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1. INTRODUCTION

Partial groups and localities were introduced by Chermak [6], in the context of his proof of
the existence and uniqueness of centric linking systems. Roughly speaking, a partial group is
a set L together with a product which is only defined on certain words in £, and an inversion
map £ — £ which is an involutory bijection, subject to certain axioms. A locality is a partial
group equipped with some extra structure which makes it possible to define the fusion system of
a locality. Essentially, localities are “the same” as the transporter systems of Oliver and Ventura
[11]; see the appendix to [6]. As centric linking systems are special cases of transporter systems,
the existence of centric linking systems implies that there is a locality attached to every fusion
system. It is work in progress of Chermak and the author of this paper to build a local theory of
localities similar to the local theory of fusion systems as developed by Aschbacher [2], [3] based
on earlier work of many other authors. The results we prove in this paper fit into this program.

For fusion systems, a relatively canonical definition of an external direct product was already
introduced by Broto, Levi and Oliver [5]. Building on this definition, Aschbacher [3] introduced
central products of fusion systems. In this paper, we develop a theory of direct and central
products of partial groups and localities. Most of our definitions are again quite canonical. After
some preliminaries, we introduce in Section [4] direct products of partial groups and prove basic
properties of these. This allows us in Section [5| to define external direct and central products of
localities. In Section [6] we introduce internal direct and central products of partial groups and
localities, and we prove results relating them to their external counterparts.

Of special interest are localities corresponding to centric linking systems or, more generally,
linking localities as introduced in [9]. We prove that an external or internal direct product of two
localities is a linking locality if and only if the two localities we started with are linking localities.
A similar result holds for central products. The reader is referred to Lemma Lemma [5.9(b)
and Lemma for the precise statements of the results.

Given a linking locality over a saturated fusion system F, it is recent work of Chermak and the
author of this paper [8] to prove that there is a one-to-one correspondence between the normal
subsystems of F and the partial normal subgroups of the locality. A significant part of the theory
developed in this paper is needed in the proof. In particular, at the end we prove Proposition|6.12
with this application in mind.

Throughout, p is always a prime. We will use the right hand notation for maps.

2. BACKGROUND ON FUSION SYSTEMS

2.1. Some notation and terminology. We refer the reader to [4, Part I] for background on
fusion systems, but we recall some notation and terminology here.
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Let F be a fusion system over S. A subgroup R < S is normal in F if R < S and, for all
P,Q < S, every morphism ¢ € Homz(P, Q) extends to a morphism ¢ € Homz(PR,QR) with
R¢ = R. Similarly, a subgroup R < S is central in F if R < S and, for all P,@Q < S, every
morphism ¢ € Homgz(P, Q) extends to a morphism ¢ € Homz(PR,QR) with ¢|gp = idg. It
follows from these definitions that there exists a largest normal subgroup of F, which is denoted
by O,(F), and a largest central subgroup of F, which is denoted by Z(F). A subgroup R of F is
called strongly closed if X¢ < R for every X < R and every ¢ € Homz(X,S). Note that every
strongly closed subgroup of F is normal in S.

For any subgroup P of S, we set P7 := {Py: ¢ € Homz(P,S)} and call P the set of F-
conjugates of P. A subgroup P < S is called fully normalized in F (or fully F-normalized) if
|Ns(P)| > |Ng(Q)| for all Q € P”. For convenience, the set of fully F-normalized subgroups of
S is denoted by F7.

For any R < S, the normalizer Nz(R) is the subsystem of F over Ng(R) such that, for
all P,Q < Ns(R), the set Homy, (r)(P,Q) is the set of all ¢ € Homz(P,Q) which extend to
¢ € Homg(PR,QR) with Rp = R. In particular, R is normal in F if and only if 7 = Nx(R).
We caution the reader that the subsystem Nx(R) is not in general saturated. However, if R is
fully F-normalized, then Nz(R) is saturated by [4, Theorem 1.5.5].

If A is a set of subgroups of S such that P/ C A for every P € A, then we say that A is
closed under taking F-conjugates. A set A of subgroups of S is called F-closed, if A is closed
under taking F-conjugates and A is also closed under taking overgroups in S. The latter property
means that, if P € A and P < Q < 5, then Q € A.

We recall that F¢ is the set of F-centric subgroups of S, i.e., the set of all subgroups P < S
such that Cs(Q) < Q for every Q € PF. It turns out that F¢ is F-closed. A subgroup P < S is
called F-radical if Op(Autz(P)) = Inn(P), where Inn(P) is the group of inner automorphisms of
P. By F“ we denote the set of subgroups of S which are both F-centric and F-radical. It can
be shown that F¢" is closed under taking F-conjugates. However, 7" is not F-closed in general.

In the next definition we introduce another collection of subgroups of .S, which is less standard
to consider, but plays an important role in connection with the localities we study later on; see
in particular Section

Definition 2.1. Let F be a fusion system over S. A subgroup @) < S is said to be subcentric in
F if, for any fully normalized F-conjugate P of ), O,(Nz(P)) is centric in F. Write F* for the
set of subcentric subgroups of F.

We point out that F* is F-closed by [9, Theorem A(b)].

2.2. Morphisms of fusion systems. Throughout this subsection let F and F’ be fusion systems
over S and S’ respectively.

Definition 2.2. We say that a group homomorphism «o: S — S’ induces a morphism from F to
F' if, for each ¢ € Homz(P,Q), there exists ¢ € Homz (Pa, Qa) such that (a|p)y = ¢(alg).

For any ¢ € Homzg(P,Q), a map 1 € Homz (Pa,Qa) as in the above definition is uniquely
determined. So if o induces a morphism from F to F’, then « induces a map

apg: Homz(P, Q) — Homz (Pa, Qo).

Together with the map P +— Pa from the set of objects of F to the set of objects of F’ this gives
a functor from F to F’. Moreover, a together with the maps apg (P,Q < S) is a morphism of
fusion systems in the sense of [4, Definition 11.2.2]. We call (o, apg: P,Q < S) the morphism
induced by . If £ is a subsystem of F on T' < S, then we denote by £a the subsystem of ' on
Ta which is the image of £ under the functor a*.
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Definition 2.3. Suppose a: S — S’ induces a morphism from F to F’'. We say that « induces an
epimorphism from F to F' if the induced morphism (o, apg: P,Q < S) is a surjective morphism
of fusion systems. This means that « is surjective as a map S — S’ and, for all P,Q < S with
ker(or) < PN Q, the map apg is surjective, i.e., for each ¢ € Homzp (Pa,Qa), there exists
¢ € Homz(P, Q) with (a|p)y = ¢(a|g). If a is in addition injective, then we say that o induces
an isomorphism from F to F'.

If o induces an isomorphism from F to F’, then observe that the inverse map o~ ! induces
an isomorphism from F’ to F. Note also that the following remark follows directly from the
definitions.

Remark 2.4. Let F and F' be fusion systems over S and S’ respectively. Suppose that o induces
an epimorphism from F to F'. If ker(a) < P < S and Q := Pa, then Q7 = {Pa: P € P7}.

The kernel of a group homomorphism S — S’ which induces a morphism from the fusion system
F to the fusion system F’ is always a strongly closed subgroup of F. On the other hand, if R is a
strongly closed subgroup of F, then there is a factor system F/R defined and the natural group
homomorphism S — S/R is an epimorphism; see [4, Section I1.5] for details. If F is saturated and
there exists an epimorphism from F to F’, then F' is saturated. In particular, /R is saturated
for every strongly closed subgroup R of F.

If o« induces an epimorphism from F to F’, then one checks easily that the induced map
S/ker(a) — S’ ker(a)s — sa
induces an isomorphism from F/ker(«) to F'.

Lemma 2.5. Let F and F' be saturated fusion systems over S and S’ respectively, and suppose
a: S — S induces an epimorphism from F to F' such that ker(«) < Z(F). Then, for any P < S,
the following hold:

(a) We have P € F if and only if ker(a) < P and Pa € (F')°".
(b) We have P € F* if and only if Pa € (F')5.

Proof. By [0, Lemma 3.6], an isomorphism between two saturated fusion systems induces a bi-
jection between the sets of subcentric subgroups of these two fusion systems. Similarly, such an
isomorphism induces a bijection between the sets of centric radical subgroups of these two fusion
systems.

Set Z := ker(a). Then the map a: F/Z — F' ker(a)s — sa induces an isomorphism between
the two saturated fusion systems F/Z and F'. Hence, @ induces a bijection between (F/Z)* and
(F')%, and between (F/Z)" and (F')". By [9, Lemma 9.1], P € F* ifand only if PZ/Z € (F/Z)?,
and P € F if and only if Z < P and P/Z € (F/Z)". This implies the assertion. O

2.3. External direct and central products of fusion systems.
For the remainder of this section let F; be a fusion system on S; for i =1, 2.

For each i = 1,2 write m;: S1 X Sy — S;, (s1, $2) — s; for the projection map. Given P;, Q; < S;
and ; € Homg, (P;, Q;) for each i = 1,2, define an injective group homomorphism ¢ X ¢a: P X
Py = Q1 X Q2 by

(z1,22)(P1 X 2) = (T101, T24p2)
for all z1 € P, and a9 € P.

Definition 2.6. The direct product F1 x Fo is the fusion system over S; x Se which is generated
by the maps of the form ¢ x 2 with P;, Q; < S; and ¢; € Homg,(F;, Q;) for i = 1,2.



4 E. HENKE

Observe that every morphism in Homzr, x 7, (P, Q) is of the form (¢1 X @2)|p where ¢; €
Hompg, (Pm;, Qm;) for i = 1,2.

For i = 1,2 let ¢;: S; — S1 x S be the inclusion map, i.e., sty = (s,1) and st2 = (1,s). Note
that ¢; induces a morphism from F; to F; x Fa. More precisely, the morphism induced by ¢1
takes 1 € Homz, (P, Q) to ¢1 x idg1y € Homz, x 7, (Pt1,Quy) for all P,Q < Si, and the morphism
induced by g takes p2 € Homg, (P, Q) to idgy xp2 € Hompg, « 7, (Pt2, Qua) for all P,Q < Ss.
For ¢ = 1,2, we call the image F;i; the canonical image of F; in F7 x F5 and denote it by .7:"Z
Moreover, we set S”z = S;i;. As 1; is injective, ]i} = F fori=1,2.

In the following lemma we summarize important relationships between the direct product and
its factors.

Lemma 2.7. Let F = F; X Fo be the direct product of F1 and Fo. Let P; < S; fori=1,2.

(a) We have Py x Py € F€ if and only if P; € Ff fori=1,2.

(b) Autr(Pr x P2) = Autr, (P1) x Auty, (P2).

(c) The subgroup Py x Py is radical in F if and only if P; is radical in F; fori=1,2.

(d) F" ={R1 x Ry: R; € F{"}.

(e) We have (P; x P3)” = {Q1 x Q2: Q; € Pi]:i fori = 1,2}. In particular, if for i = 1,2,
A; is a set of subgroups of S; such that A; is closed under taking F;-conjugates, then
I':={R; X Ra: R; € A; for each i = 1,2} is closed under taking F-conjugates.

(f) The subgroup Py x Py is fully F-normalized if and only if P; is fully F;-normalized for

eachi=1,2.

(g) We have Py x Py € F* if and only if P; € F} fori=1,2.

(h) We have Z(F\ x Fo) = Z(F1) x Z(Fa).

Proof. Property (a) follows from [3], (2.6)(2),(3)].

By the definition of F = F; X Fa, the elements of Autz(P; x P») are the automorphisms of the
form ¢ x @9 with ¢; € Autz,(P;). This implies Autz(P; x P2) = Autr, (P1) x Autg, (P2), ie.,
property (b) holds. For any two finite groups G; and Gz, Op(G1 x G2) = Op(G1) x Op(Gs2). So
Op(Autr(Pr x P2)) = Op(Autr, (P1)) x Op(Autg,(P)). As Inn(P; x Pp) = Inn(P;) x Inn(Ps), it
follows that P; x P, is radical in F if and only if P; is radical in F; for i = 1,2. This proves (c).

By [1, Lemma 3.1], every F-centric F-radical subgroup is of the form R; x Ry with R; < S; for
i = 1,2. Hence, property (d) follows from (a) and (c).

It follows from the definition of Fy x Fa that (Py x Py)” = {Q1 x Qa: Q; € P/ for i = 1,2},
and this shows (e). Since Ng, xs,(P1 X P3) = Ng, (P1) X Ng,(P), property (e) implies (f).

For the proof of (g) observe that, by the first part of (e) and by (f), the fully normalized
subgroups Q € (P; x P»)” are precisely the subgroups of the form Q = Qx Q2 where Q; € Pf"ﬁflf
for i = 1,2. For any such subgroup @ = Q1 xQ2, it follows from [3], (2.5)] that Nx(Q) = N, (Q1) X
Nr,(Q2). Hence, by [Il, Proposition 3.4], we have O,(N£(Q)) = Op(Nr, (Q1)) X Op(Nx,(Q2)). So
by (a), Op(N£(Q)) is centric in F for every Q € PF N F/ if and only if O,(Nx,(Q;)) is centric in
F; for i = 1,2 and each Q; € Pfi N }"Z-f . So P is subcentric in F if and only if P; is subcentric in
Fi for i = 1,2. This shows (g). Property (h) is straightforward to check. O

With the definition of an external direct product in place, we can easily define external central
products of fusion systems similarly as in the group case.

Definition 2.8. For any subgroup Z < Z(F}) x Z(F3) = Z(F, x F») such that ZN S; =1 for
i = 1,2, we call (Fi x F2)/Z the (external) central product of F, and F (over Z). We write
F1 X z Fo for this external central product.
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ot

If Z is as in the above definition, then we set S; Xz So := (S x S2)/Z. Writing : S1 X Sy —
S1 Xz S for the natural epimorphism, the map 6[g is injective and 0[5 is by [3, (2.9)(3)] an

isomorphism from ]:"Z to F; = ]:"10.

2.4. Internal central products of fusion systems. Suppose now that F is a fusion system
over S containing the fusion systems JF; and F3 as subsystems. So in particular, S; < S for
i=1,2.

Definition 2.9. We say that F is the (internal) central product of F1 and Fy if S1 NSy < Z(F;)
for i = 1,2 and the map a: S} x So — S, (x1,22) — x122 induces an epimorphism from Fj x Fo
to F with Fa = F; for i =1, 2.

In the setup of the above definition, note that « being a group homomorphism is equivalent
to [S1,52] = 1 inside of S. Moreover, o being surjective is equivalent to S = S153. Suppose
now that F is the internal central product of the subsystems F; and Fy. Set Z := ker(a).
Then a induces an isomorphism of groups @: S; Xz Sy — S via 2Z — za. If (r1,29) € Z,
then x1 = .%'2_1 € S51NS < Z(f» for ¢ = 1,2. Hence, Z < Z(fl) X Z(Fg) = Z(fl X ./_"2) by
Lemma (h) By definition of o, Z N S; = 1 for i = 1,2. Therefore, (F; x F»)/Z is an external
central product of 77 and F5. As « induces an epimorphism from /7 X F» to F with .7:}0[ =F
for i = 1,2, @ induces an epimorphism from F; xz F» to F with F;a = F;. As @ is a group
isomorphism, @ is an isomorphism of fusion systems. So F is in a canonical way isomorphic to an
external central product of /7 and Fs.

Lemma 2.10. Let F be the internal central product of two subsystems F1 and Fa.
(a) F" ={RiRy: R; € F{" fori=1,2}.
(b) If P; € F? fori=1,2, then P\ P, € F°.
(¢) Fori = 1,2 let A; be a set of subgroups of S; such that A; is closed under taking JF;-
conjugates. Set T' := {P1Py: P; € A; for each i = 1,2}, and let A be the set of subgroups
of S containing an element of T'. Then I is closed under taking F-conjugates, and A is

F-closed.

Proof. Property (a) follows from Lemma [2.5{(a) and Lemma[2.7(d). Similarly, property (b) follows
Lemma [2.5(b) and Lemma [2.7(g). Remark and Lemma [2.7|(e) imply that I is closed under
taking F-conjugates. Hence, A is closed under taking F-conjugates as well. Clearly A is closed
under taking overgroups in S. ([

3. PARTIAL GROUPS AND LOCALITIES

3.1. Partial groups. Adapting the notation from [6] and [7], we write W (L) for the set of
words in a set £, () for the empty word, and vy o vy 0 --- o v, for the concatenation of words
Vi,...,0, € W(L). Moreover, we identify each element f € £ with the word (f) € W(L) of
length one. Via this identification, we have in particular £ C W(L). Roughly speaking, a partial
group is a set L together with a product which is only defined on certain words in £, and an
inversion map £ — £ which is an involutory bijection, subject to certain axioms. We refer the
reader to [6, Definition 2.1] or [7, Definition 1.1] for the precise definition of a partial group, and
to the elementary properties of partial groups stated in [0, Lemma 2.2] or [7, Lemma 1.4].

For the remainder of this section let £ be a partial group with product II: D — £
defined on the domain D C W([).

It follows from the axioms of a partial group that ) € D. We set 1 = II(0)). By [7, Lemma 1.4(f)],
we have 17! = 1. Given a word v = (f1,..., f,) € D, we write sometimes fifo--- f, for the
product II(v).
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If X and Y are subsets of L, we set
XY :={ll(z,y): z € X, y €Y, (v,y) € D}.

A partial subgroup of £ is a subset H of £ such that f~! € H for all f € H and II(w) € H for
all w € W(H) N D. Note that ) € W(H) N D and thus 1 = II(}) € H if H is a partial subgroup
of L. It is easy to see that a partial subgroup of £ is always a partial group itself whose product
is the restriction of the product II to W(#H) N D. Observe furthermore that £ forms a group in
the usual sense if W (L) = D; see [7, Lemma 1.3]. So it makes sense to call a partial subgroup H
of £ a subgroup of L if W(H) C D. In particular, we can talk about p-subgroups of £ meaning
subgroups of £ whose order is a power of p.

Lemma 3.1. Ifu,v € W(L) such that uov € D, then uo(1)ov € D and II(uo(1)ov) = II(uow).

As a consequence, if w is a word whose entries are all 1, then w € D and II(w) = 1. So {1}
s a subgroup of L.

Proof. The first part is shown in [7, Lemma 1.4(c)]. Using this property repeatedly starting with
u=v =0, it follows that a word w all of whose entries are 1 lies in D and that II(w) = II(0) = 1.
As 17! =1, it follows that {1} is a subgroup of L. O

3.2. Conjugation in partial groups. For any g € £, D(g) denotes the set of x € £ with
(97!, 2,9) € D. Thus, D(g) denotes the set of elements x € £ for which the conjugation 29 :=
I(g~', z,g) is defined. By the axioms of a partial group, (¢~%,¢) € D and II(g~',g) = 1 for any
g € L. So by Lemma (g7',1,9) € D and II(g~!,1,9) = 1. Hence, for any g € £, 1 € D(g)
and 19 = 1. As 17! = 1, it follows similarly by Lemma that g € D(1) and g' = ¢ for any
geL.

If g€ £Land X C D(g) we set X9 := {z9: x € X}. If we write X9 for some g € £ and
some subset X C £, we will always implicitly mean that X C D(g). Similarly, if we write x9 for
x,g € L, we always mean that = € D(g).

If X is a subset of £, then we set
Ne(X):={geL: X9=X}and Cp(X) :={ge L: 29 =z for all z € X}.

Note that Cz(X) C Nz(X). Similarly, for z € £, we define Cr(z) := {f € £: #/ = z}. As argued
above, 1 is contained in the centralizer of any element or subset of L.

If X and Y are subsets of £, then set Ny (X) = N(X)NY and Cy(X) = Cr(X)NY. Moreover,
set

Z(L) == Cr(L).

Lemma 3.2. For any f,g € L, the following conditions are equivalent:

(1) f€Ccly).
(2) g Cc(f).
3) (f g f.g9)eDand flg7 fg=1.
4) (g f e fleDandg ' flgf =1.
Moreover, if f € Cr(g), then (f,9),(g,f) € D and fg=gf.

Proof. We prove first that properties (1)-(4) are equivalent. Since the situation is symmetric in f
and g, it is sufficient to prove that (1) and (3) are equivalent, and that (3) implies (4).

Assume first that (3) holds, i.e., that u := (f~',¢7%, f,g) € D and II(u) = 1. Then by [7,
Lemma 1.4(f)], (971, f 49, f) =u ' € Dand (v 1) = H(u)~* = 17! = 1. So (4) holds. By the
axioms of a partial group, (¢!, f,g) € D asu € D. By [7, Lemma 1.4(d)], it follows moreover that
(f)ou € D and TI(fo(u) = 11(g-1, f.g) = 7. Hence, 9 = I1((f)ou) = TI(f, 1i(u)) = 11(f, 1) = f
by the axioms of a partial group and by Lemma So (1) holds. This shows that (3) implies
(1) and (4).
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Assume now that (1) holds, i.e., v = (¢7%, f,g) € D and f9 = II(v) = f. By the axioms
of a partial group, v"'owv = (g7, f71,9,97 ', f,g9) € D and II(v~! o v) = 1. Moreover, by [7,
Lemma 1.6(b)], v € D and II(v~!) = II(v)~! = f~!. Hence, by the axioms of a partial group,
(f Lot fig) =M H)oveDand H(f L g7t f,9) =H(vtowv) =1. So (1) implies (3).

This shows that properties (1)-(4) are equivalent. The last part of the assertion follows now
from [7, Lemma 1.5(b)]. O

Since there is a natural notion of conjugation, there is also a natural notion of partial normal
subgroups of partial groups. Namely, a partial subgroup N of L is called a partial normal subgroup
of Lifnf € Nforall f €L andalln e NND(f).

3.3. Homomorphisms of partial groups. In this subsection let £ be a partial group with
domain D’ and product II': D’ — £'. Let 1/ = IT'(()) be the identity in £’

If p: M — N is a map between two sets M and N, then ¢*: W(M) — W(N) denotes the
map induced by ¢, i.e., (f1,..., fn)e* = (fip,..., fap) for every word (f1,..., fn) € W(M).

Let 8: L — L. Recall from [7, Definition 1.11] that 8 is called a homomorphism of partial
groups if DF* C D’ and II'(v3*) = (I1(v))S for all v € D.

If 5 is a homomorphism of partial groups, define the kernel of 5 via

ker(B) = {f € £: fB =1},

By [7, Lemma 1.14], the kernel of a homomorphism of partial groups is always a partial normal
subgroup.

Definition 3.3. Let 3: £ — £’ be a homomorphism of partial groups. We call 8 a projection
of partial groups if DS* = D’. A projection 3 is called an isomorphism of partial groups if 3 is
injective. We call two partial groups isomorphic if there exists an isomorphism between them.

Note that the condition D3* = D’ implies that [ is surjective, as every word of length one is an
element of D’. So every projection of partial groups is surjective as a map, and every isomorphism
of partial groups is a bijection.

Lemma 3.4. Let 3: L — L' be a homomorphism of partial groups and let H be a partial subgroup
of L. Then (DNW(H))5* C D' NW(HSB). Moreover, if ( DNW(H))B* = D' NW(HS), then
HB is a partial subgroup of L' and Bly: H — HB is a projection of partial groups.

Proof. Clearly, (DN W (H))8* € D' NW(HS). Assume now (DN W(H))B* = D' N W(HS).
If f € HB, then f = gB for some g € H. As H is a partial subgroup, g~! € H. Thus, by [T}
Lemma 1.13], f~1 = (¢8) ! = (¢71)B8 € HB. Let now v € D' N'W(HB) = (D NW(H))B*. Then
there exists © € D N'W(H) such that v = uf*, and it follows that IT'(v) = II'(uS*) = (I1(u))B.
As H is a partial subgroup of £, we have II(u) € H and thus II(v) € HS. Hence, H[3 is a partial
subgroup of £L'. Clearly, 3|y is a projection of partial groups. ([

Lemma 3.5. Let 3: L — L' be an isomorphism of partial groups. Then the following hold:

(a) The map B~1: L' — L is an isomorphism of partial groups.
(b) A subset H of L is a partial subgroup of L if and only if HS is a partial subgroup of L.

Proof. As B is a bijection, 5* is a bijection and (871)* = (5*)~!. So DB* = D’ implies D =
D/(f~1)*. In particular, for v € D', we have u := v(871)* € D and uB* = v. So II'(v) =
I (uB*) = (I(u))B implies (I'(v))B3~ = (u) = H(v(8~1)*). So (a) holds.

For the proof of (b) let H be a partial subgroup of £. As 8 and * are bijections, we have
(DNW(H))B* = (DB*) N (W(H)B*) = D' N W(HB). So HS is a partial subgroup of £’ by
Lemma [3.4 Now (b) follows from (a). O
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3.4. Localities.

Definition 3.6. Let A be a set of subgroups of £. We write Da for the set of words (f1,..., fn) €
W (L) such that there exist Py, ..., P, € A with

(+) Pio1 CD(f;) and P = P.
Ifv=(f1,...,fn) € W(L), and Py,..., P, € A such that (x) holds, then we say that v € Da via
Py,...,P, (or v eDvia F).

Definition 3.7. We say that (£, A,S) is a locality if the partial group L is finite as a set, S is a
p-subgroup of £, A is a non-empty set of subgroups of .S, and the following conditions hold:
(L1) S is maximal with respect to inclusion among the p-subgroups of L.
(L2) D =Da.
(L3) For any subgroup @ of S, for which there exist P € A and g € £ with P C D(g) and
P9 < Q, we have Q € A.
If (£,A,S) is a locality, v = (f1,..., fn) € W(L), and v € Da via Py, ..., P,, then we say that
veDvia Py,...,P, (or ve D via Pp).

If £ is any partial group, S a subset of £, and g € £ we set
Sy :={s€SnND(g): s7 € S}.
Lemma 3.8 (Important properties of localities). If (£, A,S) is a locality and P € A, then the
following hold:
(a) Nz(P) is a subgroup of L.
(b) If g € L with P C S, then P9 € A. So in particular, P9 is a subgroup of S.
Proof. Property (a) is [7, Lemma 2.3(a)] and property (b) is [7, Proposition 2.6(c)]. O

Let (£, A, S) be a locality. Then by [7, Lemma 2.3(b)], for every P € A and every g € £ with
P C Sy, the map ¢4: P — P9,z — 29 is an injective group homomorphism. The fusion system
Fs(L) is the fusion system over S generated by such conjugation maps. Equivalently, Fg(L) is
generated by the conjugation maps between subgroups of S.

Definition 3.9. If F is a fusion system, then we say that the locality (£, A,S) is a locality over
F it F=Fg(L).

3.5. Projections of localities.

Definition 3.10. Let £ and £’ be partial groups, and let 3: £ — £’ be a homomorphism of
partial groups. For every set I' of subgroups of £ we set

I'p:={Pp: Pel}.

Suppose now (£, A,S) and (£, A’,S") form localities. Then S is called a projection of localities
from (L£,A,S) to (L',A’,S") if B is a projection of partial groups and A’ = Aj (and thus also
Sp =5"). If 8 is in addition injective, then we call § an isomorphism of localities from (L, A, S)
to (L', A, S7).

If (£,A,S) is a locality, £’ is a partial group and 8: £ — L' is a projection of partial groups,
then (£, AB, SB) forms a locality by [7, Theorem 4.4]. In other words, the projection 3 of partial
groups “transports” the locality structure on £ to a locality structure on £'. Clearly, 3 is a
projection of localities from (£, A, S) to (L', AB,Sp).

If B is a bijection, then actually the partial group structure on £ can be “transported” as well.
The following remark is straightforward to prove:
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Remark 3.11. Suppose L is a partial group as before, L' is a set and B: L — L' is a bijection.
Notice that then B* is a bijection as well. We can turn L' into a partial group by setting D’ :=
{vB*: v € D}, I'(vB*) := (Il(v))B for every v € D and (fB)~! = (f~1)B for every f € L. By
construction, B is then an isomorphism of partial groups from L to the newly constructed partial
group L'. If (L, A,S) is a locality, then (L', AB,SB) is a locality. Moreover, (3 is an isomorphism
of localities from (L,A,S) to (L', AB,SpS).

Chermak [7] developed a theory of quotient localities modulo partial normal subgroups. We
refer the reader to this article for details, but give a quick summary here: Suppose (£, A,S) is a
locality and A is a partial normal subgroup of £. For f € L set

Nf:={Ill(n,f): neN, (n,f) €D}

and call N'f a right coset of N in £. If N f is maximal with respect to inclusion among the
right cosets of N in L, then we call N'f a maximal (right) coset. By [7, Proposition 3.14(d)], the
maximal right cosets form a partition of L, i.e., every element of £ lies in a unique maximal right
coset. The map

L— L/IN

mapping every element g € £ to the unique maximal right coset of A/ containing g is a projection
of partial groups; see [T, Corollary 4.5]. It is called the canonical projection L — L/N'. The kernel
of the canonical projection equals . If § is as above and N = ker(f3), then the map

LIN = L', Nf— fB

is by [7, Theorem 4.6] well-defined and an isomorphism of partial groups.

Chermak [7, Definition 3.6] defines t-maximal elements of £ (relative to N'). We will not work
directly with the definition of T-maximal elements here, but only use the following characterization:
For any f € L, the right coset N f is a maximal coset if and only if f is T-maximal relative to N/
(cf [T, Proposition 3.14(c)]).

Lemma 3.12. Let (£, A, S) be a locality, L' a partial group, and suppose B: L — L' is a projection
of partial groups. Assume N := ker(8) C Z(L). Then every coset of N in L has |N| elements
and is thus mazximal. Moreover, for all v € W(L), we have v € D if and only if v3* € D'.

Proof. Let f € L. Since N' C Z(L), we have (n, f) € D for all n € N by Lemma [3.2] So we have
a well-defined map

N = Nf, n—I(n, f)

and this map is clearly surjective. If II(n, f) = II(n’, f) with n,n’ € A/, then the right cancellation
rule [7, Lemma 1.4(e)] yields n = n’. Hence, the above map is a bijection showing that every coset
has precisely |N| elements. Hence, every right coset is maximal with respect to inclusion among
the right cosets of M. So every element of £ is t-maximal. If v = (f1,..., fn) € W(L) such that
every f; is T-maximal, then by [7, Theorem 4.3(b)], v € D if and only if v8* € D’. This implies
the assertion. (]

Lemma 3.13. Let (L,A,S) be a locality, let L be a partial group, and let B: L — L' be a
projection of partial groups with ker(8) C Z(L). Suppose H is a partial subgroup of L. Then Hf
is a partial subgroup of L. Moreover, ( DNW (H))B* = D' NW(H}[), i.e., the restriction of B to
a map H — HB is a projection of partial groups.

Proof. By Lemma it is sufficient to show that D' N W(H3) € (DN W(H))B*. Let w =
(fi,--+, fm) € DPNW(H}S). Then, for every i = 1,...,m, there exists h; € H such that h;8 = f;.
So for v := (h1,...,hy) we have v € W(H) and v3* = w € D'. Hence, by Lemma [3.12] v € D
and w = vp* € (DNW(H))B*. O
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Lemma 3.14. Let (L,A,S) be a locality, let L be a partial group, and let B: L — L' be a
projection of partial groups. If N is a partial normal subgroup of L, then N is a partial normal
subgroup of L.

Proof. By [7, Lemma 1.14], ker(8) forms a partial normal subgroup of £. So by [0l Theorem 1],
M := N(ker ) is a partial normal subgroup of £. Note that NN C M as, for any n € N,
n =II(n) =II(n,1) € M by Lemma Similarly one shows ker(8) C M. As N’ C M we have
NB C MB. Let n € N and z € ker(3) such that (n,z) € D. Then II(n,z)3 = Il'(nB,z83) =
IT'(nB,1") = I'(nB) = nB, where the first equality uses that 8 is a homomorphism of partial groups
and the third equality uses Lemma Hence, II(n,x) = nB € N3. This shows MfS = N 3. As
ker(3) C M, it follows from [7, Proposition 4.7] that N3 = MJ is a partial normal subgroup of
L. O

3.6. Sublocalities.

Definition 3.15. Let £y be a partial subgroup of £. We say that (Lo, Ao, Sp) is a sublocality
of (L,A,S) if Ly is a partial subgroup of £, Sy = S N Ly, Ag is a set of subgroups of Sy and,
regarding Lo as a partial group with product IT|w,,)np, the triple (Lo, Ao, So) forms a locality.

We stress that, in the above definition, Ag is not assumed to be a subset of A. Such a condition
would be too restrictive for our purposes, as will become clear in Section 5] and Section [6]

Supposing Lg is a partial subgroup of £, we remark that Sy := .S N Ly is always a subgroup of
S and thus a p-subgroup of Ly. If Ag is a non-empty set of subgroups of Sy the (Lg, Ao, Sp) forms
a locality if and only if DNW (L) = Da, "W (Lp), Ay is closed under taking L£o-conjugates and
overgroups in Sgy, and Sy is maximal with respect to inclusion among the p-subgroups of Ly.

Lemma 3.16. Let (L', A’,S’) be a locality, and let B: L — L' be a homomorphism of partial
groups. Suppose we are given a sublocality (Lo, Ao, So) of (L, A,S) with S8 C S" and (DN
W(Ly))s* =D' NW(LyB). Then (LoB,AoB, SoB) is a sublocality of (L', A',S"), and B|zy: Lo —
Lof is a projection of localities from (Lo, Ao, So) to (LoB, Ao, S05).

Proof. By Lemma Lo is a partial subgroup of £ and B|z,: Lo — Lof is a projection of
partial groups. So by [7, Theorem 4.3], (Lo83, A0S, SoB) is a locality. In particular, SpS is a
maximal p-subgroup of Lo8. As Ly is a partial subgroup of L', S’ N (LyS3) is a subgroup of
S" and thus a p-subgroup of Ly3. Since Sy C S N (LoB) it follows that SpB = S’ N (LofS).
So (LoB, Aof, Sop) is a sublocality of (£, A’,S”). Clearly, S|z, is a projection of localities from
(;CQ,AO,SO) to (,Coﬁ,Aoﬁ, Soﬂ) O

Lemma 3.17. Let (L', A’,S") be a locality and let 3: L — L' be a projection from (L,A,S) to
(L' A" S) with ker(8) C Z(L). Suppose we are given a sublocality (Lo, Ao, So) of (L, A, S). Then
(LoB, Ao, SoB) is a sublocality of (L',A",S"), and Blr,: Lo — LoB is a projection of localities
from (Lo, Ao, So) to (LoB, AoB, Sop).

Proof. By Lemma we have (DNW (Ly))B* = D'NW(Ly3). As (3 is a projection of localities,
Sof8 C SB = S’. Hence, the assertion follows from Lemma O

3.7. Linking localities. For the convenience of the reader we repeat the following definitions
from [9].

Definition 3.18.

e A finite group G is said to be of characteristic p if Cq(Op(G)) < Op(G).

e Define a locality (£, A, S) to be of objective characteristic p if, for any P € A, the group
N (P) is of characteristic p.

e A locality (£, A, S) is called a linking locality, if Fs(L£)" C A and (£, A, S) is of objective
characteristic p.
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If (£,A,S) is a linking locality over F, then it turns out that A C F* where F* is defined as in
Deﬁnition On the other hand, given a saturated fusion system F over S, by [9, Theorem A}, the
set F* is F-closed. Moreover, if 7" C A C F* and A is F-closed, then we prove that there exists
a linking locality over F with object set A which is essentially unique. In particular, there is an
essentially unique linking locality over F whose set of objects is the set F* of subcentric subgroups.
In the next lemma we show that isomorphisms between fusion systems induce isomorphisms
between corresponding linking localities.

Proposition 3.19. Let F and F' be fusion systems over S and S’ respectively. Let (L, A,S) be
a linking locality over F, and let (L', A’,S") be a linking locality over F'. Suppose a: S — S’
induces an isomorphism from F to F'. Assume furthermore that Aa = A’. Then there exists

B: L — L' such that 8 is an isomorphism of localities from (L, A,S) to (L', A", S") with B|s = a.

Proof. By Remark[3.11] we can replace the set £ by another isomorphic set if necessary and assume
without loss of generality that (£\S) NS’ = 0. Set £ := (£\S) U S’. Then the map p: £L — £
with p|z\g = id and p|s = « is a bijection. Hence, by Remark h we can turn £ into a partial
group such that ([',, A’ S") is a locality and p is an isomorphism from the locality (£, A, S) to the
locality (£, A’,S"). Then by [0, Theorem 5.7(b)], pls = a: S — S’ induces an isomorphism from
F = Fs(L) to Fsr(L). As a induces an isomorphism from F to F, it follows that Fg (L) = F'.
Since (£,A,S) is a linking locality, (£, A’,S’) is a linking locality as well. So (£,A’,S’) and
(L', A')S”) are both linking localities over F'. Hence, by [0, Theorem A(a)], there exists a rigid
isomorphism v: £ — £’ (i.e., an isomorphism with 7| = idg/). Then § := po~y: £L — L' is an
isomorphism of localities from (£, A, S) to (£, A’,S") with S|s = (pls) o (v]s/) = acidgr = . O

4. EXTERNAL DIRECT PRODUCTS OF PARTIAL GROUPS

For ¢ = 1,2 let £; be a partial group with product II;: D; — £; and inversion map £; —
Li, f— f~L Let
L=L1 X Ly= {(f,g): fe Ly, gEﬁg}.
be the set theoretic product of £1 with £5. We will define a partial product and an inversion map
on £ which turns £ into a partial group.

For any word v = ((f1,91), (f2,92),---,(fn,gn)) € W(L), we set u; = (f1, fo,..., fn) and
uz = (91,92, -, 9n). If u=10, then we mean here u; = () for i = 1,2. So in any case, u; € W(L;)

for : =1,2. Set
D ={ueW(L): u; € D, for each i = 1,2}.
Define
II: D — E, U +— (Hl(ul),HQ(UQ)).
Note that in particular, 1 := TI(()) = (II;(0),12(0)) = (1,1) (where 1 denotes also II;(}) for
i1=1,2). If f=(f1,f2) € L with f; € L; for i = 1,2, set

=N

Lemma 4.1. The set L = L1 X Lo with the partial product II: D — L and the inversion defined
above forms a partial group.

Proof. If u,v € W(L), then note that (uov); = u; ov; for ¢ = 1,2 and similarly, (vovow); =
u; 0 v; o w; for u,v,w € W(L). We will use this property throughout.

As L; is a partial group, £; C D; and Il;|z, = idg, for ¢ = 1,2. Since (f); = (fi) for
any f = (f1,f2) € L, it follows from the definition of D that £ C D. Moreover, for any
f=(f1,f2) € L, we have II(f) = (IT;(f1), T2(f2)) = (f1, f2) by definition of II. Hence, II|; = id.
If u,v € W(L) such that uov € D, then it follows from the definition of D that u;ov; = (uov); € D;
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for : = 1,2. Thus, as £; is a partial group with domain D;, we have w;, v; € D; for ¢ = 1,2. Hence,
again by the definition of D, it follows that u,v € D.

Note now that II(v); = II;(v;) (or more precisely (II(v)); = (II;(v;))) for any v € D and
any i = 1,2 as II(v) = (II1(v1),I12(v2)). Let u,v,w € W(L) such that uovow € D. Then
for i = 1,2, we have u; o v; ow; = (uowvow); € D; by definition of D. Hence, as £; is
a partial group, wu; o (I;(v;)) o w; € D; and IL;(u; o v; o w;) = I;(u; o (I1;(v;)) o w;). Thus
(uo (II(v)) ow); = u; o (II(v)); o w; = w; o (I;(v;)) ow; € Dy for i = 1,2. Again by the definition
of D, it follows that w o (II(v)) o w € D. Moreover, II(u o (II(v)) o w); = IL;((u o (IL(v)) o w);) =
IT; (u; o (IL;(v;)) o w;) = I;(u; o v; 0o w;) = I ((wovow);) =I(uowvow); for i =1,2. Hence,
I(uoI(v) ow) = I(uovow).

As the inversion maps on £; is an involutory bijection for each i = 1,2, the inversion map
L — L, f+ f~!is also an involutory bijection. Note that for any w € W(L), (w™1); = (w;)~ L.
If w € D, then by definition of D, w; € D; for ¢ = 1,2. Thus, by the axioms of a partial
group for £;, (w;)™! ow; € D; and I;((w;)~! ow;) = 1. Hence, (w™tow); = (wl);ow; =
(w;)"' ow; € D; for each i = 1,2. So again by definition of D, w™! o w € D. Moreover,
H(w= ! ow) = (T ((w1) "t owy), Ha((we) "t owy)) = (1,1) = 1. This completes the proof that £
forms a partial group with the product and inversion defined above. O

Definition 4.2. We call the partial group £1 x L5 constructed above the (external) direct product
of the partial groups £1 and Lo.

Lemma 4.3. For i = 1,2 let L; be a partial group and let B;: L; — L; be an isomorphism
of partial groups. Write L1 X Lo for the external direct product of L1 and Ls. Then the map
B: L1 X Lo — L1 X Lo with (f,g) — (fB1,902) is an isomorphism of partial groups.

Proof. For i =1,2 l(j:t ﬂh D, — £; be the partial product on L;. Write II: D — £ x Lo for the
partial product on £1 X Lo. Let v € W(Lq x L3). Observe that, for every i = 1,2, (v8*); = v; ;.
So using that (; is an isomorphism for each ¢ = 1,2, we obtain the following equivalence for each
ve W(L):
veED <= v, €D, foreachi=1,2

= 5 € D, for each i = 1,2

— (vB%); € D; for each i = 1,2

— vB* eD.

Hence, D3* = D. Moreover, if v € D, then II(v3*) = (I11((v8*)1), T2 ((v8*)2)) = (I (v157), Mo (v235)) =
(I3 (v1))B1, (a(v2))B2) = (111 (v1), Ha(v2)) 8 = (II(v))B. Clearly S is a bijection, so the assertion
follows. O

Lemma 4.4. If H; is a partial subgroup of L; for i = 1,2, then the following hold:
(a) Hi x Ho is a partial subgroup of L = L1 X Ls.
(b) If H1 and Ha are subgroups of L1 and Lo respectively, then Hi X Ha is a subgroup of L
which, regarded as binary group, coincides with the direct product of the (binary) groups
H1 and Hs.

Proof. Let f = (f1, f2) € H1 X Ha with f; € H; for i = 1,2. As H; is a partial subgroup, we have
fiteHfori=1,2and thus f~' = (f{', f3') € H1 x Ha. Let now w € W(H; x Hz) N D.
Then w; € W(H,;) for i = 1,2 and, by definition of D, w; € D;. Hence, II;(w;) € H; as H; is a
partial subgroup for i = 1,2. Thus II(w) = (II3 (wy), Ha(w2)) € Hi X Hs. This proves (a).
Assume now that H; is a subgroup of £; for i = 1,2. Then W(H;) C D; for i = 1,2. So if
v € W(H; X Ha), we have v; € W(H;) C D; for i = 1,2. By definition of D, this implies v € D
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proving W(H; x Hs) € D. So H1 x Hs is a subgroup of L. It follows from the definition of £ and
of the direct product of groups that the subgroup H; x Hso regarded as a binary group coincides
with the direct product of the groups H; and Hs. So (b) holds. O

Let
mi L — L;
be the projection map for i = 1,2. This means 71 ((f1, f2)) = f1 and m2((f1, f2)) = fo.

Lemma 4.5. For ¢« = 1,2, m; is a homomorphism of partial groups. In particular, for any
subgroup H of L, Hm; is a subgroup of L; for i =1,2. Moreover, Hm; is a p-subgroup of L; if H
s a p-subgroup of L.

Proof. Let i € {1,2}. By [7, Lemma 1.15], the image of a subgroup under a homomorphism
of partial groups is a subgroup again. So if 7; is a homomorphism of partial groups and H
a subgroup of £, then Hm; is a subgroup of £; and one observes that m;|y: H — Hm; is a
homomorphism of groups. In particular, if H is a p-subgroup of £, then Hm; is a p-subgroup.
Hence, it is sufficient to prove that m; is a homomorphism of partial groups. That is we need
to show that D7} C D; and (II(w))m; = I;(wn}) for all w € D. Let w € D. Observe that
wr! = w; € D; by definition of D. Note also that II(w); = II;(w;) as H(w) = (II; (wy), 2 (w2)).
So (II(w))m; = H(w); = II;(w;) = I;(wn}). This shows the assertion. O

Define now maps ¢1: £1 — L, f — (f,1) and to: Lo — L, f — (1, f). We call ¢; the inclusion
map L; — L.

Lemma 4.6. [f fl e L; fO?” 1=1,2, then ((fll,l), (fQLQ)) €D and (fl,fz) = H((flbl), (fQLQ)).

Proof. Let v = ((fit1), (f2t2)) = ((f1,1),(1, f2)). Then vy = (f1,1) € Dy, Iy(v1) = f1, v2 =
(1, f2) € Dg and IIa(va2) = fo by the axioms of a partial group and by Lemma Hence, v € D

and T1(v) = (IT; (v1), Ty (v2)) = (f1, fa)- -

Lemma 4.7. For any i € {1,2}, the following hold:

(a) The subset L;i; of L= L1 X Lo is a partial normal subgroup of L.

(b) The map t; is an injective homomorphisms of partial groups which induces an isomorphism
of partial groups from L; to the partial subgroup Lit; of L.

(¢) For any partial subgroup H of L;, Hi; is a partial subgroup of L.

Proof. Note that £;1; = ker(ms_;) for i = 1,2. By [7, Lemma 1.14], the kernel of a homomorphism
of partial groups is a partial normal subgroup. Hence, (a) holds.

We prove (b) only for ¢ = 1, as the proof for ¢ = 2 is analogous. Let w = (f,..., fn) € D1 and
set w:=wef = ((f1,1),...,(fn,1)). So u; = w € Dy by assumption. Moreover, ug = (1,...,1) €
Dy and II3(u2) = 1 by Lemma Hence, v € D and II(we}) = (u) = (1 (u1),2(u2)) =
(IT; (w), 1) = (I} (w))e1. This shows that ¢1 is a homomorphism of partial groups. We regard now
L1171 as a partial group with product II|p, where D’ = D N'W(L;¢1). The properties we proved
so far imply that Dy:f € D’ and that the map £1 — L4141 induced by ¢; is a homomorphism of
partial groups. Clearly, ¢; is injective, so it remains to prove that D’ C Dyij. Let u € D'. As
D’ € W(L1t1), u is of the form v = (f1e1,..., fut1) = ((f1,1), ..., (fn, 1)) with f1,..., fn € L1.
Set v := (f1,..., fn). As u € D, we have v = u; € D;. Moreover, u = (fit1,..., fat1) = vij.
Hence, u € Dy¢f. This proves D’ C Dy} and completes the proof of (b).

Let H be a partial subgroup of £; for some i = 1,2. By Lemma an isomorphism of partial
groups maps partial subgroups to partial subgroups. So by (b), H; is a partial subgroup of L;¢;.
By (a), L£;1; is a partial subgroup of £. A partial subgroup of a partial subgroup is a partial
subgroup again by [7, Lemma 1.8(a)]. Hence, Hi; is a partial subgroup of £. This proves (c).

O
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Lemma 4.8. Let f1 € L1 and fa € Lo and set [ = (f1, f2).
(a) We have D(f) = D1(f1) x Da(f2), where D;(f;) is formed inside of L; for i = 1,2, and
D(f) is formed inside of L = L1 X Ls.
(b) If g; € Di(fi) for i = 1,2, then (g{l,g22) = (g1,92)7. Similarly, given P; C D;(f;) for
i =1,2, we have (P, x Py)f = P/" x PJ>.
(c) Let S; € L; fori=1,2 and S = Sy x Sy C L] Then Sy = (S1)4, x (S2) ., where (S:)y,
is formed inside of L; for i = 1,2, and Sy is formed inside of L.

Proof. Let g = (g1,92) € L with ¢g; € L; for i = 1,2. We have g € D(f) if and only if
v = ((fl_l,fgl),(gl,gg),(fl,fg)) = (f71,g71, f) € D. By definition of D, this is the case if
and only if (f;l,gi,fi) = v € D; for i = 1,2, ie., if and only if g; € D;(f;) for i = 1,2.
This shows D(f) = Di(f1) x Da(f2) proving (a). Moreover, g/ = II(v) = (IIy(vy),Ha(vs)) =
L (f g0, f1), o (fy g2, f2)) = (91", g82). This implies (b).

Let now s = (s1,s2) € S1 X Sp with s; € S; for i = 1,2. Then s € Sy if and only if s € D(f)
and s/ € S. By (a) and (b), the latter condition is true if and only if s; € D;(f;) for i = 1,2 and
(5{1,552) = s/ € § =8 x Sy. This is the case if and only if s; € D;(f;) and s{i € S;fori=1,2,
i.e., if and only if s; € (S;)y, for i = 1,2. This shows Sy = (S1), X (S2)f,- O

Lemma 4.9. We have
Z(,Cl X ,CQ) = Z(,Cl) X Z(ﬁg) = Z(£1L1)Z([,2L2).

Proof. Recall L = L1 x L5. By Lemma it is sufficient to show that Z(L) = Z(L1) x Z(L3).
Given f = (f1, f2) € L, we have f € Z(L) if and only if f € D(g) and f9 = f for all g € L. By
Lemma (a),(b), this is the case if and only if f € D(g1) x D(g2) and (f{*, f§?) = f9 = f for
all g = (g1,92) € L. This is equivalent to f; € D(g;) and f* = f; for all i = 1,2 and all g; € £;.
Hence, f € Z(L£) if and only if f; € Z(L;) for ¢ = 1,2. This implies the assertion. O

5. EXTERNAL DIRECT AND CENTRAL PRODUCTS OF LOCALITIES

For i = 1,2 let (£;,A;,S;) be a locality. As in the previous section, £; is here a partial group
with product II;: D; — £; and inversion map £; — L;, f — f~' Let £L = L1 x L5 be the
partial group we constructed in the previous section, and let m;: £ — L£; be the projection map
for i = 1,2. Recall that, by Lemma P; x P» is a subgroup of £ for all P € Ay and P, in As.
Set S := 51 x Sy and let

A=A xAy

be the set of subgroups of S containing a subgroup of the form P; x P» with P; € A; for i =1, 2.
We will show that (£, A, S) is a locality.

Lemma 5.1. The triple (L, A,S) = (L1 X Lo, A1 % Ao, S1 X S3) is a locality. Moreover, we have
fs(ﬁ) = fsl (ﬁl) X .7:52 ([,2).

Proof. In this proof, Lemma is used frequently, most of the time without reference. We first
show that (£, A, S) is a locality. As £; and Ly are finite as sets, £ is clearly also finite as a set.
By Lemma[£.4] S = S x Sy is a subgroup of £ which, regarded as a binary group, coincides with
the direct product of the groups S7 and Sz. So S; x S5 is a p-subgroup of L. Let now T be a
p-subgroup of £ containing S = S7 X S2. Then, by Lemma Tm; is a p-subgroup of L£; for
i=1,2. As S; <Tm; and S; is a maximal p-subgroup of £; for ¢ = 1,2, it follows that T'm; = S;
and thus T'= S x Sy. This shows that S = 5] x Sy is a maximal p-subgroup of £, so (L.1) holds.

1By S1 X S2 we just mean the set theoretic product of S1 and S2 here
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Let v = ((f1,91), (f2,92),- -+ (fns9n)) € W(L) (where f; € L1 and g; € Lo for j =1,...,n).
Recall that D; = Da, for i = 1,2 (where D, is formed inside of £;), since (L£;, A;, S;) is a locality.
Using this property and Lemma [4.8] we get the following equivalence:

veD
<~ v1=(f1,...,fn) €Dy and va = (g1,...,9n) € Do
<= There exist Py,..., P, € Ay and Qqo,...,Qn € Ay such that

fOI'j: 1a"'7n’ ijl c Sfjv ijjl :Pja ijl C nga ng—l :Q]

<= There exist Fy,..., P, € Ay and Qo,...,Q, € Ay such that
for ] = 1, ey Ny (Pj—l X Qj—l) - S(ijgj) and (iDj—l X Qj_l)(fj’gj) = Pj X Qj
<= There exist Fy,..., P, € Ay and Qo,...,Qn € Ay such that
v € DA via By XQ(),...,Pn XQn.
In particular, v € D implies v € Da. Suppose now v € Da. Then there exist Xg,..., X, € A
such that v € Da via Xg,...,X,. By definition of A, there exist Py € A; and Qp € Ao
such that Py x Qo < Xp. Define P; and Q; recursively by P; = ijil and Q; = ij_l As
Xj—1 € S0, = (S1)g; x (S2)g; and Xj(fjl’gj) = X, an easy induction argument shows that, for
j=1,...,n, Pj and @Q; are well-defined and P; x Q; = (Pj_1 x Qj_l)(fj’gj) < Xj. As £y and £,
are localities, P; € Ay and Qj € Ay for j =1,...,n by Lemma (b) In particular, P; x @Q; € A
for j=1,...,n. Hence, v € DA via Py X Qq, ..., P, X @y. By the above equivalence, this means
v € D. Thus, we have shown that D = Dj, i.e., property (L2) holds.

It remains to prove (L3). Let X € A and g = (g1, 92) € £ such that X C Sy. Let X9 <Y < S.
We need to show that Y € A. As X € A, there exist P; € A; for i = 1,2 such that P, x P, < X.
Then Py x Py C Sy = (S1)g, x (S2)g, and thus P; < (5;)g, for i = 1,2. Thus, as £; is a locality,
we have P7" € A; for i = 1,2 by Lemma b). As PI' x PP = (P x )9 C X9<Y <8, it
follows now from the definition of A that Y € A. This shows (L3) and completes the proof that
(L,A,S) is a locality.

Set F; := Fg,(L;) for ¢ = 1,2. It remains to show that Fg(L) = F1 x Fo. The fusion system
Fs(L) is generated by the maps ¢;: S — S with g € £. Take g = (g1,92) € L. We have
Sy = (S1)g, % (S2)g,- Moreover, for any s = (s1,s2) € Sy, scg = 89 = (s7',557) = (s1¢4,, S2¢4,)-
So using the notation from Section we have ¢, = ¢g, X ¢y, € Homz, «7,(Sg,S). This shows
Fs(L) € Fi; x Fa. The fusion system F; x Fa is generated by maps 1 X @o where ¢; is a
morphism in F;. So let P;,Q; < S; and ¢; € Hompg, (P, Q;) for i = 1,2. We need to show that
Y1 X pa: Py X Py = @1 X Q2 is a morphism in Fg(L). By definition of Fi, there exist elements
fi,---, fn € L1 and subgroups P; = X, ..., X, of S such that, for j =1,...,n, X]fil = X, and
01 = cplx, 0 0cy,|x, ;. Similarly, by definition of F3, there exist elements g1,...,gm € Lo
and subgroups P» = Yy, ...,Y,, of S such that, for j =1,...,m, ijjl =Yjand @3 =c¢g |y, 0 0
Cgm |Y,n_, - Inserting conjugation maps by the identity element if necessary, we may assume m = n.
Then setting Z; = X; x Yj for j =0,...,n and h; = (fj,g;) for j =1,...,n, we have Z;-lil =7
for j=1,...,n,and @1 X @2 = cp, |z, O Chylz, 0+ 0 Chylz,- SO Y1 X 2 is a morphism in Fg(L).
This shows Fs(L) = F1 x F2 as required and completes the proof. O

Definition 5.2. We call (£, A,S) = (£1 X L2, A1 % Ao, S1 X So) the (external) direct product of
(£17 Ala Sl) and (527 AQ) SQ)

As before let ¢;: L£L; — L be the inclusion map.

Lemma 5.3. For i = 1,2, (L, Aiti, Siti) is a sublocality of (L,A,S) and Fg,,,(Liti) is the
canonical image of Fg,(L;) in Fs,(L1) x Fs,(L2) = Fs(L).
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Proof. Recall that, by Lemmal[5.1] Fg(L) = Fg,(£1) x Fs,(L2). Let i € {1,2}. Set F; = Fg, (L),
ﬁi = L, Az = A;1; and Sz = S;1;. Lemma b) gives that ¢; is a homomorphism of partial
groups and D;.f = DﬂW(ﬁi). Moreover, S;i; € S x Sy = S. Since (L£;, A;, S;) is a sublocality of
itself, it follows from Lemma that (L;e, Ajis, Sit;) is a sublocality of (£, A, S). Moreover, the
restriction of ¢; to a map £; — L;1; is a projection of localities from (L;, A;, S;) to (Liti, Ajti, Sits).
Because of the latter property, it follows from [9, Theorem 5.7(b)] that (¢;)|s, : Si — Sit; induces an
epimorphism from Fg,(£;) to Fs,,,(Liti), i.e., Fs,(Li)(ti)|s; = Fs,u; (Liti). Note that (1;)]s, is the
canonical inclusion map S; — 51 x Sz which induces a morphism of fusion systems from Fg, (L;)
to Fs, (L£1) X Fs,(L2) = Fs(L). The canonical isomorphic image of Fg,(£;) in Fg, (£1) x Fs,(L2)
is by definition the image under this morphism and equals thus Fg, (£;)(¢i)|s, = Fs;i;(Liti). This
shows the assertion. O

Our next goal now will be to show that (£, A, S) is of objective characteristic p if and only if
(L, A, S;) is of objective characteristic p for each i = 1,2. We will need the following elementary
group theoretical lemma.

Lemma 5.4. Given finite groups G1 and Gs, their direct product G1 X Go is of characteristic p
if and only if G1 and Go are of characteristic p.

Proof. Set G := G1 x G and observe that O,(G) = O,(G1) x O,(G2). If G has characteristic
p, then Cg,(0,(G;)) < Ca(Op(Q)) NG < O,(G) N G; = Oy(G;) and G has characteristic p
for i = 1,2. If G and G3 have characteristic p, then Cg(Op(G)) = Ca(Op(G1) x Op(G2)) =
Ca,(0p(G1)) X Cay (Op(G2)) < Op(G1) x Op(G2) = Op(G). Hence, G is of characteristic p. 0O

Lemma 5.5. As before let (L, A, S) be the external direct product of (L1, A1,S1) and (L2, Ag, S2).
Let P < S and set P; := Pm;. Then the following hold:
(a) We have Np(P) C Ng,(P1) X N, (Po).
(b) If P = Py X P, then Np(P) = Ng,(P1) X N, (P) (as a set).
(¢) Suppose P € A. Then P; € A; for i = 1,2 and in particular Py x Py € A. If the groups
N, (Py) and Nz, (Ps) are of characteristic p, then N (P) is of characteristic p.
(d) If P = Pi x P, € A, then Nz(P) is of characteristic p if and only if N, (P;) is of
characteristic p for 1 =1, 2.

Proof. Let f = (f1, f2) € L with f; € £; for i = 1,2. For the proof of (a), suppose f € Nz (P). Let
x1 € Py. Since P is the projection of P to Sp, there exists xo € P, such that z = (z1,22) € P.
Using Lemma (a),(b), we get x; € D(f;) for i = 1,2 and (3:{1,%2) =ux/ € Pas f € Ny(P).
Hence, m{l = zfm € P, proving fi € Ng,(Pr). Similarly, one shows fa € Ng,(P). So if
f € Ng(P), then f = (f1, f2) € Nz, (P1) X Nz, (P2). This proves (a).

For the proof of (b) assume P = P; x P, and f; € Ng,(F;) for i = 1,2. By (a), it remains
to prove that f € Nz(P). By Lemma [1.8(a),(b), P = P, x P; C Dy(f1) x Da(f2) = D(f) and
pPf =P/ x P> = P, x P, = P. So f € N;(P) as required. This proves (b).

Let now P € A be arbitrary. Then, by definition of A, there exist Q; € A; for i = 1,2 such
that Q1 x Q2 < P. Then for ¢ = 1,2, we have Q; < P; and thus P; € A;, as A; is closed under
taking overgroups in .S;. By definition of A, it follows that P; x P, € A.

By (a) and (b), H := Nz(P) C G = Ng(P1 x P2) = N, (P1) X Ng,(P2). Since the normalizer
of an object in a locality is a finite group by Lemma a), H, G, Nz, (Py) and Ng,(P,) are finite
groups. By Lemma G regarded as a binary group coincides with the direct product of the
binary groups N, (Py) and Ng,(P).

If Nz, (P1) and Ng,(P») are of characteristic p, then G is of characteristic p by Lemma
By [10, Lemma 1.2(c)], every p-local subgroup of a group of characteristic p is of characteristic p.

Hence, H = Ng(P) is of characteristic p if G is of characteristic p. This proves (d). Suppose now
P = P x P,. Then G = H and thus (e) follows from Lemma [5.4] O
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Lemma 5.6. The locality (L, A,S) = (L1 X Lo, A1 % Ao, S X S2) is of objective characteristic p
if and only if (L, A, S;i) is of objective characteristic p for each i = 1,2.

Proof. If (L;, A;,S;) is of objective characteristic p for i = 1,2, then it follows from Lemma (c)
that N, (P) is of characteristic p for any P € A. So (£, A,S) is of objective characteristic p
if (L£;,A;,S;) is of objective characteristic p for i« = 1,2. Suppose now (£, A, S) is of objective
characteristic p. Let P; € A; for i = 1,2. We need to see that N, (F;) is of characteristic p for
i =1,2. Setting P = P; x P» this follows from Lemma (d) O

Lemma 5.7. The locality (L, A,S) = (L1 X L2, A1 % Ag, S1 X S2) is a linking locality if and only
if (Li,As,S;) is a linking locality for each i =1,2.

Proof. Set F = Fs(L) and F; = Fg,(L;) for i = 1,2. By Lemma it is sufficient to show that
Fe C A if and only if F{" C A;. Recall that, by Lemma F = F1 X Fa. So by Lemma d),
F ={R; x Ry: R; € F{" fori = 1,2}. In particular, 7" C A if 77" C A;. Assume now
FC A, and let R; € F{" for ¢ = 1,2. Then Ry x Ry € F“ C A. So by Lemma (C), R, € A;
for i = 1,2. This shows F{" C A, for i = 1,2 provided 7" C A. Hence, the proof is complete. [

Let t;: £L; — L be the inclusion map for ¢ = 1,2. Recall from Lemma that Z(L£) =
Z(L1) X Z(L9) = Z(L111)Z(Lat2). Observe also that every subgroup of Z(£) is a partial normal
subgroup of L.

Definition 5.8. As before assume (£, A, S) = (L1 X L2, A1 x A9, 51 X S3). Let Z < Z(L) with
Z N (L) = {1} for i = 1,2. Write 8: L — L/Z for the canonical projection map as defined
in Subsection Then we call the locality (£/Z, AB,SpB) the (external) central product of the
localities (L£1,A1,S1) and (L2, Ag, S2) over Z.

The reader should note that it is not so clear how one should define external central products
of arbitrary partial groups since quotients of partial groups modulo partial normal subgroups are
not defined in general.

Lemma 5.9. Let Z < Z(L) with ZN(L;;) = {1}, and let : L — L/Z be the canonical projection
so that (L/Z,AB,SP) is the external central product of the localities (L1,A1,S1) and (L2, Ag, S2)
over Z. Set F; = Fs,(L;) fori=1,2.

(a) The localities (L1, A1,51) and (L2, A2, S2) are of objective characteristic p if and only if
Z < S and the central product (L/Z,AB,SP) is of objective characteristic p.

(b) The localities (L1,A1,S1) and (Lo, Ag, S2) are linking localities if and only if Z < S and
the central product (L/Z,AB,SB) is a linking locality.

(c) If Z < S, then Z < Z(F1 x Fa), (F1 x Fa)/Z is a central product of the fusion systems
F1 and Fa, and (L/Z,AB,SB) is a locality over (Fi x F2)/Z.

Proof. If (L, A, S) is of objective characteristic p, then Z < Cr(S) < S. In particular, Z < S if
(L£,A,S) is a linking locality. Assume from now on that Z < S. Recall from Lemma that
Fs(L) = F1 x Fo. In particular, Z < Z(F; x F2) as Z < Z(L) and Fg(L) is generated by the
conjugation maps by elements of L.

As Z < Z(L)NS, [9, Proposition 9.2] gives us the following properties: The locality (£/Z, AB, S3)
is a locality over (F1 N F2)/Z; (L/Z,AB,SB) is of objective characteristic p if and only if
(L,A,S) is of objective characteristic p; and (£/Z, AS3,SB) is a linking locality if and only if
(£,A,S) is a linking locality. Now (a) and (b) follow from Lemma [5.6|and Lemmal[5.7 We have
ZN(Sivi) < ZNZ(Li;) = {1} and thus Z N (S;;) = 1. Hence, (F1 x Fa)/Z is a central product.
So (c) holds. O
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6. INTERNAL CENTRAL AND DIRECT PRODUCTS

Throughout this section let £ be a partial group with product II: D — L. For ¢ = 1,2, £; will
always be a partial group with product Il;: D; — £;. Moreover

Li: EZ — £1 X EQ

denotes the inclusion map from £; into the external direct product £1 x Lo. For i = 1,2 we set
L;:= L, e, L1 ={(f,1): fe€ L1} and L2 ={(1,9): g € L2}. By Lemma a),(b), £; and
Lo are partial normal subgroups of £1 x Lo, and ¢; induces an isomorphism £; — £;.

Except in Lemma [6.5] and Lemma L1 and Lo are assumed to be partial subgroups of L,
D,:=Dn W(,Cl) and II; := H|D¢-
Definition 6.1. We say that £ is the (internal) central product of £, and Ly if the following
conditions hold:

(C1) We have

D= {(H(flvgl)7 e aH(fnag’IZ)): (flv e 7fn) eDnN W(El)a (917 see 7gn) eDnN W(£2>7
(fj,9;) eDforj=1,...,n}
(02) If (fla'-'vfn) € me(ﬁl)a (917'-'agn) € me(£2) and (f]?g]) eD fOI’j =1,...,n,
then H(H(f1,gl), s vH(fmgn)) = H(H(fla ceey fn)vn(glv <o 79”))'
We call L the (internal) direct product of £1 and Lo if L is the central product of £; and L2 and
the following additional property holds:

(D) For any h € L there exist unique elements f € £; and g € Lo with (f,g) € D and
h=1I(f,g).

If £ is the direct product of £ and Ls, then the following lemma says that £ is indeed the
product of £1 and Ly in the usual sense.

Lemma 6.2. If (C1) holds, then L = L1Ls. In other words, for every h € L there exist elements
f €Ly and g € Lo with (f,g) € D and h =1I(f,g). So the important part in property (D) is the
uniqueness of f and g.

Proof. Let h € L. Then (h) € D by the axioms of a partial group. So by (C1), there exist
(f) e DNW(L;) and (9) € DNW(L2) with (f,g) € D and (h) = (II(f,g)). Then f € L1, g € Lo
and h =1II(f, g). O

Lemma 6.3. Suppose that L is the internal central product of L1 and Lo. Then L1 C Cr(Ls)
and Lo € Cr(Ly). In particular, for oll f € L1 and g € Lo, we have (f,g) € D, (g, f) € D and
fg=gf. Moreover, L is the internal central product of Lo and L4.

Proof. Let f € £ and g € L£5. We show first that ¢ € D(f) and ¢f = g. By the axioms
of a partial group, (f~',f) € D, (g) € D, II(f~',f) = 1 and TI(g) = ¢g. So by Lemma
(f,1.f) e DAW(L), (1,g,1) € DAW(L), 11,1, ) = (f 1, f) = 1 and 1(1,g,1) =
II(g) = g. A similar argument shows that (f~%,1), (1,¢) and (f,1) liein D and TI(f~',1) = f~1,
II(1,9) = g and II(f,1) = f. So by (C1), (f_lagvf> = (H(f_lv 1),11(1, ), 1I(f,1)) € D and by
(C2), gf = H(f_lagv f) = H(H(f_la 1,f),1I(1,9,1)) = II(1,g) = g. This proves L1 C Cr(L2).
So by Lemma[3.2] Lo C C(L£1) and, for all f € £, and all g € Lo, we have (f,g) € D, (g, f) € D
and II(f, g) = (g, f). It follows from the latter property and the definition of an internal central
product that £ is the internal central product of Lo and L, U

Proposition 6.4. Consider the map
@i L1 x L — L with (f,g) = TI(f,g)
which is well-defined if (f,g) € D for all f € L1 and g € Lo. The following hold:
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(a) The map ¢ is well-defined and a projection of partial groups if and only if L is the internal
central product of L1 and Lo.
(b) If ¢ is well-defined and a projection of partial groups, then

ker(p) = {(f, f7"): f € L1N Lo} < Z(L1 % L2)

and ker(o) N L; = {1}.

(¢) The map ¢ is well-defined and an isomorphism of partial groups if and only if L is the
internal direct product of L1 and L.

(d) If ¢ is well-defined, then ﬁi¢ = L; and the map L; — L; induced by ¢ is an isomorphism
fori=1,2.

Proof. By Lemma if £ is the central product of £1 and Lo, then (f,g) € D for all f € £,
and g € Lo, i.e., ¢ is well-defined. Therefore, we assume in the remainder of the proof that ¢ is
well-defined. For (a), we will show that ¢ is a projection if and only if £ is the central product of
L1 and Lo. Write IT' for the product on £1 x Lo and D’ for its domain. Note that

D" = {I(f1,91),-- - 1(fn, 90)): ((f1:91);- -, (fnrgn)) € D'}
= {(H(flagl)7'"’]'_‘[(fN7gn)): (fla‘ . afn) €D ﬂW(ﬁl), (gl,... 7971) €D ﬂW(ﬁg)}

where the first equality follows from the definition of ¢ and the second equality follows from the
definition of the domain D’ of £1 X L5. Hence, as (f,g) € D for all f € £; and all g € Lo, (C1)
holds if and only if D = D/p*.

Let now v = ((f1,91),---, (fn,gn)) € D, or equivalently, (f1,...,fn) € D1 = DNW(L;) and
(g1,---,9n) € Do =D NW(L2). We have vp* = (II(f1,91), - - -, H(fn, gn)) and thus

H(U(P*) = H(H(f1,91)7 cee >H(fna gn))

Moreover, IT'(v) = (ILi(f1,.. ., fu), O2(g1,-- -, 90)) = (AL(f1,- -, fn), (g1,...,9n)) by definition
of the product II' on £1 x £9. Thus

(H,(U))SO = H(H(fla SERE) fn)’ H(gl7 s 7gn))
Hence, we have II(vp*) = (II'(v))y for all v € D’ if and only if (C2) holds. This proves (a).

For (b) assume that ¢ is well-defined and a projection of partial groups (so that ker(yp) is well-
defined). Clearly, for all f € £1 N Ly, we have (f, f 1y = II(f, f~!) = 1 and thus (f, f~!) €
ker(). Let now (f, g) € ker(¢) with f € £1 and g € L. Then II(f,g9) = (f,9)p =1 =1U(f, f71).
Hence, by the left cancellation property [7, Lemma 1.4(e)], g = f~'. So g = f~! € £1N Ly and
thus f € £1 N Ly. This shows (f,g) = (f, f~1) with f € £1 N Ls. Hence, ker(p) = {(f, f~1): f €
L1NLs}. By Lemmal6.3] £1NLy C Z(L;) for i = 1,2. So we have ker(p) C (£1NLs) X (£1NLs) C
Z(L1) x Z(L2) = Z(L£1 X L2) by Lemmalt.gl Clearly, ker(p) N £; = {1} for i = 1,2. This shows
(b).

Property (D) means that for each h € £ there exists a unique (f,g) € £1 x Lo with (f,g)p =
II(f,g) = h, i.e., that ¢ is bijective. Hence, (c) follows from (a).

For i = 1,2, let {; be the restriction of ¢; to a map £; — L;, which by Lemma (b) is
an isomorphism of partial groups. Thus, fi1 = (f,1) for all f € £, and gia = (1,¢) for all
g € L. Note that, for all f € £y, we have (f,1)p = II(f,1) = f and, for all g € Ly, we have
(1,9)p =11(1,9) = g. Thus, fori =1,2, L;p = L; and the map £; — L; induced by ¢ is the same
as ;. By Lemma (a), the inverse map of an isomorphism of partial groups is an isomorphism
of partial groups. Hence, ¢ induces an isomorphism of partial groups £; — L;. O

As in the case of groups, the main examples of internal direct products of partial groups come
from external direct products. This is made precise in the following lemma.
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Lemma 6.5. Let £ and Ly be arbitrary partial groups (not necessarily partial subgroups of L).
Then the external direct product L1 X Lo is the internal direct product of L1 and Lo.

Proof. Set L = L1 xLs. We prove the assertion using Pr0p081t10n ( ) (even though it would also
be possible to give a direct proof). So we show that the map ¢ L1x Ly — Lwith (f,§) — II(f,9)
is an isomorphism. Notice that, for all f € L1 and § € Ly, there exist f € £1 and g € L5 such that
f = fu and § = gio. Then by Lemma (f g) € D and H(f g) = (f,9). So ¢ is well-defined
and the inverse of the map £1 X Ly — L1 ¥ L'g, (f,9) — (ft1,gt2) which is an isomorphism of
partial groups by Lemma and Lemma [4.7[(b). Hence, ¢ is an isomorphism of partial groups

by Lemma [3.5](a). O

From now on we assume that (£, A, S) is a locality.

Definition 6.6. Let (£1,A1,S7) and (L2, Ag,S2) be sublocalities of £. We say that the locality
(L,A,S) is the (internal) central product of the localities (L1,A1,51) and (Lo, Ag,S2) if the
following conditions hold:

e [ is the internal central product of £1 and Lo as a partial group,

e S =515, and
e A is the set of subgroups of S containing a subgroup of the form P, P, with P; € A; for
i=1,2.

If in addition to these properties (D) holds, i.e., if £ is the internal direct product of £ and Lo,
then we call (£, A, S) the (internal) direct product of the localities (L1, A1,S1) and (L2, Ag, S3).

As made precise in the following lemma, the main examples of internal direct and central
products of localities come from their external counterparts.

Lemma 6.7. Let (£1,A1,S51) and (L2,A9,S3) be localities. Write (L, A,S) for the external
direct product of the localities (L1, A1,51) and (L2, A9,S3), i.e., L= L1 X Lo, S =51 X So, and
A = Ay x Ay is the set of subgroups of S containing a subgroup of the form Py x Py with P; € A;
fori=1,2. Set A; = Aju; and S; = Siu; fori=1,2.

(a) For each i = 1,2, (£;,A,S;) is a sublocality of (L,A,S). Moreover, (£,A,S) is the
internal direct product of the localities (ﬁl, Ay, 5'1) and (ﬁg, A,, 5’2)

(b) Let Z < Z(L) with ZNL; = {1} and let p: L — L/Z so that (L/Z, Ap, Sp) is the external
central product of (L1,A1,S1) and (L2, A2, Sa) over Z. Then fori=1,2, (ﬁip, Aip, S'Zp)
is a sublocality of (L/Z,Ap,Sp) and p|z, L; — Lip is a projection of localities from
(EZ,A“S) (ﬁzp, Azp, Szp) Moreover, (L/Z,Ap,Sp) is an internal central product of
(L1p, A1p, S1p) and (L2p, Agp, S2p).

Proof. By Lemmam (Li, A, Si) is a sublocality of (£, A, S). As seen in Example L=L1xLs
is an internal direct product of £; and Ly. It is now immediate that (L,A,S) is an internal direct
product of the sublocalities (£1,A1,S1) and (£2, Ay, Ss). This shows (a). Property (b) follows
now from (a) and Lemma below. O

Suppose from now on that (£1,A;,S51) and (L2, As, S2) are sublocalities of L.

Lemma 6.8. Suppose (L,A,S) is the internal central product of (L1,A1,51) and (L2, Aa, S2).
Let (L', A, S") be a locality and let B: L — L' be a projection of localities from (L,A,S) to
(L', A, S") with ker(B) C Z(L).

Then (LiB3, Aif3, Sif) is a sublocality of (L', A", S") fori=1,2 and B|z,: Li — LB is a projection
of localities from (L;, A;,S;) to (L£:8,A;8,5:8). Moreover, (L',A')S") is the internal central
product of the sublocalities (L10,A15,518) and (L2, A2, S203).
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Proof. By Lemma (L:B,A;B,S;B) is a sublocality of (£, A’,S") for i = 1,2 and S|z, : £; —
L;B is a projection of localities from (L;, A;,S;) to (L5, A3, Si5).

We show next that £’ is the internal central product of £13 and L2f3 as a partial group. Write
IT': D' — £’ for the partial product on £’. Set

D = {(H/(fhgl)v s 7H/(f'fl7gn)): (f17 B fn) eD'n W(EI/B) (glv s ?gn) eD'n W(‘CQB)?

(fj,gj) e D’ for j = 1,...,n}
Showing property (C1) for £ means to show that Dt = D’. As 8 is a projection and (C1)
holds for A[,, it is straig}}tforward to check that D’ = DB* C DT. Let now w € DT and write
w=II'(f1,91), .- .. W (fn; Gn)) wWith wy := (f1,..., fn) € D'NW(L1B), w2 := (G1,-.-,9n) € D'N
W (L253), and (fj,g;) e D'forj=1,...,n. Forj=1,...,nlet f; € £; and g; € Lo with f;5 = f;
and g;3 = g;. Set vy := (f1,..., fn) and va = (f1,..., f2). Note that v;5* = w; € D’ for i = 1,2,
and (fj,97)8* = (f;,3;) € D' for j = 1,...,n. So by Lemma[3.12} v; € D for i = 1,2 and (f;,g;) €
D for j = 1,...,n. Hence, since (Cl) holds for £, we have v := (II(f1,91),...,1I(fn,9n)) €
D. As 3 is a homomorphism of partial groups, v8* = w and thus w € DS* = D’. This
shows Dt = D’ and (C1) holds for £’. Moreover, using that (C2) holds for £ and that 3 is a
homomorphism of partial groups, we obtain IT'(w) = Il'(v5*) = (I1(v))8 = (II(T1(v1),I(v2))) 8 =
(I (01 5*), I (v 8*)) = T (T (f1, - - -, fu), IT'(G1, - - -, Gn)). Hence (C2) holds for £'. So £’ is the
central product of £18 and L9 as a partial group.

Since SB = S’, A = A’ and (£, A, S) is the internal central product of £1 and Lo, it is now
easy to observe that the assertion holds. O

Proposition 6.9. Let (L1 X Lo, A1 % A9, S1 x S2) be the external direct product of the localities
(L1,A1,51) and (L2,A2,5), i.e., A1 xAg is the set of subgroups of S1 X So containing a subgroup
of the form Py x Py with P; € A; for i =1,2. Consider the map

@: L1x Ly — L, (f,g9) = 11(f,g).
Then the following hold:

(a) The map ¢ is well defined and a projection of localities from (L1 x Lo, A1 % Ay, S1 X S2) to
(L,A,S) if and only if (L, A, S) is the internal central product of the localities (L1, A1, S1)
and (Lo, Ay, S2).

(b) Suppose ¢ is well-defined and a projection of localities from (L1 X Lo, A1 % Ag, S1 X S2) to
(L,A,S). Then the quotient locality

(L1 x L1,A1 % Ao, Sy x Sa)/ ker(p)

forms an external central product of the localities (L1,A1,S1) and (La2,A2,52), and ¢
mnduced an isomorphism of localities

(L1 x L2)/ker(p) — L, hker(p) — hep.

(c) Suppose ¢ is well-defined and a projection between the localities (L1 X Lo, A1 % Ag, S1 X S2)
and (L,A,S). Then the following are equivalent:
(i) @ is an isomorphism of localities,
(i) Ker(p) = {1},
(iii) (£,A,S) is the internal direct product of (L1,A1,S51) and (L2, As, S2),
(iV) LiNLy = {1}

Proof. Suppose ¢ is well-defined. Then (57 x Sa)p = 5152 and (A1 x Ag)p = {Qy: Q € Ay x Ay}
is the set of subgroups of S containing a subgroup of the form PP, with P, € A; for i =
1,2. Hence, (a) follows from Lemma [6.4(a). Assume now that ¢ is a projection between the
localities (£1 x L2, A1 % A9, S1 x S2) and (£, A,S). Then ker(y) is a partial normal subgroup
and we can form the quotient locality (£1 x L3)/ker(yp) and by [7, Theorem 4.6], ¢ induces
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an isomorphism between the localities (£ X Lo, A1 % Ay, S1 x S2)/ker(p) and (£,A,S). By
Lemmal[6.4|b), (L1 x L2, A1 %Ay, Sy X S2)/ ker(ip) forms an external central product of (L1, Ay, S1)
and (L2, A2, S2). This proves (b).

By [7, Theorem 4.3(d)], a projection between localities is an isomorphism if and only if its
kernel is trivial. Hence, properties (i) and (ii) in part (c) are equivalent. Properties (i) and (iii)
are equivalent by (a) and Lemma c). By Lemma (b), ker(p) = {(f, f~Y: f € L1 N Ly}
which implies that (ii) and (iv) are equivalent. O

Lemma 6.10. Suppose (L, A, S) is the internal central product of (L1,A1,51) and (L2, Az, S2).
Then L1 and Ly are partial normal subgroups of L.

Proof. Let ¢ € {1,2}. By Proposition (a), L; = Li1; is a partial normal subgroup of £1 X L.

By Lemma [6.9)(a), the map ¢: £1 x Lo — L, (f,g) — I(f,g) is well-defined and a projection

between the localities (L1 x Lo, A1 * Ag, S1 X % and (£,A,S). So by Lemma Lip is a
A

partial normal subgroup of £. By Proposition [6.4(d), we have L;o = L; and thus the assertion
follows. .

Lemma 6.11. Suppose (L, A,S) is the internal central product of (L1,A1,S1) and (L2, Az, S2).
Then (L;, A;,S;) is of objective characteristic p for i = 1,2 if and only if L1 N Lo < S1N Sy and
(L,A,S) is of objective characteristic p. Similarly, (L;, A;, S;) is a linking locality for i = 1,2 if
and only if L1 N Ly < S1 NSy and (L,A,S) is a linking locality.

Proof. By Proposition (a), the map ¢: L1 X Lo — L, (f,g) — II(f, g) is well-defined and a
projection of localities from (L1 x L2, A1 % Ag, S1 x S2) to (£, A, S). By Proposition [6.4(b), Z :=
ker(o) = {(f, f71): f € L1NL2} < Z(L1xL2). So by [9, Proposition 9.3], (£1x L2, A1xAg, S1xS2)
is of objective characteristic p if and only if Z < S; x Sp and (£, A, S) is of objective characteristic
p; and (L1 x Lo, A1 % Ag, S7 x S) is a linking locality if and only if Z < S; x Sy and (£, A, S) is a
linking locality. Note that Z = {(f, f~1): f € L1 N Ly} C 81 x Sy if and only if L1 N Ly < 51N Ss.
So the assertion follows from Lemma [5.6] and Lemma [5.7 O

Proposition 6.12. Let F be a saturated fusion system over S such that F is the internal central
product of two subsystems Fi and Fo over Si and Sy respectively. Fori=1,2 let 77" C A; C F7
such that A; is F;-closed. Let A be the set of overgroups in S of the subgroups of the form PP,
with P; € A; fori=1,2.
(a) The set A is F-closed. Moreover, F" C A C F*.
(b) Suppose (L,A,S) is a linking locality over F. Then L is the central product of two
sublocalities (L1,A1,S1) and (L2, A2,S2) such that (Li, A, Si) is a linking locality and
Fi = Fs,(L;) fori=1,2.

Proof. By Lemma [2.10{c), A is F-closed. By Lemma [2.10(a), 7" C A. By [0, Theorem A(b)],
F* is closed under taking overgroups. So Lemma [2.10(b) implies A C F*. This proves (a).

Write ]:'Z for the canonical image of F; in F; X F5. As F is the central product of /7 and JF», the
map a: S1 X So — S, (s1,82) — $152 induces an epimorphism from F; x F»2 to F with Fia=F,.
We have seen that Z := ker(a) < Z(F1 x Fa).

For i = 1,2 let (M;, A;,S;) be a linking locality over F;. Set M = Mj x My, I' = Ay x Ay
and T' = S1 x S3. Then (M,I',T) is a locality over F; x F2 by Lemma For i = 1,2 let
Li: M; — My x My be the inclusion map. By Lemma (Mii, Ajeiy, Siti) is a sublocality of
(M, T, T) with Fg,,,(M;;) = F;. By Lemma (b), the map ¢; is moreover an isomorphism of
localities from (M;, A;, S;) to (M, Ajig, Siti). So (Miei, Aitiy Sie;) is a linking locality by [9,
Proposition 9.3].

As (M, Ay, S;) is a linking locality for i = 1,2, (M,T',T) is a linking locality by Lemma
Hence, by [9, Proposition 4|, Z < Z(M). Let p: M — M/Z be the canonical projection so
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that (M/Z,Tp,Tp) is the central product of (Mi,Aq,S1) and (Ma, A9, S2) over Z. As seen in
Lemma (Miip, Aiip, Sitip) is a sublocality of (M/Z,Tp,Tp), and p|am,., : Miti — Mitip
is a projection of localities from (Me;, Ajii, Siti) to (Mitip, Aitip, Sitip) for i = 1,2. Moreover,
(M/Z,T'p,Tp) is an internal central product of (Mie1p, Aje1p, Sit1p) and (Maiap, Agiap, Satap).

By Lemmal[5.9(b),(c), (M/Z,T'p, Tp) is a linking locality over (Fi X F2)/Z. As observed before,
the map @: T/Z — S, Zt — ta induces an isomorphism from (F; X F2)/Z to F. Observe also that
(p|r) o@ = a and thus I'pa = T'ae = A. Hence, by Proposition there exists : M/Z — L
such that 8 is an isomorphism of localities from (M /Z,T'p,Tp) to (L, A,S). Set L; :== Mi;ipp.
As (p|r) o@ = a, we have t;0po 3 = ;0 = idg, for i = 1,2. In particular, S;u;p8 = S;
and AjpB = A; for ¢ = 1,2. So by Lemma (Liy A;,S;) is a sublocality of (£, A,S) for
i =1,2, B Myup: Mitip = L; is a projection of localities from (M;e;p, Ajiip, Sitip) to (Li, A, S),
and (£, A, S) is a central product of (£1,A1,S51) and (L2, Az, S2). Observe that the composition
of projections of localities is a projection of localities again. Hence, p o § is a projection of
localities from (M,I',T) to (£,A,S), and for i = 1,2, (p o B)|m,, is a projection of localities
from (M;e;, Ai, Siti) to (Li, A, S;). Hence, by [0, Theorem 5.7(b)], (p o B)|s;,;, = @s;,; induces
an epimorphism from F; = Fs,, (M) to Fs,(L;). Hence, Fg,(L;) = ﬁ(p o B)|s;; = Fia = F;.
As f is an isomorphism of localities and ker(p) = Z < Z(M), we have ker((p o 5)|m;,;) =
ker(p|am,.;) = ker(p) N (M) = ZN (M) < Z(M;e;). Hence, (L£;, A, S;) is a linking locality by
[9, Proposition 9.3]. This completes the proof. O
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