance is a concern	[103, 108, 498-500]
All patients receiving itraconazole for prophylaxis for IA	Improve efficacy	Measure serum trough level on day 5 of therapy or soon after	А	П	Target itraconazole level >0.5 mg/L (HPLC) or > 3 mg/L (bioassay)	[105]

Dationto na acidia a		Measure serum trough			Toxicity was associated with itraconazole levels >17.1 mg/L	
	Reduce toxicity	level on day 5 of	В	II	by itraconazole bioassay, which correspond to ~4 mg/L by	[108]
itraconazole		therapy or soon after			HPLC	

IA, invasive aspergillosis; HPLC, high performance liquid chromatography; LC, liquid chromatography; MS, mass spectrometry

723 Table 23. Voriconazole therapeutic drug monitoring

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
All patients	Improve efficacy,	Measure plasma trough level	А	I	Target range of 1-6 mg/L	[109-112,
receiving	safety and	after 2-5 days of therapy or				114, 501-
voriconazole	compliance	soon after				503]
treatment for IA						
All patients	Improve efficacy,	Repeat plasma trough level	В	II	Repeat during second week of therapy, additional	[109-112,
receiving	safety and				samples as clinically indicated, or upon relevant	114, 501-
voriconazole	compliance				change in concomitant medication	503]
treatment for IA						
All patients	Improve efficacy,	Measure serum trough level	А	IIt	As above; most studies investigated voriconazole	[113, 504,
receiving	safety and	after 2-5 days of therapy or			treatment rather than prophylaxis	505]
voriconazole	compliance of	soon after, and 4 days after				
prophylaxis for IA	prophylaxis	change of dose				
Patients with IA due	Improve efficacy of	Measure serum trough level	Α	III	Trough >2 mg/L recommended on the basis of	[112, 506]
to <i>Aspergillus</i> strains	treatment for	after 2 to 5 days of therapy			PK/PD analysis, however other therapies are	

of reduced azole	isolates with MIC>2	or soon after and 4 days after		recommended (Table 20)	
susceptibility MIC >2	mg/ml	change of dose			
mg/ml					

IA, invasive aspergillosis; MIC, minimum inhibitory concentration; PK, pharmacokinetic; PD, pharmacodynamic

725 Table 24. Posaconazole therapeutic drug monitoring

Population	Intention	Intervention	SoR	QoE	Comments	Ref.
Patients	Improve	Serum trough level on day 5 of therapy or	Α	II	Target level >1 mg/L.	[119]
receiving	efficacy,	soon after			Gastroresistant tablet or intravenous formulation	
posaconazole	compliance				are the preferred formulations for most patients,	
suspension for					consider switch to tablet or IV, if no therapeutic	
treatment of IA					levels with oral suspension.	
					Repeat determination as clinically appropriate, for	
					example upon relevant change in concomitant	
					medications.	
					Prolonged half-life gives similar results for random	
					sampling and true trough samples.	
Patients	Improve	Serum trough level on day 5 of therapy or	С	II	Target level >0.7 mg/L. Adequate tissue	[117, 118,
receiving	efficacy,	soon after.			concentrations may occur despite serum	507-510]
posaconazole	compliance				concentration <0.7 mg/L.	
suspension for					Repeat determination as clinically appropriate, for	

prophylaxis to					example upon relevant change in concomitant	
prevent IA					medications.	
Patients	Improve	Measure serum trough level on day 5 of	С	III	If treatment failure or toxicity suspected, TDM may	[120,121]
receiving	safety	therapy or soon after			be indicated in patients receiving gastroresistant	
posaconazole					delayed release tablet or intravenous formulation.	
					Posaconazole exposures between 0.5-3.75 mg/L are	
					well studied and considered safe and effective with	
					all three formulations.	
					Posaconazole plasma levels above this exposure	
					range may be associated with toxicity.	
				·	·	

726 IA, invasive aspergillosis; IV, intravenous; TDM, therapeutic drug monitoring; AML, acute myeloid leukaemia; HSCT, haematopoietic stem cell

727 transplantation; GVHD, graft versus host disease

Table 25. Isavuconazole therapeutic drug monitoring

Population Intention	Intervention	SoR	QoE	Comment	Ref.
All patients eceiving safety and compliance	Measure serum trough level on D5 of therapy or soon after	C	III	Limited data to support routine TDM but may be indicated in the setting of treatment failure, drug interactions, or if toxicity is suspected. The long half-life of isavuconazole (130 hours) may support use for TDM in some clinical situations to confirm drug clearance prior to starting medications metabolized by CYP3A4, especially	FDA advisory briefing documents.

729 TDM, therapeutic drug monitoring; FDA, Food and Drug Administration

Population	Intention	Intervention	SoR	QoE	Comment	Ref

730 Table 26. Prevention of IA in high risk paediatric patients

Allogeneic HSCT, pre-		Itraconazole	A/B*	II _t	Not approved for <18 years; TDM recommended; Approved indication; not approved EU < 18 years.	[103, 511- 521]
engraftment phase; Allogeneic HSCT, post- engraftment phase, GvHD		Posaconazole	А	IIt	TDM recommended; only supportive paediatric data for ≥ 13 years of age.	[117, 118, 152, 522- 530]
and augmented immunosuppression; High-risk patients with de	Prevention of	Voriconazole	A	IIt	Not approved for <2 years; Inference from efficacy from HSCT trials and supportive studies; TDM recommended.	[111, 112, 116, 504, 531-539]
novo or recurrent leukaemia, bone marrow failure syndromes with		Liposomal amphotericin B	В	_t / *	Not approved for prophylaxis; Optimal dose of alternate administration unknown; Alternative if triazoles are not tolerated / contraindicated	[540-546]
prolonged and profound neutropenia			В	II _t /III*	No definite evidence (trend only) for prophylactic efficacy against <i>Aspergillus</i> spp. Alternative if triazoles are not tolerated or contraindicated.	[547-552]
Chronic granulomatous disease (CGD) patients	Prevention of	Itraconazole	Α	II	Approved indication; not approved in the EU for < 18 years; TDM recommended.	[103, 517- 520, 553,

					554]
	Posaconazole	А	III	Not EU approved for children < 18 years; TDM recommended; PK and safety data for children ≥ 4 years	[117, 118, 526-529]

^{*} SoR = B for allogeneic HSCT post-engraftment phase, GvHD (graft versus host disease) and augmented immunosuppression

- * QoE = III for allogeneic HSCT post-engraftment phase, GvHD and augmented immunosuppression
- IA, invasive aspergillosis; TDM, therapeutic drug monitoring; HSCT, haematopoietic stem cell transplantation Pel-Pel-

735 Table 27. Treatment of IA in paediatric patients

Population	Intention	Intervention	SoR	QoE	Comment	Ref
Any paediatric	Treatment	Voriconazole 18 mg/kg/d iv day 1,	Α	II _t	Not approved in patients <2 yrs; TDM	[111, 112,
population other than	proven/probable IA	followed by 16 mg/kg/d iv or 18			recommended.	116, 145,
neonates		mg/kg/d po in 2 divided dosages				146, 504,
		(up to 14 years and < 50 kg); if				535-538,
		>15 yrs or >12 yrs and >50 kg use				555-561]
		adult dosing recommendations				
Any paediatric	Treatment	L-AmB 3 mg/kg/d	В	II _t	Comparison between 2 dosages of L-AmB, no	[149, 544,
population other than	proven/probable IA				comparison to voriconazole	546, 562-
neonates						565]
Any paediatric	Treatment	Caspofungin 70 mg/m² day 1,	С	II _t	Study prematurely stopped due to low accrual	[564, 566-
population other than	proven/probable IA	followed by 50 mg/m ² /d (max. 70				576]
neonates		mg/d)				
Neonates	Treatment	L-AmB 3 mg/kg/d	Α	III		[577-580]
	proven/probable IA					

IA, invasive aspergillosis; TDM, therapeutic drug monitoring; L-AmB, liposomal amphotericin B

737 Table 28. Targeted therapy of pulmonary IA: Choice of antifungal drugs for first line therapy

Population	Intention	Intervention	SoR	QoE 1	QoE 2	QoE 3	Comment	Ref.
Neutropenia(non- alloHSCTrecipients)		Voriconazole 2x 6 mg/kg IV (oral 400 mg bid) on D1, then 2x 4 mg/kg IV (oral 200 to 300 mg bid)	A	ı	IIt	IIt	C III for start with oral; D III, if mould active azole prophylaxis; TDM	[146, 184, 470, 581]
		L-AmB 3 mg/kg	В	II	II _t	II _t		[149]
² Allo-HCT (during	To increase response and	Caspofungin 70/50 mg	С	II	II	II		[566- 568]
neutropenia)	survival rate	Micafungin 100 mg	С	III	III	III		[582- 584]
3 Allo-HCT (w/o neutropenia) or other non-		Itraconazole 200 mg q12h iv on D1, then 200 mg/qd	С	Ш	II _{t,a}	II _{t,a}	D III for start with oral, TDM D III, if mould active azole prophylaxis	[470 <i>,</i> 500]

neutropenic	Isavuconazole 200 mg iv tid D1-2, then 200 mg qd oral	Α		II _t	II₊	D III, if mould active	[185,
patients	isavuconazoie 200 mg iv tiu D1-2, then 200 mg qu orai	A	'	II _t	II _t	azole prophylaxis	470]
	Conventional AmB 1-1.5 mg/kg	D	I	II _t	II _t		[146
	AmB lipid complex (ABLC) 5 mg/kg	С	III	III	III		[585
	AmB colloidal dispersion (ABCD) 4-6 mg/kg	D	ı	IIt	IIt		[586
	Voriconazole 6/4 mg/kg bid after one week oral possible (300mg bid) + Anidulafungin 200/100 mg	С	I	II _{t,}	II _{t,}	No significant difference compared to voriconazole, in GM positive (subgroup) better survival; TDM	[184 581]
	Other combinations	D	Ш	Ш	Ш	Efficacy unproven	[587

IA, invasive aspergillosis; IV, intravenous; TDM, therapeutic drug monitoring; GM, galactomannan

739 Table 29. Targeted therapy of other than pulmonary IA: Choice of antifungal drugs for first line therapy

Population	Intention	Intervention	SoR	QoE	Comment	Ref
		Surgical debridement, if surgically possible	A	IIu		[588, 589]
					N=5/5	[146]
Suspected or proven IA of	To increase	Voriconazole	A	IIu	N=81, 48 proven cases, 33 probable cases, TDM recommended targeting trough concentration of 2-5 mg/L	[588]
the central nervous	response and	Posaconazole	D	III	8 patients documented in studies (5xfailure)	[590]
	survival rate	Itraconazole	D	III	Not specified in studies	
system		Lipid formulations of AmB	В	III	Case collections, animal data	[591- 593]
		cAmB	D	I	Renal toxicity	[594- 597]
		Echinocandins	D	III	No satisfying tissue penetration	[592]
Sinus						
Patients w/ clinical	To cure	Surgery	А	III	Need to be considered on an individual basis and decision	

suspicion of or proven	Local antifungal therapy	С	III		
invasive sinus aspergillosis					
Patients with invasive	Voriconazole	А	II _t	N=8/7, TDM recommended	[146,
sinus aspergillosis (all					598]
	L A D			Active against mucormycosis as well since mixed	[4.40]
levels of certainty:	L-AmB	A	IIt	infections occur or cannot be differentiated	[149]
suspected through	Posaconazole, itraconazole,			Not well specified in studies, TDM recommended for	[599,
proven)		С	Ш		
	echinocandins			posaconazole and itraconazole	600]

TDM, therapeutic drug monitoring; AmB, Amphotericin B, cAmB, conventional amphotericin B; L-AmB, liposomal amphotericin B

742 Table 30. Secondary Prophylaxis

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
Previous IA and	To reduce risk of	Secondary prophylaxis with an Aspergillus	Α	II	Results compared to historical data, mostly in	[601-
undergoing allogeneic	IA recurrence	active antifungal, i.e. voriconazole OR any			allogeneic HSCT setting	606]
HSCT or entering risk		alternative proven to be effective in the				
period with non-		actual patient				
resectable foci of		Voriconazole	Α	II _h	IA: 31/45 pts, 1 year cumulative incidence of IFD	[601]
Aspergillus disease					6.7±3.6%, TDM	
		Caspofungin 70/50 mg IV until stable	В	II _h		[605]
		engraftment, followed by 400 mg				
		itraconazole suspension PO				
		L-AmB followed by voriconazole	С	II	Fungal infection related mortality 28% despite	[604,
					lipid-based AmB	607]
Previous IA and with	To reduce risk of	Surgical resection following by secondary	В	III	Timing and methods of surgery important.	[608-
resectable foci of	IA recurrence	prophylaxis			Concomitant administration of appropriate	612]
Aspergillus disease					antifungal compound justified.	

before entering risk			Indication for surgical intervention by appropriate
period			specialist. Interdisciplinary consensus needed.

HSCT, haematopoietic stem cell transplantation; IA, invasive aspergillosis, IFD, invasive fungal disease; TDM, therapeutic drug monitoring, PO, per os; L-AmB,

744 liposomal amphotericin B

Table 31. Primary Prophylaxis

Population	Intention	Intervention	SoR	QoE	Comment	Ref
Haematological malignancies,	Lower	Posaconazole 200 mg TID suspension	Α	I	AML/MDS induction only. TDM	[522]
e.g. AML with prolonged and	incidence of IA	or 300mg tablet QD			especially with oral suspension.	
profound neutropenia					Tablets more bioavailable, bridging	
					with posaconazole IV formulation	
					possible	
		ABLC 3 mg/kg 3x/weekly	С	II _h	No difference to L-AmB regimen	[613]
		Itraconazole 400mg/d, oral solution	D	II	No difference to fluconazole (n=195)	[102, 512,
					and more toxicity	614, 615]
		Micafungin (50 mg per day)	С	IIt		[547, 616]
		L-AmB 10 mg/kg q7d	С	II	Phase II trial low participation	[617]
		L-AmB 50mg abs q2d	С	II		[543]
		L-AmB 15 mg/kg q14d	С	II	Phase II trial low participation	[618]
		L-AmB 12.5 mg biw, nebulized, with	В	I	AML	[619, 620]
		fluconazole				

		Voriconazole	С	II _t	Not better than fluconazole	[621]
Acute lymphoblastic	Lower	L-AmB 5 mg/kg biw	D	I	L-AmB more toxic than placebo, no	[622]
leukaemia, remission	incidence of IA				significant reduction in IA rate	
induction chemotherapy						
Treatment of haematological	Lower	Any mould active agent	D	III	No study demonstrated outcome	
malignancies besides acute	incidence of IA				advantage	
leukaemia						
Autologous HSCT	Lower	Any mould active agent	D	III	No study demonstrated outcome	
	incidence of IA				advantage	
Allogeneic HSCT (until	Lower	Posaconazole 200mg TID suspension	В	II _t	Neutropenia duration approximately	[522]
neutrophil recovery)	incidence of IA	or 300mg tablet once a day			identical, TDM*	
		Voriconazole 200mg BID	С	I	Not better than fluconazole, TDM	[531, 532]
		Itraconazole 400mg/d oral solution	D	I	Toxicity issues; TDM	[512]
		Micafungin 50mg/d	С	I	But no difference in subgroup	[547]
					analysis for aspergillosis	
		L-AmB 12.5mg biw, nebulized, with	В	II _t		[619]

		fluconazole				
Allogeneic HSCT (after	_	Any antifungal agent	D	III	No study demonstrated outcome	
neutrophil recovery and no					advantage	
GVHD)						
Allogeneic HSCT (with		Posaconazole 200mg TID suspension	A	I	TDM	[523]
moderate to severe GvHD		Voriconazole 200mg BID	С	II	Not better than fluconazole; TDM	[531, 532]
and/or intensified immuno-		Itraconazole 400mg/d, oral solution	С	II	Toxicity issues; TDM	[512]
suppression)		Micafungin 50mg/d	С	III	Only few patients with GVHD	[547]
Allogeneic HSCT (until	To reduce IA	Posaconazole 200mg TID suspension	В	II _t	Neutropenia duration approximately	[522]
neutrophil recovery)	attributable				identical. TDM	
Allogeneic HSCT (after	mortality	Any other antifungal	D	III	No study demonstrated outcome	
neutrophil recovery, without					advantage	
GVHD)						
Allogeneic HSCT (with		Posaconazole 200mg TID suspension	A	II	Mainly IFD-attributable mortality,	[523]
moderate to severe GVHD					TDM	
and/or intensified immuno-						

suppression)			

QD, once daily; BID, twice daily; TID, thrice daily; AML, acute myeloid leukaemia; MDS, myelodysplastic syndrome; TDM, therapeutic drug monitoring; ABLC,

amphotericin B lipid complex; L-AmB, Liposomal amphotericin B; HSCT, haematopoietic stem cell transplantation; GVHD, graft versus host disease; IFD,

invasive fungal disease

750 Table 32. Fever-driven strategy: Choice of antifungal agents

Population	Intention	Intervention	SoR	QoE	Comment	Ref
					Caspofungin was associated with a significantly	
		Caspofungin 70/50 mg	А	I	higher rate of survival than L-AmB (subgroup	[623]
					analysis).	
Chemotherapy for					Less toxicity in comparison to cAmB but more renal	[597,
haematological		L-AmB 3 mg/kg	В	ı	toxicity compared to echinocandin	623]
malignancies or HSCT,	Reduce of the				Failed the 10% non-inferiority cut-off when	
neutropenia <500/μL ≥ 96	incidence of IA	Voriconazole 2x 6 mg/kg IV			compared with L-AmB, but first-line for aspergillosis.	
h, fever (>38°C), and	and/or related	(oral 400 mg bid) on D1, then	В	Ш	Activity of azoles empirical therapy for persistent	[624]
parenteral broad	mortality	2x 4 mg/kg IV (oral 200 to 300			fever may be limited in patients receiving	
spectrum antibacterial		mg bid)			prophylaxis with an agent of the same class. TDM*	
therapy ≥ 96 h (some						
centres consider 48h)					Activity of azoles empirical therapy for persistent	
·		Itraconazole 200 mg/day iv	С	II	fever may be limited in patients receiving	[625]
					prophylaxis with an agent of the same class. TDM*	
		ABLC 5 mg/kg	С	I	Infusion-related toxicity (fever, chills, hypoxia)	[626]

ABCD 4 mg/kg	С	I	Same as above	[627]
				[155,
				595-
cAmB (0.5-1 mg/kg)	D	I	Poor tolerance due to extreme toxicity	597,
				625,
				627]
Micafungin 100 mg	В	II		[628]
Fluconazole	D	II _r	No activity against Aspergillus	[629]

L-AmB, liposomal amphotericin B; cAmB, conventional amphotericin B; IV, intravenous; TDM, therapeutic drug monitoring; ABLC, amphotericin B lipid

752 complex; ABCD, amphotericin B colloidal dispersion

Population	Intention	Intervention	SoR	QoE	Comment	Ref

753 Table 33. Antifungal drugs for refractory disease

		Switch to another drug class	Α	III		
		Any combination	С	III	No prospective study demonstrated	[630]
					superiority of combination therapy	
					over monotherapy	
		Voriconazole	Α	II		[145, 631-
		30.100.1020.10				633]
Haamatalagigal	Achieve complete or	L-AmB 3-5 mg/kg	В	11	Majority voted for BII others for AII	[545, 634,
Haematological	partial response, or	L-Allid 3-3 llig/kg	ь	"	iviajority voted for Bil others for All	635]
patients with	stable disease,					[585, 635-
refractory IA	improve survival	ABLC 5 mg/kg	С	II		637]
		ABCD	D		No longer commercially available	[638, 639]
		Caspofungin 70 mg, then 50 mg (if body weight	-		Very few data in case of	[148, 633,
		<80kg)	В	II	voriconazole/posaconazole failure	640-646]
		Micafungin 75-200 mg/d	С	II		[583, 647]
		Posaconazolo 200 mg gid or 400 mg hid	В	II		[119, 150,
		Posaconazole 200 mg qid or 400 mg bid	В	"		648, 649]

Itraconazole	D	III	In case of refractoriness to voriconazole	
Itraconazole oral forms	С	II	Poor bioavailability	[107]
Itraconazole IV formulation	NR		Commercially not available everywhere	[500, 650]

L-AmB, Liposomal amphotericin B; ABLC, amphotericin B lipid complex; ABCD, amphotericin B colloidal dispersion; IV, intravenous; TDM, therapeutic drug

e daily monitoring; QD, once daily; BID, twice daily; TID, thrice daily

757 Table 34. Risk factors of IA in non-haematological patients

Population	Intention	Intervention	Risk factor	SoR	QoE	Comment	Ref.
Lung Tx	To identify	To provide	Pre-transplantation colonization and Aspergillus	В	III	independent risk factor for	[228, 243,
	a subset of	prophylaxis	in intraoperative culture			bronchiolitis obliterans	651]
	SOT	and increase	Repeated acute and chronic rejection	В	II _t		[652, 653]
	recipients	the index of	CMV disease	В	III		[654]
	at high risk	suspicion of	Donor age, ischaemia time and use of	В	III		[655]
	of IA	the disease	daclizumab				
			Bronchial anastomotic ischemia or bronchial	В	III	Airway ischemia increases risk for IA	[656]
			stent placement				
			Single-lung transplant	В	III		[232]
Heart Tx	To identify	To provide	Re-operation, CMV infection, haemodialysis,	Α	II _h	Allows the administration of targeted	[222]
	a subset of	prophylaxis	other episode of IA in the program within 2			prophylaxis to less than 10% of heart	
	SOT	and increase	months			transplant recipients	
	recipients	the index of	High concentration of spores in ICU	Α	II		[221, 222]
	at high risk	suspicion of	Sirolimus and tacrolimus	В	II _h	Predictors of late onset IA	[230]

	of IA	the disease	Hypogammaglobulinemia	В	II _h		[657]
Liver Tx	To identify	To provide	Requirement for dialysis	В	II _h		[228, 229,
	a subset of	prophylaxis	Retransplantation				234, 241,
	SOT	and increase	Fulminant hepatic failure	=			324, 327,
	recipients	the index of	Model for end-stage liver disease (MELD) score				555, 658-
	at high risk	suspicion of	>30				661]
	of IA	the disease	ICU admission or corticosteroid requirement	С	III	2 or more of these risk factors were	
			previous 2-4 weeks to transplant			considered in clinical trials as minor	
			>15 units of packed red blood cells during			criteria for receiving specific	
			transplant surgery			antifungal prophylaxis	
			Reoperation involving the intraabdominal cavity				
			Choledochojejunostomy	_			

Kidney Tx	To identify	To provide	Pre-transplant COPD, delayed graft function,	Α	II _h		[245]
	a subset of	prophylaxis	post-transplant blood stream infection and acute				
	SOT	and increase	graft rejection within the 3 months prior to the				
	recipients	the index of	diagnosis of IA				
	at high risk	suspicion of					
	of IA	the disease					
COPD	To identify	Rapid	Cumulative glucocorticosteroid dose	Α	II _t	Severe COPD with corticosteroids,	[249, 273,
	population	suspicion of	Refractory to antibiotic therapy			with recent exacerbation of	662, 663]
	s at high	the disease	Admission to the intensive-care unit			dyspnoea, abnormal chest imaging,	
	risk of IA					refractory to antibiotic therapy and	
						positive culture or positive	
						galactomannan (probable IA, Bulpa	
						criteria)	

HIV	To identify	Rapid	CD4 count <100 cells/μl	Α	II _h	Only 50% of the cases fulfilled EORTC	[249]
	population	suspicion of				criteria	
	s at high	the disease					
	risk of IA						
ICU patients	To identify	Rapid	COPD	Α	II _h	Putative IA: Aspergillus in respiratory	[273, 662,
	population	suspicion of	Corticosteroid therapy required			tract + compatible signs and	663]
	s at high	the disease				symptoms + abnormal chest imaging	
	risk of IA					+ either: a) host risk factors	
						(neutropenia or cytotoxic agents or	
						corticosteroids therapy or	
						immunodeficiency) or b) Aspergillus	
						in BAL (no bacteria) and branching	
						hyphae (Vandewoude criteria)	
			Acute liver failure, burns, severe bacterial	В	III		-
			infection, malnutrition				
			Acute respiratory distress syndrome, pneumonia				

ICU patients	To identify	To provide	Increased environmental exposure	Α	II		[221,
and SOT	population	prophylaxis					222, 664,
recipients	s at high	and increase					665]
	risk of IA	the index of					
		suspicion of					
		the disease					
Liver	To identify	To provide	Alcoholic hepatitis treated with corticosteroids,	В	II _h		[261, 666]
insufficiency	population	prophylaxis	acute liver failure				
	s at high	and increase					
	risk of IA	the index of					
		suspicion of					
		the disease					
Burns	To identify	Rapid	Positive fungal cultures	Α	II _h	Mortality (logistic regression): culture	[667, 668]
	population	suspicion of				of mould or Aspergillus (OR: 12-fold)	
	s at high	the disease	Percentage of total body surface area burn	В	III		[665]
	risk of IA		injury; length of stay				

To identify	Rapid	Risk of IA in patient receiving TNF- α blockers and	С	Ш	Risk increased: basiliximab,
population	suspicion of	other			daclizumab, infliximab, etanercept,
s at high	the disease				alemtuzumab (prophylaxis may be
risk of IA					indicated); risk may be increased:
					adalimumab, rituximab, abatacept
3	opulation at high	opulation suspicion of at high the disease	opulation suspicion of other at high the disease	opulation suspicion of other at high the disease	opulation suspicion of other at high the disease sk of IA

IA, invasive aspergillosis; CMV, cytomegalovirus; ICU, intensive care unit; COPD, chronic obstructive pulmonary disease; BAL, bronchoalveolar lavage

760 Table 35. Diagnostic approach to IA in non-haematological patients

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
COPD	To diagnose IA	Culture	А	IIu	IPA affects at least 22% of patients with COPD and isolation of Aspergillus in culture	[273]
COPD	To diagnose IA	Culture	В	II _h	Sensitivity 11-42%	[273, 297, 298,669]
COPD	To diagnose IA	GM BAL	В	IIu	Sensitivity/specificity of BAL GM >1.0 cut-off is 67% / 96%, at GM >0.5 cut-off is 89% / 88%	[297]
Underlying respiratory disease	To diagnose IA	Lateral flow device BAL	С	II	Sensitivity / specificity 77% / 92%	[301]
HIV	To diagnose IA	Direct microscopy	Α	II _h	50% positive	[249]
HIV	To diagnose IA	GM BAL	В	IIu	53% positive	[249]
HIV	To diagnose IA	GM serum	В	IIu	34% positive	[249]

HIV	To diagnose IA	Histology	А	IIu	75% positive	[249]
ICU	To diagnose IA	BDG serum	В	IIu	Autopsy study, non-haematological immunocompromised critically ill patients with lower respiratory tract infection. Using 140 pg/ml cut-off, sensitivity/specificity 100% / 70%	[398]
ICU	To diagnose IA	BDG serum	В	II _u	BG appeared a mean of 6.5 days before Aspergillus was grown	[670]
ICU	To diagnose IA	Culture	В	IIu		[371, 671 _]
ICU	To diagnose IA	GM BAL	С	IIu	Using cut-off ODI 0.5 sensitivity/specificity 88-90% / 87-100%	[371, 671 _]
ICU	To diagnose IA	SeptiFast®	С	II _h	Sensitivity/specificity 66% / 98%, PPV 93%, NPV 88%	[673, 674]
Non haematologica	To diagnose IA	Culture	A	II _h	Very low PPV of <i>Aspergillus</i> spp. culture from respiratory samples	[215]
Non haematologica	To diagnose IA	Culture	A	II _h	Sensitivity of BAL higher for non-neutropenic patients	[42]

Non-	To diagnose IA	GM serum	С	II	Using cut-off of 0.5 ng/ml sensitivity/specificity 60% / 89%	[669]
haematologica	ıl					
Non-	To diagnose IA	MycAssay Aspergillus®	С	II	Sensitivity, specificity, PPV, and NPV of first sample/any sample	[294]
haematologica	ıl				were 87%/93%, 87%/82%, 34%/34%, 92%/100%	
SOT, any	To diagnose IA	Culture	D	II	Low sensitivity and specificity	[298, 675]
SOT, any	To diagnose IA	GM BAL	В	II	Using cut-off ODI 1.0 sensitivity/specificity 100% / 91%	[676]
SOT, any	To diagnose IA	High-resolution	Α	III	Bilateral bronchial wall thickening and centrilobular opacities, tree-	[231, 677]
		computed tomography			in-bud pattern (65%), ground-glass opacities and/or bilateral areas	
					of consolidation (23%)	
SOT, any	To diagnose IA	Lateral flow device BAL	С	II	N=11 SOT	[300, 403,
						678]
SOT Heart	To diagnose IA	Culture	Α	II _h	Overall positive predictive value (PPV) 60-70%, PPV 88-100% with	[287]
					respiratory specimens other than sputum; recovery of A. fumigatus	
					PPV 78-91%	

SOT Heart	To diagnose IA	High-resolution	Α	II _h	provided significant additional information in 41%; positive with a	[290]
		computed tomography			normal chest X-ray in 18%	
SOT Lung	To diagnose IA	BDG serum	С	IIu	Sensitivity/specificity 64%, 9%, PPV 14%, NPV 50%	[679]
SOT Lung	To diagnose IA	GM BAL	В	II	Using cut-off ODI 1.5 sensitivity/specificity 100% / 90%	[675, 680-
						682]
SOT Lung	To diagnose IA	PCR	В	II		[682]

BDG, ß-D-glucan; IA, invasive aspergillosis; ICU, intensive care unit; SOT, solid organ transplantation; PPV, positive predictive value; GM, galactomannan;

ODI, optical density index; NPV, negative predictive value; BAL, bronchoalveolar lavage

763 Table 36. Therapy of IA in non-haematological patients

Population	Intention	Intervention	SoR	QoE	Comment	Ref.
HIV	To treat IA	Voriconazole	A	III	Consider drug-drug interactions with antiretroviral drugs.	[683]
SOT Heart	To treat IA	Itraconazole	С	III	6 HT cured with itraconazole 200-400 mg/d Erratic absorption and interaction with calcineurin inhibitors and other agents	[684]
SOT, any	To treat IA	Voriconazole	A	III	calcineurin immunesuppressors, TDM; monitor liver function tests especially in liver transplant recipients.	[145, 146, 231, 303, 555-557, 632, 685- 687]
SOT, any	To treat IA	L-AmB	A	II		[637, 688, 689]
SOT, any	To treat IA	Voriconazole &	В	II	40 SOT voriconazole & caspofungin (n=40) vs AmB (n=47). Survival	[305]

	caspofungin			benefit in pts with A. fumigatus or renal insufficiency	
To treat IA	Caspofungin	В	III	Complete response 83%; response 7/9 monotherapy and 7/10	[569, 570,
				combination	645, 690]
	To treat IA				To treat IA Caspofungin B III Complete response 83%; response 7/9 monotherapy and 7/10

IA, invasive aspergillosis; SOT, solid organ transplantation; L-AmB, Liposomal amphotericin B; SOT, solid organ transplantation

766 Table 37. Prophylaxis strategies of IA in non-haematological patients

Population	Intervention	Intention	SoR	QoE	Comment	Refer	ence
SOT Lung	Universal* prophylaxis	To prevent IA	А	I	Invasive fungal infection appeared at a median of 35 days	[127,	320,
						691]	
	Targeted* prophylaxis	To prevent IA	С	III		[127,	655,
						692]	
Inhaled	Inhaled cAmB	To prevent IA	В	II _h	25 mg/day for 4 days, followed by 25 mg/week for 7 weeks. More	[693]	
					adverse events in inhaled deoxycholate vs lipid-based		
	Inhaled cAmB	To prevent IA	В	II _h	Breakthrough IA in 7-10%	[694]	
	Inhaled lipid-based	To prevent IA	Α	I	More adverse events with inhaled deoxycholate vs lipid-based but	[685,	693-
	AmB				similar efficacy; various possible protocols: 50mg/day for 4 days, then	696]	
					50mg/week for 7 weeks; 50mg/day for 2 weeks, then once weekly for		
					10 weeks; 25mg thrice weekly between day 1 and day 60 post SOT		
					and once weekly between day 60 and day 180		

	Voriconazole	To prevent IA	A	III	Voriconazole 2x200 mg/d more hepatotoxic than itraconazole 2x200 mg/d. Usual duration of prophylaxis 3-6 months; monitor liver and		319, 692,
	Voriconazole pre- emptive, if colonized	To prevent IA	В	IIu	skin toxicity Breakthrough IA < 2% at 6 months	[692]	
	Voriconazole for three months	To prevent IA	С	II	No effect of voriconazole on the incidence of IA (45% vs 49%)	[319]	
SOT Heart	Universal* prophylaxis with itraconazole or inhaled AmB	To prevent IA	С	I		[231, 699]	698,
	Universal* prophylaxis with itraconazole or inhaled AmB	To prevent IA	С	II	IA rates 5% without prophylaxis, 1.5% with itraconazole 2x200 mg, 0% with inhaled AmB	[231, 699]	698,
	Targeted* prophylaxis with echinocandins	To prevent IA	A	IIt	Prophylaxis in 10% of patients, IA rate reduced from 9% to 2%, attributable mortality from 6% to 2%; duration dependant of risk	[232]	

					factors persistence		
SOT Liver	Targeted* prophylaxis with lipid AmB	To prevent IA	В	III	IA rate reduced, mortality unaffected	[555, 702]	700-
	Targeted* prophylaxis with echinocandins	To prevent IA	A	I	Standard dosed echinocandins reduced IA rate; duration of prophylaxis usually 21 days post SOT	[234, 327, 70	

* targeted prophylaxis = only if additional risk factors; universal prophylaxis = to all patients in population; IA, invasive aspergillosis; SOT, solid organ

transplantation; AmB, Amphotericin B

770 Table 38. Key recommendations for chronic pulmonary aspergillosis

Intention	Intervention	SoR	QoE	Comment	Ref.
Diagnosis or exclusion of CPA	Direct microscopy for	Α	II _t	Positive microscopy is a strong indicator of	[704]
	hyphae			infection, not studied in CPA, but in ABPA	
	Histology	А	II	In CPA histology distinguishes between	[705]
				CNPA and CCPA	
	Fungal culture (respiratory	А	III	Bacterial culture plates are less sensitive	[285]
	secretion)			than fungal culture plates	
Diagnosis or exclusion of CPA	Aspergillus IgG antibodies	Α	II	IgG and precipitins test standardization	[333]
				incomplete	
Control of infection	Itraconazole: Start 200 mg	А	II	No data to indicate which agent is	[333,
	bid, adjust with TDM			preferable	706]
	Voriconazole Start 150-200			Voriconazole preferred for CNPA and	[335,
	mg bid, adjust with TDM			patients with fungal balls to minimize risk	707,
	Diagnosis or exclusion of CPA Diagnosis or exclusion of CPA	Diagnosis or exclusion of CPA Direct microscopy for hyphae Histology Fungal culture (respiratory secretion) Diagnosis or exclusion of CPA Aspergillus IgG antibodies Control of infection Itraconazole: Start 200 mg bid, adjust with TDM Voriconazole Start 150-200	Diagnosis or exclusion of CPA Direct microscopy for hyphae Histology A Fungal culture (respiratory secretion) Diagnosis or exclusion of CPA Aspergillus IgG antibodies A Control of infection Itraconazole: Start 200 mg bid, adjust with TDM Voriconazole Start 150-200	Diagnosis or exclusion of CPA Direct microscopy for hyphae Histology A II Fungal culture (respiratory secretion) Diagnosis or exclusion of CPA Aspergillus IgG antibodies A II Control of infection Itraconazole: Start 200 mg bid, adjust with TDM Voriconazole Start 150-200	Diagnosis or exclusion of CPA Direct microscopy for hyphae Histology A III In CPA histology distinguishes between CNPA and CCPA Fungal culture (respiratory secretion) Diagnosis or exclusion of CPA Aspergillus IgG antibodies A III IgG and precipitins test standardization incomplete Control of infection Itraconazole: Start 200 mg bid, adjust with TDM Voriconazole Start 150-200 Diagnosis or exclusion of CPA Direct microscopy for hyphae III In CPA histology distinguishes between CNPA and CCPA III In CPA histology distinguishes between CNPA and CCPA III In CPA histology distinguishes between CNPA and CCPA III In CPA histology distinguishes between CNPA and CCPA III In CPA histology distinguishes between CNPA and CCPA III In CPA histology distinguishes between CNPA and CCPA III In CPA histology distinguishes between CNPA and III In CPA histology distinguishes between In CNPA and III In CPA histology distinguishes between In CNPA and III In CPA histology distinguishes between In CNPA and III In CPA histology distinguishes between In CNPA and III In CNPA histology distinguishes between In CNPA and III In CNPA and III In CNPA and II

				of resistance	708]
	Posaconazole	В	II	Higher rate of adverse events, if some	[709]
	400 mg bid (oral suspension)			adverse events with itraconazole and	
	300mg qd (delayed release			voriconazole.	
	tablets)				

CPA, chronic pulmonary aspergillosis; ABPA, allergic bronchopulmonary aspergillosis; SAIA, ; CNPA, chronic necrotising pulmonary aspergillosis; CCPA,

chronic cavitary pulmonary aspergillosis; TDM, therapeutic drug monitoring

774 Figure 1. Management in Neutropenia

Definition of patient populations:

GM (and PCR) monitoring OR mould-active prophylaxis

Symptoms (e.g. persistent fever)

Positive GM or PCR

Minimum diagnostic procedures: CT and microbiological work-up (cytology, culture & biomarkers

CT negative / biomarker negative:

If prophylaxis: Continue prophylaxis, consider TDM, and actively exclude alternative foci (e.g. sinusitis)

If no prophylaxis: No antifungals and actively exclude alternative foci (e.g. sinusitis)

CT positive / biomarker negative:

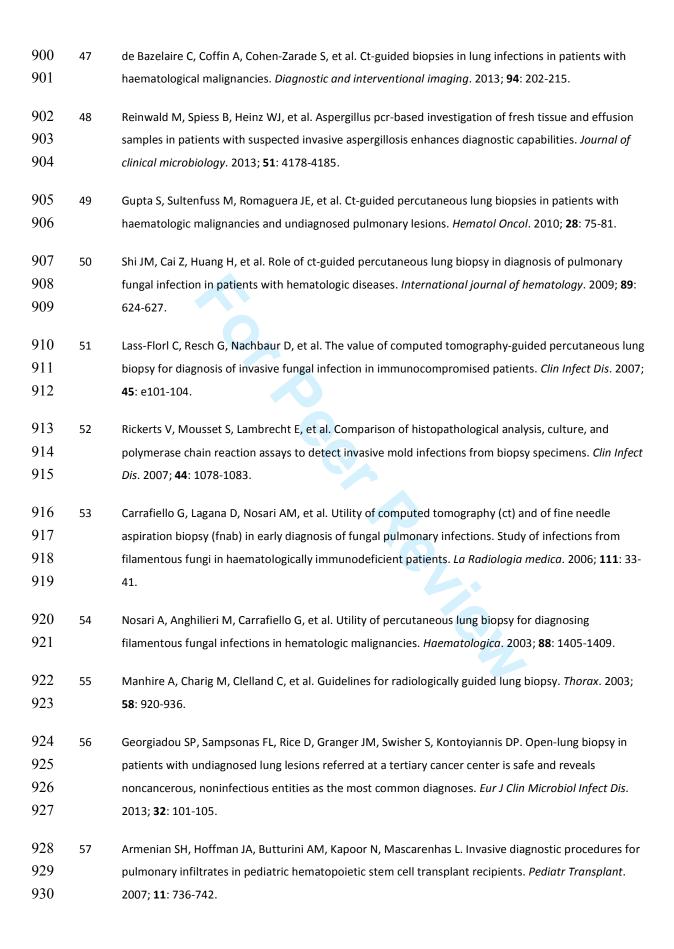
<u>If prophylaxis</u>: Discontinue prophylaxis or consider TDM. Treat as recommended for targeted treatment, but change antifungal class

<u>If no prophylaxis:</u> Start antifungal therapy for fever-driven strategy

CT negative / biomarker positive:

Actively exclude alternative foci (e.g. sinusitis). Treat as recommended for targeted treatment, but change antifungal class if prophylaxis was given

CT positive / biomarker positive:


Treat as recommended for targeted treatment, but change antifungal class if prophylaxis was given

776	Refer	rences
777		
778 779		References
780	1	Ullmann AJ, Cornely OA, Donnelly JP, et al. Escmid* guideline for the diagnosis and management of
781		candida diseases 2012: Developing european guidelines in clinical microbiology and infectious
782		diseases. Clin Microbiol Infect. 2012; 18 Suppl 7 : 1-8.
783	2	Denning DW, Cadranel J, Beigelman-Aubry C, et al. Chronic pulmonary aspergillosis: Rationale and
784		clinical guidelines for diagnosis and management. Eur Respir J. 2016; 47: 45-68.
785	3	Marchiori E, Irion KL. Commentary on: "Analysis of initial and follow-up ct findings in patients with
786		invasive pulmonary aspergillosis after solid organ transplantation". Clin Radiol. 2012; 67: 1153-1154.
787	4	Bergeron A, Porcher R, Sulahian A, et al. The strategy for the diagnosis of invasive pulmonary
788		aspergillosis should depend on both the underlying condition and the leukocyte count of patients with
789		hematologic malignancies. <i>Blood</i> . 2012; 119 : 1831-1837; quiz 1956.
790	5	Lim C, Seo JB, Park SY, et al. Analysis of initial and follow-up ct findings in patients with invasive
791		pulmonary aspergillosis after solid organ transplantation. Clin Radiol. 2012; 67: 1179-1186.
792	6	Wingard JR. New approaches to invasive fungal infections in acute leukemia and hematopoietic stem
793		cell transplant patients. Best practice & research Clinical haematology. 2007; 20: 99-107.
794	7	Greene RE, Schlamm HT, Oestmann JW, et al. Imaging findings in acute invasive pulmonary
795		aspergillosis: Clinical significance of the halo sign. Clin Infect Dis. 2007; 44: 373-379.
796	8	Greene R. The radiological spectrum of pulmonary aspergillosis. <i>Medical mycology</i> . 2005; 43 Suppl 1 :
797		S147-154.
798	9	Heussel CP, Kauczor HU, Heussel G, Fischer B, Mildenberger P, Thelen M. Early detection of
799		pneumonia in febrile neutropenic patients: Use of thin-section ct. AJR American journal of
800		roentgenology. 1997; 169 : 1347-1353.
801	10	Heussel CP, Kauczor HU, Heussel GE, et al. Pneumonia in febrile neutropenic patients and in bone
802		marrow and blood stem-cell transplant recipients: Use of high-resolution computed tomography. J Clin
803		Oncol. 1999; 17 : 796-805.
804	11	Caillot D, Casasnovas O, Bernard A, et al. Improved management of invasive pulmonary aspergillosis in
805		neutropenic patients using early thoracic computed tomographic scan and surgery. J Clin Oncol. 1997;
806		15 : 139-147.

807 808 809	12	Caillot D, Mannone L, Cuisenier B, Couaillier JF. Role of early diagnosis and aggressive surgery in the management of invasive pulmonary aspergillosis in neutropenic patients. <i>Clin Microbiol Infect</i> . 2001; 7 Suppl 2 : 54-61.
810 811	13	Chamilos G, Marom EM, Lewis RE, Lionakis MS, Kontoyiannis DP. Predictors of pulmonary zygomycosis versus invasive pulmonary aspergillosis in patients with cancer. <i>Clin Infect Dis.</i> 2005; 41 : 60-66.
812 813	14	Stanzani M, Battista G, Sassi C, et al. Computed tomographic pulmonary angiography for diagnosis of invasive mold diseases in patients with hematological malignancies. <i>Clin Infect Dis</i> . 2012; 54 : 610-616.
814 815 816	15	Stanzani M, Sassi C, Lewis RE, et al. High resolution computed tomography angiography improves the radiographic diagnosis of invasive mold disease in patients with hematological malignancies. <i>Clin Infect Dis.</i> 2015; 60 : 1603-1610.
817 818 819	16	Sonnet S, Buitrago-Tellez CH, Tamm M, Christen S, Steinbrich W. Direct detection of angioinvasive pulmonary aspergillosis in immunosuppressed patients: Preliminary results with high-resolution 16-mdct angiography. <i>AJR American journal of roentgenology</i> . 2005; 184 : 746-751.
820 821	17	Sodhi KS, Khandelwal N, Saxena AK, et al. Rapid lung mri in children with pulmonary infections: Time to change our diagnostic algorithms. <i>J Magn Reson Imaging</i> . 2016; 43 : 1196-1206.
822823824825	18	Maschmeyer G, Carratala J, Buchheidt D, et al. Diagnosis and antimicrobial therapy of lung infiltrates in febrile neutropenic patients (allogeneic sct excluded): Updated guidelines of the infectious diseases working party (agiho) of the german society of hematology and medical oncology (dgho). <i>Ann Oncol</i> . 2015; 26 : 21-33.
826 827	19	Rieger C, Herzog P, Eibel R, Fiegl M, Ostermann H. Pulmonary mria new approach for the evaluation of febrile neutropenic patients with malignancies. <i>Support Care Cancer</i> . 2008; 16 : 599-606.
828 829	20	Araz O, Karaman A, Ucar EY, Bilen Y, Durur Subasi I. Dce-mri findings of invasive aspergillosis in patient with acute myeloid leukemia. <i>Clin Respir J.</i> 2014; 8 : 248-250.
830 831 832	21	Blum U, Windfuhr M, Buitrago-Tellez C, Sigmund G, Herbst EW, Langer M. Invasive pulmonary aspergillosis. Mri, ct, and plain radiographic findings and their contribution for early diagnosis. <i>Chest</i> . 1994; 106 : 1156-1161.
833 834 835	22	Yan C, Tan X, Wei Q, et al. Lung mri of invasive fungal infection at 3 tesla: Evaluation of five different pulse sequences and comparison with multidetector computed tomography (mdct). <i>Eur Radiol</i> . 2015; 25 : 550-557.
836 837	23	Hot A, Maunoury C, Poiree S, et al. Diagnostic contribution of positron emission tomography with [18f]fluorodeoxyglucose for invasive fungal infections. <i>Clin Microbiol Infect</i> . 2011; 17 : 409-417.

869 870	36	Kojima R, Tateishi U, Kami M, et al. Chest computed tomography of late invasive aspergillosis after
871		allogeneic hematopoietic stem cell transplantation. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation. 2005; 11 : 506-511.
872	37	Logan PM, Primack SL, Miller RR, Muller NL. Invasive aspergillosis of the airways: Radiographic, ct, and
873		pathologic findings. <i>Radiology</i> . 1994; 193 : 383-388.
874	38	Liss B, Vehreschild JJ, Bangard C, et al. Our 2015 approach to invasive pulmonary aspergillosis.
875		<i>Mycoses.</i> 2015; 58 : 375-382.
876	39	Azoulay E, Mokart D, Lambert J, et al. Diagnostic strategy for hematology and oncology patients with
877		acute respiratory failure: Randomized controlled trial. Am J Respir Crit Care Med. 2010; 182: 1038-
878		1046.
879	40	Hummel M, Rudert S, Hof H, Hehlmann R, Buchheidt D. Diagnostic yield of bronchoscopy with
880		bronchoalveolar lavage in febrile patients with hematologic malignancies and pulmonary infiltrates.
881		Ann Hematol. 2008; 87 : 291-297.
882	41	Boersma WG, Erjavec Z, van der Werf TS, de Vries-Hosper HG, Gouw AS, Manson WL. Bronchoscopic
883		diagnosis of pulmonary infiltrates in granulocytopenic patients with hematologic malignancies: Bal
884		versus psb and pbal. Respiratory medicine. 2007; 101: 317-325.
885	42	Cornillet A, Camus C, Nimubona S, et al. Comparison of epidemiological, clinical, and biological
886		features of invasive aspergillosis in neutropenic and nonneutropenic patients: A 6-year survey. Clin
887		Infect Dis. 2006; 43 : 577-584.
888	43	Jain P, Sandur S, Meli Y, Arroliga AC, Stoller JK, Mehta AC. Role of flexible bronchoscopy in
889		immunocompromised patients with lung infiltrates. <i>Chest</i> . 2004; 125 : 712-722.
890	44	Peikert T, Rana S, Edell ES. Safety, diagnostic yield, and therapeutic implications of flexible
891		bronchoscopy in patients with febrile neutropenia and pulmonary infiltrates. Mayo Clinic proceedings.
892		2005; 80 : 1414-1420.
893	45	Ramila E, Sureda A, Martino R, et al. Bronchoscopy guided by high-resolution computed tomography
894		for the diagnosis of pulmonary infections in patients with hematologic malignancies and normal plain
895		chest x-ray. <i>Haematologica</i> . 2000; 85 : 961-966.
896	46	Becker MJ, Lugtenburg EJ, Cornelissen JJ, Van Der Schee C, Hoogsteden HC, De Marie S.
897		Galactomannan detection in computerized tomography-based broncho-alveolar lavage fluid and
898		serum in haematological patients at risk for invasive pulmonary aspergillosis. Br J Haematol. 2003;
899		121 : 448-457.

931 932 933	58	Zihlif M, Khanchandani G, Ahmed HP, Soubani AO. Surgical lung biopsy in patients with hematological malignancy or hematopoietic stem cell transplantation and unexplained pulmonary infiltrates: Improved outcome with specific diagnosis. <i>Am J Hematol</i> . 2005; 78 : 94-99.
934 935 936	59	Wingard JR, Hiemenz JW, Jantz MA. How i manage pulmonary nodular lesions and nodular infiltrates in patients with hematologic malignancies or undergoing hematopoietic cell transplantation. <i>Blood</i> . 2012; 120 : 1791-1800.
937 938	60	Choi YR, An JY, Kim MK, et al. The diagnostic efficacy and safety of endobronchial ultrasound-guided transbronchial needle aspiration as an initial diagnostic tool. <i>Korean J Intern Med</i> . 2013; 28 : 660-667.
939 940 941	61	Casal RF, Adachi R, Jimenez CA, Sarkiss M, Morice RC, Eapen GA. Diagnosis of invasive aspergillus tracheobronchitis facilitated by endobronchial ultrasound-guided transbronchial needle aspiration: A case report. <i>Journal of medical case reports</i> . 2009; 3 : 9290.
942 943 944	62	Aragaki-Nakahodo A, Benzaquen S, Kirschner M. Coinfection by nocardia beijingensis and nocardia arthritidis in an immunocompromised patient diagnosed by endobronchial ultrasound guided transbronchial needle aspiration (ebus-tbna). <i>Respir Med Case Rep.</i> 2014; 12 : 22-23.
945 946 947	63	Thery A, Espitalier F, Cassagnau E, Durand N, Malard O. Clinical features and outcome of sphenoid sinus aspergillosis: A retrospective series of 15 cases. <i>European annals of otorhinolaryngology, head and neck diseases</i> . 2012; 129 : 179-184.
948 949 950	64	Miyamoto Y, Sakamoto Y, Ohuchi M, et al. Orbital apex syndrome caused by invasive aspergillosis as an adverse effect of systemic chemotherapy for metastatic colorectal cancer: A case report. Anticancer research. 2016; 36 : 821-823.
951 952	65	Yuan L, Prayson RA. Optic nerve aspergillosis. <i>Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia</i> . 2015; 22 : 1191-1193.
953 954	66	Marzolf G, Sabou M, Lannes B, et al. Magnetic resonance imaging of cerebral aspergillosis: Imaging and pathological correlations. <i>PLoS One</i> . 2016; 11 : e0152475.
955 956 957	67	Ashdown BC, Tien RD, Felsberg GJ. Aspergillosis of the brain and paranasal sinuses in immunocompromised patients: Ct and mr imaging findings. <i>AJR American journal of roentgenology</i> . 1994; 162 : 155-159.
958 959 960	68	DeLone DR, Goldstein RA, Petermann G, et al. Disseminated aspergillosis involving the brain: Distribution and imaging characteristics. <i>AJNR American journal of neuroradiology</i> . 1999; 20 : 1597-1604.

961	69	Guermazi A, Gluckman E, Tabti B, Miaux Y. Invasive central nervous system aspergillosis in bone
962		marrow transplantation recipients: An overview. Eur Radiol. 2003; 13: 377-388.
0.62		
963	70	Fraczek MG, Kirwan MB, Moore CB, Morris J, Denning DW, Richardson MD. Volume dependency for
964		culture of fungi from respiratory secretions and increased sensitivity of aspergillus quantitative pcr.
965		Mycoses. 2014; 57 : 69-78.
966	71	Maertens JA, Klont R, Masson C, et al. Optimization of the cutoff value for the aspergillus double-
967		sandwich enzyme immunoassay. Clin Infect Dis. 2007; 44: 1329-1336.
968	72	Duarte RF, Sanchez-Ortega I, Cuesta I, et al. Serum galactomannan-based early detection of invasive
969		aspergillosis in hematology patients receiving effective antimold prophylaxis. Clin Infect Dis. 2014; 59 :
970		1696-1702.
971	73	Teering S, Verreth A, Peeters A, et al. Prognostic value of serum galactomannan in mixed icu patients:
972	75	
912		A retrospective observational study. <i>Anaesthesiol Intensive Ther</i> . 2014; 46 : 145-154.
973	74	Nouér SA, Nucci M, Kumar NS, Grazziutti M, Barlogie B, Anaissie E. Earlier response assessment in
974		invasive aspergillosis based on the kinetics of serum aspergillus galactomannan: Proposal for a new
975		definition. Clin Infect Dis. 2011; 53 : 671-676.
976	75	D'Haese J, Theunissen K, Vermeulen E, et al. Detection of galactomannan in bronchoalveolar lavage
977		fluid samples of patients at risk for invasive pulmonary aspergillosis: Analytical and clinical validity.
978		Journal of clinical microbiology. 2012; 50 : 1258-1263.
979	76	Karageorgopoulos DE, Vouloumanou EK, Ntziora F, Michalopoulos A, Rafailidis PI, Falagas ME. ß-d-
980	70	glucan assay for the diagnosis of invasive fungal infections: A meta-analysis. <i>Clin Infect Dis.</i> 2011; 52 :
981		750-770.
701		750-770.
982	77	Prattes J, Lackner M, Eigl S, et al. Diagnostic accuracy of the aspergillus -specific bronchoalveolar
983		lavage lateral-flow assay in haematological malignancy patients. <i>Mycoses</i> . 2015; 58 : 461-469.
984	78	Boch T, Reinwald M, Postina P, et al. Identification of invasive fungal diseases in immunocompromised
985		patients by combining an aspergillus specific pcr with a multifungal DNA-microarray from primary
986		clinical samples. <i>Mycoses</i> . 2015; 58 : 735-745.
987	79	Boch T, Spiess B, Cornely OA, et al. Diagnosis of invasive fungal infections in haematological patients
988	-	by combined use of galactomannan, 1,3-beta-d-glucan, aspergillus pcr, multifungal DNA-microarray,
989		and aspergillus azole resistance pcrs in blood and bronchoalveolar lavage samples: Results of a
990		prospective multicentre study. <i>Clin Microbiol Infect</i> . 2016.
<i>,,,</i>		p. sopestiresidecita e stady. Siii. Microsio. Nijesti 2010.

991 992	80	Springer J, Morton CO, Perry M, et al. Multicenter comparison of serum and whole-blood specimens for detection of aspergillus DNA in high-risk hematological patients. <i>Journal of clinical microbiology</i> .
993		2013; 51 : 1445-1450.
994	81	Rogers TR, Morton CO, Springer J, et al. Combined real-time pcr and galactomannan surveillance
995		improves diagnosis of invasive aspergillosis in high risk patients with haematological malignancies. Br $\it J$
996		Haematol. 2013; 161 : 517-524.
997	82	Aguado JM, Vazquez L, Fernandez-Ruiz M, et al. Serum galactomannan versus a combination of
998		galactomannan and polymerase chain reaction-based aspergillus DNA detection for early therapy of
999		invasive aspergillosis in high-risk hematological patients: A randomized controlled trial. Clin Infect Dis.
1000		2015; 60 : 405-414.
1001	83	Vermeulen E, Lagrou K, Verweij PE. Azole resistance in aspergillus fumigatus: A growing public health
1002		concern. Curr Opin Infect Dis. 2013; 26 : 493-500.
1003	84	Chowdhary A, Kathuria S, Xu J, Meis JF. Emergence of azole-resistant aspergillus fumigatus strains due
1004		to agricultural azole use creates an increasing threat to human health. PLoS pathogens. 2013; 9:
1005		e1003633.
1006	85	Van Der Linden JW, Warris A, Verweij PE. Aspergillus species intrinsically resistant to antifungal agents.
1007		Medical mycology. 2011; 49 Suppl 1 : S82-89.
1008	86	Anderson JB. Evolution of antifungal-drug resistance: Mechanisms and pathogen fitness. Nat Rev
1009		Microbiol. 2005; 3 : 547-556.
1010	87	Howard SJ, Cerar D, Anderson MJ, et al. Frequency and evolution of azole resistance in aspergillus
1011		fumigatus associated with treatment failure. Emerg Infect Dis. 2009; 15: 1068-1076.
1012	88	Camps SM, van der Linden JW, Li Y, et al. Rapid induction of multiple resistance mechanisms in
1013		aspergillus fumigatus during azole therapy: A case study and review of the literature. Antimicrob
1014		Agents Chemother. 2012; 56 : 10-16.
1015	89	Ahmad S, Joseph L, Hagen F, Meis JF, Khan Z. Concomitant occurrence of itraconazole-resistant and -
1016		susceptible strains of aspergillus fumigatus in routine cultures. J Antimicrob Chemother. 2015; 70: 412-
1017		415.
1018	90	Astvad KM, Jensen RH, Hassan TM, et al. First detection of tr46/y121f/t289a and tr34/l98h alterations
1019		in aspergillus fumigatus isolates from azole-naive patients in denmark despite negative findings in the
1020		environment. Antimicrob Agents Chemother. 2014; 58 : 5096-5101.

1021	l 91	Verweij PE, Snelders E, Kema GH, Mellado E, Melchers WJ. Azole resistance in aspergillus fumigatus: A
1022	2	side-effect of environmental fungicide use? Lancet Infect Dis. 2009; 9: 789-795.
1020		
1023		Stensvold CR, Nistrup Jørgensen L, M CA. Azole-resistant invasive aspergillosis: Relationship to
1024	1	agriculture. Curr Fungal Infect Rep. 2012; 6 : 178-191.
1025	5 93	Bowyer P, Denning DW. Environmental fungicides and triazole resistance in aspergillus. Pest Manag
1026	6	Sci. 2014; 70 : 173-178.
1027		van der Linden JW, Snelders E, Kampinga GA, et al. Clinical implications of azole resistance in
1028	3	aspergillus fumigatus, the netherlands, 2007-2009. Emerg Infect Dis. 2011; 17: 1846-1854.
1029	95	van der Linden JW, Camps SM, Kampinga GA, et al. Aspergillosis due to voriconazole highly resistant
1030		aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. <i>Clin Infect</i>
1030		
1031	I	Dis. 2013; 57 : 513-520.
1032	2 96	van der Linden JW, Arendrup MC, Warris A, et al. Prospective multicenter international surveillance of
1033	3	azole resistance in aspergillus fumigatus. Emerg Infect Dis. 2015; 21: 1041-1044.
1034		Chowdhary A, Sharma C, van den Boom M, et al. Multi-azole-resistant aspergillus fumigatus in the
1035	5	environment in tanzania. <i>J Antimicrob Chemother</i> . 2014; 69 : 2979-2983.
1036	6 98	Verweij PE, Chowdhary A, Melchers WJ, Meis JF. Azole resistance in aspergillus fumigatus: Can we
1037	7	retain the clinical use of mold-active antifungal azoles? Clin Infect Dis. 2016; 62 : 362-368.
1038	3 99	Ozmerdiven GE, Ak S, Ener B, et al. First determination of azole resistance in aspergillus fumigatus
1039)	strains carrying the tr34/l98h mutations in turkey. J Infect Chemother. 2015; 21: 581-586.
1040) 100	Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: Established and emerging
1040		indications. <i>Antimicrob Agents Chemother</i> . 2009; 53 : 24-34.
1041	I	indications. Antimicrob Agents Chemother. 2009, 33 . 24-34.
1042	2 101	Tricot G, Joosten E, Boogaerts MA, Vande-Pitte J, Cauwenbergh G. Ketoconazole vs. Itraconazole for
1043	3	antifungal prophylaxis in patients with severe granulocytopenia: Preliminary results of two
1044	4	nonrandomized studies. Rev Infect Diseases. 9: S94-S95.
1046		
1045		Morgenstern GR, Prentice AG, Grant Prentice H, et al. A randomized controlled trial of itraconazole
1046		versus fluconazole for the prevention of fungal infections in patients with haematological
1047	/	malignancies. <i>Br J Haematol</i> . 1999; 105 : 901-911.
1048	3 103	Glasmacher A, Hahn C, Molitor E, Marklein G, Sauerbruch T, Schmidt-Wolf I. Itraconazole trough
1049)	concentrations in antifungal prophylaxis with six different dosing regimens using hydroxypropyl-ß-
1050)	cyclodextrin oral solution or coated-pellet capsules. <i>Mycoses</i> . 1999; 42 : 591-600.

1051 1052	104	Glasmacher A, Hahn C, Leutner C, et al. Breakthrough invasive fungal infections in neutropenic patients after prophylaxis with itraconazole. <i>Mycoses</i> . 1999; 42 : 443-451.
1053 1054	105	Glasmacher A, Prentice A, Gorschlüter M, et al. Itraconazole prevents invasive fungal infections in neutropenic patients treated for hematologic malignancies: Evidence from a meta-analysis of 3,597
1055		patients. J Clin Oncol. 2003; 21 : 4615-4626.
1056	106	Boogaerts MA, Verhoef GE, Zachee P, Demuynck H, Verbist L, De Beule K. Antifungal prophylaxis with
1057		itraconazole in prolonged neutropenia: Correlation with plasma levels. Mycoses. 1989; 32 Suppl 1 :
1058		103-108.
1059	107	Denning DW, Lee JY, Hostetler JS, et al. Niaid mycoses study group multicenter trial of oral
1060		itraconazole therapy for invasive aspergillosis. <i>Am J Med</i> . 1994; 97 : 135-144.
1061	108	Lestner JM, Roberts SA, Moore CB, Howard SJ, Denning DW, Hope WW. Toxicodynamics of
1062		itraconazole: Implications for therapeutic drug monitoring. <i>Clin Infect Dis</i> . 2009; 49 : 928-930.
1063	109	Pascual A, Csajka C, Buclin T, et al. Challenging recommended oral and intravenous voriconazole doses
1064		for improved efficacy and safety: Population pharmacokinetics-based analysis of adult patients with
1065		invasive fungal infections. Clin Infect Dis. 2012; 55 : 381-390.
1066	110	Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring
1067		in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008; 46:
1068		201-211.
1069	111	Park WB, Kim N-H, Kim K-H, et al. The effect of therapeutic drug monitoring on safety and efficacy of
1070		voriconazole in invasive fungal infections: A randomized controlled trial. Clin Infect Dis. 2012; 55:
1071		1080-1087.
1072	112	Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its
1073		relationship to plasma concentrations in patients. <i>Antimicrob Agents Chemother</i> . 2011; 55 : 4782-4788.
1074	113	Trifilio S, Singhal S, Williams S, et al. Breakthrough fungal infections after allogeneic hematopoietic
1075		stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transplant. 2007; 40:
1076		451-456.
1077	114	Dolton MJ, Ray JE, Chen SCA, Ng K, Pont LG, McLachlan AJ. Multicenter study of voriconazole
1078		pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012; 56 : 4793-
1079		4799.
1080	115	Neely M, Margol A, Fu X, et al. Achieving target voriconazole concentrations more accurately in
1081		children and adolescents. Antimicrob Agents Chemother. 2015; 59 : 3090-3097.

1000		
1082	116	Friberg LE, Ravva P, Karlsson MO, Liu P. Integrated population pharmacokinetic analysis of
1083		voriconazole in children, adolescents and adults. <i>Antimicrob Agents Chemother</i> . 2012; 56 : 3032-3042.
1084	117	Jang SH, Colangelo PM, Gobburu JVS. Exposureresponse of posaconazole used for prophylaxis
	117	
1085		against invasive fungal infections: Evaluating the need to adjust doses based on drug concentrations in
1086		plasma. Clinical Pharmacology & Therapeutics. 2010; 88: 115-119.
1087	118	Cornely OA, Ullmann AJ. Lack of evidence for exposure-response relationship in the use of
1088		posaconazole as prophylaxis against invasive fungal infections. Clinical pharmacology and
1089		therapeutics. 2011; 89 : 351-352.
1090	119	Walsh TJ, Raad I, Patterson TF, et al. Treatment of invasive aspergillosis with posaconazole in patients
1091		who are refractory to or intolerant of conventional therapy: An externally controlled trial. Clin Infect
1092		Dis. 2007; 44 : 2-12.
1002		
1093	120	European Medicine A. Assessment report: Noxafil. 2014.
1094	121	Cornely OA, Robertson MN, Haider S, et al. Pharmacokinetics and safety results from the phase 3
1095		randomized, open-label, study of intravenous posaconazole in patients at risk of invasive fungal
1096		disease Journal of Antimicrobial Chemotherapy. 2017.
1097	122	Cornely OA, Duarte RF, Haider S, et al. Phase 3 pharmacokinetics and safety study of a posaconazole
1098		tablet formulation in patients at risk for invasive fungal disease. J Antimicrob Chemother. 2016; 71:
1099		1747.
1100	123	Bowden RA, Chandrasekar B, White M, van Burik JA, Wingard J. A double-blind, randomized controlled
1101		clinical trial of amphocil (abcd) vs. Amphotericin b (amb) for treatment of invasive aspergillosis in
1102		immunocompromised patients. In: The Tenth International Symposium on Infections in the
1103		Immunocompromised Host. Davos, Switzerland: ICHS, 1998: 91.
1104	424	
1104	124	Stamm AM, Diasio RB, Dismukes WE, et al. Toxicity of amphotericin b plus flucytosine in 194 patients
1105		with cryptococcal meningitis. Am J Med. 1987; 83 : 236-242.
1106	125	Pasqualotto AC, Howard SJ, Moore CB, Denning DW. Flucytosine therapeutic monitoring: 15 years
1107		experience from the uk. J Antimicrob Chemother. 2007; 59 : 791-793.
		, , , , , , , , , , , , , , , , , , ,
1108	126	Gavalda J, Meije Y, Fortun J, et al. Invasive fungal infections in solid organ transplant recipients. <i>Clin</i>
1108 1109	126	Gavalda J, Meije Y, Fortun J, et al. Invasive fungal infections in solid organ transplant recipients. <i>Clin Microbiol Infect</i> . 2014; 20 Suppl 7 : 27-48.
1109		Microbiol Infect. 2014; 20 Suppl 7 : 27-48.
1109 1110	126 127	Microbiol Infect. 2014; 20 Suppl 7 : 27-48. Husain S, Zaldonis D, Kusne S, Kwak EJ, Paterson DL, McCurry KR. Variation in antifungal prophylaxis
1109		Microbiol Infect. 2014; 20 Suppl 7 : 27-48.

1112	128	Taccone A, Occhi M, Garaventa A, Manfredini L, Viscoli C. Ct of invasive pulmonary aspergillosis in
1113		children with cancer. Pediatr Radiol. 1993; 23: 177-180.
1114	129	Archibald S, Park J, Geyer JR, Hawkins DS. Computed tomography in the evaluation of febrile
1115		neutropenic pediatric oncology patients. <i>Pediatr Infect Dis J.</i> 2001; 20 : 5-10.
1116	130	Burgos A, Zaoutis TE, Dvorak CC, et al. Pediatric invasive aspergillosis: A multicenter retrospective
1117	130	analysis of 139 contemporary cases. <i>Pediatrics</i> . 2008; 121 : e1286-1294.
111/		analysis of 159 Contemporary Cases. Fediatrics. 2006, 121. e1260-1294.
1118	131	Pfeiffer CD, Fine JP, Safdar N. Diagnosis of invasive aspergillosis using a galactomannan assay: A meta-
1119		analysis. Clin Infect Dis. 2006; 42 : 1417-1727.
1120	132	Hovi L, Saxen H, Saarinen-Pihkala UM, Vettenranta K, Meri T, Richardson M. Prevention and
1121		monitoring of invasive fungal infections in pediatric patients with cancer and hematologic disorders.
1122		Pediatric blood & cancer. 2007; 48: 28-34.
1123	422	Chairchadh Mill Addisan DNA Adalasachtia Labal Danasachtia ann amillea adachasachta ann amilian bachtar
	133	Steinbach WJ, Addison RM, McLaughlin L, et al. Prospective aspergillus galactomannan antigen testing
1124		in pediatric hematopoietic stem cell transplant recipients. <i>Pediatr Infect Dis J.</i> 2007; 26 : 558-564.
1125	134	Hayden R, Pounds S, Knapp K, et al. Galactomannan antigenemia in pediatric oncology patients with
1126		invasive aspergillosis. <i>Pediatr Infect Dis J.</i> 2008; 27 : 815-819.
1127	135	Castagnola E, Furfaro E, Caviglia I, et al. Performance of the galactomannan antigen detection test in
1128		the diagnosis of invasive aspergillosis in children with cancer or undergoing haemopoietic stem cell
1129		transplantation. Clin Microbiol Infect. 2010; 16: 1197-1203.
1120		
1130	136	Fisher BT, Zaoutis TE, Park JR, et al. Galactomannan antigen testing for diagnosis of invasive
1131		aspergillosis in pediatric hematology patients. <i>J Pediatric Infect Dis Soc.</i> 2012; 1 : 103-111.
1132	137	Choi SH, Kang ES, Eo H, et al. Aspergillus galactomannan antigen assay and invasive aspergillosis in
1133		pediatric cancer patients and hematopoietic stem cell transplant recipients. <i>Pediatric blood & cancer</i> .
1134		2013; 60 : 316-322.
		,
1135	138	Jha AK, Bansal D, Chakrabarti A, Shivaprakash MR, Trehan A, Marwaha RK. Serum galactomannan
1136		assay for the diagnosis of invasive aspergillosis in children with haematological malignancies. Mycoses.
1137		2013; 56 : 442-448.
1120		
1138	139	Dinand V, Anjan M, Oberoi JK, et al. Threshold of galactomannan antigenemia positivity for early
1139		diagnosis of invasive aspergillosis in neutropenic children. <i>J Microbiol Immunol Infect</i> . 2016; 49 : 66-73.

1140	140	Smith PB, Benjamin DK, Jr., Alexander BD, Johnson MD, Finkelman MA, Steinbach WJ. Quantification
1141		of 1,3-beta-d-glucan levels in children: Preliminary data for diagnostic use of the beta-glucan assay in a
1142		pediatric setting. Clin Vaccine Immunol. 2007; 14: 924-925.
1143	141	Zhao L, Tang JY, Wang Y, et al. [value of plasma beta-glucan in early diagnosis of invasive fungal
1144		infection in children]. Zhongguo Dang Dai Er Ke Za Zhi. 2009; 11 : 905-908.
1145	142	Mularoni A, Furfaro E, Faraci M, et al. High levels of beta-d-glucan in immunocompromised children
1146		with proven invasive fungal disease. Clin Vaccine Immunol. 2010; 17: 882-883.
1147	143	Badiee P, Alborzi A, Karimi M, et al. Diagnostic potential of nested pcr, galactomannan eia, and beta-d-
1148		glucan for invasive aspergillosis in pediatric patients. <i>J Infect Dev Ctries</i> . 2012; 6 : 352-357.
1149	144	Koltze A, Rath P, Schoning S, et al. Beta-d-glucan screening for detection of invasive fungal disease in
1150		children undergoing allogeneic hematopoietic stem cell transplantation. Journal of clinical
1151		microbiology. 2015; 53 : 2605-2610.
1152	145	Denning DW, Ribaud P, Milpied N, et al. Efficacy and safety of voriconazole in the treatment of acute
1153		invasive aspergillosis. Clin Infect Dis. 2002; 34 : 563-571.
1154	146	Herbrecht R, Denning DW, Patterson TF, et al. Voriconazole versus amphotericin b for primary therapy
1155		of invasive aspergillosis. N Engl J Med. 2002; 347 : 408-415.
1156	147	Walsh TJ, Lutsar I, Driscoll T, et al. Voriconazole in the treatment of aspergillosis, scedosporiosis and
1157		other invasive fungal infections in children. <i>Pediatr Infect Dis J.</i> 2002; 21 : 240-248.
1158	148	Maertens J, Raad I, Petrikkos G, et al. Efficacy and safety of caspofungin for treatment of invasive
1159		aspergillosis in patients refractory to or intolerant of conventional antifungal therapy. Clin Infect Dis.
1160		2004; 39 : 1563-1571.
1161	149	Cornely OA, Maertens J, Bresnik M, et al. Liposomal amphotericin b as initial therapy for invasive mold
1162		infection: A randomized trial comparing a high-loading dose regimen with standard dosing (ambiload
1163		trial). Clin Infect Dis. 2007; 44 : 1289-1297.
1164	150	Raad, II, Hanna HA, Boktour M, et al. Novel antifungal agents as salvage therapy for invasive
1165		aspergillosis in patients with hematologic malignancies: Posaconazole compared with high-dose lipid
1166		formulations of amphotericin b alone or in combination with caspofungin. Leukemia. 2008; 22: 496-
1167		503.
1168	151	Cornely OA, Maertens J, Bresnik M, Ullmann AJ, Ebrahimi R, Herbrecht R. Treatment outcome of
1169		invasive mould disease after sequential exposure to azoles and liposomal amphotericin b. J Antimicrob
1170		Chemother. 2010; 65 : 114-117.

1171 1172 1173	152	Winston DJ, Bartoni K, Territo MC, Schiller GJ. Efficacy, safety, and breakthrough infections associated with standard long-term posaconazole antifungal prophylaxis in allogeneic stem cell transplantation recipients. Biology of blood and marrow transplantation: journal of the American Society for Blood
1174		and Marrow Transplantation. 2011; 17 : 507-515.
1175	153	De la Serna J, Jarque I, Lopez-Jimenez J, et al. Treatment of invasive fungal infections in high risk
1176		hematological patients. The outcome with liposomal amphotericin b is not negatively affected by prior
1177		administration of mold-active azoles. Rev Esp Quimioter. 2013; 26 : 64-69.
1178	154	Auberger J, Lass-Florl C, Aigner M, Clausen J, Gastl G, Nachbaur D. Invasive fungal breakthrough
1179		infections, fungal colonization and emergence of resistant strains in high-risk patients receiving
1180		antifungal prophylaxis with posaconazole: Real-life data from a single-centre institutional
1181		retrospective observational study. <i>J Antimicrob Chemother</i> . 2012; 67 : 2268-2273.
1182	155	Prentice HG, Hann IM, Herbrecht R, et al. A randomized comparison of liposomal versus conventional
1183		amphotericin b for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol.
1184		1997; 98 : 711-718.
1185	156	Maertens JA, Madero L, Reilly AF, et al. A randomized, double-blind, multicenter study of caspofungin
1186		versus liposomal amphotericin b for empiric antifungal therapy in pediatric patients with persistent
1187		fever and neutropenia. Pediatr Infect Dis J. 2010; 29 : 415-420.
1188	157	Caselli D, Paolicchi O. Empiric antibiotic therapy in a child with cancer and suspected septicemia.
1189		Pediatr Rep. 2012; 4 : e2.
1190	158	Cordonnier C, Pautas C, Maury S, et al. Empirical versus preemptive antifungal therapy for high-risk,
1191		febrile, neutropenic patients: A randomized, controlled trial. Clin Infect Dis. 2009; 48: 1042-1051.
1100		
1192	159	Girmenia C, Micozzi A, Gentile G, et al. Clinically driven diagnostic antifungal approach in neutropenic
1193		patients: A prospective feasibility study. J Clin Oncol. 2010; 28: 667-674.
1194	160	Tan BH, Low JG, Chlebicka NL, et al. Galactomannan-guided preemptive vs. Empirical antifungals in the
1195		persistently febrile neutropenic patient: A prospective randomized study. Int J Infect Dis. 2011; 15:
1196		e350-356.
1197	161	Castagnola E, Bagnasco F, Amoroso L, et al. Role of management strategies in reducing mortality from
1198		invasive fungal disease in children with cancer or receiving hemopoietic stem cell transplant: A single
1199		
		center 30-year experience. Pediatr Infect Dis J. 2014; 33 : 233-237.
1200	162	Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in

1202 1203 1204	163	Wald A, Leisenring W, van Burik JA, Bowden RA. Epidemiology of aspergillus infections in a large cohort of patients undergoing bone marrow transplantation. <i>The Journal of infectious diseases</i> . 1997; 175 : 1459-1466.
1205 1206 1207	164	Neofytos D, Horn D, Anaissie E, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: Analysis of multicenter prospective antifungal therapy (path) alliance registry. <i>Clin Infect Dis</i> . 2009; 48 : 265-273.
1208 1209	165	Walsh TJ, Dixon DM. Nosocomial aspergillosis: Environmental microbiology, hospital epidemiology, diagnosis and treatment. <i>European journal of epidemiology</i> . 1989; 5 : 131-142.
1210 1211	166	Goodley JM, Clayton YM, Hay RJ. Environmental sampling for aspergilli during building construction on a hospital site. <i>The Journal of hospital infection</i> . 1994; 26 : 27-35.
1212 1213	167	Perraud M, Piens MA, Nicoloyannis N, Girard P, Sepetjan M, Garin JP. Invasive nosocomial pulmonary aspergillosis: Risk factors and hospital building works. <i>Epidemiol Infect</i> . 1987; 99 : 407-412.
1214 1215 1216	168	Opal SM, Asp AA, Cannady PB, Jr., Morse PL, Burton LJ, Hammer PG, 2nd. Efficacy of infection control measures during a nosocomial outbreak of disseminated aspergillosis associated with hospital construction. <i>The Journal of infectious diseases</i> . 1986; 153 : 634-637.
1217 1218 1219	169	Weems JJ, Jr., Davis BJ, Tablan OC, Kaufman L, Martone WJ. Construction activity: An independent risk factor for invasive aspergillosis and zygomycosis in patients with hematologic malignancy. <i>Infect Control</i> . 1987; 8 : 71-75.
1220 1221	170	Meheust D, Le Cann P, Reboux G, Millon L, Gangneux JP. Indoor fungal contamination: Health risks and measurement methods in hospitals, homes and workplaces. <i>Crit Rev Microbiol</i> . 2014; 40 : 248-260.
1222 1223 1224	171	Sherertz RJ, Belani A, Kramer BS, et al. Impact of air filtration on nosocomial aspergillus infections. Unique risk of bone marrow transplant recipients. <i>The American journal of medicine</i> . 1987; 83 : 709-718.
1225 1226	172	Barnes RA, Rogers TR. Control of an outbreak of nosocomial aspergillosis by laminar air-flow isolation. The Journal of hospital infection. 1989; 14 : 89-94.
1227 1228 1229	173	Thio CL, Smith D, Merz WG, et al. Refinements of environmental assessment during an outbreak investigation of invasive aspergillosis in a leukemia and bone marrow transplant unit. <i>Infect Control Hosp Epidemiol</i> . 2000; 21 : 18-23.
1230 1231 1232	174	Hahn T, Cummings KM, Michalek AM, Lipman BJ, Segal BH, McCarthy PL, Jr. Efficacy of high-efficiency particulate air filtration in preventing aspergillosis in immunocompromised patients with hematologic malignancies. <i>Infect Control Hosp Epidemiol</i> . 2002; 23 : 525-531.

1233 1234	175	Maschmeyer G, Neuburger S, Fritz L, et al. A prospective, randomised study on the use of well-fitting masks for prevention of invasive aspergillosis in high-risk patients. <i>Ann Oncol</i> . 2009; 20 : 1560-1564.
1235 1236	176	Anaissie EJ, Stratton SL, Dignani MC, et al. Pathogenic aspergillus species recovered from a hospital water system: A 3-year prospective study. <i>Clin Infect Dis</i> . 2002; 34 : 780-789.
1237 1238	177	Anaissie EJ, Penzak SR, Dignani MC. The hospital water supply as a source of nosocomial infections: A plea for action. <i>Archives of internal medicine</i> . 2002; 162 : 1483-1492.
1239	178	Anaissie EJ, Stratton SL, Dignani MC, et al. Cleaning patient shower facilities: A novel approach to
1240		reducing patient exposure to aerosolized aspergillus species and other opportunistic molds. Clin Infect
1241		Dis. 2002; 35 : E86-88.
1242	179	Anaissie EJ, Stratton SL, Dignani MC, et al. Pathogenic molds (including aspergillus species) in hospital
1243		water distribution systems: A 3-year prospective study and clinical implications for patients with
1244		hematologic malignancies. <i>Blood</i> . 2003; 101 : 2542-2546.
1245	180	Lee LD, Hachem RY, Berkheiser M, Hackett B, Jiang Y, Raad, II. Hospital environment and invasive
1246		aspergillosis in patients with hematologic malignancy. <i>Am J Infect Control</i> . 2012; 40 : 247-249.
1247	181	Mahieu LM, De Dooy JJ, Van Laer FA, Jansens H, Ieven MM. A prospective study on factors influencing
1248		aspergillus spore load in the air during renovation works in a neonatal intensive care unit. The Journal
1249		of hospital infection. 2000; 45 : 191-197 [Record as supplied by publisher].
1250	182	Rüping MJ, Gerlach S, Fischer G, et al. Environmental and clinical epidemiology of aspergillus terreus:
1251		Data from a prospective surveillance study. The Journal of hospital infection. 2011; 78: 226-230.
1252	183	De Pauw B, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the
1253		european organization for research and treatment of cancer/invasive fungal infections cooperative
1254		group and the national institute of allergy and infectious diseases mycoses study group (eortc/msg)
1255		consensus group. Clin Infect Dis. 2008; 46 : 1813-1821.
1256	184	Marr KA, Schlamm HT, Herbrecht R, et al. Combination antifungal therapy for invasive aspergillosis: A
1257		randomized trial. <i>Annals of internal medicine</i> . 2015; 162 : 81-89.
1258	185	Maertens JA, Raad, II, Marr KA, et al. Isavuconazole versus voriconazole for primary treatment of
1259		invasive mould disease caused by aspergillus and other filamentous fungi (secure): A phase 3,
1260		randomised-controlled, non-inferiority trial. <i>Lancet</i> . 2016; 387 : 760-769.
1261	186	Borjesson J, Latifi A, Friman O, Beckman MO, Oldner A, Labruto F. Accuracy of low-dose chest ct in
1262		intensive care patients. Emerg Radiol. 2011; 18 : 17-21.

1263	187	Yamamura J, Tornquist K, Buchert R, et al. Simulated low-dose computed tomography in oncological
1264		patients: A feasibility study. Journal of computer assisted tomography. 2010; 34 : 302-308.
1065		
1265	188	Ofran Y, Avivi I, Oliven A, et al. Granulocyte transfusions for neutropenic patients with life-threatening
1266		infections: A single centre experience in 47 patients, who received 348 granulocyte transfusions. Vox
1267		Sang. 2007; 93 : 363-369.
1268	189	Safdar A, Rodriguez GH, Lichtiger B, et al. Recombinant interferon gamma1b immune enhancement in
1269		20 patients with hematologic malignancies and systemic opportunistic infections treated with donor
1270		granulocyte transfusions. Cancer. 2006; 106 : 2664-2671.
1271	400	
1271	190	Sachs UJ, Reiter A, Walter T, Bein G, Woessmann W. Safety and efficacy of therapeutic early onset
1272		granulocyte transfusions in pediatric patients with neutropenia and severe infections. <i>Transfusion</i> .
1273		2006; 46 : 1909-1914.
1274	191	Dignani MC, Rex JH, Chan KW, et al. Immunomodulation with interferon-gamma and colony-
1275		stimulating factors for refractory fungal infections in patients with leukemia. Cancer. 2005; 104: 199-
1276		204.
1277	192	Lee JJ, Chung IJ, Park MR, et al. Clinical efficacy of granulocyte transfusion therapy in patients with
1278		neutropenia-related infections. <i>Leukemia</i> . 2001; 15 : 203-207.
1279	193	Dignani MC, Anaissie EJ, Hester JP, et al. Treatment of neutropenia-related fungal infections with
1280		granulocyte colony-stimulating factor-elicited white blood cell transfusions: A pilot study. <i>Leukemia</i> .
1281		1997; 11 : 1621-1630.
1282	194	Massey E, Paulus U, Doree C, Stanworth S. Granulocyte transfusions for preventing infections in
1283		patients with neutropenia or neutrophil dysfunction. Cochrane Database Syst Rev. 2009: CD005341.
1284	195	Chamilos G, Luna M, Lewis RE, et al. Invasive fungal infections in patients with hematologic
1285		malignancies in a tertiary care cancer center: An autopsy study over a 15-year period (1989-2003).
1286		Haematologica. 2006; 91 : 986-989.
1005		
1287	196	Sinko J, Csomor J, Nikolova R, et al. Invasive fungal disease in allogeneic hematopoietic stem cell
1288		transplant recipients: An autopsy-driven survey. <i>Transpl Infect Dis</i> . 2008; 10 : 106-109.
1289	197	Pizzo PA, Robichaud KJ, Gill FA, Witebsky FG. Empiric antibiotic and antifungal therapy for cancer
1290		patients with prolonged fever and granulocytopenia. The American journal of medicine. 1982; 72: 101-
1291		111.
1292	100	Diago DA Dobiobaud KI Wooloy D. Commore ID. Foyes in the analisative and yours and the still the
	198	Pizzo PA, Robichaud KJ, Wesley R, Commers JR. Fever in the pediatric and young adult patient with
1293		cancer. A prospective study of 1001 episodes. <i>Medicine (Baltimore)</i> . 1982; 61 : 153-165.

1294 1295	199	Empiric antifungal therapy in febrile granulocytopenic patients. Eortc international antimicrobial therapy cooperative group. <i>The American journal of medicine</i> . 1989; 86 : 668-672.
1296 1297 1298	200	Goldberg E, Gafter-Gvili A, Robenshtok E, Leibovici L, Paul M. Empirical antifungal therapy for patients with neutropenia and persistent fever: Systematic review and meta-analysis. <i>Eur J Cancer</i> . 2008; 44 : 2192-2203.
1299 1300	201	Pagano L, Caira M, Nosari A, et al. The use and efficacy of empirical versus pre-emptive therapy in the management of fungal infections: The hema e-chart project. <i>Haematologica</i> . 2011; 96 : 1366-1370.
1301 1302 1303	202	White PL, Parr C, Thornton C, Barnes RA. Evaluation of real-time pcr, galactomannan enzyme-linked immunosorbent assay (elisa), and a novel lateral-flow device for diagnosis of invasive aspergillosis. <i>Journal of clinical microbiology</i> . 2013; 51 : 1510-1516.
1304 1305	203	White PL, Wingard JR, Bretagne S, et al. Aspergillus polymerase chain reaction: Systematic review of evidence for clinical use in comparison with antigen testing. <i>Clin Infect Dis</i> . 2015; 61 : 1293-1303.
1306 1307 1308	204	Segal BH, Herbrecht R, Stevens DA, et al. Defining responses to therapy and study outcomes in clinical trials of invasive fungal diseases: Mycoses study group and european organization for research and treatment of cancer consensus criteria. <i>Clin Infect Dis.</i> 2008; 47 : 674-683.
1309 1310	205	Vehreschild JJ, Heussel CP, Groll AH, et al. Serial assessment of pulmonary lesion volume by computed tomography allows survival prediction in invasive pulmonary aspergillosis. <i>Eur Radiol</i> . 2017.
1311 1312 1313	206	Nouer SA, Nucci M, Kumar NS, Grazziutti M, Barlogie B, Anaissie E. Earlier response assessment in invasive aspergillosis based on the kinetics of serum aspergillus galactomannan: Proposal for a new definition. <i>Clin Infect Dis</i> . 2011; 53 : 671-676.
1314	207	Nucci M, Perfect JR. When primary antifungal therapy fails. Clin Infect Dis. 2008; 46: 1426-1433.
1315	208	Bennett JE. Salvage therapy for aspergillosis. Clin Infect Dis. 2005; 41 Suppl 6 : S387-388.
1316 1317 1318	209	Bergeron A, Porcher R, Menotti J, et al. Prospective evaluation of clinical and biological markers to predict the outcome of invasive pulmonary aspergillosis in hematological patients. <i>Journal of clinical microbiology</i> . 2012; 50 : 823-830.
1319 1320	210	Maertens J, Buve K, Theunissen K, et al. Galactomannan serves as a surrogate endpoint for outcome of pulmonary invasive aspergillosis in neutropenic hematology patients. <i>Cancer</i> . 2009; 115 : 355-362.
1321 1322 1323	211	Boutboul F, Alberti C, Leblanc T, et al. Invasive aspergillosis in allogeneic stem cell transplant recipients: Increasing antigenemia is associated with progressive disease. <i>Clin Infect Dis.</i> 2002; 34 : 939-943.

1324	212	Miceli MH, Maertens J, Buve K, et al. Immune reconstitution inflammatory syndrome in cancer
1325		patients with pulmonary aspergillosis recovering from neutropenia: Proof of principle, description, and
1326		clinical and research implications. <i>Cancer</i> . 2007; 110 : 112-120.
1327	213	Almyroudis NG, Kontoyiannis DP, Sepkowitz KA, DePauw BE, Walsh TJ, Segal BH. Issues related to the
1328		design and interpretation of clinical trials of salvage therapy for invasive mold infection. Clin Infect Dis.
1329		2006; 43 : 1449-1455.
1330	214	Bergeron A, Porcher R, Menotti J, et al. Prospective evaluation of clinical and biological markers to
1331		predict the outcome of invasive pulmonary aspergillosis in hematological patients. Journal of clinical
1332		microbiology. 2012; 50 : 823-830.
1333	215	Bouza E, Guinea J, Pelaez T, Perez-Molina J, Alcala L, Munoz P. Workload due to aspergillus fumigatus
1334		and significance of the organism in the microbiology laboratory of a general hospital. Journal of clinical
1335		microbiology. 2005; 43 : 2075-2079.
1336	216	Montagna MT, Lovero G, Coretti C, et al. Simiff study: Italian fungal registry of mold infections in
1337		hematological and non-hematological patients. <i>Infection</i> . 2014; 42 : 141-151.
1338	217	Garcia-Vidal C, Peghin M, Cervera C, et al. Causes of death in a contemporary cohort of patients with
1339		invasive aspergillosis. PLoS One. 2015; 10 : e0120370.
1340	218	Vena A, Munoz P, Pelaez T, Guinea J, Valerio M, Bouza E. Non-construction related aspergillus
1341		outbreak in non-haematological patients related to high concentrations of airborne spores in non-
1342		hepa filtered areas. ID week, San Diego, Ca. 2015; Octuber 7-11.
1343	219	Ruiz-Camps I, Aguado JM, Almirante B, et al. [recommendations of the spanish society of infectious
1344		diseases and clinical microbiology (seimc) on the prevention of invasive fungal infection due to
1345		filamentous fungi]. Enferm Infecc Microbiol Clin. 2010; 28: 172 e171-172 e121.
1346	220	Guinea J, Pelaez T, Alcala L, Bouza E. Outdoor environmental levels of aspergillus spp. Conidia over a
1347		wide geographical area. <i>Medical mycology</i> . 2006; 44 : 349-356.
1348	221	Pelaez T, Munoz P, Guinea J, et al. Outbreak of invasive aspergillosis after major heart surgery caused
1349		by spores in the air of the intensive care unit. Clin Infect Dis. 2012; 54 : e24-31.
1350	222	Munoz P, Guinea J, Pelaez T, Duran C, Blanco JL, Bouza E. Nosocomial invasive aspergillosis in a heart
1351		transplant patient acquired during a break in the hepa air filtration system. Transpl Infect Dis. 2004; 6:
1352		50-54.
1353	223	Tang HJ, Liu WL, Chang TC, et al. Multiple brain abscesses due to aspergillus fumigatus in a patient
1354		with liver cirrhosis: A case report. <i>Medicine (Baltimore)</i> . 2016; 95 : e2813.

1355 1356	224	Pilmis B, Puel A, Lortholary O, Lanternier F. New clinical phenotypes of fungal infections in special hosts. <i>Clin Microbiol Infect</i> . 2016.
1550		nosts. Clin Wild Oblot Inject. 2010.
1357	225	Falcone M, Concia E, Iori I, et al. Identification and management of invasive mycoses in internal
1358		medicine: A road-map for physicians. <i>Intern Emerg Med</i> . 2014; 9 : 501-511.
1359	226	Peghin M, Ruiz-Camps I, Garcia-Vidal C, et al. Unusual forms of subacute invasive pulmonary
1360		aspergillosis in patients with solid tumors. <i>J Infect</i> . 2014; 69 : 387-395.
1361	227	Pappas PG, Alexander BD, Andes DR, et al. Invasive fungal infections among organ transplant
1362		recipients: Results of the transplant-associated infection surveillance network (transnet). Clin Infect
1363		Dis. 2010; 50 : 1101-1111.
1364	228	Gavalda J, Len O, San Juan R, et al. Risk factors for invasive aspergillosis in solid-organ transplant
1365		recipients: A case-control study. Clin Infect Dis. 2005; 41: 52-59.
1366	229	Singh N, Husain S, Practice ASTIDCo. Aspergillosis in solid organ transplantation. Am J Transplant.
1367		2013; 13 Suppl 4 : 228-241.
1368	230	Singh N, Limaye AP, Forrest G, et al. Late-onset invasive aspergillosis in organ transplant recipients in
1369		the current era. <i>Medical mycology</i> . 2006; 44 : 445-449.
1370	231	Munoz P, Ceron I, Valerio M, et al. Invasive aspergillosis among heart transplant recipients: A 24-year
1370 1371	231	Munoz P, Ceron I, Valerio M, et al. Invasive aspergillosis among heart transplant recipients: A 24-year perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288.
	231	
1371		perspective. J Heart Lung Transplant. 2014; 33 : 278-288.
1371 1372		perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients.
1371 1372 1373	232	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669.
1371 1372 1373 1374	232	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669. Barchiesi F, Mazzocato S, Mazzanti S, et al. Invasive aspergillosis in liver transplant recipients:
1371 1372 1373 1374 1375	232	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669. Barchiesi F, Mazzocato S, Mazzanti S, et al. Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. <i>Liver Transpl</i> . 2015; 21 :
1371 1372 1373 1374 1375 1376	232	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669. Barchiesi F, Mazzocato S, Mazzanti S, et al. Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. <i>Liver Transpl</i> . 2015; 21 : 204-212.
1371 1372 1373 1374 1375 1376	232	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669. Barchiesi F, Mazzocato S, Mazzanti S, et al. Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. <i>Liver Transpl</i> . 2015; 21 : 204-212. Winston DJ, Limaye AP, Pelletier S, et al. Randomized, double-blind trial of anidulafungin versus
1371 1372 1373 1374 1375 1376 1377 1378	232	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669. Barchiesi F, Mazzocato S, Mazzanti S, et al. Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. <i>Liver Transpl</i> . 2015; 21 : 204-212. Winston DJ, Limaye AP, Pelletier S, et al. Randomized, double-blind trial of anidulafungin versus fluconazole for prophylaxis of invasive fungal infections in high-risk liver transplant recipients. <i>Am J</i>
1371 1372 1373 1374 1375 1376 1377 1378 1379	232 233 234	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669. Barchiesi F, Mazzocato S, Mazzanti S, et al. Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. <i>Liver Transpl</i> . 2015; 21 : 204-212. Winston DJ, Limaye AP, Pelletier S, et al. Randomized, double-blind trial of anidulafungin versus fluconazole for prophylaxis of invasive fungal infections in high-risk liver transplant recipients. <i>Am J Transplant</i> . 2014; 14 : 2758-2764.
1371 1372 1373 1374 1375 1376 1377 1378 1379	232 233 234	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669. Barchiesi F, Mazzocato S, Mazzanti S, et al. Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. <i>Liver Transpl</i> . 2015; 21 : 204-212. Winston DJ, Limaye AP, Pelletier S, et al. Randomized, double-blind trial of anidulafungin versus fluconazole for prophylaxis of invasive fungal infections in high-risk liver transplant recipients. <i>Am J Transplant</i> . 2014; 14 : 2758-2764. Lichtenstern C, Hochreiter M, Zehnter VD, et al. Pretransplant model for end stage liver disease score
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381	232 233 234	perspective. <i>J Heart Lung Transplant</i> . 2014; 33 : 278-288. Munoz P, Valerio M, Palomo J, et al. Targeted antifungal prophylaxis in heart transplant recipients. <i>Transplantation</i> . 2013; 96 : 664-669. Barchiesi F, Mazzocato S, Mazzanti S, et al. Invasive aspergillosis in liver transplant recipients: Epidemiology, clinical characteristics, treatment, and outcomes in 116 cases. <i>Liver Transpl</i> . 2015; 21 : 204-212. Winston DJ, Limaye AP, Pelletier S, et al. Randomized, double-blind trial of anidulafungin versus fluconazole for prophylaxis of invasive fungal infections in high-risk liver transplant recipients. <i>Am J Transplant</i> . 2014; 14 : 2758-2764. Lichtenstern C, Hochreiter M, Zehnter VD, et al. Pretransplant model for end stage liver disease score predicts posttransplant incidence of fungal infections after liver transplantation. <i>Mycoses</i> . 2013; 56 :

1385 1386 1387	237	San-Juan R, Aguado JM, Lumbreras C, et al. Universal prophylaxis with fluconazole for the prevention of early invasive fungal infection in low-risk liver transplant recipients. <i>Transplantation</i> . 2011; 92 : 346-350.
1388 1389	238	Singh N, Wagener MM, Cacciarelli TV, Levitsky J. Antifungal management practices in liver transplant recipients. <i>Am J Transplant</i> . 2008; 8 : 426-431.
1390 1391	239	Osawa M, Ito Y, Hirai T, et al. Risk factors for invasive aspergillosis in living donor liver transplant recipients. <i>Liver Transpl.</i> 2007; 13 : 566-570.
1392 1393	240	Pappas PG, Andes D, Schuster M, et al. Invasive fungal infections in low-risk liver transplant recipients: A multi-center prospective observational study. <i>Am J Transplant</i> . 2006; 6 : 386-391.
1394 1395	241	Fortun J, Martin-Davila P, Moreno S, et al. Risk factors for invasive aspergillosis in liver transplant recipients. <i>Liver Transpl.</i> 2002; 8 : 1065-1070.
1396 1397	242	Singh N, Husain S. Aspergillus infections after lung transplantation: Clinical differences in type of transplant and implications for management. <i>J Heart Lung Transplant</i> . 2003; 22 : 258-266.
1398 1399	243	Weigt SS, Elashoff RM, Huang C, et al. Aspergillus colonization of the lung allograft is a risk factor for bronchiolitis obliterans syndrome. <i>Am J Transplant</i> . 2009; 9 : 1903-1911.
1400 1401	244	Geltner C, Lass-Florl C. Invasive pulmonary aspergillosis in organ transplantsfocus on lung transplants. <i>Respir Investig</i> . 2016; 54 : 76-84.
1402 1403 1404	245	Lopez-Medrano F, Silva JT, Fernandez-Ruiz M, et al. Risk factors associated with early invasive pulmonary aspergillosis in kidney transplant recipients: Results from a multinational matched case-control study. <i>Am J Transplant</i> . 2016; 16 : 2148-2157.
1405 1406 1407	246	Gustafson TL, Schaffner W, Lavely GB, Stratton CW, Johnson HK, Hutcheson RH, Jr. Invasive aspergillosis in renal transplant recipients: Correlation with corticosteroid therapy. <i>The Journal of infectious diseases</i> . 1983; 148 : 230-238.
1408 1409 1410	247	Wojtowicz A, Gresnigt MS, Lecompte T, et al. II1b and defb1 polymorphisms increase susceptibility to invasive mold infection after solid-organ transplantation. <i>The Journal of infectious diseases</i> . 2015; 211 : 1646-1657.
1411 1412	248	Wojtowicz A, Lecompte TD, Bibert S, et al. Ptx3 polymorphisms and invasive mold infections after solid organ transplant. <i>Clin Infect Dis</i> . 2015; 61 : 619-622.

1413 1414 1415	249	Denis B, Guiguet M, de Castro N, et al. Relevance of eortc criteria for the diagnosis of invasive aspergillosis in hiv-infected patients, and survival trends over a 20-year period in france. <i>Clin Infect Dis</i> . 2015; 61 : 1273-1280.
1416 1417	250	Libanore M, Prini E, Mazzetti M, et al. Invasive aspergillosis in italian aids patients. <i>Infection</i> . 2002; 30 : 341-345.
1418 1419	251	Moreno A, Perez-Elias M, Casado J, et al. Role of antiretroviral therapy in long-term survival of patients with aids-related pulmonary aspergillosis. <i>Eur J Clin Microbiol Infect Dis</i> . 2000; 19 : 688-693.
1420 1421 1422	252	Mylonakis E, Paliou M, Sax PE, Skolnik PR, Baron MJ, Rich JD. Central nervous system aspergillosis in patients with human immunodeficiency virus infection. Report of 6 cases and review. <i>Medicine</i> (<i>Baltimore</i>). 2000; 79 : 269-280.
1423 1424	253	Lin SJ, Schranz J, Teutsch SM. Aspergillosis case-fatality rate: Systematic review of the literature. <i>Clin Infect Dis.</i> 2001; 32 : 358-366.
1425 1426	254	Gastaca M, Aguero F, Rimola A, et al. Liver retransplantation in hiv-infected patients: A prospective cohort study. <i>Am J Transplant</i> . 2012; 12 : 2465-2476.
1427 1428 1429	255	Moreno A, Cervera C, Fortun J, et al. Epidemiology and outcome of infections in human immunodeficiency virus/hepatitis c virus-coinfected liver transplant recipients: A fipse/gesida prospective cohort study. <i>Liver Transpl.</i> 2012; 18 : 70-81.
1430 1431	256	Woitas RP, Rockstroh JK, Theisen A, Leutner C, Sauerbruch T, Spengler U. Changing role of invasive aspergillosis in aidsa case control study. <i>J Infect</i> . 1998; 37 : 116-122.
1432 1433 1434	257	Lortholary O, Meyohas MC, Dupont B, et al. Invasive aspergillosis in patients with acquired immunodeficiency syndrome: Report of 33 cases. French cooperative study group on aspergillosis in aids. <i>The American journal of medicine</i> . 1993; 95 : 177-187.
1435 1436	258	Denning DW, Follansbee SE, Scolaro M, Norris S, Edelstein H, Stevens DA. Pulmonary aspergillosis in the acquired immunodeficiency syndrome. <i>N Engl J Med</i> . 1991; 324 : 654-662.
1437 1438 1439	259	Antinori S, Nebuloni M, Magni C, et al. Trends in the postmortem diagnosis of opportunistic invasive fungal infections in patients with aids: A retrospective study of 1,630 autopsies performed between 1984 and 2002. <i>Am J Clin Pathol</i> . 2009; 132 : 221-227.
1440 1441	260	Chen J, Yang Q, Huang J, Li L. Clinical findings in 19 cases of invasive pulmonary aspergillosis with liver cirrhosis. <i>Multidiscip Respir Med</i> . 2014; 9 : 1.

1471 1472 1473	275	Giannella M, Munoz P, Guinea J, Escribano P, Rodriguez-Creixems M, Bouza E. Growth of aspergillus in blood cultures: Proof of invasive aspergillosis in patients with chronic obstructive pulmonary disease? <i>Mycoses</i> . 2013; 56 : 488-490.
1474 1475	276	Eworo A, Munoz P, Yanez JF, et al. [cardiac invasive aspergillosis in a heart transplant recipient]. <i>Rev Iberoam Micol.</i> 2011; 28 : 134-138.
1476 1477	277	El-Sayed Ahmed MM, Almanfi A, Aftab M, Singh SK, Mallidi HR, Frazier OH. Aspergillus mediastinitis after orthotopic heart transplantation: A case report. <i>Tex Heart Inst J</i> . 2015; 42 : 468-470.
1478 1479	278	Wiltberger G, Schmelzle M, Schubert S, et al. Invasive cardiac aspergillosis after orthotopic liver transplantation. <i>Z Gastroenterol</i> . 2014; 52 : 813-817.
1480 1481	279	Spapen H, Spapen J, Taccone FS, et al. Cerebral aspergillosis in adult critically ill patients: A descriptive report of 10 patients from the aspicu cohort. <i>Int J Antimicrob Agents</i> . 2014; 43 : 165-169.
1482	280	Sole A, Ussetti P. [mold infections in lung transplants]. Rev Iberoam Micol. 2014; 31 : 229-236.
1483 1484	281	Fortun J, Meije Y, Fresco G, Moreno S. [aspergillosis. Clinical forms and treatment]. <i>Enferm Infecc Microbiol Clin</i> . 2012; 30 : 201-208.
1485 1486	282	Singh N, Sun HY. Iron overload and unique susceptibility of liver transplant recipients to disseminated disease due to opportunistic pathogens. <i>Liver Transpl.</i> 2008; 14 : 1249-1255.
1487 1488 1489	283	Shields RK, Nguyen MH, Shullo MA, et al. Invasive aspergillosis among heart transplant recipients is rare but causes rapid death due to septic shock and multiple organ dysfunction syndrome. <i>Scand J Infect Dis.</i> 2012; 44 : 982-986.
1490 1491	284	Perfect JR, Cox GM, Lee JY, et al. The impact of culture isolation of aspergillus species: A hospital-based survey of aspergillosis. <i>Clin Infect Dis</i> . 2001; 33 : 1824-1833.
1492 1493	285	Horvath JA, Dummer S. The use of respiratory-tract cultures in the diagnosis of invasive pulmonary aspergillosis. <i>The American journal of medicine</i> . 1996; 100 : 171-178.
1494 1495 1496	286	Escribano P, Marcos-Zambrano LJ, Pelaez T, et al. Sputum and bronchial secretion samples are equally useful as bronchoalveolar lavage samples for the diagnosis of invasive pulmonary aspergillosis in selected patients. <i>Medical mycology</i> . 2015; 53 : 235-240.
1497 1498 1499	287	Munoz P, Alcala L, Sanchez Conde M, et al. The isolation of aspergillus fumigatus from respiratory tract specimens in heart transplant recipients is highly predictive of invasive aspergillosis. <i>Transplantation</i> . 2003; 75 : 326-329.

1500 1501 1502	288	Barton RC, Hobson RP, McLoughlin H, Morris A, Datta B. Assessment of the significance of respiratory culture of aspergillus in the non-neutropenic patient. A critique of published diagnostic criteria. <i>Eur J Clin Microbiol Infect Dis</i> . 2013; 32 : 923-928.
1503 1504	289	Zaspel U, Denning DW, Lemke AJ, et al. Diagnosis of ipa in hiv: The role of the chest x-ray and radiologist. <i>Eur Radiol</i> . 2004; 14 : 2030-2037.
1505 1506	290	Munoz P, Vena A, Ceron I, et al. Invasive pulmonary aspergillosis in heart transplant recipients: Two radiologic patterns with a different prognosis. <i>J Heart Lung Transplant</i> . 2014; 33 : 1034-1040.
1507 1508	291	Blot SI, Taccone FS, Van den Abeele AM, et al. A clinical algorithm to diagnose invasive pulmonary aspergillosis in critically ill patients. <i>Am J Respir Crit Care Med</i> . 2012; 186 : 56-64.
1509 1510	292	Bulpa P, Dive A. Diagnosis of invasive bronchial-pulmonary aspergillosis in patients with chronic obstructive respiratory diseases. <i>Crit Care</i> . 2011; 15 : 420; author reply 420.
1511 1512	293	Singh N, Winston DJ, Limaye AP, et al. Performance characteristics of galactomannan and beta-d-glucan in high-risk liver transplant recipients. <i>Transplantation</i> . 2015; 99 : 2543-2550.
1513 1514	294	Guinea J, Padilla C, Escribano P, et al. Evaluation of mycassay aspergillus for diagnosis of invasive pulmonary aspergillosis in patients without hematological cancer. <i>PLoS One</i> . 2013; 8 : e61545.
1515 1516 1517	295	Zarrinfar H, Makimura K, Satoh K, Khodadadi H, Mirhendi H. Incidence of pulmonary aspergillosis and correlation of conventional diagnostic methods with nested pcr and real-time pcr assay using bal fluid in intensive care unit patients. <i>J Clin Lab Anal</i> . 2013; 27 : 181-185.
1518 1519 1520	296	Chong GL, van de Sande WW, Dingemans GJ, et al. Validation of a new aspergillus real-time pcr assay for direct detection of aspergillus and azole resistance of aspergillus fumigatus on bronchoalveolar lavage fluid. <i>Journal of clinical microbiology</i> . 2015; 53 : 868-874.
1521 1522 1523	297	Fortun J, Martin-Davila P, Gomez Garcia de la Pedrosa E, et al. Galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive aspergillosis in non-hematological patients. <i>J Infect</i> . 2016; 72 : 738-744.
1524 1525	298	Fortun J, Martin-Davila P, Alvarez ME, et al. False-positive results of aspergillus galactomannan antigenemia in liver transplant recipients. <i>Transplantation</i> . 2009; 87 : 256-260.
1526 1527	299	Cai X, Ni W, Wei C, Cui J. Diagnostic value of the serum galactomannan and (1, 3)-beta-d-glucan assays for invasive pulmonary aspergillosis in non-neutropenic patients. <i>Intern Med</i> . 2014; 53 : 2433-2437.
1528 1529	300	Eigl S, Prattes J, Lackner M, et al. Multicenter evaluation of a lateral-flow device test for diagnosing invasive pulmonary aspergillosis in icu patients. <i>Crit Care</i> . 2015; 19 : 178.

1530 1531	301	Prattes J, Flick H, Pruller F, et al. Novel tests for diagnosis of invasive aspergillosis in patients with underlying respiratory diseases. <i>Am J Respir Crit Care Med</i> . 2014; 190 : 922-929.
1532 1533 1534	302	Lopez-Medrano F, Fernandez-Ruiz M, Silva JT, et al. Clinical presentation and determinants of mortality of invasive pulmonary aspergillosis in kidney transplant recipients: A multinational cohort study. <i>Am J Transplant</i> . 2016.
1535 1536 1537	303	Cherian T, Giakoustidis A, Yokoyama S, et al. Treatment of refractory cerebral aspergillosis in a liver transplant recipient with voriconazole: Case report and review of the literature. <i>Exp Clin Transplant</i> . 2012; 10 : 482-486.
1538 1539 1540	304	Patel DA, Gao X, Stephens JM, Forshag MS, Tarallo M. Us hospital database analysis of invasive aspergillosis in the chronic obstructive pulmonary disease non-traditional host. <i>J Med Econ.</i> 2011; 14 : 227-237.
1541 1542 1543	305	Singh N, Limaye AP, Forrest G, et al. Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: A prospective, multicenter, observational study. <i>Transplantation</i> . 2006; 81 : 320-326.
1544 1545	306	Luong ML, Hosseini-Moghaddam SM, Singer LG, et al. Risk factors for voriconazole hepatotoxicity at 12 weeks in lung transplant recipients. <i>Am J Transplant</i> . 2012; 12 : 1929-1935.
1546 1547	307	Shoham S, Ostrander D, Marr K. Posaconazole liquid suspension in solid organ transplant recipients previously treated with voriconazole. <i>Transpl Infect Dis.</i> 2015; 17 : 493-496.
1548 1549 1550	308	Hoenigl M, Duettmann W, Raggam RB, et al. Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies. Antimicrob Agents Chemother. 2013; 57: 3262-3267.
1551	309	
1552 1553	303	Kim SH, Kwon JC, Park C, et al. Therapeutic drug monitoring and safety of intravenous voriconazole formulated with sulfobutylether beta-cyclodextrin in haematological patients with renal impairment. Mycoses. 2016.
	310	formulated with sulfobutylether beta-cyclodextrin in haematological patients with renal impairment.
1553 1554 1555		formulated with sulfobutylether beta-cyclodextrin in haematological patients with renal impairment. <i>Mycoses</i> . 2016. Guinea J, Escribano P, Marcos-Zambrano LJ, et al. Therapeutic drug monitoring of voriconazole helps to decrease the percentage of patients with off-target trough serum levels. <i>Medical mycology</i> . 2016;

1561	313	Escribano P, Pelaez T, Munoz P, Bouza E, Guinea J. Is azole resistance in aspergillus fumigatus a
1562		problem in spain? Antimicrob Agents Chemother. 2013; 57: 2815-2820.
1563	24.4	Fulneral Maduil MC Bad CU at all High annual area of and a maintain in annual luc fouriesters
	314	Fuhren J, Voskuil WS, Boel CH, et al. High prevalence of azole resistance in aspergillus fumigatus
1564		isolates from high-risk patients. <i>J Antimicrob Chemother</i> . 2015; 70 : 2894-2898.
1565	315	Egli A, Fuller J, Humar A, et al. Emergence of aspergillus calidoustus infection in the era of
1566		posttransplantation azole prophylaxis. <i>Transplantation</i> . 2012; 94 : 403-410.
1567	316	Kuipers S, Bruggemann RJ, de Sevaux RG, et al. Failure of posaconazole therapy in a renal transplant
1568	310	patient with invasive aspergillosis due to aspergillus fumigatus with attenuated susceptibility to
1569		posaconazole. <i>Antimicrob Agents Chemother</i> . 2011; 55 : 3564-3566.
1309		posaconazole. Antimicrob Agents Chemother. 2011, 33 . 5504-5500.
1570	317	Singh N, Suarez JF, Avery R, et al. Immune reconstitution syndrome-like entity in lung transplant
1571		recipients with invasive aspergillosis. Transpl Immunol. 2013; 29: 109-113.
1572	318	Schaenman JM. Is universal antifungal prophylaxis mandatory in lung transplant patients? Curr Opin
1573		Infect Dis. 2013; 26 : 317-325.
1574	319	Totto N. Jonson C. Tyada M. Anderson CD. Carlson I. Iverson M. Use of prophylastic vericenazale for
1575	319	Tofte N, Jensen C, Tvede M, Andersen CB, Carlsen J, Iversen M. Use of prophylactic voriconazole for
1576		three months after lung transplantation does not reduce infection with aspergillus: A retrospective
1370		study of 147 patients. Scand J Infect Dis. 2012; 44: 835-841.
1577	320	Bhaskaran A, Mumtaz K, Husain S. Anti-aspergillus prophylaxis in lung transplantation: A systematic
1578		review and meta-analysis. Curr Infect Dis Rep. 2013; 15: 514-525.
1579	321	Koo S, Kubiak DW, Issa NC, et al. A targeted peritransplant antifungal strategy for the prevention of
1580		invasive fungal disease after lung transplantation: A sequential cohort analysis. Transplantation. 2012;
1581		94 : 281-286.
1.502		
1582	322	Munoz P, Rojas L, Cervera C, et al. Poor compliance with antifungal drug use guidelines by transplant
1583		physicians: A framework for educational guidelines and an international consensus on patient safety.
1584		Clin Transplant. 2012; 26 : 87-96.
1585	323	He SY, Makhzoumi ZH, Singer JP, Chin-Hong PV, Arron ST. Practice variation in aspergillus prophylaxis
1586		and treatment among lung transplant centers: A national survey. <i>Transpl Infect Dis</i> . 2015; 17 : 14-20.
1587	324	Saliba F, Pascher A, Cointault O, et al. Randomized trial of micafungin for the prevention of invasive
1588		fungal infection in high-risk liver transplant recipients. Clin Infect Dis. 2015; 60: 997-1006.

1589 1590 1591	325	Peghin M, Monforte V, Martin-Gomez MT, et al. 10 years of prophylaxis with nebulized liposomal amphotericin b and the changing epidemiology of aspergillus spp. Infection in lung transplantation. Transpl Int. 2016; 29: 51-62.
1592 1593	326	Patel TS, Eschenauer GA, Stuckey LJ, Carver PL. Antifungal prophylaxis in lung transplant recipients. Transplantation. 2016.
1594 1595 1596	327	Fortun J, Muriel A, Martin-Davila P, et al. Caspofungin versus fluconazole as prophylaxis of invasive fungal infection in high-risk liver transplantation recipients: A propensity score analysis. <i>Liver Transpl.</i> 2016; 22 : 427-435.
1597 1598	328	Kato K, Nagao M, Nakano S, et al. Itraconazole prophylaxis for invasive aspergillus infection in lung transplantation. <i>Transpl Infect Dis.</i> 2014; 16 : 340-343.
1599 1600 1601	329	Balogh J, Gordon Burroughs S, Boktour M, et al. Efficacy and cost-effectiveness of voriconazole prophylaxis for prevention of invasive aspergillosis in high-risk liver transplant recipients. <i>Liver Transpl</i> . 2016; 22 : 163-170.
1602 1603	330	Aguado JM, Varo E, Usetti P, et al. Safety of anidulafungin in solid organ transplant recipients. <i>Liver Transpl.</i> 2012; 18 : 680-685.
1604 1605	331	Smith NL, Denning DW. Underlying conditions in chronic pulmonary aspergillosis including simple aspergilloma. <i>Eur Respir J.</i> 2011; 37 : 865-872.
1606 1607	332	Muldoon EG, Sharman A, Page I, Bishop P, Denning DW. Aspergillus nodules; another presentation of chronic pulmonary aspergillosis. <i>BMC Pulm Med</i> . 2016; 16 : 123.
1608 1609 1610	333	Dumollard C, Bailly S, Perriot S, et al. Prospective evaluation of a new aspergillus igg enzyme immunoassay kit for diagnosis of chronic and allergic pulmonary aspergillosis. <i>Journal of clinical microbiology</i> . 2016; 54 : 1236-1242.
1611 1612 1613	334	Farid S, Mohamed S, Devbhandari M, et al. Results of surgery for chronic pulmonary aspergillosis, optimal antifungal therapy and proposed high risk factors for recurrencea national centre's experience. <i>J Cardiothorac Surg.</i> 2013; 8 : 180.
1614 1615	335	Cadranel J, Philippe B, Hennequin C, et al. Voriconazole for chronic pulmonary aspergillosis: A prospective multicenter trial. <i>Eur J Clin Microbiol Infect Dis.</i> 2012; 31 : 3231-3239.
1616 1617 1618	336	Al-Shair K, Atherton GT, Harris C, Ratcliffe L, Newton PJ, Denning DW. Long-term antifungal treatment improves health status in patients with chronic pulmonary aspergillosis: A longitudinal analysis. <i>Clin Infect Dis.</i> 2013; 57 : 828-835.

1619 1620	337	Pasmans HL, Loosveld OJ, Schouten HC, Thunnissen F, van Engelshoven JM. Invasive aspergillosis in immunocompromised patients: Findings on plain film and (hr)ct. <i>Eur J Radiol</i> . 1992; 14 : 37-40.
1621 1622 1623	338	Denning DW, Kibbler CC, Barnes RA, British Society for Medical M. British society for medical mycology proposed standards of care for patients with invasive fungal infections. <i>Lancet Infect Dis.</i> 2003; 3 : 230-240.
1624 1625 1626	339	Vyzantiadis TA, Johnson EM, Kibbler CC. From the patient to the clinical mycology laboratory: How can we optimise microscopy and culture methods for mould identification? <i>J Clin Pathol</i> . 2012; 65 : 475-483.
1627 1628	340	Rüchel R, Schaffrinski M. Versatile fluorescent staining of fungi in clinical specimens by using the optical brightener blankophor. <i>Journal of clinical microbiology</i> . 1999; 37 : 2694-2696.
1629 1630 1631	341	Lass-Flörl C, Resch G, Nachbaur D, et al. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients. <i>Clin Infect Dis.</i> 2007; 45 : e101-e104.
1632 1633	342	Choi JK, Mauger J, McGowan KL. Immunohistochemical detection of aspergillus species in pediatric tissue samples. <i>Am J Clin Pathol</i> . 2004; 121 : 18-25.
1634 1635 1636	343	Kaufman L, Standard PG, Jalbert M, Kraft DE. Immunohistologic identification of aspergillus spp. And other hyaline fungi by using polyclonal fluorescent antibodies. <i>Journal of clinical microbiology</i> . 1997; 35 : 2206-2209.
1637 1638 1639	344	Verweij PE, Smedts F, Poot T, Bult P, Hoogkamp-Korstanje JA, Meis JF. Immunoperoxidase staining for identification of aspergillus species in routinely processed tissue sections. <i>J Clin Pathol</i> . 1996; 49 : 798-801.
1640 1641	345	Hayden RT, Isotalo PA, Parrett T, et al. In situ hybridization for the differentiation of aspergillus, fusarium, and pseudallescheria species in tissue section. <i>Diagn Mol Pathol</i> . 2003; 12 : 21-26.
1642 1643	346	Sundaram C, Umabala P, Laxmi V, et al. Pathology of fungal infections of the central nervous system: 17 years' experience from southern india. <i>Histopathology</i> . 2006; 49 : 396-405.
1644 1645	347	Chander J, Chakrabarti A, Sharma A, Saini JS, Panigarhi D. Evaluation of calcofluor staining in the diagnosis of fungal corneal ulcer. <i>Mycoses</i> . 1993; 36 : 243-245.
1646 1647	348	Baxter CG, Jones AM, Webb K, Denning DW. Homogenisation of cystic fibrosis sputum by sonication- an essential step for aspergillus pcr. <i>J Microbiol Methods</i> . 2011; 85 : 75-81.

1648	349	Cuenca-Estrella M, Bassetti M, Lass-Flîrl C, R†cil Z, Richardson M, Rogers TR. Detection and
1649		investigation of invasive mould disease. J Antimicrob Chemother. 2011; 66: i15-i24.
1650	250	Dishardson M. Ellis M. Clinical and laboratory diagnosis. Hosp Med. 2000; 61, 610, 614
1030	350	Richardson M, Ellis M. Clinical and laboratory diagnosis. <i>Hosp Med</i> . 2000; 61 : 610-614.
1651	351	Alanio A, Beretti JL, Dauphin B, et al. Matrix-assisted laser desorption ionization time-of-flight mass
1652		spectrometry for fast and accurate identification of clinically relevant aspergillus species. Clin
1653		Microbiol Infect. 2011; 17 : 750-755.
1654	352	Bille E, Dauphin B, Leto J, et al. Maldi-tof ms andromas strategy for the routine identification of
1655		bacteria, mycobacteria, yeasts, aspergillus spp. And positive blood cultures. Clin Microbiol Infect.
1656		2012; 18 : 1117-1125.
1657	353	De Carolis E, Vella A, Florio AR, et al. Use of matrix-assisted laser desorption ionization-time of flight
1658		mass spectrometry for caspofungin susceptibility testing of candida and aspergillus species. Journal
1659		of clinical microbiology. 2012; 50 : 2479-2483.
1660	354	Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM. Development of a clinically comprehensive
1661		database and a simple procedure for identification of molds from solid media by matrix-assisted laser
1662		desorption ionization-time of flight mass spectrometry. Journal of clinical microbiology. 2013; 51 : 828-
1663		834.
16631664	355	834. Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus , fusarium ,
	355	
1664	355	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium,
1664 1665 1666		Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884.
1664 1665 1666 1667	355 356	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section
1664 1665 1666		Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884.
1664 1665 1666 1667 1668		Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section
1664 1665 1666 1667 1668 1669 1670	356	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section fumigati and its teleomorph neosartorya. <i>Stud Mycol</i> . 2007; 59 : 147-203.
1664 1665 1666 1667 1668	356	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section fumigati and its teleomorph neosartorya. <i>Stud Mycol</i> . 2007; 59 : 147-203. Caramalho R, GusmΔo L, Lackner M, Amorim A, Araujo R. Snapafu: A novel single nucleotide
1664 1665 1666 1667 1668 1669 1670	356	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section fumigati and its teleomorph neosartorya. <i>Stud Mycol</i> . 2007; 59 : 147-203. Caramalho R, GusmΔo L, Lackner M, Amorim A, Araujo R. Snapafu: A novel single nucleotide polymorphism multiplex assay for aspergillus fumigatus direct detection, identification and
1664 1665 1666 1667 1668 1669 1670 1671	356 357	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section fumigati and its teleomorph neosartorya. <i>Stud Mycol</i> . 2007; 59 : 147-203. Caramalho R, GusmΔο L, Lackner M, Amorim A, Araujo R. Snapafu: A novel single nucleotide polymorphism multiplex assay for aspergillus fumigatus direct detection, identification and genotyping in clinical specimens. <i>PLoS One</i> . 2013; 8 : e75968.
1664 1665 1666 1667 1668 1669 1670 1671	356 357	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section fumigati and its teleomorph neosartorya. <i>Stud Mycol</i> . 2007; 59 : 147-203. Caramalho R, GusmΔo L, Lackner M, Amorim A, Araujo R. Snapafu: A novel single nucleotide polymorphism multiplex assay for aspergillus fumigatus direct detection, identification and genotyping in clinical specimens. <i>PLoS One</i> . 2013; 8 : e75968. Hurst SF, Kidd SE, Morrissey CO, et al. Interlaboratory reproducibility of a single-locus sequence-based
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673	356 357	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section fumigati and its teleomorph neosartorya. <i>Stud Mycol</i> . 2007; 59 : 147-203. Caramalho R, GusmΔo L, Lackner M, Amorim A, Araujo R. Snapafu: A novel single nucleotide polymorphism multiplex assay for aspergillus fumigatus direct detection, identification and genotyping in clinical specimens. <i>PLoS One</i> . 2013; 8 : e75968. Hurst SF, Kidd SE, Morrissey CO, et al. Interlaboratory reproducibility of a single-locus sequence-based method for strain typing of aspergillus fumigatus <i>Journal of clinical microbiology</i> . 2009; 47 : 1562-
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674	356 357 358	Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: Where are we and where should we go from here? <i>Journal of clinical microbiology</i> . 2009; 47 : 877-884. Samson RA, Hong S, Peterson SW, Frisvad JC, Varga J. Polyphasic taxonomy of aspergillus section fumigati and its teleomorph neosartorya. <i>Stud Mycol</i> . 2007; 59 : 147-203. Caramalho R, GusmΔo L, Lackner M, Amorim A, Araujo R. Snapafu: A novel single nucleotide polymorphism multiplex assay for aspergillus fumigatus direct detection, identification and genotyping in clinical specimens. <i>PLoS One</i> . 2013; 8 : e75968. Hurst SF, Kidd SE, Morrissey CO, et al. Interlaboratory reproducibility of a single-locus sequence-based method for strain typing of aspergillus fumigatus <i>Journal of clinical microbiology</i> . 2009; 47 : 1562-1564.

1678	360	Rougeron A, Giraud S, Razafimandimby B, Meis JF, Bouchara JP, Klaassen CH. Different colonization
1679		patterns of aspergillus terreus in patients with cystic fibrosis. <i>Clin Microbiol Infect</i> . 2014; 20 : 327-333.
1680	361	Maertens J, Van Eldere J, Verhaegen J, Verbeken E, Verschakelen J, Boogaerts M. Use of circulating
1681		galactomannan screening for early diagnosis of invasive aspergillosis in allogeneic stem cell transplant
1682		recipients. <i>The Journal of infectious diseases</i> . 2002; 186 : 1297-1306.
1683	362	Leeflang MM, Debets-Ossenkopp YJ, Visser CE, et al. Galactomannan detection for invasive
1684		aspergillosis in immunocompromised patients. <i>The Cochraen Collaboration</i> . 2008; 4 : CD007394.
1685	363	Furfaro E, Mikulska M, Miletich F, Viscoli C. Galactomannan: Testing the same sample twice? <i>Transpl</i>
1686		Infect Dis. 2012; 14 : E38-E39.
1687	364	Morrissey CO, Chen SC, Sorrell TC, et al. Galactomannan and pcr versus culture and histology for
1688		directing use of antifungal treatment for invasive aspergillosis in high-risk haematology patients: A
1689		randomised controlled trial. <i>Lancet Infect Dis.</i> 2013; 13 : 519-528.
1690	365	Maertens J, Verhaegen J, Lagrou K, Van Eldere J, Boogaerts M. Screening for circulating
1691		galactomannan as a noninvasive diagnostic tool for invasive aspergillosis in prolonged neutropenic
1692		patients and stem cell transplantation recipients: A prospective validation. <i>Blood</i> . 2001; 97 : 1604-
1693		1610.
1694	366	Hoenigl M, Seeber K, Koidl C, et al. Sensitivity of galactomannan enzyme immunoassay for diagnosing
1695		breakthrough invasive aspergillosis under antifungal prophylaxis and empirical therapy. Mycoses.
1696		2013; 56 : 471-476.
1697	367	Marr KA, Laverdiere M, Gugel A, Leisenring W. Antifungal therapy decreases sensitivity of the
1698		aspergillus galactomannan enzyme immunoassay. Clin Infect Dis. 2005; 40: 1762-1769.
1699	368	Cordonnier C, Botterel F, Ben Amor R, et al. Correlation between galactomannan antigen levels in
1700		serum and neutrophil counts in haematological patients with invasive aspergillosis. Clin Microbiol
1701		Infect. 2009; 15 : 81-86.
1702	369	Maertens J, Theunissen K, Verhoef G, et al. Galactomannan and computed tomography-based
1703		preemptive antifungal therapy in neutropenic patients at high risk for invasive fungal infection: A
1704		prospective feasibility study. Clin Infect Dis. 2005; 41: 1242-1250.
1705	370	Guinea J, Jensen J, Peláez T, et al. Value of a single galactomannan determination (platelia) for the
1706		diagnosis of invasive aspergillosis in non-hematological patients with clinical isolation of aspergillus
1707		spp. <i>Medical mycology</i> . 2008; 46 : 575-579.

1708 1709	371	Meersseman W, Lagrou K, Maertens J, et al. Galactomannan in bronchoalveolar lavage fluid: A tool for diagnosing aspergillosis in intensive care unit patients. <i>Am J Respir Crit Care Med</i> . 2008; 177 : 27-34.
1710	372	Husain S, Kwak EJ, Obman A, et al. Prospective assessment of platelia aspergillus galactomannan
1711		antigen for the diagnosis of invasive aspergillosis in lung transplant recipients. Am J Transplant. 2004;
1712		4 : 796-802.
1713	373	Tabarsi P, Soraghi A, Marjani M, et al. Comparison of serum and bronchoalveolar lavage
1714		galactomannan in diagnosing invasive aspergillosis in solid-organ transplant recipients. Exp Clin
1715		Transplant. 2012; 10 : 278-281.
1716	374	Guigue N, Menotti J, Ribaud P. False positive galactomannan test after ice-pop ingestion. N Engl J
1717		Med. 2013; 369 : 97-98.
1718	375	Petraitiene R, Petraitis V, Witt JR, 3rd, et al. Galactomannan antigenemia after infusion of gluconate-
1719		containing plasma-lyte. <i>Journal of clinical microbiology</i> . 2011; 49 : 4330-4332.
1720	376	Martin-Rabadan P, Gijon P, Alonso Fernandez R, Ballesteros M, Anguita J, Bouza E. False-positive
1721		aspergillus antigenemia due to blood product conditioning fluids. Clin Infect Dis. 2012; 55 : e22-27.
1722	377	Mikulska M, Furfaro E, Del Bono V, et al. Piperacillin/tazobactam (tazocintm) seems to be no longer
1723		responsible for false-positive results of the galactomannan assay. J Antimicrob Chemother. 2012; 67:
1724		1746-1748.
1725	378	Vergidis P, Walker RC, Kaul DR, et al. False-positive aspergillus galactomannan assay in solid organ
1726		transplant recipients with histoplasmosis. <i>Transpl Infect Dis.</i> 2012; 14 : 213-217.
1727	379	Huang YT, Hung CC, Liao CH, Sun HY, Chang SC, Chen YC. Detection of circulating galactomannan in
1728		serum samples for diagnosis of penicillium marneffei infection and cryptococcosis among patients
1729		infected with human immunodeficiency virus. <i>Journal of clinical microbiology</i> . 2007; 45 : 2858-2862.
1730	380	Nucci M, Carlesse F, Cappellano P, et al. Earlier diagnosis of invasive fusariosis with aspergillus serum
1731		galactomannan testing. PLoS One. 2014; 9: e87784.
1732	381	King ST, Stover KR. Considering confounders of the galactomannan index: The role of piperacillin-
1733		tazobactam. Clin Infect Dis. 2014; 58 : 751-752.
1734	382	Chai LY, Kullberg BJ, Johnson EM, et al. Early serum galactomannan trend as a predictor of outcome of
1735		invasive aspergillosis. <i>Journal of clinical microbiology</i> . 2012; 50 : 2330-2336.

1736 1737 1738	383	Luong ML, Clancy CJ, Vadnerkar A, et al. Comparison of an aspergillus real-time polymerase chain reaction assay with galactomannan testing of bronchoalvelolar lavage fluid for the diagnosis of invasive pulmonary aspergillosis in lung transplant recipients. <i>Clin Infect Dis</i> . 2011; 52 : 1218-1226.
1739 1740	384	Reinwald M, Spiess B, Heinz WJ, et al. Diagnosing pulmonary aspergillosis in patients with hematological malignancies: A multicenter prospective evaluation of an aspergillus pcr assay and a
1741		galactomannan elisa in bronchoalveolar lavage sample. <i>Eur J Haematol</i> . 2012; 89 : 120-127.
1742	385	Heng SC, Morrissey O, Chen SC, et al. Utility of bronchoalveolar lavage fluid galactomannan alone or in
1743 1744		combination with pcr for the diagnosis of invasive aspergillosis in adult hematology patients: A systematic review and meta-analysis. <i>Crit Rev Microbiol</i> . 2015; 41 : 124-134.
1745 1746	386	Zou M, Tang L, Zhao S, et al. Systematic review and meta-analysis of detecting galactomannan in bronchoalveolar lavage fluid for diagnosing invasive aspergillosis. <i>PLoS One</i> . 2012; 7 : e43347.
1747 1748 1749	387	Fisher CE, Stevens AM, Leisenring W, Pergam SA, Boeckh M, Hohl TM. The serum galactomannan index predicts mortality in hematopoietic stem cell transplant recipients with invasive aspergillosis. <i>Clin Infect Dis.</i> 2013; 57 : 1001-1004.
1750 1751 1752	388	Verweij PE, Brinkman K, Kremer HP, Kullberg BJ, Meis JF. Aspergillus meningitis: Diagnosis by non-culture-based microbiological methods and management. <i>Journal of clinical microbiology</i> . 1999; 37 : 1186-1189.
1753 1754 1755	389	Viscoli C, Machetti M, Gazzola P, et al. Aspergillus galactomannan antigen in the cerebrospinal fluid of bone marrow transplant recipients with probable cerebral aspergillosis. <i>Journal of clinical microbiology</i> . 2002; 40 : 1496-1499.
1756 1757	390	Klont RR, Mennink-Kersten MA, Verweij PE. Utility of aspergillus antigen detection in specimens other than serum specimens. <i>Clin Infect Dis</i> . 2004; 39 : 1467-1474.
1758 1759	391	Lu Y, Chen YQ, Guo YL, Qin SM, Wu C, Wang K. Diagnosis of invasive fungal disease using serum (1-3)- ß-d-glucan: A bivariate meta-analysis. <i>Intern Med</i> . 2011; 50 : 2783-2791.
1760 1761 1762 1763	392	Lamoth F, Cruciani M, Mengoli C, et al. ß-glucan antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: A systematic review and meta-analysis of cohort studies from the third european conference on infections in leukemia (ecil-3). <i>Clin Infect Dis</i> . 2012; 54 : 633-643.
1764 1765	393	Senn L, Robinson JO, Schmidt S, et al. 1,3-beta-d-glucan antigenemia for early diagnosis of invasive fungal infections in neutropenic patients with acute leukemia. <i>Clin Infect Dis</i> . 2008; 46 : 878-885.

1766 1767	394	Ellis M, Al-Ramadi B, Finkelman M, et al. Assessment of the clinical utility of serial beta-d-glucan concentrations in patients with persistent neutropenic fever. <i>J Med Microbiol</i> . 2008; 57 : 287-295.
1768 1769 1770 1771	395	Kawazu M, Kanda Y, Nannya Y, et al. Prospective comparison of the diagnostic potential of real-time pcr, double-sandwich enzyme-linked immunosorbent assay for galactomannan, and a (1>3)-beta-d-glucan test in weekly screening for invasive aspergillosis in patients with hematological disorders. <i>Journal of clinical microbiology</i> . 2004; 42 : 2733-2741.
1772 1773 1774	396	Odabasi Z, Mattiuzzi G, Estey E, et al. Beta-d-glucan as a diagnostic adjunct for invasive fungal infections: Validation, cutoff development, and performance in patients with acute myelogenous leukemia and myelodysplastic syndrome. <i>Clin Infect Dis</i> . 2004; 39 : 199-205.
1775 1776	397	Ostrosky-Zeichner L, Alexander BD, Kett DH, et al. Multicenter clinical evaluation of the (1>3) beta-d-glucan assay as an aid to diagnosis of fungal infections in humans. <i>Clin Infect Dis</i> . 2005; 41 : 654-659.
1777 1778 1779 1780	398	De Vlieger G, Lagrou K, Maertens J, Verbeken E, Meersseman W, Van Wijngaerden E. Beta-d-glucan detection as a diagnostic test for invasive aspergillosis in immunocompromised critically ill patients with symptoms of respiratory infection: An autopsy-based study. <i>Journal of clinical microbiology</i> . 2011; 49 : 3783-3787.
1781 1782	399	Del Bono V, Delfino E, Furfaro E, et al. Clinical performance of the (1,3)-beta-d-glucan assay in early diagnosis of nosocomial candida bloodstream infections. <i>Clin Vaccine Immunol</i> . 2011; 18 : 2113-2117.
1783 1784 1785	400	Acosta J, Catalan M, del Palacio-Pérez-Medel A, et al. Prospective study in critically ill non-neutropenic patients: Diagnostic potential of (1,3)-ß-d-glucan assay and circulating galactomannan for the diagnosis of invasive fungal disease. <i>Eur J Clin Microbiol Infect Dis.</i> 2012; 31 : 721-731.
1786 1787 1788	401	Hoenigl M, Koidl C, Duettmann W, et al. Bronchoalveolar lavage lateral-flow device test for invasive pulmonary aspergillosis diagnosis in haematological malignancy and solid organ transplant patients. <i>J Infect</i> . 2012; 65 : 588-591.
1789 1790 1791	402	Held J, Schmidt T, Thornton CR, Kotter E, Bertz H. Comparison of a novel aspergillus lateral-flow device and the platelia© galactomannan assay for the diagnosis of invasive aspergillosis following haematopoietic stem cell transplantation. <i>Infection</i> . 2013; 41 : 1163-1169.
1792 1793 1794	403	Hoenigl M, Prattes J, Spiess B, et al. Performance of galactomannan, beta-d-glucan, aspergillus lateral-flow device, conventional culture, and pcr tests with bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. <i>Journal of clinical microbiology</i> . 2014; 52 : 2039-2045.
1795 1796	404	Einsele H, Quabeck K, Müller KD, et al. Prediction of invasive pulmonary aspergillosis from colonisation of lower respiratory tract before marrow transplantation. <i>Lancet</i> . 1998; 352 : 1443.

1797 1798 1799	405	Tang CM, Holden DW, Aufauvre-Brown A, Cohen J. The detection of aspergillus spp. By the polymerase chain reaction and its evaluation in bronchoalveolar lavage fluid. <i>Am Rev Respir Dis.</i> 1993; 148 : 1313-1317.
1800 1801 1802	406	Verweij PE, Latge JP, Rijs AJ, et al. Comparison of antigen detection and pcr assay using bronchoalveolar lavage fluid for diagnosing invasive pulmonary aspergillosis in patients receiving treatment for hematological malignancies. <i>Journal of clinical microbiology</i> . 1995; 33 : 3150-3153.
1803 1804 1805	407	Bretagne S, Costa JM, Marmorat-Khuong A, et al. Detection of aspergillus species DNA in bronchoalveolar lavage samples by competitive pcr. <i>Journal of clinical microbiology</i> . 1995; 33 : 1164-1168.
1806 1807	408	Jones ME, Fox AJ, Barnes AJ, et al. Pcr-elisa for the early diagnosis of invasive pulmonary aspergillus infection in neutropenic patients. <i>J Clin Pathol</i> . 1998; 51 : 652-656.
1808 1809 1810	409	Skladny H, Buchheidt D, Baust C, et al. Specific detection of aspergillus species in blood and bronchoalveolar lavage samples of immunocompromised patients by two-step pcr. <i>Journal of clinical microbiology</i> . 1999; 37 : 3865-3871.
1811 1812 1813	410	Buchheidt D, Baust C, Skladny H, et al. Detection of aspergillus species in blood and bronchoalveolar lavage samples from immunocompromised patients by means of 2-step polymerase chain reaction: Clinical results. <i>Clin Infect Dis.</i> 2001; 33 : 428-435.
1814 1815	411	Hayette MP, Vaira D, Susin F, et al. Detection of aspergillus species DNA by pcr in bronchoalveolar lavage fluid. <i>Journal of clinical microbiology</i> . 2001; 39 : 2338-2340.
1816 1817	412	Melchers WJ, Verweij PE, van den Hurk P, et al. General primer-mediated pcr for detection of aspergillus species. <i>Journal of clinical microbiology</i> . 1994; 32 : 1710-1717.
1818 1819 1820	413	Buchheidt D, Baust C, Skladny H, Baldus M, Bräuninger S, Hehlmann R. Clinical evaluation of a polymerase chain reaction assay to detect aspergillus species in bronchoalveolar lavage samples of neutropenic patients. <i>Br J Haematol</i> . 2002; 116 : 803-811.
1821 1822 1823	414	Raad I, Hanna H, Huaringa A, Sumoza D, Hachem R, Albitar M. Diagnosis of invasive pulmonary aspergillosis using polymerase chain reaction-based detection of aspergillus in bal. <i>Chest</i> . 2002; 121 : 1171-1176.
1824 1825 1826	415	Spiess B, Buchheidt D, Baust C, et al. Development of a lightcycler pcr assay for detection and quantification of aspergillus fumigatus DNA in clinical samples from neutropenic patients. <i>Journal of clinical microbiology</i> . 2003; 41 : 1811-1818.

1827	416	Meltiadis J, Melchers WJ, Meis JF, van den Hurk P, Jannes G, Verweij PE. Evaluation of a polymerase
1828		chain reaction reverse hybridization line probe assay for the detection and identification of medically
1829		important fungi in bronchoalveolar lavage fluids. <i>Medical mycology</i> . 2003; 41 : 65-74.
1830	417	Sanguinetti M, Posteraro B, Pagano L, et al. Comparison of real-time pcr, conventional pcr, and
1831		galactomannan antigen detection by enzyme-linked immunosorbent assay using bronchoalveolar
1832		lavage fluid samples from hematology patients for diagnosis of invasive pulmonary aspergillosis.
1833		Journal of clinical microbiology. 2003; 41 : 3922-3925.
1834	418	Rantakokko-Jalava K, Laaksonen S, Issakainen J, et al. Semiquantitative detection by real-time pcr of
1835		aspergillus fumigatus in bronchoalveolar lavage fluids and tissue biopsy specimens from patients with
1836		invasive aspergillosis. <i>Journal of clinical microbiology</i> . 2003; 41 : 4304-4311.
1837	419	Lass-Flörl C, Gunsilius E, Gastl G, et al. Diagnosing invasive aspergillosis during antifungal therapy by
1838		pcr analysis of blood samples. <i>Journal of clinical microbiology</i> . 2004; 42 : 4154-4157.
1839	420	Musher B, Fredricks D, Leisenring W, Balajee SA, Smith C, Marr KA. Aspergillus galactomannan
1840		enzyme immunoassay and quantitative pcr for diagnosis of invasive aspergillosis with bronchoalveolar
1841		lavage fluid. Journal of clinical microbiology. 2004; 42 : 5517-5522.
1842	421	Khot PD, Ko DL, Hackman RC, Fredricks DN. Development and optimization of quantitative pcr for the
1843		diagnosis of invasive aspergillosis with bronchoalveolar lavage fluid. BMC Infect Dis. 2008; 8: 73.
1844	422	Fréalle E, Decrucq K, Botterel F, et al. Diagnosis of invasive aspergillosis using bronchoalveolar lavage
1845		in haematology patients: Influence of bronchoalveolar lavage human DNA content on real-time pcr
1846		performance. Eur J Clin Microbiol Infect Dis. 2009; 28: 223-232.
1847	423	Torelli R, Sanguinetti M, Moody A, et al. Diagnosis of invasive aspergillosis by a commercial real-time
1848		pcr assay for aspergillus DNA in bronchoalveolar lavage fluid samples from high-risk patients
1849		compared to a galactomannan enzyme immunoassay. Journal of clinical microbiology. 2011; 49: 4273-
1850		4278.
1851	424	Buess M, Cathomas G, Halter J, et al. Aspergillus- pcr in bronchoalveolar lavage for detection of
1852		invasive pulmonary aspergillosis in immunocompromised patients. <i>BMC Infect Dis</i> . 2012; 12 : 237.
1853	425	Reinwald M, Hummel M, Kovalevskaya E, et al. Therapy with antifungals decreases the diagnostic
1854		performance of pcr for diagnosing invasive aspergillosis in bronchoalveolar lavage samples of patients
1855		with haematological malignancies. J Antimicrob Chemother. 2012; 67: 2260-2267.
1856	426	Orsi CF, Gennari W, Venturelli C, et al. Performance of 2 commercial real-time polymerase chain
1857		reaction assays for the detection of aspergillus and pneumocystis DNA in bronchoalveolar lavage
1858		fluid samples from critical care patients. Diagn Microbiol Infect Dis. 2012; 73: 138-143.

1859 1860	427	Guinea J, Padilla C, Escribano P, et al. Evaluation of mycassayt aspergillus for diagnosis of invasive pulmonary aspergillosis in patients without hematological cancer. <i>PLoS One</i> . 2013; 8 : e61545.
1861 1862	428	Steinmann J, Buer J, Rath PM, Paul A, Saner F. Invasive aspergillosis in two liver transplant recipients: Diagnosis by septifast. <i>Transpl Infect Dis.</i> 2009; 11 : 175-178.
1863	429	Komatsu H, Fujisawa T, Inui A, et al. Molecular diagnosis of cerebral aspergillosis by sequence analysis
1864		with panfungal polymerase chain reaction. J Pediatr Hematol Oncol. 2004; 26: 40-44.
1865	430	Kami M, Shirouzu I, Mitani K, et al. Early diagnosis of central nervous system aspergillosis with
1866		combination use of cerebral diffusion-weighted echo-planar magnetic resonance image and
1867		polymerase chain reaction of cerebrospinal fluid. <i>Intern Med.</i> 1999; 38 : 45-48.
1868	431	Hummel M, Spiess B, Kentouche K, et al. Detection of aspergillus DNA in cerebrospinal fluid from
1869		patients with cerebral aspergillosis by a nested pcr assay. Journal of clinical microbiology. 2006; 44:
1870		3989-3993.
1871	432	Badiee P, Alborzi A. Assessment of a real-time pcr method to detect human non-cryptococcal fungal
1872		meningitis. Arch Iran Med. 2011; 14 : 381-384.
1873	433	Mengoli C, Cruciani M, Barnes RA, Loeffler J, Donnely JP. Use of pcr for diagnosis of invasive
1874		aspergillosis: Systematic review and meta-analysis. Lancet Infect Dis. 2009; 9: 89-96.
1875	434	White PL, Mengoli C, Bretagne S, et al. Evaluation of aspergillus pcr protocols for testing serum
	434	White PL, Mengoli C, Bretagne S, et al. Evaluation of aspergillus pcr protocols for testing serum specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848.
1875	434 435	
1875 1876		specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848.
1875 1876 1877		specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood
1875 1876 1877 1878		specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a
1875 1876 1877 1878 1879	435	specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. <i>Clin Infect Dis</i> . 2006; 42 : 479-486.
1875 1876 1877 1878 1879	435	specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. <i>Clin Infect Dis</i> . 2006; 42 : 479-486. Lass-Flörl C, Mutschlechner W, Aigner M, et al. Utility of pcr in diagnosis of invasive fungal infections:
1875 1876 1877 1878 1879 1880 1881	435 436	specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. <i>Clin Infect Dis</i> . 2006; 42 : 479-486. Lass-Flörl C, Mutschlechner W, Aigner M, et al. Utility of pcr in diagnosis of invasive fungal infections: Real-life data from a multicenter study. <i>Journal of clinical microbiology</i> . 2013; 51 : 863-868.
1875 1876 1877 1878 1879 1880 1881	435 436	specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. <i>Clin Infect Dis</i> . 2006; 42 : 479-486. Lass-Flörl C, Mutschlechner W, Aigner M, et al. Utility of pcr in diagnosis of invasive fungal infections: Real-life data from a multicenter study. <i>Journal of clinical microbiology</i> . 2013; 51 : 863-868. Paterson PJ, Seaton S, McLaughlin J, Kibbler CC. Development of molecular methods for the
1875 1876 1877 1878 1879 1880 1881 1882 1883	435 436	specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. <i>Clin Infect Dis</i> . 2006; 42 : 479-486. Lass-Flörl C, Mutschlechner W, Aigner M, et al. Utility of pcr in diagnosis of invasive fungal infections: Real-life data from a multicenter study. <i>Journal of clinical microbiology</i> . 2013; 51 : 863-868. Paterson PJ, Seaton S, McLaughlin J, Kibbler CC. Development of molecular methods for the identification of aspergillus and emerging moulds in paraffin wax embedded tissue sections. <i>Mol</i>
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884	435 436 437	specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. <i>Clin Infect Dis</i> . 2006; 42 : 479-486. Lass-Flörl C, Mutschlechner W, Aigner M, et al. Utility of pcr in diagnosis of invasive fungal infections: Real-life data from a multicenter study. <i>Journal of clinical microbiology</i> . 2013; 51 : 863-868. Paterson PJ, Seaton S, McLaughlin J, Kibbler CC. Development of molecular methods for the identification of aspergillus and emerging moulds in paraffin wax embedded tissue sections. <i>Mol Pathol</i> . 2003; 56 : 368-370.
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884	435 436 437	specimens. <i>Journal of clinical microbiology</i> . 2011; 49 : 3842-3848. White PL, Linton CJ, Perry MD, Johnson EM, Barnes RA. The evolution and evaluation of a whole blood polymerase chain reaction assay for the detection of invasive aspergillosis in hematology patients in a routine clinical setting. <i>Clin Infect Dis</i> . 2006; 42 : 479-486. Lass-Flörl C, Mutschlechner W, Aigner M, et al. Utility of pcr in diagnosis of invasive fungal infections: Real-life data from a multicenter study. <i>Journal of clinical microbiology</i> . 2013; 51 : 863-868. Paterson PJ, Seaton S, McLaughlin J, Kibbler CC. Development of molecular methods for the identification of aspergillus and emerging moulds in paraffin wax embedded tissue sections. <i>Mol Pathol</i> . 2003; 56 : 368-370. Paterson PJ, Seaton S, McHugh TD, et al. Validation and clinical application of molecular methods for

1889	440	Kappe R, Rimek D. Antibody detection in patients with invasive aspergillosis. <i>Mycoses</i> . 2004; 47 : 59.
1890	441	Cornillet A, Camus C, Nimubona S, et al. Comparison of epidemiological, clinical, and biological
1891		features of invasive aspergillosis in neutropenic and nonneutropenic patients: A 6-year survey. <i>Clin</i>
1892		Infect Dis. 2006; 43 : 577-584.
1893	442	Weig M, Frosch M, Tintelnot K, et al. Use of recombinant mitogillin for improved serodiagnosis of
1894		aspergillus fumigatus -associated diseases. <i>Journal of clinical microbiology</i> . 2001; 39 : 1721-1730.
1895	443	Du C, Wingard JR, Cheng S, Nguyen MH, Clancy C. Serum igg responses against aspergillus proteins
1896		before hematopoietic stem cell transplantation or chemotherapy identify patients who develop
1897		invasive aspergillosis. Biology of blood and marrow transplantation : journal of the American Society
1898		for Blood and Marrow Transplantation. 2012; 18 : 1927-1934.
1899	444	Holmberg K, Berdischewsky M, Young LS. Serologic immunodiagnosis of of invasive aspergillosis. <i>The</i>
1900		Journal of infectious diseases. 1980; 141 : 656-664.
1901	445	Manso E, Montillo M, De Sio G, D'Amico S, Discepoli G, Leoni P. Value of antigen and antibody
1902		detection in the serological diagnosis of invasive aspergillosis in patients with hematological
1903		malignancies. Eur J Clin Microbiol Infect Dis. 1994; 13: 756-760.
1904	446	Mishra SK, Falkenberg S, Masihi KN. Efficacy of enzyme-linked immunosorbent assay in serodiagnosis
1905		of aspergillosis. <i>Journal of clinical microbiology</i> . 1983 ; 17 : 708-710.
1906	447	Kappe R, Schulze-Berge A, Sonntag HG. Evaluation of eight antibody tests and one antigen test for the
1907		diagnosis of invasive aspergillosis. <i>Mycoses</i> . 1996; 39 : 13-23.
1908	448	Balajee SA, Baddley JW, Peterson SW, et al. Aspergillus alabamensis, a new clinically relevant species
1909		in the section terrei. Eukaryot Cell. 2009; 8 : 713-722.
1910	449	van Leer-Buter C, Takes RP, Hebeda KM, Melchers WJ, Verweij PE. Aspergillosisand a misleading
1911		sensitivity result. Lancet. 2007; 370 : 102.
1912	450	Howard SJ, Pasqualotto AC, Anderson MJ, et al. Major variations in aspergillus fumigatus arising within
1913		aspergillomas in chronic pulmonary aspergillosis. <i>Mycoses</i> . 2013; 56 : 434-441.
1914	451	Burgel PR, Baixench MT, Amsellem M, et al. High prevalence of azole-resistant aspergillus fumigatus in
1915		adults with cystic fibrosis exposed to itraconazole. <i>Antimicrob Agents Chemother</i> . 2012; 56 : 869-874.
1916	452	Araujo R, Espinel-Ingroff A. Comparison of assessment of oxygen consumption, etest, and clsi m38-a2
1917		broth microdilution methods for evaluation of the susceptibility of aspergillus fumigatus to
1918		posaconazole. Antimicrob Agents Chemother. 2009; 53: 4921-4923.

1919	453	Arikan S, Sancak B, Alp S, Hascelik G, McNicholas P. Comparative in vitro activities of posaconazole,
1920		voriconazole, itraconazole, and amphotericin b against aspergillus and rhizopus, and synergy testing
1921		for rhizopus. Medical mycology. 2008; 46 : 567-573.
1922	454	Guinea J, Pelaez T, Recio S, Torres-Narbona M, Bouza E. In vitro antifungal activities of isavuconazole
1923		(bal4815), voriconazole, and fluconazole against 1,007 isolates of zygomycete, candida, aspergillus,
1924		fusarium, and scedosporium species. Antimicrob Agents Chemother. 2008; 52 : 1396-1400.
1925	455	Howard SJ, Harrison E, Bowyer P, Varga J, Denning DW. Cryptic species and azole resistance in the
1926		aspergillus niger complex. Antimicrob Agents Chemother. 2011; 55 : 4802-4809.
1927	456	Arendrup MC, Meletiadis J, Mouton JW, et al. Eucast technical note on isavuconazole breakpoints for
1928		aspergillus, itraconazole breakpoints for candida and updates for the antifungal susceptibility testing
1929		method documents. Clin Microbiol Infect. 2016; 22: 571 e571-574.
1930	457	Rex JH, Clinical, Institute LS. Reference method for broth dilution antifungal susceptibility testing of
1931		filamentous fungi: Approved standard: Clinical and Laboratory Standards Institute, 2008.
1932	458	Denning DW, Radford SA, Oakley KL, Hall L, Johnson EM, Warnock DW. Correlation between in-vitro
1933		susceptibility testing to itraconazole and in-vivo outcome of aspergillus fumigatus infection. J
1934		Antimicrob Chemother. 1997; 40 : 401-414.
1935	459	Denning DW, Venkateswarlu K, Oakley KL, et al. Itraconazole resistance in aspergillus fumigatus.
1936		Antimicrob Agents Chemother. 1997; 41: 1364-1368.
1937	460	Rudramurthy SM, Chakrabarti A, Geertsen E, Mouton JW, Meis JF. In vitro activity of isavuconazole
1938		against 208 aspergillus flavus isolates in comparison with 7 other antifungal agents: Assessment
1939		according to the methodology of the european committee on antimicrobial susceptibility testing.
1940		Diagn Microbiol Infect Dis. 2011; 71 : 370-377.
1941	461	Pfaller MA, Messer SA, Woosley LN, Jones RN, Castanheira M. Echinocandin and triazole antifungal
1942		susceptibility profiles for clinical opportunistic yeast and mold isolates collected from 2010 to 2011:
1943		Application of new clsi clinical breakpoints and epidemiological cutoff values for characterization of
1944		geographic and temporal trends of antifungal resistance. <i>Journal of clinical microbiology</i> . 2013; 51 :
1945		2571-2581.
1946	462	Snelders E, van der Lee HA, Kuijpers J, et al. Emergence of azole resistance in aspergillus fumigatus and
1947		spread of a single resistance mechanism. <i>PLoS Med.</i> 2008; 5 : e219.
1948	463	Hope WW, Cuenca-Estrella M, Lass-Florl C, Arendrup MC, European Committee on Antimicrobial
1949		Susceptibility Testing-Subcommittee on Antifungal Susceptibility T. Eucast technical note on
1950		voriconazole and aspergillus spp. Clin Microbiol Infect. 2013; 19: E278-280.

1951	464	Perkhofer S, Lechner V, Lass-Florl C, European Committee on Antimicrobial Susceptibility T. In vitro
1952		activity of isavuconazole against aspergillus species and zygomycetes according to the methodology of
1953		the european committee on antimicrobial susceptibility testing. Antimicrob Agents Chemother. 2009;
1954		53 : 1645-1647.
1955	465	Hodiamont CJ, Dolman KM, Ten Berge IJ, Melchers WJ, Verweij PE, Pajkrt D. Multiple-azole-resistant
1956		aspergillus fumigatus osteomyelitis in a patient with chronic granulomatous disease successfully
1957		treated with long-term oral posaconazole and surgery. <i>Medical mycology</i> . 2009; 47 : 217-220.
1958	466	Mavridou E, Bruggemann RJ, Melchers WJ, Mouton JW, Verweij PE. Efficacy of posaconazole against
1959		three clinical aspergillus fumigatus isolates with mutations in the cyp51a gene. Antimicrob Agents
1960		Chemother. 2010; 54 : 860-865.
1961	467	Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW. Breakpoints for antifungal agents: An update
1962		from eucast focussing on echinocandins against candida spp. And triazoles against aspergillus spp.
1963		Drug Resist Updat. 2013; 16 : 81-95.
1964	468	Espinel-Ingroff A, Chowdhary A, Gonzalez GM, et al. Multicenter study of isavuconazole mic
1965		distributions and epidemiological cutoff values for aspergillus spp. For the clsi m38-a2 broth
1966		microdilution method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 3823-3828.
1967	469	Howard SJ, Lass-Florl C, Cuenca-Estrella M, Gomez-Lopez A, Arendrup MC. Determination of
1967 1968	469	Howard SJ, Lass-Florl C, Cuenca-Estrella M, Gomez-Lopez A, Arendrup MC. Determination of isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob</i>
	469	
1968	469 470	isavuconazole susceptibility of aspergillus and candida species by the eucast method. Antimicrob
1968 1969		isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431.
1968 1969 1970		isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole:
1968 1969 1970 1971		isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013;
1968 1969 1970 1971 1972	470	isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5778-5780.
1968 1969 1970 1971 1972	470	isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5778-5780. Nivoix Y, Velten M, Letscher-Bru V, et al. Factors associated with overall and attributable mortality in
1968 1969 1970 1971 1972 1973 1974	470 471	isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5778-5780. Nivoix Y, Velten M, Letscher-Bru V, et al. Factors associated with overall and attributable mortality in invasive aspergillosis. <i>Clin Infect Dis</i> . 2008; 47 : 1176-1184.
1968 1969 1970 1971 1972 1973 1974	470 471	isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5778-5780. Nivoix Y, Velten M, Letscher-Bru V, et al. Factors associated with overall and attributable mortality in invasive aspergillosis. <i>Clin Infect Dis</i> . 2008; 47 : 1176-1184. Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell
1968 1969 1970 1971 1972 1973 1974 1975 1976	470 471	isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5778-5780. Nivoix Y, Velten M, Letscher-Bru V, et al. Factors associated with overall and attributable mortality in invasive aspergillosis. <i>Clin Infect Dis</i> . 2008; 47 : 1176-1184. Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell transplantation: Outcomes and prognostic factors associated with mortality. <i>Clin Infect Dis</i> . 2007; 44 :
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	470 471 472	isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5778-5780. Nivoix Y, Velten M, Letscher-Bru V, et al. Factors associated with overall and attributable mortality in invasive aspergillosis. <i>Clin Infect Dis</i> . 2008; 47 : 1176-1184. Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell transplantation: Outcomes and prognostic factors associated with mortality. <i>Clin Infect Dis</i> . 2007; 44 : 531-540.
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	470 471 472	isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5778-5780. Nivoix Y, Velten M, Letscher-Bru V, et al. Factors associated with overall and attributable mortality in invasive aspergillosis. <i>Clin Infect Dis</i> . 2008; 47 : 1176-1184. Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell transplantation: Outcomes and prognostic factors associated with mortality. <i>Clin Infect Dis</i> . 2007; 44 : 531-540. Pagano L, Caira M, Candoni A, et al. Invasive aspergillosis in patients with acute myeloid leukemia: A
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979	470 471 472 473	isavuconazole susceptibility of aspergillus and candida species by the eucast method. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5426-5431. Gregson L, Goodwin J, Johnson A, et al. In vitro susceptibility of aspergillus fumigatus to isavuconazole: Correlation with itraconazole, voriconazole, and posaconazole. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 5778-5780. Nivoix Y, Velten M, Letscher-Bru V, et al. Factors associated with overall and attributable mortality in invasive aspergillosis. <i>Clin Infect Dis</i> . 2008; 47 : 1176-1184. Upton A, Kirby KA, Carpenter P, Boeckh M, Marr KA. Invasive aspergillosis following hematopoietic cell transplantation: Outcomes and prognostic factors associated with mortality. <i>Clin Infect Dis</i> . 2007; 44 : 531-540. Pagano L, Caira M, Candoni A, et al. Invasive aspergillosis in patients with acute myeloid leukemia: A seifem-2008 registry study. <i>Haematologica</i> . 2010; 95 : 644-650.

1982 1983	475	Lortholary O, Gangneux JP, Sitbon K, et al. Epidemiological trends in invasive aspergillosis in france: The saif network (2005-2007). <i>Clin Microbiol Infect</i> . 2011; 17 : 1882-1889.
1703		THE Sall Hetwork (2003-2007). Cilil Wildrobiol Higelt. 2011, 17. 1002-1003.
1984	476	Perkhofer S, Lass-Florl C, Hell M, et al. The nationwide austrian aspergillus registry: A prospective data
1985		collection on epidemiology, therapy and outcome of invasive mould infections in
1986		immunocompromised and/or immunosuppressed patients. Int J Antimicrob Agents. 2010; 36: 531-
1987		536.
1988	477	Lass-Florl C, Alastruey-Izquierdo A, Cuenca-Estrella M, Perkhofer S, Rodriguez-Tudela JL. In vitro
1989		activities of various antifungal drugs against aspergillus terreus: Global assessment using the
1990		methodology of the european committee on antimicrobial susceptibility testing. Antimicrob Agents
1991		Chemother. 2009; 53 : 794-795.
1992	478	Kathuria S, Sharma C, Singh PK, et al. Molecular epidemiology and in-vitro antifungal susceptibility of
1993		aspergillus terreus species complex isolates in delhi, india: Evidence of genetic diversity by amplified
1994		fragment length polymorphism and microsatellite typing. <i>PLoS One</i> . 2015; 10 : e0118997.
1995	479	Alastruey-Izquierdo A, Cuesta I, Houbraken J, Cuenca-Estrella M, Monzon A, Rodriguez-Tudela JL. In
1996		vitro activity of nine antifungal agents against clinical isolates of aspergillus calidoustus. Medical
1997		mycology. 2010; 48 : 97-102.
1998	480	Alcazar-Fuoli L, Mellado E, Alastruey-Izquierdo A, Cuenca-Estrella M, Rodriguez-Tudela JL. Aspergillus
1999		section fumigati: Antifungal susceptibility patterns and sequence-based identification. Antimicrob
2000		Agents Chemother. 2008; 52 : 1244-1251.
2001		
2001	481	Datta K, Rhee P, Byrnes E, 3rd, et al. Isavuconazole activity against aspergillus lentulus, neosartorya
2002		udagawae, and cryptococcus gattii, emerging fungal pathogens with reduced azole susceptibility.
2003		Journal of clinical microbiology. 2013; 51 : 3090-3093.
2004	482	Howard SJ. Multi-resistant aspergillosis due to cryptic species. <i>Mycopathologia</i> . 2014; 178 : 435-439.
2005	483	Falcone EL, Holland SM. Invasive fungal infection in chronic granulomatous disease: Insights into
2006		pathogenesis and management. Curr Opin Infect Dis. 2012; 25: 658-669.
2007	484	Segal BH, DeCarlo ES, Kwon-Chung KJ, Malech HL, Gallin JI, Holland SM. Aspergillus nidulans infection
2008		in chronic granulomatous disease. <i>Medicine (Baltimore)</i> . 1998; 77 : 345-354.
2009	485	Lionakis MS, Lewis RE, Chamilos G, Kontoyiannis DP. Aspergillus susceptibility testing in patients with
2010		cancer and invasive aspergillosis: Difficulties in establishing correlation between in vitro susceptibility
2011		data and the outcome of initial amphotericin b therapy. Pharmacotherapy. 2005; 25: 1174-1180.

2012 2013 2014 2015	486	Mosquera J, Warn PA, Morrissey J, Moore CB, Gil-Lamaignere C, Denning DW. Susceptibility testing of aspergillus flavus: Inoculum dependence with itraconazole and lack of correlation between susceptibility to amphotericin b in vitro and outcome in vivo. <i>Antimicrob Agents Chemother</i> . 2001; 45 : 1456-1462.
2016 2017 2018	487	Barchiesi F, Spreghini E, Sanguinetti M, et al. Effects of amphotericin b on aspergillus flavus clinical isolates with variable susceptibilities to the polyene in an experimental model of systemic aspergillosis. <i>J Antimicrob Chemother</i> . 2013; 68 : 2587-2591.
2019 2020	488	Hadrich I, Makni F, Neji S, et al. Amphotericin b in vitro resistance is associated with fatal aspergillus flavus infection. <i>Medical mycology</i> . 2012; 50 : 829-834.
202120222023	489	Arendrup MC, Cuenca-Estrella M, Lass-Florl C, Hope WW, European Committee on Antimicrobial Susceptibility Testing Subcommittee on Antifungal Susceptibility T. Eucast technical note on aspergillus and amphotericin b, itraconazole, and posaconazole. <i>Clin Microbiol Infect</i> . 2012; 18 : E248-250.
2024	490	European committee on antimicrobial susceptibility testing. http://www.eucast.org
2025 2026 2027	491	Espinel-Ingroff A, Diekema DJ, Fothergill A, et al. Wild-type mic distributions and epidemiological cutoff values for the triazoles and six aspergillus spp. For the clsi broth microdilution method (m38-a2 document). <i>Journal of clinical microbiology</i> . 2010; 48 : 3251-3257.
2028 2029 2030	492	Seyedmousavi S, Bruggemann RJ, Melchers WJ, Rijs AJ, Verweij PE, Mouton JW. Efficacy and pharmacodynamics of voriconazole combined with anidulafungin in azole-resistant invasive aspergillosis. <i>J Antimicrob Chemother</i> . 2013; 68 : 385-393.
203120322033	493	Seyedmousavi S, Mouton JW, Melchers WJ, Bruggemann RJ, Verweij PE. The role of azoles in the management of azole-resistant aspergillosis: From the bench to the bedside. <i>Drug Resist Updat</i> . 2014; 17 : 37-50.
2034 2035	494	Newton PJ, Harris C, Morris J, Denning DW. Impact of liposomal amphotericin b therapy on chronic pulmonary aspergillosis. <i>J Infect</i> . 2016.
2036 2037	495	Verweij PE, Howard SJ, Melchers WJ, Denning DW. Azole-resistance in aspergillus: Proposed nomenclature and breakpoints. <i>Drug Resist Updat</i> . 2009; 12 : 141-147.
2038 2039 2040 2041	496	Seyedmousavi S, Melchers WJ, Mouton JW, Verweij PE. Pharmacodynamics and dose-response relationships of liposomal amphotericin b against different azole-resistant aspergillus fumigatus isolates in a murine model of disseminated aspergillosis. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 1866-1871.

2042 2043 2044	497	Lepak AJ, Marchillo K, VanHecker J, Andes DR. Impact of in vivo triazole and echinocandin combination therapy for invasive pulmonary aspergillosis: Enhanced efficacy against cyp51 mutant isolates. Antimicrob Agents Chemother. 2013; 57: 5438-5447.
2045	498	Denning DW. Treatment of invasive aspergillosis. <i>J Infect</i> . 1994; 28 Suppl 1 : 25-33.
2046 2047	499	Denning DW, Tucker RM, Hanson LH, Stevens DA. Treatment of invasive aspergillosis with itraconazole. <i>The American journal of medicine</i> . 1989; 86 : 791-800.
2048 2049 2050	500	Caillot D, Bassaris H, McGeer A, et al. Intravenous itraconazole followed by oral itraconazole in the treatment of invasive pulmonary aspergillosis in patients with hematologic malignancies, chronic granulomatous disease, or aids. <i>Clin Infect Dis.</i> 2001; 33 : e83-90.
2051 2052	501	Kim SH, Yim DS, Choi SM, et al. Voriconazole-related severe adverse events: Clinical application of therapeutic drug monitoring in korean patients. <i>Int J Infect Dis</i> . 2011; 15 : e753-758.
205320542055	502	Ueda K, Nannya Y, Kumano K, et al. Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. <i>International journal of hematology</i> . 2009; 89 : 592-599.
2056 2057	503	Smith J, Safdar N, Knasinski V, et al. Voriconazole therapeutic drug monitoring. <i>Antimicrob Agents Chemother</i> . 2006; 50 : 1570-1572.
205820592060	504	Pieper S, Kolve H, Gumbinger HG, Goletz G, Wurthwein G, Groll AH. Monitoring of voriconazole plasma concentrations in immunocompromised paediatric patients. <i>J Antimicrob Chemother</i> . 2012; 67 : 2717-2724.
2061206220632064	505	Mitsani D, Nguyen MH, Shields RK, et al. Prospective, observational study of voriconazole therapeutic drug monitoring among lung transplant recipients receiving prophylaxis: Factors impacting levels of and associations between serum troughs, efficacy, and toxicity. <i>Antimicrob Agents Chemother</i> . 2012; 56 : 2371-2377.
206520662067	506	Siopi M, Mavridou E, Mouton JW, Verweij PE, Zerva L, Meletiadis J. Susceptibility breakpoints and target values for therapeutic drug monitoring of voriconazole and aspergillus fumigatus in an in vitro pharmacokinetic/pharmacodynamic model. <i>J Antimicrob Chemother</i> . 2014; 69 : 1611-1619.
2068 2069 2070	507	Conte JE, Jr., Golden JA, Krishna G, McIver M, Little E, Zurlinden E. Intrapulmonary pharmacokinetics and pharmacodynamics of posaconazole at steady state in healthy subjects. <i>Antimicrob Agents Chemother</i> . 2009; 53 : 703-707.

2071	508	Campoli P, Perlin DS, Kristof AS, White TC, Filler SG, Sheppard DC. Pharmacokinetics of posaconazole
2072		within epithelial cells and fungi: Insights into potential mechanisms of action during treatment and
2073		prophylaxis. The Journal of infectious diseases. 2013; 208 : 1717-1728.
2074	509	Campoli P, Al Abdallah Q, Robitaille R, et al. Concentration of antifungal agents within host cell
2075		membranes: A new paradigm governing the efficacy of prophylaxis. Antimicrob Agents Chemother.
2076		2011; 55 : 5732-5739.
2077	510	Blennow O, Eliasson E, Pettersson T, et al. Posaconazole concentrations in human tissues after
2078		allogeneic stem cell transplantation. Antimicrob Agents Chemother. 2014; 58 : 4941-4943.
2079	511	Winston DJ, Maziarz RT, Chandrasekar PH, et al. Intravenous and oral itraconazole versus intravenous
2080		and oral fluconazole for long-term antifungal prophylaxis in allogeneic hematopoietic stem-cell
2081		transplant recipients. A multicenter, randomized trial. Annals of internal medicine. 2003; 138: 705-
2082		713.
2083	512	Marr KA, Crippa F, Leisenring W, et al. Itraconazole versus fluconazole for prevention of fungal
2084		infections in patients receiving allogeneic stem cell transplants. <i>Blood</i> . 2004; 103 : 1527-1533.
2085	513	Marr KA, Leisenring W, Crippa F, et al. Cyclophosphamide metabolism is affected by azole antifungals.
2086		Blood. 2004; 103 : 1557-1559.
2087	514	Menichetti F, Del Favero A, Martino P, et al. Itraconazole oral solution as prophylaxis for fungal
2088		infections in neutropenic patients with hematologic malignancies: A randomized, placebo-controlled,
2089		double-blind, multicenter trial. Gimema infection program. Gruppo italiano malattie ematologiche
2090		dell' adulto. Clin Infect Dis. 1999; 28 : 250-255.
2091	515	Prentice HG, Caillot D, Dupont B, Menichetti F, Schuler U. Oral and intravenous itraconazole for
2092		systemic fungal infections in neutropenic haematological patients: Meeting report. London, united
2093		kingdom, 20 june 1998. <i>Acta Haematol</i> . 1999; 101 : 56-62.
2094	516	Harousseau JL, Dekker AW, Stamatoullas-Bastard A, et al. Itraconazole oral solution for primary
2095		prophylaxis of fungal infections in patients with hematological malignancy and profound neutropenia:
2096		A randomized, double-blind, double-placebo, multicenter trial comparing itraconazole and
2097		amphotericin b. Antimicrob Agents Chemother. 2000; 44: 1887-1893.
2098	517	Gallin JI, Alling DW, Malech HL, et al. Itraconazole to prevent fungal infections in chronic
2099		granulomatous disease. <i>N Engl J Med</i> . 2003; 348 : 2416-2422.
2100	518	de Repentigny L, Ratelle J, Leclerc JM, et al. Repeated-dose pharmacokinetics of an oral solution of
2101		itraconazole in infants and children. Antimicrob Agents Chemother. 1998; 42: 404-408.

2	102	519	Groll AH, Wood L, Roden M, et al. Safety, pharmacokinetics, and pharmacodynamics of cyclodextrin
2	103		itraconazole in pediatric patients with oropharyngeal candidiasis. Antimicrob Agents Chemother. 2002;
2	104		46 : 2554-2563.
2	105		
	105	520	Foot AB, Veys PA, Gibson BE. Itraconazole oral solution as antifungal prophylaxis in children
	106		undergoing stem cell transplantation or intensive chemotherapy for haematological disorders. Bone
2	107		Marrow Transplant. 1999; 24 : 1089-1093.
2	108	521	Simon A, Besuden M, Vezmar S, et al. Itraconazole prophylaxis in pediatric cancer patients receiving
2	109		conventional chemotherapy or autologous stem cell transplants. Support Care Cancer. 2007; 15: 213-
2	110		220.
2	111		
	111	522	Cornely OA, Maertens J, Winston DJ, et al. Posaconazole vs. Fluconazole or itraconazole prophylaxis in
2	112		patients with neutropenia. N Engl J Med. 2007; 356 : 348-359.
2	113	523	Ullmann AJ, Lipton JH, Vesole DH, et al. Posaconazole or fluconazole for prophylaxis in severe graft-
2	114		versus-host disease. N Engl J Med. 2007; 356 : 335-347.
2	115		
	115	524	Ananda-Rajah MR, Grigg A, Downey MT, et al. Comparative clinical effectiveness of prophylactic
	116		voriconazole/posaconazole to fluconazole/itraconazole in patients with acute myeloid
	117		leukemia/myelodysplastic syndrome undergoing cytotoxic chemotherapy over a 12-year period.
2	118		Haematologica. 2012; 97 : 459-463.
2	119	525	Ananda-Rajah MR, Grigg A, Slavin MA. Making sense of posaconazole therapeutic drug monitoring: A
2	120		practical approach. Curr Opin Infect Dis. 2012; 25: 605-611.
2	101	53 6	
	121	526	Krishna G, Martinho M, Chandrasekar P, Ullmann AJ, Patino H. Pharmacokinetics of oral posaconazole
			in allogeneic hematopoietic stem cell transplant recipients with graft-versus-host disease.
2	123		Pharmacotherapy. 2007; 27 : 1627-1636.
2	124	527	Welzen ME, Bruggemann RJ, Van Den Berg JM, et al. A twice daily posaconazole dosing algorithm for
2	125		children with chronic granulomatous disease. Pediatr Infect Dis J. 2011; 30 : 794-797.
2	126	528	Döring M, Müller C, Johann PD, et al. Analysis of posaconazole as oral antifungal prophylaxis in
	127	320	pediatric patients under 12 years of age following allogeneic stem cell transplantation. <i>BMC Infect Dis</i> .
	128		2012; 12 : 263.
2	120		2012, 12. 203.
2	129	529	Lehrnbecher T, Attarbaschi A, Duerken M, et al. Posaconazole salvage treatment in paediatric
2	130		patients: A multicentre survey. Eur J Clin Microbiol Infect Dis. 2010; 29: 1043-1045.
2	131	530	Vanstraelen K, Colita A, Bica AM, et al. Pharmacokinetics of posaconazole oral suspension in children
	132	330	dosed according to body surface area. <i>Pediatr Infect Dis J.</i> 2016; 35 : 183-188.
2	1114		dosed decording to body surface area. realital inject Dis J. 2010, 33. 103-100.

2133 2134 2135	531	Wingard JR, Carter SL, Walsh TJ, et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. <i>Blood</i> . 2010; 116 : 5111-5118.
2136 2137	532	Marks DI, Pagliuca A, Kibbler CC, et al. Voriconazole versus itraconazole for antifungal prophylaxis following allogeneic haematopoietic stem-cell transplantation. <i>Br J Haematol</i> . 2011; 155 : 318-327.
2138 2139 2140	533	Mattiuzzi GN, Cortes J, Alvarado G, et al. Efficacy and safety of intravenous voriconazole and intravenous itraconazole for antifungal prophylaxis in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome. <i>Support Care Cancer</i> . 2011; 19 : 19-26.
2141 2142 2143	534	Barreto JN, Beach CL, Wolf RC, et al. The incidence of invasive fungal infections in neutropenic patients with acute leukemia and myelodysplastic syndromes receiving primary antifungal prophylaxis with voriconazole. <i>Am J Hematol.</i> 2013; 88 : 283-288.
2144 2145 2146	535	Walsh TJ, Karlsson MO, Driscoll T, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. <i>Antimicrob Agents Chemother</i> . 2004; 48 : 2166-2172.
2147 2148	536	Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. <i>Antimicrob Agents Chemother</i> . 2009; 53 : 935-944.
2149 2150 2151	537	Driscoll TA, Frangoul H, Nemecek ER, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised adolescents and healthy adults. <i>Antimicrob Agents Chemother</i> . 2011; 55 : 5780-5789.
2152 2153 2154	538	Driscoll TA, Yu LC, Frangoul H, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised children and healthy adults. <i>Antimicrob Agents Chemother</i> . 2011; 55 : 5770-5779.
2155 2156	539	Molina JR, Serrano J, Sanchez-Garcia J, et al. Voriconazole as primary antifungal prophylaxis in children undergoing allo-sct. <i>Bone Marrow Transplant</i> . 2012; 47 : 562-567.
2157 2158 2159	540	Tollemar J, Ringden O, Andersson S, et al. Prophylactic use of liposomal amphotericin b (ambisome) against fungal infections: A randomized trial in bone marrow transplant recipients. <i>Transplant Proc.</i> 1993; 25 : 1495-1497.
2160 2161 2162	541	Tollemar J, Ringden O, Andersson S, Sundberg B, Ljungman P, Tyden G. Randomized double-blind study of liposomal amphotericin b (ambisome) prophylaxis of invasive fungal infections in bone marrow transplant recipients. <i>Bone Marrow Transplant</i> . 1993; 12 : 577-582.

2163 2164	542	Kelsey SM, Goldman JM, McCann S, et al. Liposomal amphotericin (ambisome) in the prophylaxis of fungal infections in neutropenic patients: A randomised, double-blind, placebo-controlled study. <i>Bone</i>
2165		Marrow Transplant. 1999; 23 : 163-168.
2166	543	Penack O, Schwartz S, Martus P, et al. Low-dose liposomal amphotericin b in the prevention of
2167		invasive fungal infections in patients with prolonged neutropenia: Results from a randomized, single-
2168		center trial. <i>Ann Oncol</i> . 2006; 17 : 1306-1312.
2169	544	Hong Y, Shaw PJ, Nath CE, et al. Population pharmacokinetics of liposomal amphotericin b in pediatric
2170		patients with malignant diseases. Antimicrob Agents Chemother. 2006; 50 : 935-942.
2171	545	Ringden O, Meunier F, Tollemar J, et al. Efficacy of amphotericin b encapsulated in liposomes
2172		(ambisome) in the treatment of invasive fungal infections in immunocompromised patients. J
2173		Antimicrob Chemother. 1991; 28 Suppl B : 73-82.
2174	546	Kolve H, Ahlke E, Fegeler W, Ritter J, Jurgens H, Groll AH. Safety, tolerance and outcome of treatment
2175		with liposomal amphotericin b in paediatric patients with cancer or undergoing haematopoietic stem
2176		cell transplantation. J Antimicrob Chemother. 2009; 64 : 383-387.
2177	547	van Burik JA, Ratanatharathorn V, Stepan DE, et al. Micafungin versus fluconazole for prophylaxis
2178		against invasive fungal infections during neutropenia in patients undergoing hematopoietic stem cell
2179		transplantation. Clin Infect Dis. 2004; 39 : 1407-1416.
2180	548	Huang X, Chen H, Han M, et al. Multicenter, randomized, open-label study comparing the efficacy and
2181		safety of micafungin versus itraconazole for prophylaxis of invasive fungal infections in patients
2182		undergoing hematopoietic stem cell transplant. Biology of blood and marrow transplantation: journal
2183		of the American Society for Blood and Marrow Transplantation. 2012; 18 : 1509-1516.
2184	549	Seibel NL, Schwartz C, Arrieta A, et al. Safety, tolerability, and pharmacokinetics of micafungin (fk463)
2185		in febrile neutropenic pediatric patients. Antimicrob Agents Chemother. 2005; 49: 3317-3324.
2186	550	Hope WW, Seibel NL, Schwartz CL, et al. Population pharmacokinetics of micafungin in pediatric
2187		patients and implications for antifungal dosing. <i>Antimicrob Agents Chemother</i> . 2007; 51 : 3714-3719.
2188	551	Arrieta AC, Maddison P, Groll AH. Safety of micafungin in pediatric clinical trials. Pediatr Infect Dis J.
2189		2011; 30 : e97-e102.
2190	552	Mehta PA, Vinks AA, Filipovich A, et al. Alternate-day micafungin antifungal prophylaxis in pediatric
2191		patients undergoing hematopoietic stem cell transplantation: A pharmacokinetic study. Biology of
2192		blood and marrow transplantation : journal of the American Society for Blood and Marrow
2193		Transplantation. 2010; 16 : 1458-1462.

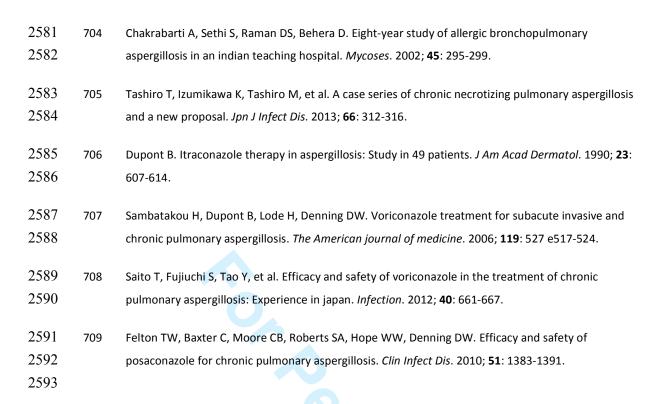
219421952196	553	Beaute J, Obenga G, Le Mignot L, et al. Epidemiology and outcome of invasive fungal diseases in patients with chronic granulomatous disease: A multicenter study in france. <i>Pediatr Infect Dis J.</i> 2011; 30 : 57-62.
2197 2198	554	Mouy R, Veber F, Blanche S, et al. Long-term itraconazole prophylaxis against aspergillus infections in thirty-two patients with chronic granulomatous disease. <i>J Pediatr</i> . 1994; 125 : 998-1003.
2199 2200	555	Fortun J, Martin-Davila P, Sanchez MA, et al. Voriconazole in the treatment of invasive mold infections in transplant recipients. <i>Eur J Clin Microbiol Infect Dis</i> . 2003; 22 : 408-413.
2201 2202 2203	556	Wieland T, Liebold A, Jagiello M, Retzl G, Birnbaum DE. Superiority of voriconazole over amphotericin b in the treatment of invasive aspergillosis after heart transplantation. <i>J Heart Lung Transplant</i> . 2005; 24 : 102-104.
2204 2205	557	Veroux M, Corona D, Gagliano M, et al. Voriconazole in the treatment of invasive aspergillosis in kidney transplant recipients. <i>Transplant Proc.</i> 2007; 39 : 1838-1840.
2206 2207	558	Walsh TJ, Driscoll T, Milligan PA, et al. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. <i>Antimicrob Agents Chemother</i> . 2010; 54 : 4116-4123.
2208 2209 2210	559	Doby EH, Benjamin DK, Jr., Blaschke AJ, et al. Therapeutic monitoring of voriconazole in children less than three years of age: A case report and summary of voriconazole concentrations for ten children. Pediatr Infect Dis J. 2012; 31 : 632-635.
221122122213	560	Soler-Palacin P, Frick MA, Martin-Nalda A, et al. Voriconazole drug monitoring in the management of invasive fungal infection in immunocompromised children: A prospective study. <i>J Antimicrob Chemother</i> . 2012; 67 : 700-706.
2214 2215 2216	561	Bartelink IH, Wolfs T, Jonker M, et al. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 235-240.
2217 2218 2219	562	Kotwani RN, Gokhale PC, Bodhe PV, Kirodian BG, Kshirsagar NA, Pandya SK. A comparative study of plasma concentrations of liposomal amphotericin b (I-amp-Irc-1) in adults, children and neonates. <i>Int J Pharm.</i> 2002; 238 : 11-15.
2220 2221 2222	563	Bochennek K, Tramsen L, Schedler N, et al. Liposomal amphotericin b twice weekly as antifungal prophylaxis in paediatric haematological malignancy patients. <i>Clin Microbiol Infect</i> . 2011; 17 : 1868-1874.


225122522253	576	Ngai AL, Bourque MR, Lupinacci RJ, Strohmaier KM, Kartsonis NA. Overview of safety experience with caspofungin in clinical trials conducted over the first 15 years: A brief report. <i>Int J Antimicrob Agents</i> . 2011; 38 : 540-544.
2254 2255	577	Manzoni P, Rizzollo S, Farina D. Response to "is liposomal amphotericin b really safety in neonates?". Early Hum Dev. 2013; 89 : 37.
2256 2257	578	Karadag-Oncel E, Ozsurekci Y, Yurdakok M, Kara A. Is liposomal amphotericin b really safety in neonates? <i>Early Hum Dev.</i> 2013; 89 : 35-36.
2258 2259	579	Scarcella A, Pasquariello MB, Giugliano B, Vendemmia M, de Lucia A. Liposomal amphotericin b treatment for neonatal fungal infections. <i>Pediatr Infect Dis J.</i> 1998; 17 : 146-148.
2260 2261 2262	580	Juster-Reicher A, Flidel-Rimon O, Amitay M, Even-Tov S, Shinwell E, Leibovitz E. High-dose liposomal amphotericin b in the therapy of systemic candidiasis in neonates. <i>Eur J Clin Microbiol Infect Dis</i> . 2003; 22 : 603-607.
2263 2264	581	Neofytos D, Ostrander D, Shoham S, et al. Voriconazole therapeutic drug monitoring: Results of a prematurely discontinued randomized multicenter trial. <i>Transpl Infect Dis.</i> 2015; 17 : 831-837.
2265 2266	582	Kohno S, Masaoka T, Yamaguchi H, et al. A multicenter, open-label clinical study of micafungin (fk463) in the treatment of deep-seated mycosis in japan. <i>Scand J Infect Dis.</i> 2004; 36 : 372-379.
2267 2268	583	Denning DW, Marr KA, Lau WM, et al. Micafungin (fk463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. <i>J Infect</i> . 2006; 53 : 337-349.
2269 2270 2271	584	Kontoyiannis DP, Ratanatharathorn V, Young JA, et al. Micafungin alone or in combination with other systemic antifungal therapies in hematopoietic stem cell transplant recipients with invasive aspergillosis. <i>Transpl Infect Dis.</i> 2009; 11 : 89-93.
227222732274	585	Ito JI, Chandrasekar PH, Hooshmand-Rad R. Effectiveness of amphotericin b lipid complex (ablc) treatment in allogeneic hematopoietic cell transplant (hct) recipients with invasive aspergillosis (ia). Bone Marrow Transplant. 2005; 36 : 873-877.
2275 2276 2277	586	Bowden R, Chandrasekar P, White MH, et al. A double-blind, randomized, controlled trial of amphotericin b colloidal dispersion versus amphotericin b for treatment of invasive aspergillosis in immunocompromised patients. <i>Clin Infect Dis.</i> 2002; 35 : 359-366.
2278 2279 2280	587	Caillot D, Thiebaut A, Herbrecht R, et al. Liposomal amphotericin b in combination with caspofungin for invasive aspergillosis in patients with hematologic malignancies: A randomized pilot study (combistrat trial). <i>Cancer</i> . 2007; 110 : 2740-2746.

2281	588	Schwartz S, Ruhnke M, Ribaud P, et al. Improved outcome in central nervous system aspergillosis,
2282		using voriconazole treatment. Blood. 2005; 106 : 2641-2645.
2283	589	Kourkoumpetis TK, Desalermos A, Muhammed M, Mylonakis E. Central nervous system aspergillosis: A
2284		series of 14 cases from a general hospital and review of 123 cases from the literature. Medicine
2285		(Baltimore). 2012; 91 : 328-336.
2286	590	Rüping MJ, Albermann N, Ebinger F, et al. Posaconazole concentrations in the central nervous system.
2287		J Antimicrob Chemother. 2008; 62 : 1468-1470.
2288	591	Coleman JM, Hogg GG, Rosenfeld JV, Waters KD. Invasive central nervous system aspergillosis: Cure
2289		with liposomal amphotericin b, itraconazole, and radical surgerycase report and review of the
2290		literature. <i>Neurosurgery</i> . 1995; 36 : 858-863.
2291	592	Clemons KV, Espiritu M, Parmar R, Stevens DA. Comparative efficacies of conventional amphotericin b,
2292		liposomal amphotericin b (ambisome), caspofungin, micafungin, and voriconazole alone and in
2293		combination against experimental murine central nervous system aspergillosis. Antimicrob Agents
2294		Chemother. 2005; 49 : 4867-4875.
2295	593	Ellis M, Spence D, de Pauw B, et al. An eortc international multicenter randomized trial (eortc number
2296		19923) comparing two dosages of liposomal amphotericin b for treatment of invasive aspergillosis.
2297		Clin Infect Dis. 1998; 27 : 1406-1412.
2298	594	Schwartz S, Ruhnke M, Ribaud P, Reed E, Troke P, Thiel E. Poor efficacy of amphotericin b-based
2299		therapy in cns aspergillosis. <i>Mycoses</i> . 2007; 50 : 196-200.
2300	595	Ullmann AJ, Sanz MA, Tramarin A, et al. Prospective study of amphotericin b formulations in
2301		immunocompromised patients in 4 european countries. Clin Infect Dis. 2006; 43: e29-38.
2302	596	Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with
2303		amphotericin b for suspected or proven aspergillosis. Clin Infect Dis. 1999; 29 : 1402-1407.
2304	597	Walsh TJ, Finberg RW, Arndt C, et al. Liposomal amphotericin b for empirical therapy in patients with
2305		persistent fever and neutropenia. National institute of allergy and infectious diseases mycoses study
2306		group. N Engl J Med. 1999; 340 : 764-771.
2307	598	Girmenia C, Pizzarelli G, Pozzi E, Cimino G, Gentile G, Martino P. Improving outcomes of acute invasive
2308		aspergillus rhinosinusitis in patients with hematologic malignancies or aplastic anemia: The role of
2309		voriconazole. <i>Haematologica</i> . 2008; 93 : 159-160.
2310	599	Thurtell MJ, Chiu AL, Goold LA, et al. Neuro-ophthalmology of invasive fungal sinusitis: 14 consecutive
2311		patients and a review of the literature. Clin Experiment Ophthalmol. 2013; 41: 567-576.

23122313	600	Daudia A, Jones NS. Advances in management of paranasal sinus aspergillosis. <i>J Laryngol Otol</i> . 2008; 122 : 331-335.
2314	601	Cordonnier C, Rovira M, Maertens J, et al. Voriconazole for secondary prophylaxis of invasive fungal
2315		infections in allogeneic stem cell transplant recipients: Results of the vosifi study. Haematologica.
2316		2010; 95 : 1762-1768.
2317	602	Liu F, Wu T, Wang JB, et al. Risk factors for recurrence of invasive fungal infection during secondary
2318		antifungal prophylaxis in allogeneic hematopoietic stem cell transplant recipients. Transpl Infect Dis.
2319		2013; 15 : 243-250.
2320	603	Gerlach S, Vehreschild JJ, Ruping MJTG, Fischer G, Cornely OA. Epidemiology of aspergillus spp. At the
2321		university hospital of cologne: Molecular typing of environmental and clinical isolates. In: Gemeinsame
2322		Jahrestagung der Deutschen, Österreichischen und Schweizerichen GHO. Wien, Österreich: Onkologie,
2323		2008.
2324	604	Allinson K, Kolve H, Gumbinger HG, Vormoor HJ, Ehlert K, Groll AH. Secondary antifungal prophylaxis
2325		in paediatric allogeneic haematopoietic stem cell recipients. J Antimicrob Chemother. 2008; 61: 734-
2326		742.
2327	605	de Fabritiis P, Spagnoli A, Di Bartolomeo P, et al. Efficacy of caspofungin as secondary prophylaxis in
2328		patients undergoing allogeneic stem cell transplantation with prior pulmonary and/or systemic fungal
2329		infection. Bone Marrow Transplant. 2007; 40: 245-249.
2330	606	Martino R, Parody R, Fukuda T, et al. Impact of the intensity of the pretransplantation conditioning
2331		regimen in patients with prior invasive aspergillosis undergoing allogeneic hematopoietic stem cell
2332		transplantation: A retrospective survey of the infectious diseases working party of the european group
2333		for blood and marrow transplantation. <i>Blood</i> . 2006; 108 : 2928-2936.
2334	607	Kruger WH, Russmann B, de Wit M, et al. Haemopoietic cell transplantation of patients with a history
2335		of deep or invasive fungal infection during prophylaxis with liposomal amphotericin b. Acta Haematol.
2336		
		2005; 113 : 104-108.
2337	608	
2337 2338	608	2005; 113 : 104-108.
	608	2005; 113 : 104-108. Nosari A, Ravini M, Cairoli R, et al. Surgical resection of persistent pulmonary fungus nodules and
2338	608	2005; 113 : 104-108. Nosari A, Ravini M, Cairoli R, et al. Surgical resection of persistent pulmonary fungus nodules and secondary prophylaxis are effective in preventing fungal relapse in patients receiving chemotherapy or
2338 2339		2005; 113 : 104-108. Nosari A, Ravini M, Cairoli R, et al. Surgical resection of persistent pulmonary fungus nodules and secondary prophylaxis are effective in preventing fungal relapse in patients receiving chemotherapy or bone marrow transplantation for leukemia. <i>Bone Marrow Transplant</i> . 2007; 39 : 631-635.

2342 2343 2344	610	Cesaro S, Cecchetto G, De Corti F, et al. Results of a multicenter retrospective study of a combined medical and surgical approach to pulmonary aspergillosis in pediatric neutropenic patients. <i>Pediatric blood & cancer</i> . 2007; 49 : 909-913.
2345 2346	611	Matt P, Bernet F, Habicht J, et al. Predicting outcome after lung resection for invasive pulmonary aspergillosis in patients with neutropenia. <i>Chest.</i> 2004; 126 : 1783-1788.
2347 2348	612	Reichenberger F, Habicht J, Kaim A, et al. Lung resection for invasive pulmonary aspergillosis in neutropenic patients with hematologic diseases. <i>Am J Respir Crit Care Med</i> . 1998; 158 : 885-890.
2349 2350 2351	613	Mattiuzzi GN, Kantarjian H, Faderl S, et al. Amphotericin b lipid complex as prophylaxis of invasive fungal infections in patients with acute myelogenous leukemia and myelodysplastic syndrome undergoing induction chemotherapy. <i>Cancer</i> . 2004; 100 : 581-589.
235223532354	614	Oren I, Rowe JM, Sprecher H, et al. A prospective randomized trial of itraconazole vs fluconazole for the prevention of fungal infections in patients with acute leukemia and hematopoietic stem cell transplant recipients. <i>Bone Marrow Transplant</i> . 2006; 38 : 127-134.
2355 2356 2357	615	Glasmacher A, Cornely O, Ullmann AJ, et al. An open-label randomized trial comparing itraconazole oral solution with fluconazole oral solution for primary prophylaxis of fungal infections in patients with haematological malignancy and profound neutropenia. <i>J Antimicrob Chemother</i> . 2006; 57 : 317-325.
2358 2359	616	Park S, Kim K, Jang JH, et al. Randomized trial of micafungin versus fluconazole as prophylaxis against invasive fungal infections in hematopoietic stem cell transplant recipients. <i>J Infect</i> . 2016; 73 : 496-505.
2360 2361 2362	617	Cordonnier C, Mohty M, Faucher C, et al. Safety of a weekly high dose of liposomal amphotericin b for prophylaxis of invasive fungal infection in immunocompromised patients: Prophysome study. <i>Int J Antimicrob Agents</i> . 2008; 31 : 135-141.
2363 2364 2365	618	Annino L, Chierichini A, Anaclerico B, et al. Prospective phase ii single-center study of the safety of a single very high dose of liposomal amphotericin b for antifungal prophylaxis in patients with acute myeloid leukemia. <i>Antimicrob Agents Chemother</i> . 2013; 57 : 2596-2602.
2366 2367 2368	619	Rijnders BJ, Cornelissen JJ, Slobbe L, et al. Aerosolized liposomal amphotericin b for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: A randomized, placebo-controlled trial. <i>Clin Infect Dis.</i> 2008; 46 : 1401-1408.
2369 2370 2371	620	Slobbe L, Boersma E, Rijnders BJ. Tolerability of prophylactic aerosolized liposomal amphotericin-b and impact on pulmonary function: Data from a randomized placebo-controlled trial. <i>Pulm Pharmacol Ther</i> . 2008; 21 : 855-859.


2432 2433 2434	644	Morrissey CO, Slavin MA, O'Reilly MA, et al. Caspofungin as salvage monotherapy for invasive aspergillosis in patients with haematological malignancies or following allogeneic stem cell transplantation: Efficacy and concomitant cyclosporin a. <i>Mycoses</i> . 2007; 50 Suppl 1 : 24-37.
2435 2436	645	Maertens J, Egerer G, Shin WS, et al. Caspofungin use in daily clinical practice for treatment of invasive aspergillosis: Results of a prospective observational registry. <i>BMC Infect Dis</i> . 2010; 10 : 182.
2437 2438	646	Leon-Gil C, Ubeda-Iglesias A, Loza-Vazquez A, et al. Efficacy and safety of caspofungin in critically ill patients. Procas study. <i>Rev Esp Quimioter</i> . 2012; 25 : 274-282.
2439 2440	647	Enoch DA, Idris SF, Aliyu SH, Micallef C, Sule O, Karas JA. Micafungin for the treatment of invasive aspergillosis. <i>J Infect</i> . 2014; 68 : 507-526.
2441 2442	648	Hachem RY, Langston AA, Graybill JR, et al. Posaconazole as salvage treatment of invasive fungal infections in patients with underlying renal impairment. <i>J Antimicrob Chemother</i> . 2008; 62 : 1386-1391.
2443 2444 2445	649	Heinz WJ, Egerer G, Lellek H, Boehme A, Greiner J. Posaconazole after previous antifungal therapy with voriconazole for therapy of invasive aspergillus disease, a retrospective analysis. <i>Mycoses</i> . 2013; 56 : 304-310.
2446 2447	650	Caillot D. Intravenous itraconazole followed by oral itraconazole for the treatment of amphotericin-b-refractory invasive pulmonary aspergillosis. <i>Acta Haematol.</i> 2003; 109 : 111-118.
2448 2449 2450	651	Luong ML, Chaparro C, Stephenson A, et al. Pretransplant aspergillus colonization of cystic fibrosis patients and the incidence of post-lung transplant invasive aspergillosis. <i>Transplantation</i> . 2014; 97 : 351-357.
2451 2452	652	Sole A, Morant P, Salavert M, Peman J, Morales P, Valencia Lung Transplant G. Aspergillus infections in lung transplant recipients: Risk factors and outcome. <i>Clin Microbiol Infect</i> . 2005; 11 : 359-365.
2453 2454	653	Danziger-Isakov LA, Worley S, Arrigain S, et al. Increased mortality after pulmonary fungal infection within the first year after pediatric lung transplantation. <i>J Heart Lung Transplant</i> . 2008; 27 : 655-661.
2455 2456	654	Monforte V, Roman A, Gavalda J, et al. Nebulized amphotericin b prophylaxis for aspergillus infection in lung transplantation: Study of risk factors. <i>J Heart Lung Transplant</i> . 2001; 20 : 1274-1281.
2457 2458	655	Iversen M, Burton CM, Vand S, et al. Aspergillus infection in lung transplant patients: Incidence and prognosis. <i>Eur J Clin Microbiol Infect Dis</i> . 2007; 26 : 879-886.
2459 2460	656	Hsu JL, Khan MA, Sobel RA, et al. Aspergillus fumigatus invasion increases with progressive airway ischemia. <i>PLoS One</i> . 2013; 8 : e77136.

2461 2462	657	Sarmiento E, Rodriguez-Molina JJ, Fernandez-Yanez J, et al. Igg monitoring to identify the risk for development of infection in heart transplant recipients. <i>Transpl Infect Dis.</i> 2006; 8 : 49-53.
2463	658	Collins LA, Samore MH, Roberts MS, et al. Risk factors for invasive fungal infections complicating
2464		orthotopic liver transplantation. <i>The Journal of infectious diseases</i> . 1994; 170 : 644-652.
2465	659	Singh N, Husain S, Practice ASTIDCo. Invasive aspergillosis in solid organ transplant recipients. Am J
2466		Transplant. 2009; 9 Suppl 4 : S180-191.
2467	660	Singh N, Pruett TL, Houston S, et al. Invasive aspergillosis in the recipients of liver retransplantation.
2468		Liver Transpl. 2006; 12 : 1205-1209.
2469	661	Saliba F, Delvart V, Ichai P, et al. Fungal infections after liver transplantation: Outcomes and risk
2470		factors revisited in the meld era. Clin Transplant. 2013; 27: E454-461.
2471	662	He H, Ding L, Li F, Zhan Q. Clinical features of invasive bronchial-pulmonary aspergillosis in critically ill
2472		patients with chronic obstructive respiratory diseases: A prospective study. <i>Crit Care</i> . 2011; 15 : R5.
2473	663	Bulpa P, Dive A, Sibille Y. Invasive pulmonary aspergillosis in patients with chronic obstructive
2474		pulmonary disease. <i>Eur Respir J</i> . 2007; 30 : 782-800.
2475	664	Kistemann T, Huneburg H, Exner M, Vacata V, Engelhart S. Role of increased environmental aspergillus
2476	664	Kistemann T, Huneburg H, Exner M, Vacata V, Engelhart S. Role of increased environmental aspergillus exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids
	664	
247624772478	664	exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids
2476247724782479		exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351.
24762477247824792480		exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. <i>Burns</i> . 2008; 34 : 1108-1112. Lahmer T, Messer M, Schwerdtfeger C, et al. Invasive mycosis in medical intensive care unit patients
2476 2477 2478 2479 2480 2481	665	exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. <i>Burns</i> . 2008; 34 : 1108-1112.
2476 2477 2478 2479 2480 2481 2482	665	exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. <i>Burns</i> . 2008; 34 : 1108-1112. Lahmer T, Messer M, Schwerdtfeger C, et al. Invasive mycosis in medical intensive care unit patients
2476 2477 2478 2479 2480 2481	665 666	exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. <i>Burns</i> . 2008; 34 : 1108-1112. Lahmer T, Messer M, Schwerdtfeger C, et al. Invasive mycosis in medical intensive care unit patients with severe alcoholic hepatitis. <i>Mycopathologia</i> . 2014; 177 : 193-197.
2476 2477 2478 2479 2480 2481 2482 2483 2484	665 666	exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. <i>Burns</i> . 2008; 34 : 1108-1112. Lahmer T, Messer M, Schwerdtfeger C, et al. Invasive mycosis in medical intensive care unit patients with severe alcoholic hepatitis. <i>Mycopathologia</i> . 2014; 177 : 193-197. Ballard J, Edelman L, Saffle J, et al. Positive fungal cultures in burn patients: A multicenter review. <i>J</i>
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485	665 666 667	exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. <i>Burns</i> . 2008; 34 : 1108-1112. Lahmer T, Messer M, Schwerdtfeger C, et al. Invasive mycosis in medical intensive care unit patients with severe alcoholic hepatitis. <i>Mycopathologia</i> . 2014; 177 : 193-197. Ballard J, Edelman L, Saffle J, et al. Positive fungal cultures in burn patients: A multicenter review. <i>J Burn Care Res</i> . 2008; 29 : 213-221.
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486	665 666 667	exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. <i>Burns</i> . 2008; 34 : 1108-1112. Lahmer T, Messer M, Schwerdtfeger C, et al. Invasive mycosis in medical intensive care unit patients with severe alcoholic hepatitis. <i>Mycopathologia</i> . 2014; 177 : 193-197. Ballard J, Edelman L, Saffle J, et al. Positive fungal cultures in burn patients: A multicenter review. <i>J Burn Care Res</i> . 2008; 29 : 213-221. Horvath EE, Murray CK, Vaughan GM, et al. Fungal wound infection (not colonization) is independently
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485	665 666 667	exposure for patients with chronic obstructive pulmonary disease (copd) treated with corticosteroids in an intensive care unit. <i>Int J Hyg Environ Health</i> . 2002; 204 : 347-351. Murray CK, Loo FL, Hospenthal DR, et al. Incidence of systemic fungal infection and related mortality following severe burns. <i>Burns</i> . 2008; 34 : 1108-1112. Lahmer T, Messer M, Schwerdtfeger C, et al. Invasive mycosis in medical intensive care unit patients with severe alcoholic hepatitis. <i>Mycopathologia</i> . 2014; 177 : 193-197. Ballard J, Edelman L, Saffle J, et al. Positive fungal cultures in burn patients: A multicenter review. <i>J Burn Care Res</i> . 2008; 29 : 213-221. Horvath EE, Murray CK, Vaughan GM, et al. Fungal wound infection (not colonization) is independently associated with mortality in burn patients. <i>Annals of surgery</i> . 2007; 245 : 978-985.

2489 2490	670	Acosta J, Catalan M, del Palacio-Perez-Medel A, et al. Prospective study in critically ill non-neutropenic patients: Diagnostic potential of (1,3)-beta-d-glucan assay and circulating galactomannan for the
2491		diagnosis of invasive fungal disease. Eur J Clin Microbiol Infect Dis. 2012; 31 : 721-731.
2492	671	He H, Ding L, Sun B, Li F, Zhan Q. Role of galactomannan determinations in bronchoalveolar lavage
2493		fluid samples from critically ill patients with chronic obstructive pulmonary disease for the diagnosis of
2494		invasive pulmonary aspergillosis: A prospective study. <i>Crit Care</i> . 2012; 16 : R138.
2495	672	Khorvash F, Meidani M, Babaei L, Abbasi S, Ataei B, Yaran M. Galactomannan antigen assay from
2496		bronchoalveolar lavage fluid in diagnosis of invasive pulmonary aspergillosis in intensive care units
2497		patients. Adv Biomed Res. 2014; 3 : 68.
2498	673	Steinmann J, Buer J, Rath PM. Detection of aspergillus fumigatus in blood samples from critically ill
2499		patients in intensive care units by use of the septifast assay. Journal of clinical microbiology. 2016; 54:
2500		1918-1921.
2501	674	Westh H, Lisby G, Breysse F, et al. Multiplex real-time pcr and blood culture for identification of
2502		bloodstream pathogens in patients with suspected sepsis. Clin Microbiol Infect. 2009; 15 : 544-551.
2503	675	Pasqualotto AC, Xavier MO, Sanchez LB, et al. Diagnosis of invasive aspergillosis in lung transplant
2504		recipients by detection of galactomannan in the bronchoalveolar lavage fluid. Transplantation. 2010;
2505		90 : 306-311.
2506	676	Clancy CJ, Jaber RA, Leather HL, et al. Bronchoalveolar lavage galactomannan in diagnosis of invasive
2507		pulmonary aspergillosis among solid-organ transplant recipients. Journal of clinical microbiology.
2508		2007; 45 : 1759-1765.
2509	677	Gazzoni FF, Hochhegger B, Severo LC, et al. High-resolution computed tomographic findings of
2510		aspergillus infection in lung transplant patients. Eur J Radiol. 2014; 83: 79-83.
2511	678	Hoenigl M, Koidl C, Duettmann W, et al. Bronchoalveolar lavage lateral-flow device test for invasive
2512		pulmonary aspergillosis diagnosis in haematological malignancy and solid organ transplant patients. J
2513		Infect. 2012; 65 : 588-591.
2514	679	Alexander BD, Smith PB, Davis RD, Perfect JR, Reller LB. The (1,3){beta}-d-glucan test as an aid to early
2515		diagnosis of invasive fungal infections following lung transplantation. Journal of clinical microbiology.
2516		2010; 48 : 4083-4088.
2517	680	Husain S, Kwak EJ, Obman A, et al. Prospective assessment of platelia aspergillus galactomannan
2518		antigen for the diagnosis of invasive aspergillosis in lung transplant recipients. Am J Transplant. 2004;
2519		4 : 796-802.

2520	681	Husain S, Paterson DL, Studer SM, et al. Aspergillus galactomannan antigen in the bronchoalveolar
2521		lavage fluid for the diagnosis of invasive aspergillosis in lung transplant recipients. Transplantation.
2522		2007; 83 : 1330-1336.
2523	682	Luong ML, Clancy CJ, Vadnerkar A, et al. Comparison of an aspergillus real-time polymerase chain
2524		reaction assay with galactomannan testing of bronchoalvelolar lavage fluid for the diagnosis of
2525		invasive pulmonary aspergillosis in lung transplant recipients. Clin Infect Dis. 2011; 52 : 1218-1226.
2526	683	Ambrosioni J, Coll S, Manzardo C, et al. Voriconazole and cobicistat-boosted antiretroviral salvage
2527		regimen co-administration to treat invasive aspergillosis in an hiv-infected patient. J Antimicrob
2528		Chemother. 2016; 71 : 1125-1127.
2529	684	Utili R, Zampino R, De Vivo F, et al. Improved outcome of pulmonary aspergillosis in heart transplant
2530		recipients with early diagnosis and itraconazole treatment. Clin Transplant. 2000; 14: 282-286.
2531	685	Husain S, Capitano B, Corcoran T, et al. Intrapulmonary disposition of amphotericin b after aerosolized
2532		delivery of amphotericin b lipid complex (abelcet; ablc) in lung transplant recipients. Transplantation.
2533		2010; 90 : 1215-1219.
2534	686	Mucha K, Foroncewicz B, Orlowski T, et al. Atypical presentation of invasive pulmonary aspergillosis in
2535		a liver transplant recipient. Ann Transplant. 2013; 18: 238-242.
2536	687	Lopez-Medrano F, Fernandez-Ruiz M, Silva JT, et al. Clinical presentation and determinants of
2537		mortality of invasive pulmonary aspergillosis in kidney transplant recipients: A multinational cohort
2538		study. Am J Transplant. 2016; 16 : 3220-3234.
2539	688	Kleinberg M. Aspergillosis in the clear outcomes trial: Working toward a real-world clinical
2540		perspective. Medical mycology. 2005; 43 Suppl 1: S289-294.
2541	689	Linden PK, Coley K, Fontes P, Fung JJ, Kusne S. Invasive aspergillosis in liver transplant recipients:
2542		Outcome comparison of therapy with amphotericin b lipid complex and a historical cohort treated
2543		with conventional amphotericin b. Clin Infect Dis. 2003; 37 : 17-25.
2544	690	Walter J, Sobottka I, Rogiers X, Broering D, Fischer L. Invasive aspergillosis caused by aspergillus
2545		terreus in a living donor liver transplant recipient successfully treated by caspofungin. Mycoses. 2011;
2546		54 : e220-222.
2547	691	Aguilar-Guisado M, Givalda J, Ussetti P, et al. Pneumonia after lung transplantation in the resitra
2548		cohort: A multicenter prospective study. Am J Transplant. 2007; 7 : 1989-1996.
2549	692	Neoh CF, Snell GI, Levvey B, et al. Preemptive treatment with voriconazole in lung transplant
2550		recipients. Transpl Infect Dis. 2013; 15: 344-353.

2551 2552 2553	693	Drew RH, Dodds Ashley E, Benjamin DK, Jr., Duane Davis R, Palmer SM, Perfect JR. Comparative safety of amphotericin b lipid complex and amphotericin b deoxycholate as aerosolized antifungal prophylaxis in lung-transplant recipients. <i>Transplantation</i> . 2004; 77 : 232-237.
2554 2555 2556	694	Monforte V, Ussetti P, Gavalda J, et al. Feasibility, tolerability, and outcomes of nebulized liposomal amphotericin b for aspergillus infection prevention in lung transplantation. <i>J Heart Lung Transplant</i> . 2010; 29 : 523-530.
2557 2558 2559	695	Monforte V, Lopez-Sanchez A, Zurbano F, et al. Prophylaxis with nebulized liposomal amphotericin b for aspergillus infection in lung transplant patients does not cause changes in the lipid content of pulmonary surfactant. <i>J Heart Lung Transplant</i> . 2013; 32 : 313-319.
2560 2561 2562	696	Borro JM, Sole A, de la Torre M, et al. Efficiency and safety of inhaled amphotericin b lipid complex (abelcet) in the prophylaxis of invasive fungal infections following lung transplantation. <i>Transplant Proc.</i> 2008; 40 : 3090-3093.
2563 2564 2565	697	Williams K, Mansh M, Chin-Hong P, Singer J, Arron ST. Voriconazole-associated cutaneous malignancy: A literature review on photocarcinogenesis in organ transplant recipients. <i>Clin Infect Dis.</i> 2014; 58 : 997-1002.
2566 2567	698	Montoya JG, Chaparro SV, Celis D, et al. Invasive aspergillosis in the setting of cardiac transplantation. Clin Infect Dis. 2003; 37 Suppl 3 : S281-292.
2568 2569 2570	699	Paniagua Martin MJ, Marzoa Rivas R, Barge Caballero E, et al. Efficacy and tolerance of different types of prophylaxis for prevention of early aspergillosis after heart transplantation. <i>Transplant Proc.</i> 2010; 42 : 3014-3016.
2571 2572 2573	700	Singh N, Paterson DL, Gayowski T, Wagener MM, Marino IR. Preemptive prophylaxis with a lipid preparation of amphotericin b for invasive fungal infections in liver transplant recipients requiring renal replacement therapy. <i>Transplantation</i> . 2001; 71 : 910-913.
2574 2575 2576	701	Castroagudin JF, Ponton C, Bustamante M, et al. Prospective interventional study to evaluate the efficacy and safety of liposomal amphotericin b as prophylaxis of fungal infections in high-risk liver transplant recipients. <i>Transplant Proc.</i> 2005; 37 : 3965-3967.
2577 2578	702	Reed A, Herndon JB, Ersoz N, et al. Effect of prophylaxis on fungal infection and costs for high-risk liver transplant recipients. <i>Liver Transpl.</i> 2007; 13 : 1743-1750.
2579 2580	703	Fortun J, Martin-Davila P, Montejo M, et al. Prophylaxis with caspofungin for invasive fungal infections in high-risk liver transplant recipients. <i>Transplantation</i> . 2009; 87 : 424-435.

Comments during consultation:

Please send any comments on this guideline, with supporting data or references where appropriate, to the ESCMID Publications and Medical Guidelines Manager (nancy.gerits@escmid.org) before 09 May 2017. Please use this form for your comments.

Important note: all comments as well as the authors' response to them will be published along with the final version of the guideline.

Page/Line	Comment from (name, contact details)	Comment	Reply
70/-	Francisco López-Medrano – Unit of Infectious Diseases – University Hospital 12 de Octubre, Madrid, Spain	Table 34 – HIV patients – reference 241 is not correct for this population (it refers to solid organ transplant recipients)	Many thanks. Good catch. Replaced this reference.
76/-	Francisco López-Medrano – Unit of Infectious Diseases – University Hospital 12 de Octubre, Madrid, Spain	Table 36 – Treatment with voriconazole – consider to add reference 298	Added.
7/146	Hossein Zarrinfar, Zarrinfarh@mums.ac.ir; Department of Medical Mycology and Parasitology, Allergy research centre, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, IRAN	One of the reasons for the increase in antifungal resistance is to pay no attention to the dominant species of <i>Aspergillus</i> in a region and doing empirical therapies. For example, in the Middle East among <i>Aspergillus</i> species, <i>A. flavus</i> is the most common cause detected. In addition, <i>A. niger</i> is nearly the second most common cause detected; Unlike most reports from throughout the world that <i>A. fumigatus</i> is the dominant and most frequent causative agent for fungal infections and environment airborne. The high frequency of <i>A. flavus</i> isolation from here may be because of the higher prevalence of the fungus in the environment, for example air, water, and different geographic location (1-3). 1. Fereshteh Zarei, Hossein Mirhendi, Marjan Motamedi, Bahram Ahmadi, Sadegh Nouripour-Sisakht, Hossein Zarrinfar, Nilufar Jalalizand, Jamal Hashemi. Black Aspergillus species isolated from clinical and environmental samples in Iran. Journal of medical microbiology 2015; 64(11): 1454-6. 2. Zarrinfar H, Mirhendi H, Fata AA, Khodadadi H, Kordbacheh P. Detection of <i>Aspergillus flavus</i> and <i>A. fumigatus</i> in Bronchoalveolar Lavage Specimens of Hematopoietic Stem Cell Transplants and Hematological Malignancies Patients by Real-Time Polymerase Chain Reaction, Nested PCR and Mycological Assays. Jundishapur J Microbiol 2015; 8(1): e13744.	Agree that local epidemiology is a basis to empirical treatment. Another example is A. terreus in Innsbruck.

6 8 9		•	
		3. Zarrinfar H, Saber S, Kordbacheh P, Makimura K, Fata A, Geramishoar M, Mirhendi H. Mycological Microscopic and Culture Examination of 400 Bronchoalveolar Lavage (BAL) Samples. Iranian J Publ Health. 2012; 41(7): 70-76.	
6/139	Hossein Zarrinfar, Zarrinfarh@mums.ac.ir; Department of Medical Mycology and Parasitology, Allergy research centre, Faculty of medicine, Mashhad University of Medical Sciences, Mashhad, IRAN	However, due to the high sensitivity of PCR technique especially nested PCR; the false positive results may increase because of contamination or colonization. Therefore, this method is not recommended for the specimens of non-sterile sites, although it can be helpful for immunocompromised patients at risk of invasive aspergillosis (1-2). 1. Zarrinfar H, Makimura K, Satoh K, Khodadadi H, Mirhendi H. Incidence	No action taken.
	Sciences, Mashinau, IIVAN	of pulmonary aspergillosis and correlation of conventional methods with Nested-PCR and Real-time PCR assay using BAL fluid in Intensive Care Unit patients. Journal of Clinical Laboratory Analysis 2013; 27(3): 181-185.	
		2. Zarrinfar H, Mirhendi H, Makimura K, Satoh K, Khodadadi H, Paknejad O. Use of mycological, nested-PCR and real-time PCR methods on BAL fluids for detection of <i>Aspergillus fumigatus</i> and <i>A. flavus</i> in solid organ transplant recipients. Mycopathologia 2013; 176(5-6): 377-385.	
14/336	Hossein Zarrinfar, Zarrinfarh@mums.ac.ir; Department of Medical Mycology and Parasitology, Allergy research centre, Faculty of medicine, Mashhad University of Medical	During the past two decades, the incidence of invasive aspergillosis has increased in hospitalized patients, who are particularly immunosuppressed patients. Therefore, assessment of airborne fungal spores can help decrease hospital-acquired infections (HAI) rates (1). 1. Nasrin Rostami, Hossien Alidadi, Hossein Zarrinfar, Pegah Salehi.	No action taken.
	Sciences, Mashhad, IRAN	Assessment of indoor and outdoor airborne fungi in an Educational, Research and Treatment Center. Italian Journal of Medicine. 2017; 11: 52-56.	
65/-	David Andresen, St Vincents Hospital Sydney Australia	In Table 32, since many of the agents listed are 'no better than fluconazole", and often more toxic, why isn't fluconazole in the table?	Because we strictly focus on aspergillosis.
-	David Andresen, St Vincents Hospital Sydney Australia	Itraconazole gets only a "D" recommendation but has prophylaxis efficacy equivalent to voriconazole. In our experience the capsules are better tolerated than the suspension and many patients will get good serum levels, so the suspension (which has more gut side-effects) can be reserved for those patients who do not achieve adequate therapeutic levels on the capsules. Several studies have shown good tolerability of the suspension. Itraconazole use has the advantage of "preserving" the more modern azoles for use as treatment if there is persistent fever or suspected breakthrough infection (see for instance Clinical effectiveness	Don't agree. You likely refer to David Marks study, where there was no efficacy difference between voriconazole and itraconazole. Toxicity/tolerability though was different. No action taken.

66/-	David Andresen, David.Andresen@svha.org.au St Vincents Hospital Sydney Australia	of itraconazole as antifungal prophylaxis in AML patients undergoing intensive chemotherapy in the modern era. C. L. Keighley1,2,3 & P. Manii3 & S. R. Larsen4 & S. van Hal1. Eur J Clin Microbiol Infect Dis (2017) 36:213–217) In Table 33, fluconazole gets a "D" for fever-driven therapy, presumably because of its lack of mould efficacy. However most fungal infections in this setting are yeasts so – if a CT chest can be performed to exclude aspergillosis – it's a perfectly reasonable choice. See for instance the 2000 RCT by Winston which showed Fluconazole as effective but much	The group consensus is D, because of the lack of activity against aspergillosis.
6/119-123 And Table	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of	better tolerated than amphotericin. Regarding the reference 72 saying that "Serial screening for GM in prolonged neutropenic patients and allogeneic stem cell transplantation recipients during the early engraftment phase has an excellent sensitivity	Agree. GM in BAL fluid is particularly useful in case of persistent fever and lung
6 (p32)	infectious diseases Istanbul, Turkey	and negative predictive value (NPV) for IA [71] but is not recommended in patients on mould-active prophylaxis [72]" may cause misunderstanding. We should also notice that using GM testing is not recommended in patients on mould active prophylaxis but the test remains useful to diagnose patients with a clinical suspicion of invasive fungal disease in patients under mould active prophylaxis as noted in reference 72. It is recommended in figure 1 too.	infiltrates on CT. This is addressed in the following lines.
		So, although not recommended routinely in surveillance, GM testing in patients on antimould prophylaxis is still useful for the diagnosis of IA (ref 72).	
35/- Table 8	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of infectious diseases Istanbul, Turkey	Adult haematological malignancy and HSCT: reference 389 is a study of nosocomial candidemia in ICU patients not in haematological malignancy patients, so this reference should be removed or replaced with another beta glucan study performed for the diagnosis of general IFD in haematological cancer patients (eg: odabasi z clin infect dis 2004, or ostrosky zeichner I, clin infect dis 2005 etc).	Thanks for pointing out this mistake, ref. should move down one line, inserted the proposed very appropriate references.
57/- Table 28	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of infectious diseases Istanbul, Turkey	It is generally recommended that using another class of antifungal agent for the treatment of invasive aspergillosis in patients with mould active azole prophylaxis. In table 28 you noticed that voriconazole is D III in such a condition as mentioned above but there is no recommendation about other azoles in the same table such as for itraconazole and isavuconazole.	Important point. Added this to the respective table.
		From this table, it can be misunderstood that isavuconazole or	

		itraconazole may be used in İA developed under mould active azole prophylaxis. I know that for the isavuconazole we have very limited clinical studies but the references given for voriconazole are also very poor. I think the same recommendations should also be done for isavuconazole and itraconazole at least as an expert opinion level because we know that cross resistance is can be seen in Aspergillus fumigatus isolates for all mould active azoles (ref: Gregson L, AAC 2013). Otherwise it will be a kind of bias I think.	
62/- Table 31	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of infectious diseases Istanbul, Turkey	Haematological malignancies, e.g. AML with prolonged and profound neutropenia: For the prophylaxis there is no recommendation for voriconazole, although we know that there is very limited number of clinical studies for evaluation of voriconazole in this group of patients (Vehreschild JJ, A double-blind trial on prophylactic voriconazole or placebo during induction chemotherapy for acute myelogenous leukaemia (AML), J infect. 2007) Most of the other guidelines (ECIL 5, NCCN 2015 and German hematology etc.) recommended voriconazole as an alternative agent for the primary prophylaxis of IFD in AML patients. If you do not recommend it in AML, I think it should be noticed in table 31 at least saying that no clinical data or no recommendation or CIII etc	We have it in allogeneic SCT, and not in the neutropenic population / AML, added it.
63/- Table 31	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of infectious diseases Istanbul, Turkey	Allogeneic HCT (until neutrophil recovery): I couldn't see a recommendation for Fluconazole, although it has Al recommendation in all guidelines in low risk groups,	Yes, this is the specifics of focussing on aspergillosis only, which is somewhat artificial in the prophylaxis scenario, where other pathogens play a role, too.
63, 64/- Table 31, 31b	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of infectious diseases Istanbul, Turkey	Transferring the data or results from posa prophylaxis study results (ref 525, which was performed in patients undergoing chemotherapy for acute myelogenous leukemia or the myelo-dysplastic syndrome) to neutropenic Allogeneic bone marrow transplant patients seems disrupting the homogeneity and reliability of this table and may be a kind of bias I think. The risk of aspergillosis in any kind of neutropenia then accepted as a good candidate for posa prophylaxis by this data extraction from ref 525. Even risk factors in Allo BMT cases for aspergillosis changes according to type of BMT, match or mismatch condition, age, underlying disease etc.	I see the point, but I don't follow. The group stays in line with the grading system by downgrading from A to B.

		as you know.	
65/- Table 32	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of infectious diseases Istanbul, Turkey	Table 32 is for empirical antifungal therapy of IFD in febrile neutropenic patients. Considering the Walsh study on comparison of caspo vs LamB, caspo was better with treatment of baseline IFI, especially in cases with aspergillosis. So you accepted caspo as Al. I would like to ask that how many people in your group accept the caspo as the first choice agent for the treatment of IA.	We did not vote on caspofungin first line, and there are arguments and data to support its use. No action taken.
	6	I think initially the committee must vote for the value of the fever based treatment of IA and made a recommendation for this kind of approach even by using data of the C cordonier, Girmenia and L pagano studies.	
		Even recommendations in this table have great discrepancies with figure 1 which is the guideline group's recommended diagnostic approach.	
66/- Table 33	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of infectious diseases Istanbul, Turkey	I would like to vote for Liposomal AmB as All for the treatment of refractory aspergillosis.	Should have had you there!
27/- Table 2	Zekaver Odabasi zekaver@marmara.edu.tr, Marmara University, department of infectious diseases Istanbul, Turkey	CT imaging is one of the most important diagnostic tool for IA, as guideline group made a strong recommendation on it (AII). CT is also noticed as major determinant of therapy in Figure 1. I think it is necessary to add another table to table 2 or somewhere else, and make recommendations or grading on CT findings of invasive aspergillosis (nodule with or without halo, cavity, etc).	Very challenging, but it is indeed separate papers we work on. The paper for public consultation is the executive summary only.
		We need a recommendation on frequency of CT imaging too (2 weeks etc ?)	
		And also we need recommendations on therapeutic success or failure indicators in CT imaging especially for pulmonary aspergillosis: for clinical studies there are definitions for success, stable or progressive disease as ref 201.	
-/- (General feedback)	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	 Decide on which English spelling is to be adopted British or US. If the former use "mould, pathological, haematology" throughout, if the latter use "mold", pathologic, hematology" throughout Congratulations in giving diagnosis an equal billing to prophylaxis and treatment. Given the size of the document would it not be better to 	BE, otherwise no action taken. Thanks for the compliment, it will be several papers following this executive summary.

		split it into 4 papers 1) instruction 2) diagnosis, 3) prophyalxis and 4) treatment as JAC did with the Ecil pneumocystis guidelines? Just a thought	
90/-	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	Other diagnostic procedures include early bronchoalveolar lavage (BAL) [38-44]. Should be BAL fluid throughout	BAL occurs 76 times, for readability we skipped "fluid" 75 times.
102/-	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	Both microscopy and culture should be attempted on appropriate specimens from patients at risk for IA	added
114/-	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	To achieve optimal recovery of <i>Aspergillus</i> from BAL centrifugation of the sample is advised with investigation of the sediment. Shouldn't the original volume be noted to allow estimation of the cfu/mL?	Appears more appropriate in the diagnostic full paper.
118/-	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	for diagnosis of IA and a 0.5 cut-off in serum results in a high sensitivity in haematological patients in the absence of anti-mould prophylaxis Please consider adding this cut-off is currently under review by the EORTC and MSG-ERC	Added.
134/-	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	Aspergillus PCR has been applied to blood and BAL and is being considered by the EORTC and MSG-ERC for inclusion into the definitions of invasive fungal disease.	Pleasure to add this. And I added fluid to BAL, too.
160/-	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	It is recommended that the MIC should be determined for all clinically relevant <i>Aspergillus</i> isolates	Rephrased accordingly.
317/-	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	Consider adding "In fact, recent history of neutropenia, receipt of an allogeneic stem cell transplant and prolonged use of corticosteroids are considered sufficient to meet the host factors for defining invasive fungal disease."	No action taken.
372/-	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	Please consider reversing the terminology to fever-driven (empiric) therapy, and diagnostic driven (pre-emptive) therapy as the latter allows for imaging, biomarkers or both to be used to start treatment	Agree.
27/- Table 2	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen;	Neutropenia, fever or clinical symptom of pneumonia, empiric antibiotics failing to achieve defervescence, e.g. FUO	Agree. Thanks!

	The Netherlands		
27/- Table 2	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	To identify possible underlying fungal or other infectious disease.	Rephrased.
27/- Table 2	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	What does Bridging to recovery mean?	Bridging until neutrophil recovery
27/- Table 2	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	To send appropriate specimens for microscopy, culture and PCR	Agree.
32-33/- Table 6	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	Please consider Galactomannan in blood (serum or plasma)	Now in a footnote.
32-33/- Table 6	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	Please add to the comments for patients not n mould-active prophylaxis	?
34/- Table 7	J Peter Donnelly <u>p.donnelly@usa.net</u> De Hoefkamp 1096; 6545 MD Nijmegen; The Netherlands	Galactomannan: Optimal cut-off ranging from 0.5 to 1.0 is not consistent with the text. Also use the terminology Optical Density Index (ODI) when referring to galactomannan	Refers to BAL fluid. ODI is now used on various occasions throughout the document.