Active site identification and modification of

- ² electronic states by atomic-scale doping to enhance
- 3 oxide catalyst innovation
- 4 Ying Xin,[†] Nana Zhang,[†] Qian Li,[†] Zhaoliang Zhang,^{*,†} Xiaoming Cao,^{*,‡} Lirong Zheng,[§]
- 5 Yuewu Zeng,¹ James A. Anderson^{*,⊥}
- 6 [†]School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of
- 7 Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
- 8 [‡]Center for Computational Chemistry, School of Chemistry and Molecular Engineering, East

```
9 China University of Science and Technology, Shanghai 200237, China
```

- 10 §Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- 11 Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Zhejiang
- 12 University, Hangzhou 310027, China
- 13 [⊥]Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, University of
- 14 Aberdeen, AB24 3UE, United Kingdom
- 15

16	ABSTRACT: Identification of the catalytic active site is critical in the designing and developing		Deleted: to
17	of advanced heterogeneous catalysts. Many high-precision experimental techniques, as well as		
18	computational methods, have been developed to address this problem, but identifying the active		
19	site for composite oxide catalysts still remains a challenging task due to their complexity and		
20	indiscernible microstructures. Herein, we provider a key new insight into the active site within a	<	Deleted: d
21	composite oxide catalyst by investigating an iron-based oxide catalyst with complex-		Deleted: s
22	components. The dopant atoms with octahedral coordination located at substitution-sites in the		
23	Fe ₂ O ₃ lattice, tune the electronic structure of the adjacent iron atoms, which act as the active sites-		Deleted: essential
24	which lead to tenhanced catalytic activity. This atomic-scale doping is different from the		Deleted: for the
25	emerging single-atom catalyst concept, in which the single atom on the support is the active site,		
26	and which provide an alternative methodology of improving the activity of heterogeneous-		Deleted: would
27	catalysts with maximized heteroatom efficiency.		
28 29	KEYWORDS: <u>Heterogeneous catalyst; Composite oxide; Atomic-scale doping; Selective</u> catalytic reduction: Nitrogen oxides; Active site: DFT calculation: Electronic state		
30			
50			
31	1. INTRODUCTION		
32	Based on the different complexity levels, heterogeneous solid catalysts in multicomponent		Deleted: In heterogeneous catalysis,
33	systems can be divided into three typologies; i) single-site heterogeneous catalysts; ii) supported		Deleted: three different typologies of heterogeneous catalysts with different complexity levels are reported

metal catalysts; iii) transition metal oxide catalysts.¹ However, the elucidation and understanding

of structure-function relationships is a long-standing challenge in the field of heterogeneous

catalysis, despite significant ongoing research in the area. As a landmark contribution to catalyst

theory, Taylor suggested that a catalysed chemical reaction occurs at a limited number of "active

34

35

36

37

48	sites," irrespective of the type of heterogeneous catalyst. ² This finding initiated a worldwide	D	eleted: ,
49	research surge to explore the nature of these active sites. Progress however is often hampered by		
50	the difficulty of identifying the active site within a complex matrix on a catalyst surface. ³⁻⁵ The		
51	different types of heterogeneous catalysts commonly exhibit a variety of different surface sites		
52	that are difficult to identify and quantify. The scenario is further complicated when multiple sites		
53	work together in turning over a reaction. ³ In particular, for transition metal oxide catalysts, the		
54	heteroatoms or ions are often intentionally incorporated into the host lattices to control and		
55	manipulate their properties and morphology changes, ultimately in order to improve their		
56	functional performance. ⁶⁻¹⁰ The substitution of dopant atoms in host oxides conventionally		
57	results in the formation of composite oxides, containing multiple phases, solid solutions, or even		
58	amorphous species. ¹¹⁻¹³ Due to their complexity and indiscernible microstructures, the active		
59	sites have not been clearly and systematically investigated, especially for poorly-crystallinity or		
60	amorphous samples. Hence, it is difficult to pick out the catalytic active site from an assembly of	D	eleted: cases
61	potential candidates in a composite oxide catalyst, and the detailed structure of active sites as		
62	well as the functional mechanism still remains elusive, and requires further exploration, 14	D	eleted: ing
		_	
63	On the basis of the previous studies, the dopant in composite oxides are assumed to disrupt the		eleted: works
64	chemical bonding at the surface of the host oxide, and the active sites are ascribed to either the	D	eleted: considered
65	oxygen anions near the dopant or the dopant itself. ^{8,15-18} Here, novel insight into the catalytic	D	eleted: we present
66	active site of a composite oxide catalyst is presented using an iron-based oxide with complex	D	eleted: by investigating
67	components as an example. The storie resolution and visualized characterization combined with		
07	components as an example. The atomic-resolution and visualized characterization combined with		
68	the computer simulations accurately identify the active sites in $\ensuremath{\text{Fe}_2\text{O}_3}\xspace$ based oxide catalyst, and		
69	uncover the reason for the enhanced activity, as exemplified by the selective catalytic reduction	D	eleted: responsible
	· · · · · · · · · · · · · · · · · · ·		eleted: i
70	(SCR) of NO _x . The dopant atoms with octahedral coordination located at substitution-sites of the	D	eleted: n

81	Fe_2O_3 lattice tune the electronic structure of surface Fe atoms, which then acts as the <u>effective</u> .		Deleted: ssential
82	active sites. This opens up a different perspective on active sites of composite oxide catalysts	(Deleted: throws
83	from the emerging single-atom (ion) catalysis concept, in which the single atom or ion on the		Deleted: i
84	support is the active site, and thus provides an alternative route to improving the activity of		
85	heterogeneous catalysts which maximises heteroatom efficiency by atomic-scale doping. ¹⁹		Deleted: ith

leted:	ssential

	_	-
Dolotod	:	
Jeleteu.	1	

eleted: ith
eleted: zed
eleted: s

2. EXPERIMENTAL SECTION 87

86

88	The Mo_x -Fe ₂ O ₃ and W_y -Fe ₂ O ₃ samples (x represents Mo/Fe atomic ratio, and y represents		Deleted:
		\frown	Deleted:
89	W/Fe atomic ratio from ICP data) were prepared by a co-precipitation method using an aqueous		Deleted:
			Deleted:
90	solution of ammonium molybdate ((NH ₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O, 200 mL. The pH value was adjusted to		
91	9.0 by ammonium hydroxide with stirring for 30 min)/sodium tungstate (Na ₂ WO ₄ ·2H ₂ O, 200		
92	mL) and ferrous sulfate (FeSO ₄ ·7H ₂ O, 100 mL) with ammonium hydroxide (NH ₃ ·H ₂ O, 25-28		
02			
93	wt.%) at 35 °C, with the pH value of the precipitation process controlled at above 6.0 and that of		
04	the analysis a station maintained at 0.0. The total amount of the modelline set and any one 0.02		
94	the resulting solution maintained at 9.0. The total amount of the metallic salt precursor was 0.03		
95	mol Ascorbic acid ($C_2H_2O_2$ 100 mg) was added to the initial iron precursor solution to promote		
)5	noi. Ascoroic acid (Consolo, 100 mg) was added to the initial non precursor solution to promote		
96	the reducibility of the Fe^{2+} The obtained shurry was aged with stirring at 35°C for three hours	_	Deleted:
20	and reductioning of the rest into obtained starty was used with starting a style rot meet nous		
97	and subsequently filtrated and washed. The resulting solid was dried overnight at 70°C and	_	Deleted:
,,	and subsequently influed and washed. The resulting solid was dried overlinght at rece and		20101041
98	calcined at 500°C for 5 h For comparison and further investigation $\text{Fe}_2\Omega_2$ Mo Ω_2 and		Deleted:
20	emented at 500 c for 5 hg for companion and rather intestigation, rezely, moey, and	\leq	Deleted
99	$\text{Ee}_{2}(M_{0}\Omega_{1})_{2}$ were also prepared. More experimental details are described in the Supporting		Deleteu.
,,	rezumociji, were also prepared. More experimental details are desenoed in the supporting		
100	Information		
100	Information.		

101 3. RESULTS AND DISCUSSION

Deleted: Moa	
Deleted: W _b	
Deleted: a	
Deleted: b	

4

Deleted: ours

139	The weak XRD peaks of M_{0_x} -Fe ₂ O ₃ are indexed as a hematite phase of Fe ₂ O ₃ (JCPDS 33-0664),	
140	while no diffraction peaks due to Mo-containing species were detected (Figure S1a). The slightly	
141	decreased lattice parameters (a) of Fe ₂ O ₃ phase linearly correlate with the increasing Mo content	
142	in Mox-Fe2O3, suggesting that the dopant Mo atoms give rise to the lattice contraction of the	
143	Fe_2O_3 crystalline, owing to the smaller ionic radius of $Mo^{6\scriptscriptstyle +}$ (six-fold coordination, 0.59 Å)	
144	compared with Fe^{3+} (six-fold coordination, 0.645 Å) (Figure S1b and Table S1). To verify the	
145	effect of dopant Mo atoms on the catalytic performance of Mox-Fe2O3 catalysts, SCR was set as	
146	a representative reaction. Consequently, the excellent redox property of $\mathrm{Fe_2O_3}$ is potentially	
147	integrated with the promoting effect of dopant Mo atoms, fabricating a novel and improved	
148	catalyst compared to the existing ones. ^{22,23,25-28} As expected, the SCR performances of $M_{0,-}$	
149	$\mathrm{Fe}_2\mathrm{O}_3$ are superior to those of the pure oxides, which additionally provide an extended active	
150	temperature window (temperatures at which >90% NO _x conversion was achieved) especially at	
151	low temperature (Figures 1a and S2),	
152	The <u>nature of Mo</u> dopant atoms and their impact on the structure and properties of M_{0x} -Fe ₂ O ₃	
153	were investigated in great detail. The geometry and morphology of Mo_{1} -Fe ₂ O ₃ were greatly,	
154	affected by the dopant Mo atoms (Figure <u>\$3</u>). The low-resolution HAADF image and	\sum
155	corresponding EDS elemental mappings of Mo _{0.06} -Fe ₂ O ₃ proved that the dopant Mo atoms, and	
156	Fe and O are highly dispersed throughout the whole region of aggregates without forming larger	

bulk Mo-containing oxides (Figure 2a). The corresponding HRTEM image (Figure 2b) exhibit clear lattice fringes which are ascribed to the (104) crystal plane of Fe_2O_3 (labeled by white lines), meanwhile a few lattice spacings (labeled by yellow lines) correspond to the crystal planes of monoclinic $Fe_2(MoO_4)_3$ phase. In view of lack of sensitivity of X-ray diffraction to small clusters or low-concentration phases, the $Fe_2(MoO_4)_3$ phase was not detected in XRD Deleted: Moa

Deleted: Moa

Deleted: Mo_a

Deleted: Moa

Deleted: In general, $Mo_{0.06}$ -Fe₂O₃ possessed not only the optimal activity but also good resistance to H₂O and SO₂ (Figure S3).

-{	Deleted: detailed information
-{	Deleted: Mo
Υ	Deleted: Mo _a
-{	Deleted: Mo _a
Υ	Deleted: profoundly
4	Deleted: S4

190	microcrystal (the blue and red rectangles indicate the single or poly-molybendum species with
191	several Mo atoms linked by oxygen bridging bonds; the green and pink shapes indicate several
192	Fe atoms linked by oxygen bridging bonds), (d) line intensity profile across Mo and Fe atoms as
193	indicated in (c), and (e) the radial structure function (RSF) curves of Mo K-edge XAFS spectra
194	for Mox-Fe2O3 catalysts and the reference samples. The dashed line indicates the Mo-Mo shell.
195	

Deleted: Moa Deleted: vertical

Deleted: Moa

196	X-ray photoelectron spectroscopy (XPS) was used to characterize the surfaces of Mo_x -Fe ₂ O ₃ .
197	The spectra of Fe 2p for Fe ₂ O ₃ and Mo_3 -Fe ₂ O ₃ catalysts showed that no obvious change in
198	binding energies was observed after the doping of Mo due to the excess Fe_2O_3 in Mo_x -Fe ₂ O ₃
199	catalysts (Figure <u>S6a</u>). Nevertheless, compared with MoO ₃ , the binding energies of Mo 3d for
200	Mo_3 -Fe ₂ O ₃ and Fe ₂ (MoO ₄) ₃ showed an obvious shift towards lower binding energies due to the
201	strong interaction between Mo and Fe species (Figure Sab). ^{29,30} The O 1s peaks can be fitted
202	using two peaks, referred to as the lattice oxygen at ~ 530.4 eV (O _β) and the chemisorbed surface
203	oxygen at ~531.6 eV (O _{α}) (Figure S ₆ c). ³⁰ The surface atomic ratios of Mo/Fe obtained from XPS
204	data are much higher than those of the bulk (ICP data, Table S1), suggesting enrichment by Mo
205	at the surface of M_{0x} -Fe ₂ O ₃ .

206 The atomic resolution high-angle annular dark field (HAADF) scanning transmission electron 207 microscopy (STEM) was used to provide directly interpretable images of surface Mo species.¹⁶ 208 The arrangement of Fe and/or Mo atoms is uniform in the Fe₂(MoO₄)₃ microcrystal (Figure <u>\$7a</u>). Deleted: S8a 209 In contrast, besides the uniform arrangement of Fe atoms, several bright flecks were detected in 210 the Fe₂O₃ crystallites, which are ascribed to isolated Mo atoms due to the difference in Z 211 contrasts between Fe and Mo atoms (Figures 2c and <u>\$7b</u>). Although the oxygen atoms are not

Deleted: Moa Deleted: Moa Deleted: S7a Deleted: Moa Deleted: the Deleted: 7 Deleted: 529 Deleted: 7 Deleted: 7 Deleted: Moreover, t

Deleted: Moa

Deleted: S8b

228	resolved by HAADF imaging, the Mo species in this sample are known to be fully oxidized after
229	the high-temperature calcination stage. Therefore, Mo atoms coordinated with O atoms are
230	doped into the Fe ₂ O ₃ lattice. Furthermore, HAADF intensity variations existed within the two-
231	dimensional lattice of Fe ₂ O ₃ crystallites according to the line intensity profiles (Figures 2c and
232	d). As shown in Figure 2d, the adjacent Mo atoms (blue rectangle) show a similar level of
233	intensity as an isolated Mo atom (red rectangle). Due to the lower atomic mass compared to Mo
234	atoms, the Fe atoms in proximity of Mo atoms <u>clearly</u> show Jower intensity, similar to those in
235	the pure Fe_2O_3 . ¹⁶ More importantly, all of the Mo atoms with a high contrast occupy the lattice
236	sites, confirming that these Mo atoms are doped into the Fe ₂ O ₃ lattice matrix. ³¹

÷

237	X-ray absorption fine structure (XAFS) spectra for Mo_x -Fe ₂ O ₃ were measured to obtain	-
238	detailed structural information of dopant Mo atoms in the bulk structure. ^{16,32} The Fe K-edge	
239	XANES spectra and RSF curves for Fe_2O_3 and Mo_3 - Fe_2O_3 are similar, indicating that the Fe	_
240	atoms in Mo_3 -Fe ₂ O ₃ are trivalent and <u>occupy</u> octahedral (O_h) coordination similar to Fe ₂ O ₃	_
241	(Figure <u>\$8</u>). In the case of the Mo K-edge, the peak position and shape of the normalized	
242	XANES and RSF curves for M_{0x} -Fe ₂ O ₃ corresponded well with those of (NH ₄) ₆ Mo ₇ O ₂₄ , which	_
243	implies that most of the hexavalent Mo atoms in Mo_x -Fe ₂ O ₃ exist in the same O_h coordination	_
244	environment as that of the (Mo ₇ O ₂₄) ⁶⁻ anions (Figures 2e and <u>S9a</u>). ³³ However, the Mo atoms in	_
245	Fe ₂ (MoO ₄) ₃ crystals are in tetrahedral (T _d) coordination as indicated by its different XANES	
246	spectrum. ³⁴ According to the above results, it may be deduced that Fe atoms in Fe_2O_3 lattice are	
247	substituted by Mo atoms, which are in the same O_h coordination as Fe atoms in the Fe ₂ O ₃ lattice.	
248	<u>The majority of the Mo-containing species in M_{0x}-Fe₂O₃ are Mo atoms which substitute for Fe</u>	_
249	atoms in the Fe ₂ O ₃ lattice with O _h coordination. The relative amount of dopant Mo atoms with	
250	$O_{\rm h}$ coordination, i.e. the (Mo ₇ O ₂₄) ⁶⁻ species, obtained from the XAFS spectra using linear	

Deleted: Hence,

Deleted: clearly

> Deleted: Moa Deleted: Moa Deleted: Moa Deleted: in Deleted: S9 Deleted: Moa Deleted: Moa Deleted: S10a

Deleted: Above all, t Deleted: Moa

263 combination fitting (LCF) (Figures S9b-d) has the same tendency with the normalized rate Deleted: S10b expressed on the basis of the BET surface area (r_{BET}) (Figure 1b).³⁵ This provides convincing 264 265 evidence that the dopant Mo atoms with O_h coordination contribute to <u>the</u> promoting <u>of</u> activity. 266 To further clarify how the chemical properties of Mo_3 -Fe₂O₃ were improved by the dopant Mo 267 atoms, the redox properties and acidity were assessed as these are believed to be crucial characteristics associated with SCR 26,36-38 Surprisingly, neither the redox properties (H2-TPR, 268 269 Figure \$10a) nor the NO oxidation performance (Figure \$10b) of Mo_x -Fe₂O₃ were promoted by 270 doping with Mo atoms. The acidity of M_{0x} -Fe₂O₃ was examined by temperature-programmed 271 desorption of NH₃ (NH₃-TPD) (Figure <u>\$11</u>). In comparison with Fe₂O₃, a greater amount of 272 ammonia was desorbed in the range 100-500°C (NH₃ adsorption on MoO₃ was negligible), 273 indicating enhanced acidity of Mox-Fe2O3. By integrating the NH3-TPD peak areas, the relative 274 amounts of adsorbed NH₃ may be correlated with the reaction rate of Mo_x -Fe₂O₃ (Figure 1b), 275 indicating that promotion of activity can be primarily ascribed to the enhanced acidity, resulting 276 from the doping by Mo atoms in Fe₂O₃. haa Deleted: based on

211	The improvement arising from, actually modification was further assessed by m situ FTIR of
278	NH ₃ adsorption and SCR reactions (Figures <u>\$12</u> and <u>\$13</u>). Only Brønsted acid sites were
279	detected for Fe ₂ O ₃ , while both Lewis acidic and Brønsted acidic sites were observed for Mo _{0.06} -
280	Fe ₂ O ₃ (Figure S13). ³⁹⁻⁴⁴ The additional Lewis acid sites are <u>believed</u> to be associated with the
281	doping of Mo atoms in Fe ₂ O ₃ . Furthermore, a band at ~1328 cm ⁻¹ detected for $Mo_{0.06}$ -Fe ₂ O ₃ , may
282	be attributed to an additional surface species resulting from the combination of adsorbed and
283	activated NH ₃ at Lewis acid sites and NO _x (Figure <u>\$13</u>). ^{40,42} Both observations strongly suggest
284	that the presence of Lewis acid sites created by the doping of Mo in Mo_x -Fe ₂ O ₃ are responsible

-	Deleted: the
Ч	Deleted: activity
-	Deleted: S11a
Η	Deleted: S11b
Υ	Deleted: Mo _a
Υ	Deleted: Mo _a
-	Deleted: S12
-	Deleted: temperature
Ч	Deleted:
-	Deleted: Mo _a
-	Deleted: Moa

Deleted: Moa

Deleted: S13 Deleted: S14

Deleted: deemed

Deleted: intermediate Deleted: surface Deleted: derived from Deleted: S14 Deleted: Moa Deleted: is

308 for the improved SCR activity. A question remains as to whether the Lewis acid site is associated

309 directly with these dopant Mo atoms?

310

³¹² Figure 3. (a) The optimized surfaces of pure Fe₂O₃ (104), Mo-doped Fe₂O₃ (104) at surface 313 (denoted as Mo-surf), and subsurface Mo-doped Fe₂O₃ (104) (denoted as Mo-sub) models; (b) 314 the local density of states of 3d orbitals of Fe1, and (c) adsorption configurations and adsorption 315 energies of NH3 on Fe sites of Fe2O3 (104), and Mo-surf. The center of valence d-band of Fe1 at 316 Fe₂O₃ (104), Mo-surf and Mo-sub are located at -4.82, -4.76 and -4.32 eV, respectively. The 317 center of conduct d-band of Fe1 at Fe2O3 (104), Mo-surf and Mo-sub are located at 2.05, 2.04 318 and 1.54 eV, respectively. The purple, blue, cyan, and red balls, respectively, represent Fe with 319 up spin, Fe with down spin, Mo, and O atoms.

321	In order to elucidate the nature of the enhanced Lewis acidity, DFT calculations were
322	performed using the Vienna ab-initio simulation package. ^{45,46} The antiferromagnetic hematite (α-
323	Fe ₂ O ₃) which is the thermodynamically most stable phase of iron oxide was investigated (Figure
324	\$14). As displayed in TEM images (Figure 2), the (104) surface was exposed. DFT calculations
	Deleted: of
325	were performed on the pure and Mo-doped Fe ₂ O ₃ (104). The doped Mo is energetically most Deleted: Consequently
326	likely to occupy the surface Fe site with broken O _h coordination, which is 0.95 eV more stable
327	than the second most stable subsurface Fe site with O _h coordination (Figure 3a). Additionally, Deleted: Moreover
328	once the Mo is doped into the surface, the dissociative adsorption of O ₂ is facilitated at the Mo
329	site (Figure <u>\$15</u>), which is shown by the relative concentration ratios of surface adsorbed oxygen
330	$(O_{\alpha}/(O_{\alpha}+O_{\beta}))$ which correlates with the amount of dopant Mo atoms and reaction rates (Figure
331	1b, and Table S1). After the dissociative adsorption of O ₂ , this surface dopant Mo will form an
b22	O coordination site as well, consistent with VAES results
332	Oh coordination site as well, consistent with XAFS results.
332	Oh coordination site as well, consistent with XAFS results.
332 333	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the Deleted: Interestingly, b Deleted: Interestingly, b
332 333 334	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values Deleted: Interestingly, b
332333334335	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the Deleted: Interestingly, b projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values Deleted: Interestingly, b between the dopant Mo and O1 (-4.43 eV and -7.44 eV, corresponding to the Mo doped at the Image: Corresponding to the Mo doped at the
 332 333 334 335 336 	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values Deleted: Interestingly, b between the dopant Mo and O1 (-4.43 eV and -7.44 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively) are found to be more negative than those of Fe1 and Image: Constant of the constant
 332 333 334 335 336 337 	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the Deleted: Interestingly, b projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values Deleted: Interestingly, b between the dopant Mo and O1 (-4.43 eV and -7.44 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively) are found to be more negative than those of Fe1 and surface O1 connecting with Mo and Fe1 (-1.83 eV and -0.05 eV, corresponding to the Mo doped Hord Appendix Appe
 332 333 334 335 336 337 338 	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values Deleted: Interestingly, b between the dopant Mo and O1 (-4.43 eV and -7.44 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively) are found to be more negative than those of Fe1 and surface O1 connecting with Mo and Fe1 (-1.83 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and Deleted: . Deleted: .
 332 333 334 335 336 337 338 	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values between the dopant Mo and O1 (-4.43 eV and -7.44 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively) are found to be more negative than those of Fe1 and surface O1 connecting with Mo and Fe1 (-1.83 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and Deleted: . Deleted: . Deleted: ing Deleted: ing
 332 333 334 335 336 337 338 339 	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values between the dopant Mo and O1 (-4.43 eV and -7.44 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively) are found to be more negative than those of Fe1 and surface O1 connecting with Mo and Fe1 (-1.83 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 (-4.43 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 (-4.43 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 (-4.43 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 (-4.43 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 (-4.43 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 (-4.43 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 (-4.43 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests at the surface and subsurface sites, respectively. This suggests at the surface and subsurface sites, respectively. This suggests at the surface and subsurface sites, respectively of Mo, as indicated above. Compared with the Deleted: . This strong bonding was
 332 333 334 335 336 337 338 339 340 	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values between the dopant Mo and O1 (-4.43 eV and -7.44 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively) are found to be more negative than those of Fe1 and surface O1 connecting with Mo and Fe1 (-1.83 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 (which is ascribed to the strong oxophilicity of Mo, as indicated above. Compared with the IpCOHP value between surface neighboring Fe1 and O1 in the pure Fe2O3 (104) (-2.43 eV), the Deleted: the
 332 333 334 335 336 337 338 339 340 341 	Oh coordination site as well, consistent with XAFS results. Deleted: the By integrating the contribution of the energy bands up to the Fermi level based on the projected Crystal Orbital Hamilton Population (IpCOHP) analysis, ^{47,48} the IpCOHP values between the dopant Mo and O1 (-4.43 eV and -7.44 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively) are found to be more negative than those of Fe1 and surface O1 connecting with Mo and Fe1 (-1.83 eV and -0.05 eV, corresponding to the Mo doped at the surface and subsurface sites, respectively). This suggests strong bonding between Mo and O1 whichis ascribed to the strong oxophilicity of Mo, as indicated above. Compared with the IpCOHP value between surface neighboring Fe1 and O1 in the pure Fe2O3 (104) (-2.43 eV), the IpCOHP values between Fe1 and O1 on Mo-doped surfaces becomes less negative, indicating Deleted:

354	results of Mo 3d (Figure <u>S6b</u>). The lower binding energies of Mo 3d for <u>Mo_x</u> -Fe ₂ O ₃ indicate the		Deleted: S7b
255	deniedien of the electron pland from To ³⁺ to Ma ⁶⁺ which is due to the strong electron bilities of		Deleted: Mo _a
322	deviation of the electron cloud from Fe ⁻⁺ to Mo ⁺⁺ , which is d <u>ue to the strong electrophilicity of</u>		Deleted: erived from
356	$\mathrm{Mo}^{6\scriptscriptstyle +}\!,$ leading to the attenuation of the surface Fe-O bonding. Consequently, the neighboring		
357	surface Fe site becomes more active. As displayed in the local density of states plot (Figure 3b),		
358	when compared to pure Fe_2O_3 (104), the valence band of Fe1 site upshifts while the conduction		
359	band of Fe1 site downshifts following introduction of Mo. This leads to the enhanced Lewis		
360	acidity of the adjacent Fe site resulting from the introduction of Mo, as detected by in situ FTIR.		
361	The adsorption energy of NH_3 at surface Fe1 site is increased from 0.69 eV on the pure Fe_2O_3		
362	(104) surface to 1.15 eV with the dopant Mo at the surface (Figure 3c). However, the adsorption		
363	of NH ₃ on the clean surface Mo site at Mo-doped Fe ₂ O ₃ (104) is only 0.56 eV (Figure <u>S16</u>). In		Deleted: S17
364	fact, introduction of the dopant with strong oxophilicity to the host metal oxide, improved the	(Deleted: addition
365	Lewis acidity of the surface Fe sites. Thus, it is the parent ion rather than the dopant ion that are		
366	the catalytically active sites, which is distinct from the traditional perspective on the active site in		
367	doped oxide catalysts, ^{8,49} In addition, the high low-temperature activity originating from the		Deleted: . For a long time, it has been assumed that the doping atoms are always the active sites
368	enhanced Lewis acidity is evidently different from the previous assumptions, that Fe-based		Deleted: derived
		<	Deleted: added
369	oxides show high SCR activity due to the excellent redox property of Fe. ⁵⁰⁻⁵²	Y	Deleted: perspectives

(a)	ſ					•-	-Fe ₁ O	(b	is I	Y		
(a.u.		he	Le	ww	in	-	WO,/	10	A		-	
nsity	-	-	i.			W,	-Fe	0,			12	S
Inter		-	1-		-	W ₂	Fe	ο,	300		-	-
			A	-	-	W _o	17-Fe2	D,	Z.		-	48.14
	10 20	30	40	50 20/°	60	70	80	90			Ø.	200 m
(c)	3334					d)	7	1	10. L		Fe	
12			36		8	- 8						
- 9						- 8						
- 8						- 8					w	
- 8						- 8					1.5	
- 8						- 8						
				-	<u> </u>	. 1		332	1.26	-		
(e)		Λ		1	W L _m -	edge	(f)	2 110	W _{8.09} -Fe W _{8.13} -Fe	0, W	0, 2,0,	
-		$\backslash \backslash$	\int		Fo	14/0		100	W _{b tr} -Fe	°i II	hi in	4
tv/a		n	W	5	W	Fe,O		0 80	1			
ens	-	1	-	-	W _{2.12} -	Fe,O		60				
<u>-</u>	-	11	~	2	W	Fe,O		5 20				
	-		~	~	_			z .				
	0	1 2	3 R//	4	9 S	5	6	1	50 200 225	empera	ture/°C	420 500

382	Figure 4. (a) XRD patterns of W_{1} -Fe ₂ O ₃ catalysts, (b) TEM image and corresponding SAED	Deleted: W _b
383	pattern of $W_{0.13}$ -Fe ₂ O ₃ , (c, d) HAADF images and EDS elemental mappings of $W_{0.25}$ -Fe ₂ O ₃ , (e)	
384	RSF curves of W L _{III} -edge XAFS spectra for W_{γ} -Fe ₂ O ₃ and the reference samples, and (f) NO _x	Deleted: W _b
385	conversions of Fe ₂ O ₃ and W_{y} -Fe ₂ O ₃ catalysts.	Deleted: W _b

387	Following the above strategy, an alternative theteroatom, tungston, which possesses similar	Dele
		Dele
388	characters to Mo, was doped into the Fe ₂ O ₃ matrix. XRD patterns revealed weak signals (at $2\theta \sim$	Dele
389	30° and 60°) <u>due to</u> Fe ₂ O ₃ with some broad features, suggesting low crystallinity of W ₂ -Fe ₂ O ₃	Dele
		Dele
390	(Figure 4a) TFM characterizations also indicate the absence of long-range ordered structure or	
570	(Figure 44). This characterizations also indicate the absence of fong funge ordered structure of	Dele
391	serious distortion of the crystal structure (Figure 4b). HAADF-STEM shows large-scale	
392	disordered atoms arrangement (including Fe and W) in $W_{0,13}$ -Fe ₂ O ₃ , and particularly, several	
202	bright floats in the Eq.O. micrographic which are proposed as isolated W stoms (Figures 4a and	
393	bright necks in the Fe ₂ O ₃ incrocrystal which are proposed as isolated w atoms (Figures 4c and	

Deleted: differen
Deleted: W
Deleted: diffraction peaks
Deleted: of
Deleted: besides
Deleted: W _b

403 d), confirming an equivalent state of Was found for Mo. Furthermore, these dopant W ions are 404 highly dispersed throughout the whole Fe₂O₃ microcrystals as illustrated by EDS elemental 405 mappings (Figure 4d). XAFS shows that the hexavalent W atoms in W_{y} -Fe₂O₃ to possess the same O_h coordination environment as that of Fe₂WO₆, and the lower intensity has been ascribed 406 to a distortion of the WO₆ octahedral structure (Figure 4e).⁵³ As predicted, the SCR activities of 407 408 W_{y} -Fe₂O₃ were clearly promoted especially at low temperatures (Figure 4f). This proof-of-409 concept example confirmed that the partial substitution of Fe atoms by atomic-scale dopant 410 heteroatoms with octahedral coordination in the Fe₂O₃ lattice leads to the improved catalytic 411 performance.

412 4. CONCLUSIONS

413 Results here provide atomic-scale identification of catalytic active sites in Fe₂O₃-based oxide 414 catalysts with indiscernible microstructures. Detailed characterization combined with DFT 415 calculations confirmed that the catalytic active sites are not the dopant atoms themselves but 416 rather the adjacent Fe atoms whose electronic structure was modified by the dopant atoms 417 resulting in enhanced Lewis acidic properties of the catalyst. This new insight opens up a unique 418 perspective rgarding catalytic active sites in composite oxide catalysts with atomic-scale doping 419 used to maximize the efficiency of heteroatoms. This could be applied not only to this particular 420 reaction, but also to various other heterogeneous composite oxide catalytic systems.

(Deleted: Our r
(Deleted: The in depth
	Deleted: tuned
(Deleted: in
	Deleted: development of

Deleted:

Deleted: W_b

Deleted: W_b

421

422 ASSOCIATED CONTENT

431 Supporting Information. Catalytic performance tests, characterization methods, computational

- 432 methods, and additional supplementary figures and tables. This material is available free of
- 433 charge via the Internet at http://pubs.acs.org.
- 434 AUTHOR INFORMATION
- 435 Corresponding Author
- 436 *chm_zhangzl@ujn.edu.cn
- 437 *xmcao@ecust.edu.cn
- 438 *j.anderson@abdn.ac.uk
- 439

440 ACKNOWLEDGMENT

- 441 This work was supported by National Natural Science Foundation of China (No. 21477046)
- 442 and Key Technology R&D Program of Shandong Province (No. 2016ZDJS11A03).

443 **REFERENCES**

- 444 (1) Piumetti, M.; Freyria, F. S.; Bonelli, B. Chim. Oggi. 2013, 31, 55-58.
- (2) Taylor, H. S. P. Roy. Soc. Lond. A Mat. **1925**, 108, 105<u>-111</u>.
- 446 (3) Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.
- 447 Science **2007**, 317, 100<u>-102</u>.
- 448 (4) Zambelli, T.; Wintterlin, J.; Trost, J.; Ertl, G. Science 1996, 273, 1688-1690.
- (5) Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Nature 2009, 458, 746-749.

- 450 (6) Cargnello, M.; Johnston-Peck, A. C.; Diroll, B. T.; Wong, E.; Datta, B.; Damodhar, D.;
- 451 Doan-Nguyen, V. V. T.; Herzing, A. A.; Kagan, C. R.; Murray, C. B. *Nature* 2015, 524,
- 452 450<u>-453</u>.
- 453 (7) Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong,
 454 M. H.; Liu, X. G. *Nature* 2010, 463, 1061-1065.
- 455 (8) McFarland, E. W.; Metiu, H. Chem. Rev. 2013, 113, 4391-4427.
- 456 (9) Norris, D. J.; Efro, A. L.; Erwin, S. C. Science **2008**, 319, 1776-1779.
- (10) Yang, Y. F.; Jin, Y. Z.; He, H. P.; Wang, Q. L.; Tao, Y.; Lu, H. M.; Ye, Z. Z. J. Am. Chem. *Soc.* 2010, 132, 13381-13394.
- (11) Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D. J. Am. Chem. Soc. 2008,
 130, 2736-2737.
- 461 (12)Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.;
 462 Trudel, S.; Berlinguette, C. P. *Science* 2013, 340, 60<u>-63</u>.
- 463 (13)Shi, J. L. Chem. Rev. **2013**, 113, 2139-2181.
- 464 (14) Labinger, J. A. Nature 2016, 536, 280-281.
- 465 (15) Wang, X. Q.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martínez-Arias, A.; Fernández466 García, M. J. Phys. Chem. B 2006, 110, 428-434.
- 467 (16)Zhou, W.; Ross-Medgaarden, E. I.; Knowles, W. V.; Wong, M. S.; Wachs, I. E.; Kiely, C. J.
- 468 Nat. Chem. **2009**, 1, 722<u>-728</u>.
- 469 (17)Colussi, S.; Gayen, A.; Camellone, M. F.; Boaro, M.; Llorca, J.; Fabris, S.; Trovarelli, A.
- 470 Angew. Chem. Int. Ed. **2009**, 48, 8481<u>-8484</u>.
- 471 (18)Schaub, R.; Thorstrup, P.; Lopez, N.; Lægsgaard, E.; Stensgaard, I.; Nørskov, J. K.;
- 472 Besenbacher, F. Phys. Rev. Lett. 2001, 87, 266104.

- 473 (19) Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.;
- 474 Zhang, T. Nat. Chem. 2011, 3, 634-641.
- 475 (20) Jagadeesh, R. V.; Surkus, A.; Junge, H.; Pohl, M.; Radnik, J.; Rabeah, J.; Huan, H.;
- 476 Schünemann, V.; Brückner, A.; Beller, M. *Science* **2013**, 342, 1073-1076.
- 477 (21)Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Appl. Catal. B 1998, 18, 1-36.
- 478 (22)Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. Science 2014, 345, 637-640.
- (23) Mou, X. L.; Zhang, B. S.; Li, Y.; Yao, L. D.; Wei, X. J.; Su, D. S.; Shen, W. J. Angew. *Chem. Int. Ed.* 2012, 51, 2989-2993.
- 481 (24)Lin, J.; Wang, A. Q.; Qiao, B. T.; Liu, X. Y.; Yang, X. F.; Wang, X. D.; Liang, J. X.; Li, J.;
- 482 Liu, J. Y.; Zhang, T. J. Am. Chem. Soc. **2013**, 135, 15314-15317.
- 483 (25)Li, Y.; Zhou, Y. X.; Ma, X.; Jiang, H. L. Chem. Commun. 2016, 52, 4199-4202.
- 484 (26)Liu, F. D.; Yu, Y. B.; He, H. Chem. Commun. 2014, 50, 8445-8463.
- 485 (27) Lietti, L.; Nova, I.; Ramis, G.; Acqua, L. D.; Busca, G.; Giamello, E.; Forzatti, P.; Bregani,
- 486 F. J. Catal. **1999**, 187, 419<u>-435</u>.
- 487 (28) Peng, Y.; Qu, R. Y.; Zhang, X. Y.; Li, J. H. Chem. Commun. 2013, 49, 6215-6217.
- 488 (29)Liu, F. D.; He, H. J. Phys. Chem. C 2010, 114, 16929-16936.
- 489 (30)Liu, F. D.; He, H.; Ding, Y.; Zhang, C. B. Appl. Catal. B 2009, 93, 194-204.
- 490 (31)Zhu, H. B.; Rosenfeld, D. C.; Anjum, D. H.; Sangaru, S. S.; Saih, Y.; Ould-Chikh, S.; Basset,
- 491 J. J. Catal. **2015**, 329, 291<u>-306</u>.
- 492 (32)Li, P.; Xin, Y.; Li, Q.; Wang, Z. P.; Zhang, Z. L.; Zheng, L. R. Environ. Sci. Technol. 2012,
- 493 46, 9600<u>-9605</u>.
- 494 (33)Bare, S. R.; Mitchell, G. E.; Maj, J. J.; Vrieland, G. E.; Gland, J. L. J. Phys. Chem. 1993, 97,
- 6048<u>-6053</u>.

Deleted: <#>Backer, A. D.; Martinez, G. T.; Rosenauer, A.; Aert, S. V. Ultramicroscopy 2013, 134, 23.¶

498 (34)Brookes, C.; Wells, P. P.; Cibin, G.; Dimitratos, N.; Jones, W.; Morgan, D. J.; Bowker, M.

499 ACS Catal. **2014**, 4, 243<u>-250</u>.

- 500 (35) Gaur, A.; Shrivastava, B. D.; Joshi, S. K. J. Phys.: Conf. Ser. 2009, 190, 012084.
- 501 (36) Yang, S. J.; Li, J. H.; Wang, C. Z.; Chen, J. H.; Ma, L.; Chang, H. Z.; Chen, L.; Peng, Y.;
 502 Yan, N. Q. *Appl. Catal. B* 2012, 117-118, 73-80.
- 503 (37)Chen, J. P.; Yang, R. T. Appl. Catal. A **1992**, 80, 135<u>-148</u>.
- 504 (38)Grasselli, R. K.; Sleight, A. W. Structure-activity and selectivity relationships in
- 505 heterogeneous catalysis, Elsevier, New York, **1991**.
- 506 (39)Long, R. Q.; Yang, R. T. J. Catal. 2002, 207, 224-231.
- 507 (40)Li, Q.; Gu, H. C.; Li, P.; Fan, Y. Z.; Liu, Y.; Qi, Z. N.; Xin, Y.; Zhang, Z. L. Chinese J.
 508 Catal. 2014, 35, 1289-1298.
- 509 (41)Lin, S. D.; Gluhoi, A. C.; Nieuwenhuys, B. E. Catal. Today 2004, 90, 3-14.
- 510 (42) Chen, L.; Li, J. H.; Ge, M. F. Environ. Sci. Technol. 2010, 44, 9590-9596.
- 511 (43) Larrubia, M. A.; Ramis, G.; Busca, G. Appl. Catal. B 2000, 27, L145-L151.
- 512 (44)Liu, Z. Q.; Millington, P. J.; Bailie, J. E.; Rajaram, R. R.; Anderson, J. A. Micropor.
- 513 Mesopor. Mat. 2007, 104, 159-170.
- 514 (45) Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169-11186.
- 515 (46) Kresse, G.; Furthmüller, J. Comp. Mater. Sci. 1996, 6, 15-50.
- 516 (47) Deringer, V. L.; Tchougreeff, A. L.; Dronskowski, R. J. Phys. Chem. A 2011, 115, 5461_
- 517 <u>5466</u>.
- 518 (48) Maintz, S.; Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R. J. Comput. Chem. 2013,
- 519 34, 2557<u>-2567</u>.

520 (49) Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Accounts Chem. Res.

2013, 46, 1740<u>-1748</u>.

- 522 (50)Liu, F. D.; He, H.; Zhang, C. B.; Shan, W. P.; Shi, X. Y. Catal. Today 2011, 175, 18-25.
- 523 (51) Apostolescu, N.; Geiger, B.; Hizbullah, K.; Jan, M. T.; Kureti, S.; Reichert, D.; Schott, F.;
 524 Weisweiler, W. *Appl. Catal. B* 2006, 62, 104-<u>114</u>.
- 525 (52)Roy, S.; Viswanath, B.; Hegde, M. S.; Madras, G. J. Phys. Chem. C 2008, 112, 6002<u>-6012</u>.
- 526 (53)Cavalcante, L. S.; Almeida, M. A. P.; Jr, W. A.; Tranquilin, R. L.; Longo, E.; Batista, N. C.;
- 527 Mastelaro, V. R.; Li, M. S. *Inorg. Chem.* **2012**, 51, 10675<u>-10687</u>.
- 528

531

529 Table of Contents

Formatted: Font: Arno Pro