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Abstract: Fluid inclusion and organic biomarker data show that there was formerly a hydrocarbon system in the Cambro-
Ordovician Laurentian margin rocks of NW Scotland. Oil fluid inclusions occur in stylolitized Eriboll Formation sandstone, in
K-feldspar cements with an 40Ar/39Ar age of 415 ± 5.5/5.8 Ma (2σ, analytical precision/full external precision). Organic
extracts from Durness Group black limestones yield biomarker ratios characteristic of high thermal maturity. Organic
maturation to yield oil probably occurred during orogenic deformation along the Moine Thrust Zone. The recognition of a
hydrocarbon system in Scotland adds to a huge hydrocarbon province in Laurentian rocks including North America and
Greenland.
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Rocks of the Early Palaeozoic Laurentian margin are well exposed
in NW Scotland, where they crop out along the Moine Thrust Zone
from Durness to Skye (Fig. 1). The rocks have been intensively
studied by generations of geologists because they are the focus of
deformation along the Moine Thrust Zone, and are structurally
repeated in several parts of the zone (Coward 1983). They are
composed of transgressive Lower Cambrian siliciclastic deposits
(Eriboll and An-t-Sron Formations; McKie 1990), passing upwards
into shallow marine platform carbonates (Middle Cambrian to
Llanvirn Durness Group; Huselbee & Thomas 1998).

The succession in Scotland represents a southeastern margin of
Laurentia, on which carbonate platform deposits are widespread
(Fig. 2; McKerrow et al. 1991). The carbonate rocks of Laurentia
represent a vast hydrocarbon province. Oil production and oil
showings occur from the southern USA to the Canadian Arctic and
from western Canada to Newfoundland and Greenland (see below).
The Scottish rocks have not previously been regarded as part of this
province. The carbonates and shales contain detrital kerogen, but
there have been no prior records for migrated hydrocarbons. Here
we report evidence from fluid inclusion data and organic biomarker
analysis of rock extracts to show that Scottish rocks do indeed
belong to the same hydrocarbon province. Further, we constrain the
timing of hydrocarbon migration by 40Ar/39Ar dating of an
associated mineral phase.

Geological setting

The Laurentian succession passes up into Silurian and Devonian
rocks elsewhere (see below), but its upper limit in Scotland is
unknown because it is terminated by a thrust plane. The total
Laurentian Lower Palaeozoic sequence preserved is up to 1.5 km
(Swett 1969). Structural burial during the Caledonian Orogeny
(Moine Thrust imbrication dated at c. 435 – 425 Ma; Freeman et al.
1998; Dewey 2005; Goodenough et al. 2011) may have been to a
depth of ≥10 km (Coward 1983), and has left the succession
thermally metamorphosed. Conodont alteration indices in the
Durness region are about five, representing temperatures of up to

325°C (Johnson et al. 1985; Laubach & Diaz-Tushman 2009),
acritarch thermal indices suggest temperatures of about 150 – 250°C,
increasing northwards (Downie 1982), and illite crystallinity data
along the whole outcrop indicate temperatures of 250 – 350°C, also
with higher degrees of thermal alteration in the north (Allison &
Ferguson 1997). Upon emplacement the base of the Moine Thrust
sheet was probably at 450°C (Johnson et al. 1985). A further heat
pulse focused along the Moine Thrust occurred in Permian time
(Parnell et al. 2004). A mean fluid inclusion homogenization
temperature of 175°C (trapping temperatures probably above
200°C) determined for calcite-rich breccias from the Kyle of
Durness indicates a major thermal event, which in the Durness
region has been dated palaeomagnetically as Permo-Triassic
(Blumstein et al. 2005; Elmore et al. 2010). The incomplete
sequence and the thermal impact of the orogeny mean that the burial
and hydrocarbon generation histories are difficult to reconstruct.

Organic matter

If a hydrocarbon system existed in the Laurentian margin succession
in Scotland, the most likely source rock in the succession is in the
An-t-Sron Formation, immediately above the Eriboll Sandstone
Formation (Fig. 1). This unit contains the marine dolomitic shales
traditionally known as the Fucoid Beds. Total organic carbon (TOC)
values for the shales are typically in the range up to 0.8%. As the
rocks have a high thermal maturity, placing them at least in the
window of gas generation, their TOC contents at the time of oil
generation would have been higher. Assuming that the organic
matter was oil-prone, hydrogen-rich, the carbon would be depleted
to about 30% of the original values (Cornford 1998), which would
thus have been up to 2.6%. Such values are characteristic of good
source rocks. The highest present-day organic carbon content that
we have measured in the An-t-Sron Formation is 3.35% in Assynt,
which represents a very good source rock. Dark shales also occur in
the Eriboll Formation (described as black shales in the Ullapool
River; Cheeney 1988); these shales contain about 0.25% TOC,
equivalent to original 0.83%, which is of marginal source rock value.
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The Durness Group carbonates also contain widespread evidence
for microbial remains at the microscopic scale and in stromatolitic
morphologies (Brasier 1977; Wright 1997). Previous petrographic
studies showed a range of levels of degradation of cyanobacterial
mats, and Wright (1997) argued that the abundance of organic-rich
sediments during Durness Group deposition gave rise to extensive
dolomitization during diagenesis. Consequently, organic carbon
commonly occurs as a matrix to dolomite crystals.

Black dolomites and limestones, reflecting the incorporation of
organic carbon, occur in many beds, particularly within the Sailmhor
Formation. Sailmhor Formation outcrops occur at several localities in
the Durness region, in Assynt, and at Ord (Skye). In each locality

mottled dolomites are a mixture of black and pale phases (Fig. 3),
termed the Leopard Stone by Peach & Horne (1930). Higher
formations in the Durness Group are exposed only in the Durness
region and in Skye. The Durness exposures of the Balnakeil,
Croisaphuill and Durine Formations are partly black, and approximate
correlatives of these rocks in Skye (Strath Suardal and Ben Suardal
Dolostones) are also partly black but overprinted by the thermal effects
of the Skye Tertiary igneous centre (Peach et al. 1910). The Sailmhor
Formation is the equivalent of the Watts Bight Formation in western
Newfoundland (Wright & Knight 1995): The Watts Bight Formation
is similarly mottled black and pale, and is regarded as particularly
prospective for petroleum (Fowler et al. 1995; Conliffe et al. 2009).

Fig. 1. Stratigraphic succession, and
outcrop map of Durness Group limestones
in NW Scotland, showing sample
localities. A, Aultbea; B, Skiag Bridge,
Assynt; D, Durness (Kyle of Durness and
Balnakeil Bay); F, Dundonell Forest; O,
Ord; S, Sandside Bay; U, Ullapool.

Fig. 2. Map of Laurentia (after McKerrow
et al. 1991), showing location of Durness
Group succession and other hydrocarbon-
prospective regions, with timing of
hydrocarbon generation as determined by
previous studies (sources in text).
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Sampling localities

Samples were collected from localities shown in Figure 1. Samples
from the Eriboll Formation including black stylolite-rich beds
(Fig. 3) at Ullapool and Dundonell Forest were subject to fluid
inclusion analysis and Ar–Ar dating. Ordovician limestone samples
from along the 300 km length of the Moine Thrust from Skye to
Durness were collected at Ord [NG 615132], the Skiag Bridge
section in Assynt [NC 240239], Balnakeil Bay [NC 385688] and
Kyle of Durness [NC 375637], for organic geochemistry. Coeval
limestones from a mixed low-maturity–high-maturity succession in
the Canadian High Arctic (Parnell et al. 2007) were used as
reference samples. Devonian and Jurassic organic-rich source rocks
from the region were also analysed for comparison.

Methods

Fluid inclusion analysis

Fluid inclusion wafers were examined using a Linkam THM600
heating and freezing stage attached to an Olympus BH-2
petrographic microscope, calibrated using standards of known
melting point, including naphthalene, urea, benzanilide and distilled
water. Oil inclusions, which fluoresce under ultraviolet light, were

photographed using a Nikon Eclipse 600 UVmicroscope fitted with
a Nikon HB-10104AF mercury source.

40Ar/39Ar dating

Samples for in situ UVLAMP 40Ar/39Ar dating were prepared as
doubly polished fluid inclusion wafers using the approaches of
Mark et al. (2005, 2006). All samples (wafers and separates) were
cleaned in ethanol and de-ionized water. They were parcelled in
high-purity Al discs for irradiation. Standards Fish Canyon sanidine
(FCs) (28.294 Ma, Renne et al. 2011), GA1550 biotite (99.738 Ma,
Renne et al. 2011) and Hb3gr hornblende (1081 Ma, Renne et al.
2011) were loaded adjacent to the samples to permit accurate
characterization of the neutron flux (J parameter). Samples were
irradiated for 3600 min in the Cd-lined facility of the CLICIT
Facility at the OSU TRIGA reactor. Standards were analyzed on a
MAP 215-50 system (described below briefly and in more detail by
Ellis et al. 2012): FCs was analyzed by CO2 laser total fusion as
single crystals (n = 20); GA1550 (n = 20) was also analyzed by CO2

laser total fusion; Hb3gr was step-heated using a CO2 scanning laser
(n = 5) (Barfod et al. 2014). Using GA1550, the J-parameter was
determined to a precision approaching 0.1% uncertainty. Using the
J-parameter measurements from GA1550, ages were determined for
FCs and Hb3gr. The ages overlapped at the 68% confidence (1σ)

Fig. 3. Cambro-Ordovician rocks rich in
organic matter. (a) Eriboll Formation
sandstone with abundant stylolites,
Ullapool; (b) Durness Group (Sailmhor
Formation) limestone with mottled dark
zones rich in organic matter (Leopard
Rock, formally Leopard Stone), Durness.
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with the ages reported by Renne et al. (2011), showing the
J-parameters determined from GA1550 to be accurate.

Wafers were loaded into an ultrahigh-vacuum (UHV) laser cell
with a SiO2 window. In situUVLAMPAr extraction was conducted
using a New Wave UP-213 nm UV laser system (described by
Moore et al. 2011), and 50 × 50 × 5 µm (amounts of ablated material
c. 12500 µm3) raster pits were made in mineral surfaces to extract
the Ar isotopes. All gas fractions were subjected to 180 s of
purification by exposure to two SAESGP50 getters (onemaintained
at room temperature, the other held at c. 450°C). A cold finger was
maintained at −95.5°C using a mixture of dry ice (CO2[S]) and
acetone. Ion beam intensities (i.e. Ar isotope intensities and hence
ratios) were measured using a MAP 215-50 mass spectrometer in
peak jumping mode. Measurements were made using a Balzers
SEV-217 electron multiplier. The system had a measured sensitivity
of 1.13 × 10−13 mol V−1 (mass spectrometer described by Mark
et al. 2014, 2017). The extraction and cleanup, as well as mass
spectrometer inlet and measurement protocols and data acquisition,
were automated. Blanks (full extraction line and mass spectrometer)
were made following every two analyses of unknowns. The average
blank ± standard deviation (n = 28) from the entire blank run
sequence was used to correct raw isotope measurements from
unknowns. Mass discrimination was monitored by analysis of air
pipette aliquots after every five analyses of unknowns (n = 9, 7.21 ×
10−14 mol 40Ar).

All Ar isotope data were corrected for backgrounds, mass
discrimination and reactor-produced nuclides, and were processed
using standard data reduction protocols (e.g. Mark et al. 2010a,b,
2011a) and reported according to the criteria of Renne et al. (2009).
The atmospheric argon isotope ratios of Lee et al. (2006), which
have been independently verified by Mark et al. (2011b), were
employed. The optimization model of Renne et al. (2010) with the
parameters of Renne et al. (2011) was used for age calculation. The
BGC software (MassSpec) was used for data regression. All ages are
presented as X ± Y/Z, where Y is the 2σ analytical precision, and Z is
the 2σ full external precision (unless stated otherwise). All raw data
are presented in the Supplementary Material.

Organic geochemistry

Samples of Durness Group limestone were extracted using
dichloromethane, then separated using thin layer chromatography,
and hydrocarbon and aromatic fractions were analysed by gas
chromatography–mass spectrometry. Measurements were directed
on mass fragments that yield interpretable data at high thermal
maturities; that is, steranes (m/z 217, 218), terpanes/hopanes (m/z
191), methylphenanthrenes (m/z 178 + 192), methyldibenzothio-
phenes (m/z 198) and triaromatic steroids (m/z 231). Analyses were
performed using a Hewlett Packard HP5970 MSD attached to a
HP5890 gas chromatograph. A 30 m SGE BPX5 column was used
with 0.5 μm film thickness and 0.32 mm internal diameter. The gas
chromatography temperature programme was 80°C for 2 min,
heating at 4°C min−1 up to 290°C, then holding for 30.5 min.
Standard thermal maturity parameters were calculated from
biomarker distributions (Peters et al. 2007). The C21 + C22 steranes/
(C21 + C22 + C29 ααα S& R steranes) parameter was measured using
the short chain 5α(H)- and 20-methyl-5α(H)-pregnanes and the C29

5α(H),14(H),17(H) 20S and 20R regular steranes. The C20, C21

and C28 20R triaromatic steroids (TAS) were used to calculate
the C20 + C21 TAS/(C20 + C21 + C28 R TAS) parameter. Other
parameters used include the C29 αββ/ααα + αββ sterane ratio,
hopaneTs/Ts + Tm ratio, hopane 30 βα/αβ ratio,methylphenanthrene
index (MPI) and methyldibenzothiophene ratio (MDR) (Table 1).

Data

Organic geochemistry, Durness Group limestones

Biomarkers were successfully extracted, quantitatively, from each of
the four Durness Group limestones (Table 2; Figs 4 and 5). No
yields were obtained from samples of Eriboll Formation sandstone
used as controls.

The sterane ratio parameter has reached values of between 0.5 and
0.8. These values are typical of sequences that have reached peak
hydrocarbon generation (the oil window) or beyond (Peters et al.
2007). The triaromatic steroid ratios (Fig. 6) range from 0.4 to 0.5,
which is also at the high end of the range characteristic of peak
hydrocarbon generation (Killops & Killops 1993). The values are
consistent along the extent of the Moine Thrust Zone. The other
parameters all give ratios that are consistent with peak hydrocarbon
generation (Killops & Killops 1993; Peters et al. 2007).

Sterane compositions from the Durness Group limestone were
also compared with compositions from known source rocks in other
successions in the north of Scotland; that is, Jurassic at Aultbea and
Devonian at Sandside Bay (Figs 1 and 7).

Fluid inclusion study, Eriboll Formation

Samples of Eriboll Formation from Ullapool and Dundonell Forest
show similar petrography and fluid inclusion assemblages. At both
localities, the rock consists of white quartz arenite (former Basal
Quartzite), cut by dark stylolitic horizons approximately parallel to
bedding (Fig. 8). The bulk quartz arenite is pervasively cemented by
quartz. The stylolitic horizons additionally contain authigenic
crystals of albite and K-feldspar. Overgrowths of albite and
K-feldspar on detrital grains also occur in a zone about 1 mm
around the stylolites. The stylolites additionally contain concentra-
tions of heavy minerals, particularly zircon and apatite. The
paragenetic sequence is quartz cementation, then stylolite forma-
tion, followed by albite cement and finally K-feldspar cement.

Primary two-phase fluid inclusions occur in each of the quartz,
albite and K-feldspar overgrowths. They range in size from 2 to
15 μm. The inclusions in the quartz and albite are aqueous, whereas

Table 1. Biomarker data for samples of Durness Group limestones

Locality Pregnane/sterane TAS Sterane C29 ααα S/S + R Sterane C29 αββ/ααα + αββ Ts/Ts + Tm Hopane 30 βα/αβ MPI MDR

Balnakiel Bay 0.61 0.49 0.49 0.53 0.43 0.14 0.67 3.5
Kyle of Durness 0.76 0.46 0.46 0.51 0.40 0.05 0.26 4.2
Assynt 0.54 0.42 0.57 0.46 0.44 0.11 0.57 3.4
Ord 0.76 0.42 0.60 0.55 0.40 0.06 0.23 6.4

Table 2. Extract data for samples of Durness Group limestones

Locality
Grid

reference
EOM

(% whole-rock)
Saturate

(% extract)
Aromatic
(% extract)

Balnakiel Bay NC 385688 0.001 10 10
Kyle of Durness NC 373635 0.001 50 33
Assynt NC 240239 0.009 <10 <10
Ord NG 615135 0.001 40 20

EOM, extractable organic matter.
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there are both aqueous and hydrocarbon inclusions in the K-feldspar
(Fig. 9). Hydrocarbon inclusions also occur in altered K-feldspar
detrital grains. The hydrocarbon inclusions are sufficiently
abundant to cause the stylolitic horizons to luminesce green–blue
under UV illumination (Fig. 9). A later set of monophase inclusions
crosscuts all mineral phases. These secondary inclusions include
some fluorescing oil.

The microthermometric data for the fluid inclusions are
summarized in Table 3. Measurements were restricted to K-feldspar
that appeared to be unaltered. The three cements yield homogeniza-
tion temperatures (Th) of 113 – 128°C (quartz), 104 – 111°C (albite)
and 70 – 93°C (K-feldspar), from aqueous inclusions. The hydro-
carbon inclusions were too small for reliable microthermometry.

In addition, petrographic studies of coarse black dolomites in the
Durness Group limestones show that the dolomite crystals contain

fluid inclusions filled with liquid hydrocarbons, recognized by
fluorescence under ultra-violet light. The inclusions are very small,
typically of 1 – 2 μm width.

40Ar/39Ar dating

40Ar/39Ar ages were obtained from the K-feldspar cements. The data
recovered define a normal distribution with ages ranging from
389.1 ± 11.3 Ma (1σ, analytical precision) to 430.7 ± 10.3 Ma (1σ,
analytical precision) (Fig. 10; Supplementary Material). As such,
we have calculated a weighted average 40Ar/39Ar age for the
overgrowths of 415.3 ± 5.5/5.8 Ma (2σ, analytical precision/full
external precision); this age is interpreted to represent the growth of
the K-feldspar overgrowths. Owing to the growth mechanism,
authigenic K-feldspar has been demonstrated to have a relatively

Fig. 4. Ion chromatograms for Durness
Group sample from Assynt. (a) m/z 191.
C23 tricyclic terpane = C23 13β(H),14α(H)
tricyclic terpane; C27 Ts = C27 18α(H)-
22,29,30 trisnorneohopane; C27 Tm = 17α
(H)-22,29,30 trisnorhopane; C29 αβ
hopane = C29 17α(H),21β(H) hopane; C31

αβ S = C31 17α(H),21β(H) (22S) hopane;
C31 αβ R = C31 17α(H),21β(H) (22R)
hopane. (b) m/z 217. C21 pregnane = 5α
(H)- and 20-methyl-5α(H)-pregnane; C27

Dia S = C27 13β,17α(H) 20S diasterane;
C27 ααα R = C27 5α,14α,17α(H) 20R
sterane; (c) m/z 178 + 192. 3-MP = 3-
methylphenanthrene; (d) m/z 198. 4-
MDBT = 4-methyldibenzothiophene; 1-
MDBT = 1-methyldibenzothiophene; (e)
m/z 231. C20 = C20 triaromatic steroid; C26

S = C26 20S triaromatic steroid.
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high closure temperature in excess of 250°C (Mark et al. 2007,
2008, 2010b). Radiogenic 40Ar yields cluster between 88 and 92%,
and hencewhen plotted on an isotope correlation plot the data do not
define an isochron.

Discussion

Evidence for hydrocarbons in the Cambro-Ordovician
succession

The hydrocarbon enrichment in the dolomites of the Durness Group
exemplifies a hydrocarbon play that is found throughout the
Cambro-Ordovician platform carbonates of the Laurentian contin-
ent (Fig. 2). The closest occurrences are bituminous dolomites in
north Greenland (Christiansen 1989) and western Newfoundland
(Fowler et al. 1995). Other regionally important deposits that have
attracted oil exploration and production are in Ontario (Powell et al.
1984), theWilliston Basin (Osadetz et al. 1989; Montgomery 1997)
and the Canadian Arctic (Rayer 1981; Zhang 2008). The proportion

of mudrock facies, which might contain greater concentrations of
organic matter, is very low in the Scottish outcrop. However, deeper
water environments with an increase in mudrock facies are predicted
to have existed to the east of the present outcrop (Swett & Smit
1972), and up-dip migration of hydrocarbons to the west is a
possible scenario.

Sources for hydrocarbons

The other possible source rocks in the region are Devonian
lacustrine rocks of the Orcadian Basin to the NE (Marshall et al.
1985) and Jurassic shales, which occur onshore in Skye and
offshore from the mainland coast (Fyfe et al. 1993). The Jurassic
units may have been deposited widely over NW Scotland, including
the Moine Thrust Zone (Holford et al. 2010). The Devonian source
rocks consistently contain high proportions of C28 ααα steranes
(Fig. 7) and conspicuous amounts of gammacerane (a triterpane
typical of hypersaline environments), both of which are absent from
the Durness Group samples. Devonian sources are also unrealistic in

Fig. 5. Ion chromatograms for steranes
(m/z 218) and triaromatic steroids (m/z
231) for Durness Group sample from
Assynt, compared with reference low and
high thermal maturity contemporary
samples in Canadian High Arctic (Parnell
et al. 2007). Durness Group data are more
similar to reference high maturity data.

38 J. Parnell et al.

 by guest on January 12, 2018http://jgs.lyellcollection.org/Downloaded from 

http://jgs.lyellcollection.org/


the south of the Durness Group outcrop, where there is no evidence
of any Devonian deposits. The Jurassic shales lack the prominent
diasteranes found in the Durness Group samples. They are also
immature in the region, except where thermally altered by the Skye
Tertiary igneous centre (Thrasher 1992), and so have biomarker
maturity ratios distinct from those of the Durness Group samples.
Consequently, there is strong evidence for attributing the Durness
Group hydrocarbons to an intraformational source.

In addition to the circumstantial evidence for an Early Palaeozoic
source, a low abundance of C28 steranes in the Durness Group

samples (Fig. 7) is comparablewith patternsmeasured from numerous
other marine Early Palaeozoic sequences (e.g. Rullkötter et al. 1986;
Grantham & Wakefield 1988). The high abundance of diasteranes
(Fig. 7) is also a feature of other Ordovician sequences (e.g. Longman
& Palmer 1987; Obermajer et al. 1999). C30 steranes are present,
which are a general indicator of marine algae (Peters et al. 2007).

Thermal maturity

The biomarker thermal maturity parameters indicate heating into
and beyond the oil window. This is consistent with the known
thermal history of the region, and shows that the biomarkers
extracted are genuine components of the rock, rather than modern
contaminants from peat, etc.

The survival of hydrocarbons despite the orogenic heating at
250°C or higher adds to a growing body of evidence that
hydrocarbons can persist at temperatures much greater than has
conventionally been assumed. There are numerous examples of
high carbon number biomarkers preserved in hydrocarbon reser-
voirs that have experienced over 200°C (e.g. Dutkiewicz et al. 2006;
George et al. 2008), in some cases with compositions indicating low
to moderate thermal maturity (Price 2000).

The persistence of biomarkers may also be partially explained by
the residence of the hydrocarbons within fluid inclusions. The
inclusions are sealed vessels that become overpressured during
burial after entrapment. Hydrocarbon generation and organic
chemical reactions are retarded by pressure (Dominé et al. 1990;
Carr 1999), and biomarker ratios may become fixed at the value
pertaining during entrapment in the inclusions. Previous studies
have similarly recorded lower maturities in inclusion-hosted oils
relative to present-day oils (George et al. 2007). Also, some organic
matter sealed within Durness Group cherts during early diagenesis
is pale brown in colour (Wright 1997), rather than the black colour
typical of organic matter that has passed through the oil window.

Fig. 6. Cross-plot of sterane and triaromatic steroid thermal maturity
parameters. Durness Group data are compared with reference low and high
thermal maturity samples and entire envelope of data from contemporary
samples in Canadian High Arctic (Parnell et al. 2007).

Fig. 7. Comparison of Durness Group
sterane composition (m/z 217 ion
chromatograms) with samples of known
source rock in northern Scotland of
Devonian and Jurassic age. C27 Dia
S = C27 13β,17α(H) 20S diasterane;
C27ααα R = C27 5α,14α,17α(H) 20R
sterane. The high abundance of
diasteranes in Durness Group sample, and
C28 steranes in the Devonian sample,
should be noted. Durness Group
composition does not match either of the
younger source rocks.
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Timing of hydrocarbon generation

In terms of regional thermal history, we require to know when the
heat, which caused hydrocarbon generation, was applied.

The surviving thickness of rocks in the Durness Group is
inadequate to cause hydrocarbon generation by burial prior to
metamorphism: at a geothermal gradient of 30°C km−1, a minimum
of 2 – 3 km burial would be required, and a maximum of 1.5 km for
the entire Cambro-Ordovician is preserved (Swett 1969; Smith &
Rasmussen 2008). However, in more complete Laurentian
sequences, extending up into the Silurian and Devonian, up to
several kilometres extra thickness of rock is present, and in north
Greenland, Quebec and the Canadian Arctic, hydrocarbon gener-
ation from the Ordovician section is predicted to have occurred
owing to burial heating in Siluro-Devonian times (Fig. 2;
Christiansen 1989; Parnell et al. 2007; Grundman et al. 2012).
Elsewhere on the Laurentian continent, the additional section was a
continuation of platform sedimentation, but Soper et al. (1999)
suggested that in Scotland synorogenic deposits related to easterly
Grampian deformation (Arenig–Llanvirn) succeeded the Durness
carbonates not far above their present upper limit. Either additional
platform sediments or synorogenic deposits could have caused oil
generation in Scotland before Caledonian thrusting, or contributed
to maturation that continued post-thrusting.

Structural burial owing to thrust-stacking in the orogenic belt
could cause hydrocarbon generation, if the source rocks had not
been depleted prior to the orogeny. Examples of thrust-enhanced
hydrocarbon generation have been discussed by Morley (1992) and
Parnell et al. (2003).

Hydrocarbon generation since the orogeny is unlikely. The
Ordovician rocks currently at outcrop along the Moine Thrust Zone
have not been buried deeply since denudation of the Scottish
Highlands occurred to about their present level in Devonian times
(Watson 1984; Hall & Bishop 2002). Thus they were not buried
more deeply at the post-orogenic stage than in the pre-orogenic
stage.

The fluid inclusion data can be related to burial history and
used to constrain the timing of oil generation. The stylolites that
cut the quartz cement represent pressure dissolution, which is
associated with thrust-related deformation of the Eriboll Formation
(Knipe 1990). However, the data obtained from the quartz cement
indicate temperatures much higher than could be explained by the
pre-thrust burial alone. The subsequent feldspar cements yield
lower temperatures, so may have been precipitated during uplift
following thrusting. Uplift was rapid (Laubach & Diaz-Tushman
2009; Hooker et al. 2011). This sequence of events is consistent

with thrusting over 435 – 425 Ma, and feldspar precipitation at
415 ± 5.5/5.8 Ma. Thus the feldspar, and its included oil, was
introduced by an episode of fluid flow soon after thrusting. A
broadly similar paragenesis of quartz followed by feldspar is
recorded in the Moine Thrust Zone from fracture systems through
the Eriboll Formation (Laubach & Diaz-Tushman 2009). The

Fig. 8. Schematic petrography of stylolite
cutting Eriboll Formation sandstone,
Ullapool and Dundonell Forest. Fluid
inclusions were measured in each of
quartz (Q), albite (A) and K-feldspar (K).
F, detrital feldspar grain.

Fig. 9. Oil inclusions fluorescing under ultraviolet light, in stylolite zone.
(a) Oil inclusions in trail through quartz grain; (b) oil inclusions in altered
K-feldspar. Polished wafer, Eriboll Formation, Ullapool. Field widths
200 μm. Microthermometric data are reported in Table 3.
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earliest quartz yields fluid inclusion temperatures up to 170°C, but
is pre-stylolite and so is interpreted to be pre-thrusting. The latest
quartz yields temperatures <80°C, and is demonstrably post-
thrusting, although it could be as young as Cenozoic (Laubach &
Diaz-Tushman 2009).

Primary fluid inclusions in quartz cements in a larger set of
Eriboll Formation sandstones along the Moine Thrust Zone also
yield temperatures up to 200°C, interpreted to represent pre-
orogenic fluids (Baron et al. 2003). Temperature trend data also
exist for K-feldspar cements in the An-t-Sron Formation (Mark et al.
2007). Two stages of cementation are evident: a moderate-
temperature (up to 115°C) stage dated at c. 470 Ma (mid-
Ordovician), followed by a hotter (up to 145°C) stage synchronous
with stylolite formation dated at c. 432 Ma (Silurian). These two
stages are consistent with an elevation of temperature at the time of
compressional deformation (Mark et al. 2007), but even the first
stage is hotter than could be explained by burial alone.

In summary, four studies (Baron et al. 2003; Mark et al. 2007;
Laubach & Diaz-Tushman 2009; this study) all indicate tempera-
tures >100°C in advance of the stylolitization event, which is
assumed to relate to thrusting. Thrusting would have caused burial
to temperatures at which quartz dissolution and reprecipitation
could occur, so it is likely that some quartz observed was deposited
as thrusting commenced or very soon afterwards (Laubach & Diaz-
Tushman 2009). However, the consistent evidence of quartz
precipitation pre-stylolites suggests an earlier source of anomalous
heat. The source of this heat may be a regional episode of
magmatism. Major and minor intrusions in the Assynt district were
emplaced before thrusting (Halliday et al. 1987; Goodenough et al.
2004). This magmatic activity indicates high heat flow, and

provides an explanation for the circulation of high-temperature
fluids to precipitate quartz cement.

Additional evidence from calcite vein mineralization in the
Durness region is consistent with the deduced timing of oil
formation. Where outcrops of black dolomite are cut by mineral
veins (usually calcite), or fracture surfaces, there is no macroscopic
evidence for hydrocarbon residues in the structures, or hydrocarbon
fluid inclusions in the calcite. This includes localities where
thrusting is accompanied by brittle deformation and mineral veining
in the footwall. The evidence suggests that the veins were not
conduits for charging the dolomites with oil or for draining oil from
them. In the Durness region, fragments of black dolomite rock occur
within calcite veining. These observations indicate that oil charge
occurred before the brittle deformation.

Conclusions

Geochemical data support a model in which the Laurentian margin
rocks of Scotland were charged with oil at about the time of
orogenic deformation. This implies a thermal history adequate to
generate hydrocarbons from Early Palaeozoic source rocks. The
current thickness of Early Palaeozoic sediments is inadequate for
hydrocarbon generation. However, several factors could have
contributed to generation: (1) the pre-thrusting succession included
a greater thickness of rocks now excised by thrusting; (2) as the
source rocks probably lay to the east in deeper water facies where the
section was thicker, generation could have occurred earlier than in
the outcropping section; (3) enhanced heat flow pre-thrusting,
indicated by magmatic activity and implicit in regional tectonic
models, could have enhanced maturation; (4) additional heating
could have occurred owing to structural burial during thrusting.
These factors may have combined, so that flexural loading and
greater burial in a source rock kitchen to the east, during Grampian
and Scandian deformation (Dewey 2005), produced hydrocarbon-
bearing fluids that migrated westwards up-dip, especially when
thrusting provided new migration pathways.

The orogenic deformation that dominates the Laurentian
succession in NW Scotland caused thermal maturation beyond the
stage of oil preservation, except in fluid inclusions, but paradox-
ically has left us with a fluid inclusion record in stylolites to provide

Fig. 10. 40Ar/39Ar data for 14 samples
(shown at 2σ uncertainty), plotted against
the geological timescale. The data give a
mean age of 415 ± 5.5/5.8 Ma (2σ,
analytical precision/full external
precision).

Table 3. Summary of fluid inclusion data for Eriboll Formation sample,
Ullapool

Mineral
Aqueous Th
range (°C)

Wt%
NaCl

Primary oil
inclusions

Secondary oil
inclusions

Quartz 113 – 128 6–8 No Yes
Albite 104 – 111 6–8 No Yes
K-feldspar 70 – 93 3–4 Yes Yes
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evidence of oil generation. The evidence for oil generation in the
Scottish succession adds to existing records that record a huge
hydrocarbon province in the carbonate platform rocks of Laurentia.
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