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1. Introduction

Partial groups and localities were introduced by Chermak [6], in the context of his proof of
the existence and uniqueness of centric linking systems. Roughly speaking, a partial group is
a set L together with a product which is only defined on certain words in L, and an inversion
map L → L which is an involutory bijection, subject to certain axioms. A locality is a partial
group equipped with some extra structure which makes it possible to define the fusion system of
a locality. Essentially, localities are “the same” as the transporter systems of Oliver and Ventura
[11]; see the appendix to [6]. As centric linking systems are special cases of transporter systems,
the existence of centric linking systems implies that there is a locality attached to every fusion
system. It is work in progress of Chermak and the author of this paper to build a local theory of
localities similar to the local theory of fusion systems as developed by Aschbacher [2], [3] based
on earlier work of many other authors. The results we prove in this paper fit into this program.

For fusion systems, a relatively canonical definition of an external direct product was already
introduced by Broto, Levi and Oliver [5]. Building on this definition, Aschbacher [3] introduced
central products of fusion systems. In this paper, we develop a theory of direct and central
products of partial groups and localities. Most of our definitions are again quite canonical. After
some preliminaries, we introduce in Section 4 direct products of partial groups and prove basic
properties of these. This allows us in Section 5 to define external direct and central products of
localities. In Section 6 we introduce internal direct and central products of partial groups and
localities, and we prove results relating them to their external counterparts.

Of special interest are localities corresponding to centric linking systems or, more generally,
linking localities as introduced in [9]. We prove that an external or internal direct product of two
localities is a linking locality if and only if the two localities we started with are linking localities.
A similar result holds for central products. The reader is referred to Lemma 5.7, Lemma 5.9(b)
and Lemma 6.11 for the precise statements of the results.

Given a linking locality over a saturated fusion system F , it is recent work of Chermak and the
author of this paper [8] to prove that there is a one-to-one correspondence between the normal
subsystems of F and the partial normal subgroups of the locality. A significant part of the theory
developed in this paper is needed in the proof. In particular, at the end we prove Proposition 6.12
with this application in mind.

Throughout, p is always a prime. We will use the right hand notation for maps.

2. Background on fusion systems

2.1. Some notation and terminology. We refer the reader to [4, Part I] for background on
fusion systems, but we recall some notation and terminology here.
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Let F be a fusion system over S. A subgroup R ≤ S is normal in F if R E S and, for all
P,Q ≤ S, every morphism ϕ ∈ HomF (P,Q) extends to a morphism ϕ̂ ∈ HomF (PR,QR) with
Rϕ̂ = R. Similarly, a subgroup R ≤ S is central in F if R E S and, for all P,Q ≤ S, every
morphism ϕ ∈ HomF (P,Q) extends to a morphism ϕ̂ ∈ HomF (PR,QR) with ϕ̂|R = idR. It
follows from these definitions that there exists a largest normal subgroup of F , which is denoted
by Op(F), and a largest central subgroup of F , which is denoted by Z(F). A subgroup R of F is
called strongly closed if Xϕ ≤ R for every X ≤ R and every ϕ ∈ HomF (X,S). Note that every
strongly closed subgroup of F is normal in S.

For any subgroup P of S, we set PF := {Pϕ : ϕ ∈ HomF (P, S)} and call PF the set of F-
conjugates of P . A subgroup P ≤ S is called fully normalized in F (or fully F-normalized) if
|NS(P )| ≥ |NS(Q)| for all Q ∈ PF . For convenience, the set of fully F-normalized subgroups of
S is denoted by Ff .

For any R ≤ S, the normalizer NF (R) is the subsystem of F over NS(R) such that, for
all P,Q ≤ NS(R), the set HomNF (R)(P,Q) is the set of all ϕ ∈ HomF (P,Q) which extend to
ϕ̂ ∈ HomF (PR,QR) with Rϕ̂ = R. In particular, R is normal in F if and only if F = NF (R).
We caution the reader that the subsystem NF (R) is not in general saturated. However, if R is
fully F-normalized, then NF (R) is saturated by [4, Theorem I.5.5].

If ∆ is a set of subgroups of S such that PF ⊆ ∆ for every P ∈ ∆, then we say that ∆ is
closed under taking F-conjugates. A set ∆ of subgroups of S is called F-closed, if ∆ is closed
under taking F-conjugates and ∆ is also closed under taking overgroups in S. The latter property
means that, if P ∈ ∆ and P ≤ Q ≤ S, then Q ∈ ∆.

We recall that Fc is the set of F-centric subgroups of S, i.e., the set of all subgroups P ≤ S
such that CS(Q) ≤ Q for every Q ∈ PF . It turns out that Fc is F-closed. A subgroup P ≤ S is
called F-radical if Op(AutF (P )) = Inn(P ), where Inn(P ) is the group of inner automorphisms of
P . By Fcr we denote the set of subgroups of S which are both F-centric and F-radical. It can
be shown that Fcr is closed under taking F-conjugates. However, Fcr is not F-closed in general.

In the next definition we introduce another collection of subgroups of S, which is less standard
to consider, but plays an important role in connection with the localities we study later on; see
in particular Section 3.7.

Definition 2.1. Let F be a fusion system over S. A subgroup Q ≤ S is said to be subcentric in
F if, for any fully normalized F-conjugate P of Q, Op(NF (P )) is centric in F . Write Fs for the
set of subcentric subgroups of F .

We point out that Fs is F-closed by [9, Theorem A(b)].

2.2. Morphisms of fusion systems. Throughout this subsection let F and F ′ be fusion systems
over S and S′ respectively.

Definition 2.2. We say that a group homomorphism α : S → S′ induces a morphism from F to
F ′ if, for each ϕ ∈ HomF (P,Q), there exists ψ ∈ HomF ′(Pα,Qα) such that (α|P )ψ = ϕ(α|Q).

For any ϕ ∈ HomF (P,Q), a map ψ ∈ HomF ′(Pα,Qα) as in the above definition is uniquely
determined. So if α induces a morphism from F to F ′, then α induces a map

αP,Q : HomF (P,Q)→ HomF ′(Pα,Qα).

Together with the map P 7→ Pα from the set of objects of F to the set of objects of F ′ this gives
a functor from F to F ′. Moreover, α together with the maps αP,Q (P,Q ≤ S) is a morphism of
fusion systems in the sense of [4, Definition II.2.2]. We call (α, αP,Q : P,Q ≤ S) the morphism
induced by α. If E is a subsystem of F on T ≤ S, then we denote by Eα the subsystem of F ′ on
Tα which is the image of E under the functor α∗.
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Definition 2.3. Suppose α : S → S′ induces a morphism from F to F ′. We say that α induces an
epimorphism from F to F ′ if the induced morphism (α, αP,Q : P,Q ≤ S) is a surjective morphism
of fusion systems. This means that α is surjective as a map S → S′ and, for all P,Q ≤ S with
ker(α) ≤ P ∩ Q, the map αP,Q is surjective, i.e., for each ψ ∈ HomF ′(Pα,Qα), there exists
ϕ ∈ HomF (P,Q) with (α|P )ψ = ϕ(α|Q). If α is in addition injective, then we say that α induces
an isomorphism from F to F ′.

If α induces an isomorphism from F to F ′, then observe that the inverse map α−1 induces
an isomorphism from F ′ to F . Note also that the following remark follows directly from the
definitions.

Remark 2.4. Let F and F ′ be fusion systems over S and S′ respectively. Suppose that α induces
an epimorphism from F to F ′. If ker(α) ≤ P ≤ S and Q := Pα, then QF

′
= {P̂α : P̂ ∈ PF}.

The kernel of a group homomorphism S → S′ which induces a morphism from the fusion system
F to the fusion system F ′ is always a strongly closed subgroup of F . On the other hand, if R is a
strongly closed subgroup of F , then there is a factor system F/R defined and the natural group
homomorphism S → S/R is an epimorphism; see [4, Section II.5] for details. If F is saturated and
there exists an epimorphism from F to F ′, then F ′ is saturated. In particular, F/R is saturated
for every strongly closed subgroup R of F .

If α induces an epimorphism from F to F ′, then one checks easily that the induced map

S/ ker(α)→ S′, ker(α)s 7→ sα

induces an isomorphism from F/ ker(α) to F ′.

Lemma 2.5. Let F and F ′ be saturated fusion systems over S and S′ respectively, and suppose
α : S → S′ induces an epimorphism from F to F ′ such that ker(α) ≤ Z(F). Then, for any P ≤ S,
the following hold:

(a) We have P ∈ Fcr if and only if ker(α) ≤ P and Pα ∈ (F ′)cr.
(b) We have P ∈ Fs if and only if Pα ∈ (F ′)s.

Proof. By [9, Lemma 3.6], an isomorphism between two saturated fusion systems induces a bi-
jection between the sets of subcentric subgroups of these two fusion systems. Similarly, such an
isomorphism induces a bijection between the sets of centric radical subgroups of these two fusion
systems.

Set Z := ker(α). Then the map α : F/Z → F ′, ker(α)s 7→ sα induces an isomorphism between
the two saturated fusion systems F/Z and F ′. Hence, α induces a bijection between (F/Z)s and
(F ′)s, and between (F/Z)cr and (F ′)cr. By [9, Lemma 9.1], P ∈ Fs if and only if PZ/Z ∈ (F/Z)s,
and P ∈ Fcr if and only if Z ≤ P and P/Z ∈ (F/Z)cr. This implies the assertion. �

2.3. External direct and central products of fusion systems.

For the remainder of this section let Fi be a fusion system on Si for i = 1, 2.

For each i = 1, 2 write πi : S1×S2 → Si, (s1, s2) 7→ si for the projection map. Given Pi, Qi ≤ Si
and ϕi ∈ HomFi(Pi, Qi) for each i = 1, 2, define an injective group homomorphism ϕ1 ×ϕ2 : P1 ×
P2 → Q1 ×Q2 by

(x1, x2)(ϕ1 × ϕ2) = (x1ϕ1, x2ϕ2)

for all x1 ∈ P1 and x2 ∈ P2.

Definition 2.6. The direct product F1×F2 is the fusion system over S1× S2 which is generated
by the maps of the form ϕ1 × ϕ2 with Pi, Qi ≤ Si and ϕi ∈ HomFi(Pi, Qi) for i = 1, 2.
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Observe that every morphism in HomF1×F2(P,Q) is of the form (ϕ1 × ϕ2)|P where ϕi ∈
HomFi(Pπi, Qπi) for i = 1, 2.

For i = 1, 2 let ιi : Si → S1 × S2 be the inclusion map, i.e., sι1 = (s, 1) and sι2 = (1, s). Note
that ιi induces a morphism from Fi to F1 × F2. More precisely, the morphism induced by ι1
takes ϕ1 ∈ HomF1(P,Q) to ϕ1× id{1} ∈ HomF1×F2(Pι1, Qι1) for all P,Q ≤ S1, and the morphism
induced by ι2 takes ϕ2 ∈ HomF2(P,Q) to id{1}×ϕ2 ∈ HomF1×F2(Pι2, Qι2) for all P,Q ≤ S2.

For i = 1, 2, we call the image Fiιi the canonical image of Fi in F1 × F2 and denote it by F̂i.
Moreover, we set Ŝi = Siιi. As ιi is injective, F̂i ∼= Fi for i = 1, 2.

In the following lemma we summarize important relationships between the direct product and
its factors.

Lemma 2.7. Let F = F1 ×F2 be the direct product of F1 and F2. Let Pi ≤ Si for i = 1, 2.

(a) We have P1 × P2 ∈ Fc if and only if Pi ∈ Fci for i = 1, 2.
(b) AutF (P1 × P2) ∼= AutF1(P1)×AutF2(P2).
(c) The subgroup P1 × P2 is radical in F if and only if Pi is radical in Fi for i = 1, 2.
(d) Fcr = {R1 ×R2 : Ri ∈ Fcri }.
(e) We have (P1 × P2)F = {Q1 × Q2 : Qi ∈ PFi

i for i = 1, 2}. In particular, if for i = 1, 2,
∆i is a set of subgroups of Si such that ∆i is closed under taking Fi-conjugates, then
Γ := {R1 ×R2 : Ri ∈ ∆i for each i = 1, 2} is closed under taking F-conjugates.

(f) The subgroup P1 × P2 is fully F-normalized if and only if Pi is fully Fi-normalized for
each i = 1, 2.

(g) We have P1 × P2 ∈ Fs if and only if Pi ∈ Fsi for i = 1, 2.
(h) We have Z(F1 ×F2) = Z(F1)× Z(F2).

Proof. Property (a) follows from [3, (2.6)(2),(3)].

By the definition of F = F1×F2, the elements of AutF (P1×P2) are the automorphisms of the
form ϕ1 × ϕ2 with ϕi ∈ AutFi(Pi). This implies AutF (P1 × P2) ∼= AutF1(P1) × AutF2(P2), i.e.,
property (b) holds. For any two finite groups G1 and G2, Op(G1 × G2) = Op(G1) × Op(G2). So
Op(AutF (P1 × P2)) ∼= Op(AutF1(P1))×Op(AutF2(P2)). As Inn(P1 × P2) ∼= Inn(P1)× Inn(P2), it
follows that P1 × P2 is radical in F if and only if Pi is radical in Fi for i = 1, 2. This proves (c).

By [1, Lemma 3.1], every F-centric F-radical subgroup is of the form R1×R2 with Ri ≤ Si for
i = 1, 2. Hence, property (d) follows from (a) and (c).

It follows from the definition of F1 × F2 that (P1 × P2)F = {Q1 ×Q2 : Qi ∈ PFi
i for i = 1, 2},

and this shows (e). Since NS1×S2(P1 × P2) = NS1(P1)×NS2(P2), property (e) implies (f).

For the proof of (g) observe that, by the first part of (e) and by (f), the fully normalized

subgroupsQ ∈ (P1×P2)F are precisely the subgroups of the formQ = Q1×Q2 whereQi ∈ PFi
i ∩F

f
i

for i = 1, 2. For any such subgroup Q = Q1×Q2, it follows from [3, (2.5)] that NF (Q) = NF1(Q1)×
NF2(Q2). Hence, by [1, Proposition 3.4], we have Op(NF (Q)) = Op(NF1(Q1))×Op(NF2(Q2)). So

by (a), Op(NF (Q)) is centric in F for every Q ∈ PF ∩Ff if and only if Op(NFi(Qi)) is centric in

Fi for i = 1, 2 and each Qi ∈ PFi
i ∩ F

f
i . So P is subcentric in F if and only if Pi is subcentric in

Fi for i = 1, 2. This shows (g). Property (h) is straightforward to check. �

With the definition of an external direct product in place, we can easily define external central
products of fusion systems similarly as in the group case.

Definition 2.8. For any subgroup Z ≤ Z(F1) × Z(F2) = Z(F1 × F2) such that Z ∩ Ŝi = 1 for
i = 1, 2, we call (F1 × F2)/Z the (external) central product of F1 and F2 (over Z). We write
F1 ×Z F2 for this external central product.
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If Z is as in the above definition, then we set S1 ×Z S2 := (S1 × S2)/Z. Writing θ : S1 × S2 →
S1 ×Z S2 for the natural epimorphism, the map θ|Ŝi

is injective and θ|Ŝi
is by [3, (2.9)(3)] an

isomorphism from F̂i to Fi := F̂iθ.

2.4. Internal central products of fusion systems. Suppose now that F is a fusion system
over S containing the fusion systems F1 and F2 as subsystems. So in particular, Si ≤ S for
i = 1, 2.

Definition 2.9. We say that F is the (internal) central product of F1 and F2 if S1 ∩ S2 ≤ Z(Fi)
for i = 1, 2 and the map α : S1 × S2 → S, (x1, x2) 7→ x1x2 induces an epimorphism from F1 ×F2

to F with F̂iα = Fi for i = 1, 2.

In the setup of the above definition, note that α being a group homomorphism is equivalent
to [S1, S2] = 1 inside of S. Moreover, α being surjective is equivalent to S = S1S2. Suppose
now that F is the internal central product of the subsystems F1 and F2. Set Z := ker(α).
Then α induces an isomorphism of groups α : S1 ×Z S2 → S via xZ 7→ xα. If (x1, x2) ∈ Z,
then x1 = x−1

2 ∈ S1 ∩ S2 ≤ Z(Fi) for i = 1, 2. Hence, Z ≤ Z(F1) × Z(F2) = Z(F1 × F2) by

Lemma 2.7(h). By definition of α, Z ∩ Ŝi = 1 for i = 1, 2. Therefore, (F1 × F2)/Z is an external

central product of F1 and F2. As α induces an epimorphism from F1 × F2 to F with F̂iα = Fi
for i = 1, 2, α induces an epimorphism from F1 ×Z F2 to F with Fiα = Fi. As α is a group
isomorphism, α is an isomorphism of fusion systems. So F is in a canonical way isomorphic to an
external central product of F1 and F2.

Lemma 2.10. Let F be the internal central product of two subsystems F1 and F2.

(a) Fcr = {R1R2 : Ri ∈ Fcri for i = 1, 2}.
(b) If Pi ∈ Fsi for i = 1, 2, then P1P2 ∈ Fs.
(c) For i = 1, 2 let ∆i be a set of subgroups of Si such that ∆i is closed under taking Fi-

conjugates. Set Γ := {P1P2 : Pi ∈ ∆i for each i = 1, 2}, and let ∆ be the set of subgroups
of S containing an element of Γ. Then Γ is closed under taking F-conjugates, and ∆ is
F-closed.

Proof. Property (a) follows from Lemma 2.5(a) and Lemma 2.7(d). Similarly, property (b) follows
Lemma 2.5(b) and Lemma 2.7(g). Remark 2.4 and Lemma 2.7(e) imply that Γ is closed under
taking F-conjugates. Hence, ∆ is closed under taking F-conjugates as well. Clearly ∆ is closed
under taking overgroups in S. �

3. Partial groups and localities

3.1. Partial groups. Adapting the notation from [6] and [7], we write W(L) for the set of
words in a set L, ∅ for the empty word, and v1 ◦ v2 ◦ · · · ◦ vn for the concatenation of words
v1, . . . , vn ∈ W(L). Moreover, we identify each element f ∈ L with the word (f) ∈ W(L) of
length one. Via this identification, we have in particular L ⊆W(L). Roughly speaking, a partial
group is a set L together with a product which is only defined on certain words in L, and an
inversion map L → L which is an involutory bijection, subject to certain axioms. We refer the
reader to [6, Definition 2.1] or [7, Definition 1.1] for the precise definition of a partial group, and
to the elementary properties of partial groups stated in [6, Lemma 2.2] or [7, Lemma 1.4].

For the remainder of this section let L be a partial group with product Π: D → L
defined on the domain D ⊆W(L).

It follows from the axioms of a partial group that ∅ ∈ D. We set 1 = Π(∅). By [7, Lemma 1.4(f)],
we have 1−1 = 1. Given a word v = (f1, . . . , fn) ∈ D, we write sometimes f1f2 · · · fn for the
product Π(v).
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If X and Y are subsets of L, we set

XY := {Π(x, y) : x ∈ X, y ∈ Y, (x, y) ∈ D}.

A partial subgroup of L is a subset H of L such that f−1 ∈ H for all f ∈ H and Π(w) ∈ H for
all w ∈W(H) ∩D. Note that ∅ ∈W(H) ∩D and thus 1 = Π(∅) ∈ H if H is a partial subgroup
of L. It is easy to see that a partial subgroup of L is always a partial group itself whose product
is the restriction of the product Π to W(H) ∩D. Observe furthermore that L forms a group in
the usual sense if W(L) = D; see [7, Lemma 1.3]. So it makes sense to call a partial subgroup H
of L a subgroup of L if W(H) ⊆ D. In particular, we can talk about p-subgroups of L meaning
subgroups of L whose order is a power of p.

Lemma 3.1. If u, v ∈W(L) such that u◦v ∈ D, then u◦(1)◦v ∈ D and Π(u◦(1)◦v) = Π(u◦v).

As a consequence, if w is a word whose entries are all 1, then w ∈ D and Π(w) = 1. So {1}
is a subgroup of L.

Proof. The first part is shown in [7, Lemma 1.4(c)]. Using this property repeatedly starting with
u = v = ∅, it follows that a word w all of whose entries are 1 lies in D and that Π(w) = Π(∅) = 1.
As 1−1 = 1, it follows that {1} is a subgroup of L. �

3.2. Conjugation in partial groups. For any g ∈ L, D(g) denotes the set of x ∈ L with
(g−1, x, g) ∈ D. Thus, D(g) denotes the set of elements x ∈ L for which the conjugation xg :=
Π(g−1, x, g) is defined. By the axioms of a partial group, (g−1, g) ∈ D and Π(g−1, g) = 1 for any
g ∈ L. So by Lemma 3.1, (g−1,1, g) ∈ D and Π(g−1,1, g) = 1. Hence, for any g ∈ L, 1 ∈ D(g)
and 1g = 1. As 1−1 = 1, it follows similarly by Lemma 3.1 that g ∈ D(1) and g1 = g for any
g ∈ L.

If g ∈ L and X ⊆ D(g) we set Xg := {xg : x ∈ X}. If we write Xg for some g ∈ L and
some subset X ⊆ L, we will always implicitly mean that X ⊆ D(g). Similarly, if we write xg for
x, g ∈ L, we always mean that x ∈ D(g).

If X is a subset of L, then we set

NL(X) := {g ∈ L : Xg = X} and CL(X) := {g ∈ L : xg = x for all x ∈ X}.
Note that CL(X) ⊆ NL(X). Similarly, for x ∈ L, we define CL(x) := {f ∈ L : xf = x}. As argued
above, 1 is contained in the centralizer of any element or subset of L.

If X and Y are subsets of L, then set NY (X) = NL(X)∩Y and CY (X) = CL(X)∩Y . Moreover,
set

Z(L) := CL(L).

Lemma 3.2. For any f, g ∈ L, the following conditions are equivalent:

(1) f ∈ CL(g).
(2) g ∈ CL(f).
(3) (f−1, g−1, f, g) ∈ D and f−1g−1fg = 1.
(4) (g−1, f−1, g, f) ∈ D and g−1f−1gf = 1.

Moreover, if f ∈ CL(g), then (f, g), (g, f) ∈ D and fg = gf .

Proof. We prove first that properties (1)-(4) are equivalent. Since the situation is symmetric in f
and g, it is sufficient to prove that (1) and (3) are equivalent, and that (3) implies (4).

Assume first that (3) holds, i.e., that u := (f−1, g−1, f, g) ∈ D and Π(u) = 1. Then by [7,
Lemma 1.4(f)], (g−1, f−1, g, f) = u−1 ∈ D and Π(u−1) = Π(u)−1 = 1−1 = 1. So (4) holds. By the
axioms of a partial group, (g−1, f, g) ∈ D as u ∈ D. By [7, Lemma 1.4(d)], it follows moreover that
(f)◦u ∈ D and Π(f ◦(u)) = Π(g−1, f, g) = fg. Hence, fg = Π((f)◦u) = Π(f,Π(u)) = Π(f,1) = f
by the axioms of a partial group and by Lemma 3.1. So (1) holds. This shows that (3) implies
(1) and (4).
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Assume now that (1) holds, i.e., v = (g−1, f, g) ∈ D and fg = Π(v) = f . By the axioms
of a partial group, v−1 ◦ v = (g−1, f−1, g, g−1, f, g) ∈ D and Π(v−1 ◦ v) = 1. Moreover, by [7,
Lemma 1.6(b)], v−1 ∈ D and Π(v−1) = Π(v)−1 = f−1. Hence, by the axioms of a partial group,
(f−1, g−1, f, g) = (Π(v−1)) ◦ v ∈ D and Π(f−1, g−1, f, g) = Π(v−1 ◦ v) = 1. So (1) implies (3).

This shows that properties (1)-(4) are equivalent. The last part of the assertion follows now
from [7, Lemma 1.5(b)]. �

Since there is a natural notion of conjugation, there is also a natural notion of partial normal
subgroups of partial groups. Namely, a partial subgroup N of L is called a partial normal subgroup
of L if nf ∈ N for all f ∈ L and all n ∈ N ∩D(f).

3.3. Homomorphisms of partial groups. In this subsection let L′ be a partial group with
domain D′ and product Π′ : D′ → L′. Let 1′ = Π′(∅) be the identity in L′.

If ϕ : M → N is a map between two sets M and N , then ϕ∗ : W(M) → W(N) denotes the
map induced by ϕ, i.e., (f1, . . . , fn)ϕ∗ = (f1ϕ, . . . , fnϕ) for every word (f1, . . . , fn) ∈W(M).

Let β : L → L′. Recall from [7, Definition 1.11] that β is called a homomorphism of partial
groups if Dβ∗ ⊆ D′ and Π′(vβ∗) = (Π(v))β for all v ∈ D.

If β is a homomorphism of partial groups, define the kernel of β via

ker(β) = {f ∈ L : fβ = 1′}.

By [7, Lemma 1.14], the kernel of a homomorphism of partial groups is always a partial normal
subgroup.

Definition 3.3. Let β : L → L′ be a homomorphism of partial groups. We call β a projection
of partial groups if Dβ∗ = D′. A projection β is called an isomorphism of partial groups if β is
injective. We call two partial groups isomorphic if there exists an isomorphism between them.

Note that the condition Dβ∗ = D′ implies that β is surjective, as every word of length one is an
element of D′. So every projection of partial groups is surjective as a map, and every isomorphism
of partial groups is a bijection.

Lemma 3.4. Let β : L → L′ be a homomorphism of partial groups and let H be a partial subgroup
of L. Then (D ∩W(H))β∗ ⊆ D′ ∩W(Hβ). Moreover, if (D ∩W(H))β∗ = D′ ∩W(Hβ), then
Hβ is a partial subgroup of L′ and β|H : H → Hβ is a projection of partial groups.

Proof. Clearly, (D ∩W(H))β∗ ⊆ D′ ∩W(Hβ). Assume now (D ∩W(H))β∗ = D′ ∩W(Hβ).
If f ∈ Hβ, then f = gβ for some g ∈ H. As H is a partial subgroup, g−1 ∈ H. Thus, by [7,
Lemma 1.13], f−1 = (gβ)−1 = (g−1)β ∈ Hβ. Let now v ∈ D′ ∩W(Hβ) = (D ∩W(H))β∗. Then
there exists u ∈ D ∩W(H) such that v = uβ∗, and it follows that Π′(v) = Π′(uβ∗) = (Π(u))β.
As H is a partial subgroup of L, we have Π(u) ∈ H and thus Π(v) ∈ Hβ. Hence, Hβ is a partial
subgroup of L′. Clearly, β|H is a projection of partial groups. �

Lemma 3.5. Let β : L → L′ be an isomorphism of partial groups. Then the following hold:

(a) The map β−1 : L′ → L is an isomorphism of partial groups.
(b) A subset H of L is a partial subgroup of L if and only if Hβ is a partial subgroup of L′.

Proof. As β is a bijection, β∗ is a bijection and (β−1)∗ = (β∗)−1. So Dβ∗ = D′ implies D =
D′(β−1)∗. In particular, for v ∈ D′, we have u := v(β−1)∗ ∈ D and uβ∗ = v. So Π′(v) =
Π′(uβ∗) = (Π(u))β implies (Π′(v))β−1 = Π(u) = Π(v(β−1)∗). So (a) holds.

For the proof of (b) let H be a partial subgroup of L. As β and β∗ are bijections, we have
(D ∩W(H))β∗ = (Dβ∗) ∩ (W(H)β∗) = D′ ∩W(Hβ). So Hβ is a partial subgroup of L′ by
Lemma 3.4. Now (b) follows from (a). �
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3.4. Localities.

Definition 3.6. Let ∆ be a set of subgroups of L. We write D∆ for the set of words (f1, . . . , fn) ∈
W(L) such that there exist P0, . . . , Pn ∈ ∆ with

(∗) Pi−1 ⊆ D(fi) and P fii−1 = Pi.

If v = (f1, . . . , fn) ∈W(L), and P0, . . . , Pn ∈ ∆ such that (∗) holds, then we say that v ∈ D∆ via
P0, . . . , Pn (or v ∈ D via P0).

Definition 3.7. We say that (L,∆, S) is a locality if the partial group L is finite as a set, S is a
p-subgroup of L, ∆ is a non-empty set of subgroups of S, and the following conditions hold:

(L1) S is maximal with respect to inclusion among the p-subgroups of L.
(L2) D = D∆.
(L3) For any subgroup Q of S, for which there exist P ∈ ∆ and g ∈ L with P ⊆ D(g) and

P g ≤ Q, we have Q ∈ ∆.

If (L,∆, S) is a locality, v = (f1, . . . , fn) ∈W(L), and v ∈ D∆ via P0, . . . , Pn, then we say that
v ∈ D via P0, . . . , Pn (or v ∈ D via P0).

If L is any partial group, S a subset of L, and g ∈ L we set

Sg := {s ∈ S ∩D(g) : sg ∈ S}.

Lemma 3.8 (Important properties of localities). If (L,∆, S) is a locality and P ∈ ∆, then the
following hold:

(a) NL(P ) is a subgroup of L.
(b) If g ∈ L with P ⊆ Sg, then P g ∈ ∆. So in particular, P g is a subgroup of S.

Proof. Property (a) is [7, Lemma 2.3(a)] and property (b) is [7, Proposition 2.6(c)]. �

Let (L,∆, S) be a locality. Then by [7, Lemma 2.3(b)], for every P ∈ ∆ and every g ∈ L with
P ⊆ Sg, the map cg : P → P g, x 7→ xg is an injective group homomorphism. The fusion system
FS(L) is the fusion system over S generated by such conjugation maps. Equivalently, FS(L) is
generated by the conjugation maps between subgroups of S.

Definition 3.9. If F is a fusion system, then we say that the locality (L,∆, S) is a locality over
F if F = FS(L).

3.5. Projections of localities.

Definition 3.10. Let L and L′ be partial groups, and let β : L → L′ be a homomorphism of
partial groups. For every set Γ of subgroups of L we set

Γβ := {Pβ : P ∈ Γ}.

Suppose now (L,∆, S) and (L′,∆′, S′) form localities. Then β is called a projection of localities
from (L,∆, S) to (L′,∆′, S′) if β is a projection of partial groups and ∆′ = ∆β (and thus also
Sβ = S′). If β is in addition injective, then we call β an isomorphism of localities from (L,∆, S)
to (L′,∆′, S′).

If (L,∆, S) is a locality, L′ is a partial group and β : L → L′ is a projection of partial groups,
then (L′,∆β, Sβ) forms a locality by [7, Theorem 4.4]. In other words, the projection β of partial
groups “transports” the locality structure on L to a locality structure on L′. Clearly, β is a
projection of localities from (L,∆, S) to (L′,∆β, Sβ).

If β is a bijection, then actually the partial group structure on L can be “transported” as well.
The following remark is straightforward to prove:
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Remark 3.11. Suppose L is a partial group as before, L′ is a set and β : L → L′ is a bijection.
Notice that then β∗ is a bijection as well. We can turn L′ into a partial group by setting D′ :=
{vβ∗ : v ∈ D}, Π′(vβ∗) := (Π(v))β for every v ∈ D and (fβ)−1 = (f−1)β for every f ∈ L. By
construction, β is then an isomorphism of partial groups from L to the newly constructed partial
group L′. If (L,∆, S) is a locality, then (L′,∆β, Sβ) is a locality. Moreover, β is an isomorphism
of localities from (L,∆, S) to (L′,∆β, Sβ).

Chermak [7] developed a theory of quotient localities modulo partial normal subgroups. We
refer the reader to this article for details, but give a quick summary here: Suppose (L,∆, S) is a
locality and N is a partial normal subgroup of L. For f ∈ L set

N f := {Π(n, f) : n ∈ N , (n, f) ∈ D}

and call N f a right coset of N in L. If N f is maximal with respect to inclusion among the
right cosets of N in L, then we call N f a maximal (right) coset. By [7, Proposition 3.14(d)], the
maximal right cosets form a partition of L, i.e., every element of L lies in a unique maximal right
coset. The map

L → L/N
mapping every element g ∈ L to the unique maximal right coset of N containing g is a projection
of partial groups; see [7, Corollary 4.5]. It is called the canonical projection L → L/N . The kernel
of the canonical projection equals N . If β is as above and N = ker(β), then the map

L/N → L′, N f 7→ fβ

is by [7, Theorem 4.6] well-defined and an isomorphism of partial groups.

Chermak [7, Definition 3.6] defines ↑-maximal elements of L (relative to N ). We will not work
directly with the definition of ↑-maximal elements here, but only use the following characterization:
For any f ∈ L, the right coset N f is a maximal coset if and only if f is ↑-maximal relative to N
(cf [7, Proposition 3.14(c)]).

Lemma 3.12. Let (L,∆, S) be a locality, L′ a partial group, and suppose β : L → L′ is a projection
of partial groups. Assume N := ker(β) ⊆ Z(L). Then every coset of N in L has |N | elements
and is thus maximal. Moreover, for all v ∈W(L), we have v ∈ D if and only if vβ∗ ∈ D′.

Proof. Let f ∈ L. Since N ⊆ Z(L), we have (n, f) ∈ D for all n ∈ N by Lemma 3.2. So we have
a well-defined map

N → N f, n 7→ Π(n, f)

and this map is clearly surjective. If Π(n, f) = Π(n′, f) with n, n′ ∈ N , then the right cancellation
rule [7, Lemma 1.4(e)] yields n = n′. Hence, the above map is a bijection showing that every coset
has precisely |N | elements. Hence, every right coset is maximal with respect to inclusion among
the right cosets of N . So every element of L is ↑-maximal. If v = (f1, . . . , fn) ∈W(L) such that
every fi is ↑-maximal, then by [7, Theorem 4.3(b)], v ∈ D if and only if vβ∗ ∈ D′. This implies
the assertion. �

Lemma 3.13. Let (L,∆, S) be a locality, let L′ be a partial group, and let β : L → L′ be a
projection of partial groups with ker(β) ⊆ Z(L). Suppose H is a partial subgroup of L. Then Hβ
is a partial subgroup of L′. Moreover, (D∩W(H))β∗ = D′ ∩W(Hβ), i.e., the restriction of β to
a map H → Hβ is a projection of partial groups.

Proof. By Lemma 3.4, it is sufficient to show that D′ ∩W(Hβ) ⊆ (D ∩W(H))β∗. Let w =
(f1, . . . , fm) ∈ D′ ∩W(Hβ). Then, for every i = 1, . . . ,m, there exists hi ∈ H such that hiβ = fi.
So for v := (h1, . . . , hm) we have v ∈ W(H) and vβ∗ = w ∈ D′. Hence, by Lemma 3.12, v ∈ D
and w = vβ∗ ∈ (D ∩W(H))β∗. �
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Lemma 3.14. Let (L,∆, S) be a locality, let L′ be a partial group, and let β : L → L′ be a
projection of partial groups. If N is a partial normal subgroup of L, then Nβ is a partial normal
subgroup of L′.

Proof. By [7, Lemma 1.14], ker(β) forms a partial normal subgroup of L. So by [9, Theorem 1],
M := N (kerβ) is a partial normal subgroup of L. Note that N ⊆ M as, for any n ∈ N ,
n = Π(n) = Π(n,1) ∈ M by Lemma 3.1. Similarly one shows ker(β) ⊆ M. As N ⊆M we have
Nβ ⊆ Mβ. Let n ∈ N and x ∈ ker(β) such that (n, x) ∈ D. Then Π(n, x)β = Π′(nβ, xβ) =
Π′(nβ,1′) = Π′(nβ) = nβ, where the first equality uses that β is a homomorphism of partial groups
and the third equality uses Lemma 3.1. Hence, Π(n, x) = nβ ∈ Nβ. This shows Mβ = Nβ. As
ker(β) ⊆ M, it follows from [7, Proposition 4.7] that Nβ =Mβ is a partial normal subgroup of
L′. �

3.6. Sublocalities.

Definition 3.15. Let L0 be a partial subgroup of L. We say that (L0,∆0, S0) is a sublocality
of (L,∆, S) if L0 is a partial subgroup of L, S0 = S ∩ L0, ∆0 is a set of subgroups of S0 and,
regarding L0 as a partial group with product Π|W(L0)∩D, the triple (L0,∆0, S0) forms a locality.

We stress that, in the above definition, ∆0 is not assumed to be a subset of ∆. Such a condition
would be too restrictive for our purposes, as will become clear in Section 5 and Section 6.

Supposing L0 is a partial subgroup of L, we remark that S0 := S ∩ L0 is always a subgroup of
S and thus a p-subgroup of L0. If ∆0 is a non-empty set of subgroups of S0 the (L0,∆0, S0) forms
a locality if and only if D∩W(L0) = D∆0 ∩W(L0), ∆0 is closed under taking L0-conjugates and
overgroups in S0, and S0 is maximal with respect to inclusion among the p-subgroups of L0.

Lemma 3.16. Let (L′,∆′, S′) be a locality, and let β : L → L′ be a homomorphism of partial
groups. Suppose we are given a sublocality (L0,∆0, S0) of (L,∆, S) with S0β ⊆ S′ and (D ∩
W(L0))β∗ = D′ ∩W(L0β). Then (L0β,∆0β, S0β) is a sublocality of (L′,∆′, S′), and β|L0 : L0 →
L0β is a projection of localities from (L0,∆0, S0) to (L0β,∆0β, S0β).

Proof. By Lemma 3.4, L0β is a partial subgroup of L′ and β|L0 : L0 → L0β is a projection of
partial groups. So by [7, Theorem 4.3], (L0β,∆0β, S0β) is a locality. In particular, S0β is a
maximal p-subgroup of L0β. As L0β is a partial subgroup of L′, S′ ∩ (L0β) is a subgroup of
S′ and thus a p-subgroup of L0β. Since S0β ⊆ S′ ∩ (L0β) it follows that S0β = S′ ∩ (L0β).
So (L0β,∆0β, S0β) is a sublocality of (L′,∆′, S′). Clearly, β|L0 is a projection of localities from
(L0,∆0, S0) to (L0β,∆0β, S0β). �

Lemma 3.17. Let (L′,∆′, S′) be a locality and let β : L → L′ be a projection from (L,∆, S) to
(L′,∆′, S′) with ker(β) ⊆ Z(L). Suppose we are given a sublocality (L0,∆0, S0) of (L,∆, S). Then
(L0β,∆0β, S0β) is a sublocality of (L′,∆′, S′), and β|L0 : L0 → L0β is a projection of localities
from (L0,∆0, S0) to (L0β,∆0β, S0β).

Proof. By Lemma 3.13, we have (D∩W(L0))β∗ = D′∩W(L0β). As β is a projection of localities,
S0β ⊆ Sβ = S′. Hence, the assertion follows from Lemma 3.16. �

3.7. Linking localities. For the convenience of the reader we repeat the following definitions
from [9].

Definition 3.18.

• A finite group G is said to be of characteristic p if CG(Op(G)) ≤ Op(G).
• Define a locality (L,∆, S) to be of objective characteristic p if, for any P ∈ ∆, the group
NL(P ) is of characteristic p.
• A locality (L,∆, S) is called a linking locality, if FS(L)cr ⊆ ∆ and (L,∆, S) is of objective

characteristic p.
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If (L,∆, S) is a linking locality over F , then it turns out that ∆ ⊆ Fs where Fs is defined as in
Definition 2.1. On the other hand, given a saturated fusion system F over S, by [9, Theorem A], the
set Fs is F-closed. Moreover, if Fcr ⊆ ∆ ⊆ Fs and ∆ is F-closed, then we prove that there exists
a linking locality over F with object set ∆ which is essentially unique. In particular, there is an
essentially unique linking locality over F whose set of objects is the set Fs of subcentric subgroups.
In the next lemma we show that isomorphisms between fusion systems induce isomorphisms
between corresponding linking localities.

Proposition 3.19. Let F and F ′ be fusion systems over S and S′ respectively. Let (L,∆, S) be
a linking locality over F , and let (L′,∆′, S′) be a linking locality over F ′. Suppose α : S → S′

induces an isomorphism from F to F ′. Assume furthermore that ∆α = ∆′. Then there exists
β : L → L′ such that β is an isomorphism of localities from (L,∆, S) to (L′,∆′, S′) with β|S = α.

Proof. By Remark 3.11, we can replace the set L by another isomorphic set if necessary and assume
without loss of generality that (L\S) ∩ S′ = ∅. Set L̂ := (L\S) ∪ S′. Then the map ρ : L → L̂
with ρ|L\S = id and ρ|S = α is a bijection. Hence, by Remark 3.11, we can turn L̂ into a partial

group such that (L̂,∆′, S′) is a locality and ρ is an isomorphism from the locality (L,∆, S) to the

locality (L̂,∆′, S′). Then by [9, Theorem 5.7(b)], ρ|S = α : S → S′ induces an isomorphism from

F = FS(L) to FS′(L̂). As α induces an isomorphism from F to F ′, it follows that FS′(L̂) = F ′.
Since (L,∆, S) is a linking locality, (L̂,∆′, S′) is a linking locality as well. So (L̂,∆′, S′) and
(L′,∆′, S′) are both linking localities over F ′. Hence, by [9, Theorem A(a)], there exists a rigid

isomorphism γ : L̂ → L′ (i.e., an isomorphism with γ|S′ = idS′). Then β := ρ ◦ γ : L → L′ is an
isomorphism of localities from (L,∆, S) to (L′,∆′, S′) with β|S = (ρ|S)◦ (γ|S′) = α◦ idS′ = α. �

4. External direct products of partial groups

For i = 1, 2 let Li be a partial group with product Πi : Di → Li and inversion map Li →
Li, f 7→ f−1. Let

L = L1 × L2 = {(f, g) : f ∈ L1, g ∈ L2}.
be the set theoretic product of L1 with L2. We will define a partial product and an inversion map
on L which turns L into a partial group.

For any word u = ((f1, g1), (f2, g2), . . . , (fn, gn)) ∈ W(L), we set u1 := (f1, f2, . . . , fn) and
u2 := (g1, g2, . . . , gn). If u = ∅, then we mean here ui = ∅ for i = 1, 2. So in any case, ui ∈W(Li)
for i = 1, 2. Set

D = {u ∈W(L) : ui ∈ Di for each i = 1, 2}.
Define

Π: D→ L, u 7→ (Π1(u1),Π2(u2)).

Note that in particular, 1 := Π(∅) = (Π1(∅),Π2(∅)) = (1,1) (where 1 denotes also Πi(∅) for
i = 1, 2). If f = (f1, f2) ∈ L with fi ∈ Li for i = 1, 2, set

f−1 = (f−1
1 , f−1

2 ).

Lemma 4.1. The set L = L1 × L2 with the partial product Π: D→ L and the inversion defined
above forms a partial group.

Proof. If u, v ∈ W(L), then note that (u ◦ v)i = ui ◦ vi for i = 1, 2 and similarly, (u ◦ v ◦ w)i =
ui ◦ vi ◦ wi for u, v, w ∈W(L). We will use this property throughout.

As Li is a partial group, Li ⊆ Di and Πi|Li = idLi for i = 1, 2. Since (f)i = (fi) for
any f = (f1, f2) ∈ L, it follows from the definition of D that L ⊆ D. Moreover, for any
f = (f1, f2) ∈ L, we have Π(f) = (Π1(f1),Π2(f2)) = (f1, f2) by definition of Π. Hence, Π|L = idL.
If u, v ∈W(L) such that u◦v ∈ D, then it follows from the definition of D that ui◦vi = (u◦v)i ∈ Di
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for i = 1, 2. Thus, as Li is a partial group with domain Di, we have ui, vi ∈ Di for i = 1, 2. Hence,
again by the definition of D, it follows that u, v ∈ D.

Note now that Π(v)i = Πi(vi) (or more precisely (Π(v))i = (Πi(vi))) for any v ∈ D and
any i = 1, 2 as Π(v) = (Π1(v1),Π2(v2)). Let u, v, w ∈ W(L) such that u ◦ v ◦ w ∈ D. Then
for i = 1, 2, we have ui ◦ vi ◦ wi = (u ◦ v ◦ w)i ∈ Di by definition of D. Hence, as Li is
a partial group, ui ◦ (Πi(vi)) ◦ wi ∈ Di and Πi(ui ◦ vi ◦ wi) = Πi(ui ◦ (Πi(vi)) ◦ wi). Thus
(u ◦ (Π(v)) ◦ w)i = ui ◦ (Π(v))i ◦ wi = ui ◦ (Πi(vi)) ◦ wi ∈ Di for i = 1, 2. Again by the definition
of D, it follows that u ◦ (Π(v)) ◦ w ∈ D. Moreover, Π(u ◦ (Π(v)) ◦ w)i = Πi((u ◦ (Π(v)) ◦ w)i) =
Πi(ui ◦ (Πi(vi)) ◦ wi) = Πi(ui ◦ vi ◦ wi) = Πi((u ◦ v ◦ w)i) = Π(u ◦ v ◦ w)i for i = 1, 2. Hence,
Π(u ◦Π(v) ◦ w) = Π(u ◦ v ◦ w).

As the inversion maps on Li is an involutory bijection for each i = 1, 2, the inversion map
L → L, f 7→ f−1 is also an involutory bijection. Note that for any w ∈W(L), (w−1)i = (wi)

−1.
If w ∈ D, then by definition of D, wi ∈ Di for i = 1, 2. Thus, by the axioms of a partial
group for Li, (wi)

−1 ◦ wi ∈ Di and Πi((wi)
−1 ◦ wi) = 1. Hence, (w−1 ◦ w)i = (w−1)i ◦ wi =

(wi)
−1 ◦ wi ∈ Di for each i = 1, 2. So again by definition of D, w−1 ◦ w ∈ D. Moreover,

Π(w−1 ◦ w) = (Π1((w1)−1 ◦ w1),Π2((w2)−1 ◦ w2)) = (1,1) = 1. This completes the proof that L
forms a partial group with the product and inversion defined above. �

Definition 4.2. We call the partial group L1×L2 constructed above the (external) direct product
of the partial groups L1 and L2.

Lemma 4.3. For i = 1, 2 let L̂i be a partial group and let βi : Li → L̂i be an isomorphism
of partial groups. Write L̂1 × L̂2 for the external direct product of L̂1 and L̂2. Then the map
β : L1 × L2 → L̂1 × L̂2 with (f, g) 7→ (fβ1, gβ2) is an isomorphism of partial groups.

Proof. For i = 1, 2 let Π̂i : D̂i → L̂i be the partial product on L̂i. Write Π̂ : D̂→ L̂1 × L̂2 for the
partial product on L̂1 × L̂2. Let v ∈W(L1 ×L2). Observe that, for every i = 1, 2, (vβ∗)i = viβ

∗
i .

So using that βi is an isomorphism for each i = 1, 2, we obtain the following equivalence for each
v ∈W(L):

v ∈ D ⇐⇒ vi ∈ Di for each i = 1, 2

⇐⇒ viβ
∗
i ∈ D̂i for each i = 1, 2

⇐⇒ (vβ∗)i ∈ D̂i for each i = 1, 2

⇐⇒ vβ∗ ∈ D̂.

Hence, Dβ∗ = D̂. Moreover, if v ∈ D, then Π̂(vβ∗) = (Π̂1((vβ∗)1), Π̂2((vβ∗)2)) = (Π̂1(v1β
∗
1), Π̂2(v2β

∗
2)) =

((Π1(v1))β1, (Π2(v2))β2) = (Π1(v1),Π2(v2))β = (Π(v))β. Clearly β is a bijection, so the assertion
follows. �

Lemma 4.4. If Hi is a partial subgroup of Li for i = 1, 2, then the following hold:

(a) H1 ×H2 is a partial subgroup of L = L1 × L2.
(b) If H1 and H2 are subgroups of L1 and L2 respectively, then H1 × H2 is a subgroup of L

which, regarded as binary group, coincides with the direct product of the (binary) groups
H1 and H2.

Proof. Let f = (f1, f2) ∈ H1 ×H2 with fi ∈ Hi for i = 1, 2. As Hi is a partial subgroup, we have
f−1
i ∈ Hi for i = 1, 2 and thus f−1 = (f−1

1 , f−1
2 ) ∈ H1 × H2. Let now w ∈ W(H1 × H2) ∩D.

Then wi ∈ W(Hi) for i = 1, 2 and, by definition of D, wi ∈ Di. Hence, Πi(wi) ∈ Hi as Hi is a
partial subgroup for i = 1, 2. Thus Π(w) = (Π1(w1),Π2(w2)) ∈ H1 ×H2. This proves (a).

Assume now that Hi is a subgroup of Li for i = 1, 2. Then W(Hi) ⊆ Di for i = 1, 2. So if
v ∈W(H1 ×H2), we have vi ∈W(Hi) ⊆ Di for i = 1, 2. By definition of D, this implies v ∈ D
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proving W(H1×H2) ⊆ D. So H1×H2 is a subgroup of L. It follows from the definition of L and
of the direct product of groups that the subgroup H1 ×H2 regarded as a binary group coincides
with the direct product of the groups H1 and H2. So (b) holds. �

Let

πi : L → Li
be the projection map for i = 1, 2. This means π1((f1, f2)) = f1 and π2((f1, f2)) = f2.

Lemma 4.5. For i = 1, 2, πi is a homomorphism of partial groups. In particular, for any
subgroup H of L, Hπi is a subgroup of Li for i = 1, 2. Moreover, Hπi is a p-subgroup of Li if H
is a p-subgroup of L.

Proof. Let i ∈ {1, 2}. By [7, Lemma 1.15], the image of a subgroup under a homomorphism
of partial groups is a subgroup again. So if πi is a homomorphism of partial groups and H
a subgroup of L, then Hπi is a subgroup of Li and one observes that πi|H : H → Hπi is a
homomorphism of groups. In particular, if H is a p-subgroup of L, then Hπi is a p-subgroup.
Hence, it is sufficient to prove that πi is a homomorphism of partial groups. That is we need
to show that Dπ∗i ⊆ Di and (Π(w))πi = Πi(wπ

∗
i ) for all w ∈ D. Let w ∈ D. Observe that

wπ∗i = wi ∈ Di by definition of D. Note also that Π(w)i = Πi(wi) as Π(w) = (Π1(w1),Π2(w2)).
So (Π(w))πi = Π(w)i = Πi(wi) = Πi(wπ

∗
i ). This shows the assertion. �

Define now maps ι1 : L1 → L, f 7→ (f,1) and ι2 : L2 7→ L, f 7→ (1, f). We call ιi the inclusion
map Li → L.

Lemma 4.6. If fi ∈ Li for i = 1, 2, then ((f1ι1), (f2ι2)) ∈ D and (f1, f2) = Π((f1ι1), (f2ι2)).

Proof. Let v = ((f1ι1), (f2ι2)) = ((f1,1), (1, f2)). Then v1 = (f1,1) ∈ D1, Π1(v1) = f1, v2 =
(1, f2) ∈ D2 and Π2(v2) = f2 by the axioms of a partial group and by Lemma 3.1. Hence, v ∈ D
and Π(v) = (Π1(v1),Π2(v2)) = (f1, f2). �

Lemma 4.7. For any i ∈ {1, 2}, the following hold:

(a) The subset Liιi of L = L1 × L2 is a partial normal subgroup of L.
(b) The map ιi is an injective homomorphisms of partial groups which induces an isomorphism

of partial groups from Li to the partial subgroup Liιi of L.
(c) For any partial subgroup H of Li, Hιi is a partial subgroup of L.

Proof. Note that Liιi = ker(π3−i) for i = 1, 2. By [7, Lemma 1.14], the kernel of a homomorphism
of partial groups is a partial normal subgroup. Hence, (a) holds.

We prove (b) only for i = 1, as the proof for i = 2 is analogous. Let w = (f1, . . . , fn) ∈ D1 and
set u := wι∗1 = ((f1,1), . . . , (fn,1)). So u1 = w ∈ D1 by assumption. Moreover, u2 = (1, . . . ,1) ∈
D2 and Π2(u2) = 1 by Lemma 3.1. Hence, u ∈ D and Π(wι∗1) = Π(u) = (Π1(u1),Π2(u2)) =
(Π1(w),1) = (Π1(w))ι1. This shows that ι1 is a homomorphism of partial groups. We regard now
L1ι1 as a partial group with product Π|D′ where D′ = D ∩W(L1ι1). The properties we proved
so far imply that D1ι

∗
1 ⊆ D′ and that the map L1 → L1ι1 induced by ι1 is a homomorphism of

partial groups. Clearly, ι1 is injective, so it remains to prove that D′ ⊆ D1ι
∗
1. Let u ∈ D′. As

D′ ⊆W(L1ι1), u is of the form u = (f1ι1, . . . , fnι1) = ((f1,1), . . . , (fn,1)) with f1, . . . , fn ∈ L1.
Set v := (f1, . . . , fn). As u ∈ D, we have v = u1 ∈ D1. Moreover, u = (f1ι1, . . . , fnι1) = vι∗1.
Hence, u ∈ D1ι

∗
1. This proves D′ ⊆ D1ι

∗
1 and completes the proof of (b).

Let H be a partial subgroup of Li for some i = 1, 2. By Lemma 3.5, an isomorphism of partial
groups maps partial subgroups to partial subgroups. So by (b), Hιi is a partial subgroup of Liιi.
By (a), Liιi is a partial subgroup of L. A partial subgroup of a partial subgroup is a partial
subgroup again by [7, Lemma 1.8(a)]. Hence, Hιi is a partial subgroup of L. This proves (c).

�
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Lemma 4.8. Let f1 ∈ L1 and f2 ∈ L2 and set f = (f1, f2).

(a) We have D(f) = D1(f1) ×D2(f2), where Di(fi) is formed inside of Li for i = 1, 2, and
D(f) is formed inside of L = L1 × L2.

(b) If gi ∈ Di(fi) for i = 1, 2, then (gf11 , g
f2
2 ) = (g1, g2)f . Similarly, given Pi ⊆ Di(fi) for

i = 1, 2, we have (P1 × P2)f = P f11 × P
f2
2 .

(c) Let Si ⊆ Li for i = 1, 2 and S = S1 × S2 ⊆ L.1 Then Sf = (S1)f1 × (S2)f2, where (Si)fi
is formed inside of Li for i = 1, 2, and Sf is formed inside of L.

Proof. Let g = (g1, g2) ∈ L with gi ∈ Li for i = 1, 2. We have g ∈ D(f) if and only if
v = ((f−1

1 , f−1
2 ), (g1, g2), (f1, f2)) = (f−1, g−1, f) ∈ D. By definition of D, this is the case if

and only if (f−1
i , gi, fi) = vi ∈ Di for i = 1, 2, i.e., if and only if gi ∈ Di(fi) for i = 1, 2.

This shows D(f) = D1(f1) × D2(f2) proving (a). Moreover, gf = Π(v) = (Π1(v1),Π2(v2)) =

(Π1(f−1
1 , g1, f1),Π2(f−1

2 , g2, f2)) = (gf11 , g
f2
2 ). This implies (b).

Let now s = (s1, s2) ∈ S1 × S2 with si ∈ Si for i = 1, 2. Then s ∈ Sf if and only if s ∈ D(f)

and sf ∈ S. By (a) and (b), the latter condition is true if and only if si ∈ Di(fi) for i = 1, 2 and

(sf11 , s
f2
2 ) = sf ∈ S = S1 × S2. This is the case if and only if si ∈ Di(fi) and sfii ∈ Si for i = 1, 2,

i.e., if and only if si ∈ (Si)fi for i = 1, 2. This shows Sf = (S1)f1 × (S2)f2 . �

Lemma 4.9. We have

Z(L1 × L2) = Z(L1)× Z(L2) = Z(L1ι1)Z(L2ι2).

Proof. Recall L = L1 × L2. By Lemma 4.6, it is sufficient to show that Z(L) = Z(L1) × Z(L2).
Given f = (f1, f2) ∈ L, we have f ∈ Z(L) if and only if f ∈ D(g) and fg = f for all g ∈ L. By
Lemma 4.8(a),(b), this is the case if and only if f ∈ D(g1) ×D(g2) and (fg11 , fg22 ) = fg = f for
all g = (g1, g2) ∈ L. This is equivalent to fi ∈ D(gi) and fgii = fi for all i = 1, 2 and all gi ∈ Li.
Hence, f ∈ Z(L) if and only if fi ∈ Z(Li) for i = 1, 2. This implies the assertion. �

5. External direct and central products of localities

For i = 1, 2 let (Li,∆i, Si) be a locality. As in the previous section, Li is here a partial group
with product Πi : Di → Li and inversion map Li → Li, f 7→ f−1. Let L = L1 × L2 be the
partial group we constructed in the previous section, and let πi : L → Li be the projection map
for i = 1, 2. Recall that, by Lemma 4.4, P1 × P2 is a subgroup of L for all P1 ∈ ∆1 and P2 in ∆2.
Set S := S1 × S2 and let

∆ = ∆1 ∗∆2

be the set of subgroups of S containing a subgroup of the form P1 × P2 with Pi ∈ ∆i for i = 1, 2.
We will show that (L,∆, S) is a locality.

Lemma 5.1. The triple (L,∆, S) = (L1 × L2,∆1 ∗∆2, S1 × S2) is a locality. Moreover, we have
FS(L) = FS1(L1)×FS2(L2).

Proof. In this proof, Lemma 4.8 is used frequently, most of the time without reference. We first
show that (L,∆, S) is a locality. As L1 and L2 are finite as sets, L is clearly also finite as a set.
By Lemma 4.4, S = S1×S2 is a subgroup of L which, regarded as a binary group, coincides with
the direct product of the groups S1 and S2. So S1 × S2 is a p-subgroup of L. Let now T be a
p-subgroup of L containing S = S1 × S2. Then, by Lemma 4.5, Tπi is a p-subgroup of Li for
i = 1, 2. As Si ≤ Tπi and Si is a maximal p-subgroup of Li for i = 1, 2, it follows that Tπi = Si
and thus T = S1×S2. This shows that S = S1×S2 is a maximal p-subgroup of L, so (L1) holds.

1By S1 × S2 we just mean the set theoretic product of S1 and S2 here
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Let v = ((f1, g1), (f2, g2), . . . , (fn, gn)) ∈ W(L) (where fj ∈ L1 and gj ∈ L2 for j = 1, . . . , n).
Recall that Di = D∆i for i = 1, 2 (where D∆i is formed inside of Li), since (Li,∆i, Si) is a locality.
Using this property and Lemma 4.8, we get the following equivalence:

v ∈ D

⇐⇒ v1 = (f1, . . . , fn) ∈ D1 and v2 = (g1, . . . , gn) ∈ D2

⇐⇒ There exist P0, . . . , Pn ∈ ∆1 and Q0, . . . , Qn ∈ ∆2 such that

for j = 1, . . . , n, Pj−1 ⊆ Sfj , P
fj
j−1 = Pj , Qj−1 ⊆ Sgj , Q

gj
j−1 = Qj

⇐⇒ There exist P0, . . . , Pn ∈ ∆1 and Q0, . . . , Qn ∈ ∆2 such that

for j = 1, . . . , n, (Pj−1 ×Qj−1) ⊆ S(fj ,gj) and (Pj−1 ×Qj−1)(fj ,gj) = Pj ×Qj
⇐⇒ There exist P0, . . . , Pn ∈ ∆1 and Q0, . . . , Qn ∈ ∆2 such that

v ∈ D∆ via P0 ×Q0, . . . , Pn ×Qn.
In particular, v ∈ D implies v ∈ D∆. Suppose now v ∈ D∆. Then there exist X0, . . . , Xn ∈ ∆
such that v ∈ D∆ via X0, . . . , Xn. By definition of ∆, there exist P0 ∈ ∆1 and Q0 ∈ ∆2

such that P0 × Q0 ≤ X0. Define Pj and Qj recursively by Pj = P
fj
j−1 and Qj = Q

gj
j−1. As

Xj−1 ⊆ S(fj ,gj) = (S1)fj × (S2)gj and X
(fj ,gj)
j−1 = Xj , an easy induction argument shows that, for

j = 1, . . . , n, Pj and Qj are well-defined and Pj ×Qj = (Pj−1 ×Qj−1)(fj ,gj) ≤ Xj . As L1 and L2

are localities, Pj ∈ ∆1 and Qj ∈ ∆2 for j = 1, . . . , n by Lemma 3.8(b). In particular, Pj ×Qj ∈ ∆
for j = 1, . . . , n. Hence, v ∈ D∆ via P0 ×Q0, . . . , Pn ×Qn. By the above equivalence, this means
v ∈ D. Thus, we have shown that D = D∆, i.e., property (L2) holds.

It remains to prove (L3). Let X ∈ ∆ and g = (g1, g2) ∈ L such that X ⊆ Sg. Let Xg ≤ Y ≤ S.
We need to show that Y ∈ ∆. As X ∈ ∆, there exist Pi ∈ ∆i for i = 1, 2 such that P1 × P2 ≤ X.
Then P1 × P2 ⊆ Sg = (S1)g1 × (S2)g2 and thus Pi ≤ (Si)gi for i = 1, 2. Thus, as Li is a locality,
we have P gii ∈ ∆i for i = 1, 2 by Lemma 3.8(b). As P g11 × P

g2
2 = (P1 × P2)g ⊆ Xg ≤ Y ≤ S, it

follows now from the definition of ∆ that Y ∈ ∆. This shows (L3) and completes the proof that
(L,∆, S) is a locality.

Set Fi := FSi(Li) for i = 1, 2. It remains to show that FS(L) = F1 × F2. The fusion system
FS(L) is generated by the maps cg : Sg → S with g ∈ L. Take g = (g1, g2) ∈ L. We have
Sg = (S1)g1 × (S2)g2 . Moreover, for any s = (s1, s2) ∈ Sg, scg = sg = (sg11 , s

g2
2 ) = (s1cg1 , s2cg2).

So using the notation from Section 2.3, we have cg = cg1 × cg2 ∈ HomF1×F2(Sg, S). This shows
FS(L) ⊆ F1 × F2. The fusion system F1 × F2 is generated by maps ϕ1 × ϕ2 where ϕi is a
morphism in Fi. So let Pi, Qi ≤ Si and ϕi ∈ HomFi(Pi, Qi) for i = 1, 2. We need to show that
ϕ1 × ϕ2 : P1 × P2 → Q1 × Q2 is a morphism in FS(L). By definition of F1, there exist elements

f1, . . . , fn ∈ L1 and subgroups P1 = X0, . . . , Xn of S such that, for j = 1, . . . , n, X
fj
j−1 = Xj and

ϕ1 = cf1 |X0 ◦ · · · ◦ cfn |Xn−1 . Similarly, by definition of F2, there exist elements g1, . . . , gm ∈ L2

and subgroups P2 = Y0, . . . , Ym of S such that, for j = 1, . . . ,m, Y
fj
j−1 = Yj and ϕ2 = cg1 |Y0 ◦ · · · ◦

cgm |Ym−1 . Inserting conjugation maps by the identity element if necessary, we may assume m = n.

Then setting Zj = Xj × Yj for j = 0, . . . , n and hj = (fj , gj) for j = 1, . . . , n, we have Z
hj
j−1 = Zj

for j = 1, . . . , n, and ϕ1 × ϕ2 = ch1 |Z0 ◦ ch2 |Z1 ◦ · · · ◦ chn |Zn . So ϕ1 × ϕ2 is a morphism in FS(L).
This shows FS(L) = F1 ×F2 as required and completes the proof. �

Definition 5.2. We call (L,∆, S) = (L1 × L2,∆1 ∗∆2, S1 × S2) the (external) direct product of
(L1,∆1, S1) and (L2,∆2, S2).

As before let ιi : Li → L be the inclusion map.

Lemma 5.3. For i = 1, 2, (Liιi,∆iιi, Siιi) is a sublocality of (L,∆, S) and FSiιi(Liιi) is the
canonical image of FSi(Li) in FS1(L1)×FS2(L2) = FS(L).
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Proof. Recall that, by Lemma 5.1, FS(L) = FS1(L1)×FS2(L2). Let i ∈ {1, 2}. Set Fi = FSi(Li),
L̂i = Liιi, ∆̂i = ∆iιi and Ŝi = Siιi. Lemma 4.7(b) gives that ιi is a homomorphism of partial

groups and Diι
∗
i = D∩W(L̂i). Moreover, Siιi ⊆ S1×S2 = S. Since (Li,∆i, Si) is a sublocality of

itself, it follows from Lemma 3.16 that (Liιi,∆iιi, Siιi) is a sublocality of (L,∆, S). Moreover, the
restriction of ιi to a map Li → Liιi is a projection of localities from (Li,∆i, Si) to (Liιi,∆iιi, Siιi).
Because of the latter property, it follows from [9, Theorem 5.7(b)] that (ιi)|Si : Si → Siιi induces an
epimorphism from FSi(Li) to FSiιi(Liιi), i.e., FSi(Li)(ιi)|Si = FSiιi(Liιi). Note that (ιi)|Si is the
canonical inclusion map Si → S1 × S2 which induces a morphism of fusion systems from FSi(Li)
to FS1(L1)×FS2(L2) = FS(L). The canonical isomorphic image of FSi(Li) in FS1(L1)×FS2(L2)
is by definition the image under this morphism and equals thus FSi(Li)(ιi)|Si = FSiιi(Liιi). This
shows the assertion. �

Our next goal now will be to show that (L,∆, S) is of objective characteristic p if and only if
(Li,∆i, Si) is of objective characteristic p for each i = 1, 2. We will need the following elementary
group theoretical lemma.

Lemma 5.4. Given finite groups G1 and G2, their direct product G1 ×G2 is of characteristic p
if and only if G1 and G2 are of characteristic p.

Proof. Set G := G1 × G2 and observe that Op(G) = Op(G1) × Op(G2). If G has characteristic
p, then CGi(Op(Gi)) ≤ CG(Op(G)) ∩ Gi ≤ Op(G) ∩ Gi = Op(Gi) and Gi has characteristic p
for i = 1, 2. If G1 and G2 have characteristic p, then CG(Op(G)) = CG(Op(G1) × Op(G2)) =
CG1(Op(G1))× CG2(Op(G2)) ≤ Op(G1)×Op(G2) = Op(G). Hence, G is of characteristic p. �

Lemma 5.5. As before let (L,∆, S) be the external direct product of (L1,∆1, S1) and (L2,∆2, S2).
Let P ≤ S and set Pi := Pπi. Then the following hold:

(a) We have NL(P ) ⊆ NL1(P1)×NL2(P2).
(b) If P = P1 × P2, then NL(P ) = NL1(P1)×NL2(P2) (as a set).
(c) Suppose P ∈ ∆. Then Pi ∈ ∆i for i = 1, 2 and in particular P1 × P2 ∈ ∆. If the groups

NL1(P1) and NL2(P2) are of characteristic p, then NL(P ) is of characteristic p.
(d) If P = P1 × P2 ∈ ∆, then NL(P ) is of characteristic p if and only if NLi(Pi) is of

characteristic p for i = 1, 2.

Proof. Let f = (f1, f2) ∈ L with fi ∈ Li for i = 1, 2. For the proof of (a), suppose f ∈ NL(P ). Let
x1 ∈ P1. Since P1 is the projection of P to S1, there exists x2 ∈ P2 such that x = (x1, x2) ∈ P .

Using Lemma 4.8(a),(b), we get xi ∈ D(fi) for i = 1, 2 and (xf11 , x
f2
2 ) = xf ∈ P as f ∈ NL(P ).

Hence, xf11 = xfπ1 ∈ P1 proving f1 ∈ NL1(P1). Similarly, one shows f2 ∈ NL2(P2). So if
f ∈ NL(P ), then f = (f1, f2) ∈ NL1(P1)×NL2(P2). This proves (a).

For the proof of (b) assume P = P1 × P2 and fi ∈ NLi(Pi) for i = 1, 2. By (a), it remains
to prove that f ∈ NL(P ). By Lemma 4.8(a),(b), P = P1 × P1 ⊆ D1(f1) ×D2(f2) = D(f) and

P f = P f11 × P
f2
2 = P1 × P2 = P . So f ∈ NL(P ) as required. This proves (b).

Let now P ∈ ∆ be arbitrary. Then, by definition of ∆, there exist Qi ∈ ∆i for i = 1, 2 such
that Q1 × Q2 ≤ P . Then for i = 1, 2, we have Qi ≤ Pi and thus Pi ∈ ∆i, as ∆i is closed under
taking overgroups in Si. By definition of ∆, it follows that P1 × P2 ∈ ∆.

By (a) and (b), H := NL(P ) ⊆ G = NL(P1 × P2) = NL1(P1)×NL2(P2). Since the normalizer
of an object in a locality is a finite group by Lemma 3.8(a), H, G, NL1(P1) and NL2(P2) are finite
groups. By Lemma 4.4, G regarded as a binary group coincides with the direct product of the
binary groups NL1(P1) and NL2(P2).

If NL1(P1) and NL2(P2) are of characteristic p, then G is of characteristic p by Lemma 5.4.
By [10, Lemma 1.2(c)], every p-local subgroup of a group of characteristic p is of characteristic p.
Hence, H = NG(P ) is of characteristic p if G is of characteristic p. This proves (d). Suppose now
P = P1 × P2. Then G = H and thus (e) follows from Lemma 5.4. �
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Lemma 5.6. The locality (L,∆, S) = (L1 × L2,∆1 ∗∆2, S1 × S2) is of objective characteristic p
if and only if (Li,∆i, Si) is of objective characteristic p for each i = 1, 2.

Proof. If (Li,∆i, Si) is of objective characteristic p for i = 1, 2, then it follows from Lemma 5.5(c)
that NL(P ) is of characteristic p for any P ∈ ∆. So (L,∆, S) is of objective characteristic p
if (Li,∆i, Si) is of objective characteristic p for i = 1, 2. Suppose now (L,∆, S) is of objective
characteristic p. Let Pi ∈ ∆i for i = 1, 2. We need to see that NLi(Pi) is of characteristic p for
i = 1, 2. Setting P = P1 × P2 this follows from Lemma 5.5(d). �

Lemma 5.7. The locality (L,∆, S) = (L1 ×L2,∆1 ∗∆2, S1 × S2) is a linking locality if and only
if (Li,∆i, Si) is a linking locality for each i = 1, 2.

Proof. Set F = FS(L) and Fi = FSi(Li) for i = 1, 2. By Lemma 5.6, it is sufficient to show that
Fcr ⊆ ∆ if and only if Fcri ⊆ ∆i. Recall that, by Lemma 5.1, F = F1×F2. So by Lemma 2.7(d),
Fcr = {R1 × R2 : Ri ∈ Fcri for i = 1, 2}. In particular, Fcr ⊆ ∆ if Fcri ⊆ ∆i. Assume now
Fcr ⊆ ∆, and let Ri ∈ Fcri for i = 1, 2. Then R1 ×R2 ∈ Fcr ⊆ ∆. So by Lemma 5.5(c), Ri ∈ ∆i

for i = 1, 2. This shows Fcri ⊆ ∆i for i = 1, 2 provided Fcr ⊆ ∆. Hence, the proof is complete. �

Let ιi : Li → L be the inclusion map for i = 1, 2. Recall from Lemma 4.9 that Z(L) =
Z(L1)× Z(L2) = Z(L1ι1)Z(L2ι2). Observe also that every subgroup of Z(L) is a partial normal
subgroup of L.

Definition 5.8. As before assume (L,∆, S) = (L1 × L2,∆1 ∗∆2, S1 × S2). Let Z ≤ Z(L) with
Z ∩ (Liιi) = {1} for i = 1, 2. Write β : L → L/Z for the canonical projection map as defined
in Subsection 3.5. Then we call the locality (L/Z,∆β, Sβ) the (external) central product of the
localities (L1,∆1, S1) and (L2,∆2, S2) over Z.

The reader should note that it is not so clear how one should define external central products
of arbitrary partial groups since quotients of partial groups modulo partial normal subgroups are
not defined in general.

Lemma 5.9. Let Z ≤ Z(L) with Z∩(Liιi) = {1}, and let β : L → L/Z be the canonical projection
so that (L/Z,∆β, Sβ) is the external central product of the localities (L1,∆1, S1) and (L2,∆2, S2)
over Z. Set Fi = FSi(Li) for i = 1, 2.

(a) The localities (L1,∆1, S1) and (L2,∆2, S2) are of objective characteristic p if and only if
Z ≤ S and the central product (L/Z,∆β, Sβ) is of objective characteristic p.

(b) The localities (L1,∆1, S1) and (L2,∆2, S2) are linking localities if and only if Z ≤ S and
the central product (L/Z,∆β, Sβ) is a linking locality.

(c) If Z ≤ S, then Z ≤ Z(F1 × F2), (F1 × F2)/Z is a central product of the fusion systems
F1 and F2, and (L/Z,∆β, Sβ) is a locality over (F1 ×F2)/Z.

Proof. If (L,∆, S) is of objective characteristic p, then Z ≤ CL(S) ≤ S. In particular, Z ≤ S if
(L,∆, S) is a linking locality. Assume from now on that Z ≤ S. Recall from Lemma 5.1 that
FS(L) = F1 × F2. In particular, Z ≤ Z(F1 × F2) as Z ≤ Z(L) and FS(L) is generated by the
conjugation maps by elements of L.

As Z ≤ Z(L)∩S, [9, Proposition 9.2] gives us the following properties: The locality (L/Z,∆β, Sβ)
is a locality over (F1 ∩ F2)/Z; (L/Z,∆β, Sβ) is of objective characteristic p if and only if
(L,∆, S) is of objective characteristic p; and (L/Z,∆β, Sβ) is a linking locality if and only if
(L,∆, S) is a linking locality. Now (a) and (b) follow from Lemma 5.6 and Lemma 5.7. We have
Z ∩ (Siιi) ≤ Z ∩Z(Liιi) = {1} and thus Z ∩ (Siιi) = 1. Hence, (F1 ×F2)/Z is a central product.
So (c) holds. �
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6. Internal central and direct products

Throughout this section let L be a partial group with product Π: D→ L. For i = 1, 2, Li will
always be a partial group with product Πi : Di → Li. Moreover

ιi : Li → L1 × L2

denotes the inclusion map from Li into the external direct product L1 × L2. For i = 1, 2 we set
L̂i := Liιi, i.e., L̂1 = {(f,1) : f ∈ L1} and L̂2 = {(1, g) : g ∈ L2}. By Lemma 4.7(a),(b), L̂1 and

L̂2 are partial normal subgroups of L1 × L2, and ιi induces an isomorphism Li → L̂i.
Except in Lemma 6.5 and Lemma 6.7, L1 and L2 are assumed to be partial subgroups of L,

Di := D ∩W(Li) and Πi := Π|Di .

Definition 6.1. We say that L is the (internal) central product of L1 and L2 if the following
conditions hold:

(C1) We have

D = {(Π(f1, g1), . . . ,Π(fn, gn)) : (f1, . . . , fn) ∈ D ∩W(L1), (g1, . . . , gn) ∈ D ∩W(L2),

(fj , gj) ∈ D for j = 1, . . . , n} .

(C2) If (f1, . . . , fn) ∈ D ∩W(L1), (g1, . . . , gn) ∈ D ∩W(L2) and (fj , gj) ∈ D for j = 1, . . . , n,
then Π(Π(f1, g1), . . . ,Π(fn, gn)) = Π(Π(f1, . . . , fn),Π(g1, . . . , gn)).

We call L the (internal) direct product of L1 and L2 if L is the central product of L1 and L2 and
the following additional property holds:

(D) For any h ∈ L there exist unique elements f ∈ L1 and g ∈ L2 with (f, g) ∈ D and
h = Π(f, g).

If L is the direct product of L1 and L2, then the following lemma says that L is indeed the
product of L1 and L2 in the usual sense.

Lemma 6.2. If (C1) holds, then L = L1L2. In other words, for every h ∈ L there exist elements
f ∈ L1 and g ∈ L2 with (f, g) ∈ D and h = Π(f, g). So the important part in property (D) is the
uniqueness of f and g.

Proof. Let h ∈ L. Then (h) ∈ D by the axioms of a partial group. So by (C1), there exist
(f) ∈ D∩W(L1) and (g) ∈ D∩W(L2) with (f, g) ∈ D and (h) = (Π(f, g)). Then f ∈ L1, g ∈ L2

and h = Π(f, g). �

Lemma 6.3. Suppose that L is the internal central product of L1 and L2. Then L1 ⊆ CL(L2)
and L2 ⊆ CL(L1). In particular, for all f ∈ L1 and g ∈ L2, we have (f, g) ∈ D, (g, f) ∈ D and
fg = gf . Moreover, L is the internal central product of L2 and L1.

Proof. Let f ∈ L1 and g ∈ L2. We show first that g ∈ D(f) and gf = g. By the axioms
of a partial group, (f−1, f) ∈ D, (g) ∈ D, Π(f−1, f) = 1 and Π(g) = g. So by Lemma 3.1,
(f−1,1, f) ∈ D ∩W(L1), (1, g,1) ∈ D ∩W(L2), Π(f−1,1, f) = Π(f−1, f) = 1 and Π(1, g,1) =
Π(g) = g. A similar argument shows that (f−1,1), (1, g) and (f,1) lie in D and Π(f−1,1) = f−1,
Π(1, g) = g and Π(f,1) = f . So by (C1), (f−1, g, f) = (Π(f−1,1),Π(1, g),Π(f,1)) ∈ D and by
(C2), gf = Π(f−1, g, f) = Π(Π(f−1,1, f),Π(1, g,1)) = Π(1, g) = g. This proves L1 ⊆ CL(L2).
So by Lemma 3.2, L2 ⊆ CL(L1) and, for all f ∈ L1 and all g ∈ L2, we have (f, g) ∈ D, (g, f) ∈ D
and Π(f, g) = Π(g, f). It follows from the latter property and the definition of an internal central
product that L is the internal central product of L2 and L1, �

Proposition 6.4. Consider the map

ϕ : L1 × L2 → L with (f, g) 7→ Π(f, g)

which is well-defined if (f, g) ∈ D for all f ∈ L1 and g ∈ L2. The following hold:
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(a) The map ϕ is well-defined and a projection of partial groups if and only if L is the internal
central product of L1 and L2.

(b) If ϕ is well-defined and a projection of partial groups, then

ker(ϕ) = {(f, f−1) : f ∈ L1 ∩ L2} ≤ Z(L1 × L2)

and ker(ϕ) ∩ L̂i = {1}.
(c) The map ϕ is well-defined and an isomorphism of partial groups if and only if L is the

internal direct product of L1 and L2.
(d) If ϕ is well-defined, then L̂iϕ = Li and the map L̂i → Li induced by ϕ is an isomorphism

for i = 1, 2.

Proof. By Lemma 6.3, if L is the central product of L1 and L2, then (f, g) ∈ D for all f ∈ L1

and g ∈ L2, i.e., ϕ is well-defined. Therefore, we assume in the remainder of the proof that ϕ is
well-defined. For (a), we will show that ϕ is a projection if and only if L is the central product of
L1 and L2. Write Π′ for the product on L1 × L2 and D′ for its domain. Note that

D′ϕ∗ = {(Π(f1, g1), . . . ,Π(fn, gn)) : ((f1, g1), . . . , (fn, gn)) ∈ D′}
= {(Π(f1, g1), . . . ,Π(fn, gn)) : (f1, . . . , fn) ∈ D ∩W(L1), (g1, . . . , gn) ∈ D ∩W(L2)}

where the first equality follows from the definition of ϕ and the second equality follows from the
definition of the domain D′ of L1 × L2. Hence, as (f, g) ∈ D for all f ∈ L1 and all g ∈ L2, (C1)
holds if and only if D = D′ϕ∗.

Let now v = ((f1, g1), . . . , (fn, gn)) ∈ D′, or equivalently, (f1, . . . , fn) ∈ D1 = D ∩W(L1) and
(g1, . . . , gn) ∈ D2 = D ∩W(L2). We have vϕ∗ = (Π(f1, g1), . . . ,Π(fn, gn)) and thus

Π(vϕ∗) = Π(Π(f1, g1), . . . ,Π(fn, gn)).

Moreover, Π′(v) = (Π1(f1, . . . , fn),Π2(g1, . . . , gn)) = (Π(f1, . . . , fn),Π(g1, . . . , gn)) by definition
of the product Π′ on L1 × L2. Thus

(Π′(v))ϕ = Π(Π(f1, . . . , fn),Π(g1, . . . , gn)).

Hence, we have Π(vϕ∗) = (Π′(v))ϕ for all v ∈ D′ if and only if (C2) holds. This proves (a).

For (b) assume that ϕ is well-defined and a projection of partial groups (so that ker(ϕ) is well-
defined). Clearly, for all f ∈ L1 ∩ L2, we have (f, f−1)ϕ = Π(f, f−1) = 1 and thus (f, f−1) ∈
ker(ϕ). Let now (f, g) ∈ ker(ϕ) with f ∈ L1 and g ∈ L2. Then Π(f, g) = (f, g)ϕ = 1 = Π(f, f−1).
Hence, by the left cancellation property [7, Lemma 1.4(e)], g = f−1. So g = f−1 ∈ L1 ∩ L2 and
thus f ∈ L1 ∩ L2. This shows (f, g) = (f, f−1) with f ∈ L1 ∩ L2. Hence, ker(ϕ) = {(f, f−1) : f ∈
L1∩L2}. By Lemma 6.3, L1∩L2 ⊆ Z(Li) for i = 1, 2. So we have ker(ϕ) ⊆ (L1∩L2)×(L1∩L2) ⊆
Z(L1)× Z(L2) = Z(L1 × L2) by Lemma 4.9. Clearly, ker(ϕ) ∩ L̂i = {1} for i = 1, 2. This shows
(b).

Property (D) means that for each h ∈ L there exists a unique (f, g) ∈ L1 × L2 with (f, g)ϕ =
Π(f, g) = h, i.e., that ϕ is bijective. Hence, (c) follows from (a).

For i = 1, 2, let ι̂i be the restriction of ιi to a map Li → L̂i, which by Lemma 4.7(b) is
an isomorphism of partial groups. Thus, f ι̂1 = (f,1) for all f ∈ L1, and gι̂2 = (1, g) for all
g ∈ L2. Note that, for all f ∈ L1, we have (f,1)ϕ = Π(f,1) = f and, for all g ∈ L2, we have

(1, g)ϕ = Π(1, g) = g. Thus, for i = 1, 2, L̂iϕ = Li and the map L̂i → Li induced by ϕ is the same
as ι̂i

−1. By Lemma 3.5(a), the inverse map of an isomorphism of partial groups is an isomorphism

of partial groups. Hence, ϕ induces an isomorphism of partial groups L̂i → Li. �

As in the case of groups, the main examples of internal direct products of partial groups come
from external direct products. This is made precise in the following lemma.
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Lemma 6.5. Let L1 and L2 be arbitrary partial groups (not necessarily partial subgroups of L).

Then the external direct product L1 × L2 is the internal direct product of L̂1 and L̂2.

Proof. Set L = L1×L2. We prove the assertion using Proposition 6.4(c) (even though it would also

be possible to give a direct proof). So we show that the map ϕ : L̂1×L̂2 → L with (f̂ , ĝ) 7→ Π(f̂ , ĝ)

is an isomorphism. Notice that, for all f̂ ∈ L̂1 and ĝ ∈ L̂2, there exist f ∈ L1 and g ∈ L2 such that
f̂ = fι1 and ĝ = gι2. Then by Lemma 4.6, (f̂ , ĝ) ∈ D and Π(f̂ , ĝ) = (f, g). So ϕ is well-defined

and the inverse of the map L1 × L2 → L̂1 × L̂2, (f, g) 7→ (fι1, gι2) which is an isomorphism of
partial groups by Lemma 4.3 and Lemma 4.7(b). Hence, ϕ is an isomorphism of partial groups
by Lemma 3.5(a). �

From now on we assume that (L,∆, S) is a locality.

Definition 6.6. Let (L1,∆1, S1) and (L2,∆2, S2) be sublocalities of L. We say that the locality
(L,∆, S) is the (internal) central product of the localities (L1,∆1, S1) and (L2,∆2, S2) if the
following conditions hold:

• L is the internal central product of L1 and L2 as a partial group,
• S = S1S2, and
• ∆ is the set of subgroups of S containing a subgroup of the form P1P2 with Pi ∈ ∆i for
i = 1, 2.

If in addition to these properties (D) holds, i.e., if L is the internal direct product of L1 and L2,
then we call (L,∆, S) the (internal) direct product of the localities (L1,∆1, S1) and (L2,∆2, S2).

As made precise in the following lemma, the main examples of internal direct and central
products of localities come from their external counterparts.

Lemma 6.7. Let (L1,∆1, S1) and (L2,∆2, S2) be localities. Write (L,∆, S) for the external
direct product of the localities (L1,∆1, S1) and (L2,∆2, S2), i.e., L = L1 × L2, S = S1 × S2, and
∆ = ∆1 ∗∆2 is the set of subgroups of S containing a subgroup of the form P1 × P2 with Pi ∈ ∆i

for i = 1, 2. Set ∆̂i := ∆iιi and Ŝi = Siιi for i = 1, 2.

(a) For each i = 1, 2, (L̂i, ∆̂i, Ŝi) is a sublocality of (L,∆, S). Moreover, (L,∆, S) is the

internal direct product of the localities (L̂1, ∆̂1, Ŝ1) and (L̂2, ∆̂2, Ŝ2).

(b) Let Z ≤ Z(L) with Z ∩L̂i = {1} and let ρ : L → L/Z so that (L/Z,∆ρ, Sρ) is the external

central product of (L1,∆1, S1) and (L2,∆2, S2) over Z. Then for i = 1, 2, (L̂iρ, ∆̂iρ, Ŝiρ)

is a sublocality of (L/Z,∆ρ, Sρ) and ρ|L̂i : L̂i → L̂iρ is a projection of localities from

(L̂i, ∆̂i, Ŝi) to (L̂iρ, ∆̂iρ, Ŝiρ). Moreover, (L/Z,∆ρ, Sρ) is an internal central product of

(L̂1ρ, ∆̂1ρ, Ŝ1ρ) and (L̂2ρ, ∆̂2ρ, Ŝ2ρ).

Proof. By Lemma 5.3, (L̂i, ∆̂i, Ŝi) is a sublocality of (L,∆, S). As seen in Example 6.5, L = L1×L2

is an internal direct product of L̂1 and L̂2. It is now immediate that (L,∆, S) is an internal direct

product of the sublocalities (L̂1, ∆̂1, Ŝ1) and (L̂2, ∆̂2, Ŝ2). This shows (a). Property (b) follows
now from (a) and Lemma 6.8 below. �

Suppose from now on that (L1,∆1, S1) and (L2,∆2, S2) are sublocalities of L.

Lemma 6.8. Suppose (L,∆, S) is the internal central product of (L1,∆1, S1) and (L2,∆2, S2).
Let (L′,∆′, S′) be a locality and let β : L → L′ be a projection of localities from (L,∆, S) to
(L′,∆′, S′) with ker(β) ⊆ Z(L).

Then (Liβ,∆iβ, Siβ) is a sublocality of (L′,∆′, S′) for i = 1, 2 and β|Li : Li → Liβ is a projection
of localities from (Li,∆i, Si) to (Liβ,∆iβ, Siβ). Moreover, (L′,∆′, S′) is the internal central
product of the sublocalities (L1β,∆1β, S1β) and (L2β,∆2β, S2β).
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Proof. By Lemma 3.17, (Liβ,∆iβ, Siβ) is a sublocality of (L′,∆′, S′) for i = 1, 2 and β|Li : Li →
Liβ is a projection of localities from (Li,∆i, Si) to (Liβ,∆iβ, Siβ).

We show next that L′ is the internal central product of L1β and L2β as a partial group. Write
Π′ : D′ → L′ for the partial product on L′. Set

D+ := {(Π′(f̂1, ĝ1), . . . ,Π′(f̂n, ĝn)) : (f̂1, . . . , f̂n) ∈ D′ ∩W(L1β) (ĝ1, . . . , ĝn) ∈ D′ ∩W(L2β),

(f̂j , ĝj) ∈ D′ for j = 1, . . . , n} .

Showing property (C1) for L′ means to show that D+ = D′. As β is a projection and (C1)
holds for L, it is straightforward to check that D′ = Dβ∗ ⊆ D+. Let now w ∈ D+ and write
w = (Π′(f̂1, ĝ1), . . . ,Π′(f̂n, ĝn)) with w1 := (f̂1, . . . , f̂n) ∈ D′ ∩W(L1β), w2 := (ĝ1, . . . , ĝn) ∈ D′ ∩
W(L2β), and (f̂j , ĝj) ∈ D′ for j = 1, . . . , n. For j = 1, . . . , n let fj ∈ L1 and gj ∈ L2 with fjβ = f̂j
and gjβ = ĝj . Set v1 := (f1, . . . , fn) and v2 = (f1, . . . , f2). Note that viβ

∗ = wi ∈ D′ for i = 1, 2,

and (fj , gj)β
∗ = (f̂j , ĝj) ∈ D′ for j = 1, . . . , n. So by Lemma 3.12, vi ∈ D for i = 1, 2 and (fj , gj) ∈

D for j = 1, . . . , n. Hence, since (C1) holds for L, we have v := (Π(f1, g1), . . . ,Π(fn, gn)) ∈
D. As β is a homomorphism of partial groups, vβ∗ = w and thus w ∈ Dβ∗ = D′. This
shows D+ = D′ and (C1) holds for L′. Moreover, using that (C2) holds for L and that β is a
homomorphism of partial groups, we obtain Π′(w) = Π′(vβ∗) = (Π(v))β = (Π(Π(v1),Π(v2)))β =

Π′(Π′(v1β
∗),Π′(v2β

∗)) = Π′(Π′(f̂1, . . . , f̂n),Π′(ĝ1, . . . , ĝn)). Hence (C2) holds for L′. So L′ is the
central product of L1β and L2β as a partial group.

Since Sβ = S′, ∆β = ∆′ and (L,∆, S) is the internal central product of L1 and L2, it is now
easy to observe that the assertion holds. �

Proposition 6.9. Let (L1 × L2,∆1 ∗∆2, S1 × S2) be the external direct product of the localities
(L1,∆1, S1) and (L2,∆2, S2), i.e., ∆1 ∗∆2 is the set of subgroups of S1×S2 containing a subgroup
of the form P1 × P2 with Pi ∈ ∆i for i = 1, 2. Consider the map

ϕ : L1 × L2 → L, (f, g) 7→ Π(f, g).

Then the following hold:

(a) The map ϕ is well defined and a projection of localities from (L1×L2,∆1 ∗∆2, S1×S2) to
(L,∆, S) if and only if (L,∆, S) is the internal central product of the localities (L1,∆1, S1)
and (L2,∆2, S2).

(b) Suppose ϕ is well-defined and a projection of localities from (L1×L2,∆1 ∗∆2, S1×S2) to
(L,∆, S). Then the quotient locality

(L1 × L1,∆1 ∗∆2, S1 × S2)/ ker(ϕ)

forms an external central product of the localities (L1,∆1, S1) and (L2,∆2, S2), and ϕ
induced an isomorphism of localities

(L1 × L2)/ ker(ϕ)→ L, h ker(ϕ) 7→ hϕ.

(c) Suppose ϕ is well-defined and a projection between the localities (L1×L2,∆1 ∗∆2, S1×S2)
and (L,∆, S). Then the following are equivalent:
(i) ϕ is an isomorphism of localities,
(ii) ker(ϕ) = {1},
(iii) (L,∆, S) is the internal direct product of (L1,∆1, S1) and (L2,∆2, S2),
(iv) L1 ∩ L2 = {1}.

Proof. Suppose ϕ is well-defined. Then (S1×S2)ϕ = S1S2 and (∆1 ∗∆2)ϕ = {Qϕ : Q ∈ ∆1 ∗∆2}
is the set of subgroups of S containing a subgroup of the form P1P2 with Pi ∈ ∆i for i =
1, 2. Hence, (a) follows from Lemma 6.4(a). Assume now that ϕ is a projection between the
localities (L1 × L2,∆1 ∗ ∆2, S1 × S2) and (L,∆, S). Then ker(ϕ) is a partial normal subgroup
and we can form the quotient locality (L1 × L2)/ ker(ϕ) and by [7, Theorem 4.6], ϕ induces
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an isomorphism between the localities (L1 × L2,∆1 ∗ ∆2, S1 × S2)/ ker(ϕ) and (L,∆, S). By
Lemma 6.4(b), (L1×L2,∆1∗∆2, S1×S2)/ ker(ϕ) forms an external central product of (L1,∆1, S1)
and (L2,∆2, S2). This proves (b).

By [7, Theorem 4.3(d)], a projection between localities is an isomorphism if and only if its
kernel is trivial. Hence, properties (i) and (ii) in part (c) are equivalent. Properties (i) and (iii)
are equivalent by (a) and Lemma 6.4(c). By Lemma 6.4(b), ker(ϕ) = {(f, f−1) : f ∈ L1 ∩ L2}
which implies that (ii) and (iv) are equivalent. �

Lemma 6.10. Suppose (L,∆, S) is the internal central product of (L1,∆1, S1) and (L2,∆2, S2).
Then L1 and L2 are partial normal subgroups of L.

Proof. Let i ∈ {1, 2}. By Proposition 4.7(a), L̂i = Liιi is a partial normal subgroup of L1 × L2.
By Lemma 6.9(a), the map ϕ : L1 × L2 → L, (f, g) 7→ Π(f, g) is well-defined and a projection

between the localities (L1 × L2,∆1 ∗ ∆2, S1 × S2) and (L,∆, S). So by Lemma 3.14, L̂iϕ is a

partial normal subgroup of L. By Proposition 6.4(d), we have L̂iϕ = Li and thus the assertion
follows. �

Lemma 6.11. Suppose (L,∆, S) is the internal central product of (L1,∆1, S1) and (L2,∆2, S2).
Then (Li,∆i, Si) is of objective characteristic p for i = 1, 2 if and only if L1 ∩ L2 ≤ S1 ∩ S2 and
(L,∆, S) is of objective characteristic p. Similarly, (Li,∆i, Si) is a linking locality for i = 1, 2 if
and only if L1 ∩ L2 ≤ S1 ∩ S2 and (L,∆, S) is a linking locality.

Proof. By Proposition 6.9(a), the map ϕ : L1 × L2 → L, (f, g) 7→ Π(f, g) is well-defined and a
projection of localities from (L1×L2,∆1 ∗∆2, S1× S2) to (L,∆, S). By Proposition 6.4(b), Z :=
ker(ϕ) = {(f, f−1) : f ∈ L1∩L2} ≤ Z(L1×L2). So by [9, Proposition 9.3], (L1×L2,∆1∗∆2, S1×S2)
is of objective characteristic p if and only if Z ≤ S1×S2 and (L,∆, S) is of objective characteristic
p; and (L1×L2,∆1 ∗∆2, S1×S2) is a linking locality if and only if Z ≤ S1×S2 and (L,∆, S) is a
linking locality. Note that Z = {(f, f−1) : f ∈ L1∩L2} ⊆ S1×S2 if and only if L1∩L2 ≤ S1∩S2.
So the assertion follows from Lemma 5.6 and Lemma 5.7. �

Proposition 6.12. Let F be a saturated fusion system over S such that F is the internal central
product of two subsystems F1 and F2 over S1 and S2 respectively. For i = 1, 2 let Fcri ⊆ ∆i ⊆ Fsi
such that ∆i is Fi-closed. Let ∆ be the set of overgroups in S of the subgroups of the form P1P2

with Pi ∈ ∆i for i = 1, 2.

(a) The set ∆ is F-closed. Moreover, Fcr ⊆ ∆ ⊆ Fs.
(b) Suppose (L,∆, S) is a linking locality over F . Then L is the central product of two

sublocalities (L1,∆1, S1) and (L2,∆2, S2) such that (Li,∆i, Si) is a linking locality and
Fi = FSi(Li) for i = 1, 2.

Proof. By Lemma 2.10(c), ∆ is F-closed. By Lemma 2.10(a), Fcr ⊆ ∆. By [9, Theorem A(b)],
Fs is closed under taking overgroups. So Lemma 2.10(b) implies ∆ ⊆ Fs. This proves (a).

Write F̂i for the canonical image of Fi in F1×F2. As F is the central product of F1 and F2, the
map α : S1 × S2 → S, (s1, s2) 7→ s1s2 induces an epimorphism from F1 ×F2 to F with F̂iα = Fi.
We have seen that Z := ker(α) ≤ Z(F1 ×F2).

For i = 1, 2 let (Mi,∆i, Si) be a linking locality over Fi. Set M = M1 ×M2, Γ = ∆1 ∗ ∆2

and T = S1 × S2. Then (M,Γ, T ) is a locality over F1 × F2 by Lemma 5.1. For i = 1, 2 let
ιi : Mi → M1 ×M2 be the inclusion map. By Lemma 5.3, (Miιi,∆iιi, Siιi) is a sublocality of

(M,Γ, T ) with FSiιi(Miιi) = F̂i. By Lemma 4.7(b), the map ιi is moreover an isomorphism of
localities from (Mi,∆i, Si) to (Miιi,∆iιi, Siιi). So (Miιi,∆iιi, Siιi) is a linking locality by [9,
Proposition 9.3].

As (Mi,∆i, Si) is a linking locality for i = 1, 2, (M,Γ, T ) is a linking locality by Lemma 5.7.
Hence, by [9, Proposition 4], Z ≤ Z(M). Let ρ : M → M/Z be the canonical projection so
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that (M/Z,Γρ, Tρ) is the central product of (M1,∆1, S1) and (M2,∆2, S2) over Z. As seen in
Lemma 6.7, (Miιiρ,∆iιiρ, Siιiρ) is a sublocality of (M/Z,Γρ, Tρ), and ρ|Miιi : Miιi → Miιiρ
is a projection of localities from (Miιi,∆iιi, Siιi) to (Miιiρ,∆iιiρ, Siιiρ) for i = 1, 2. Moreover,
(M/Z,Γρ, Tρ) is an internal central product of (M1ι1ρ,∆1ι1ρ, S1ι1ρ) and (M2ι2ρ,∆2ι2ρ, S2ι2ρ).

By Lemma 5.9(b),(c), (M/Z,Γρ, Tρ) is a linking locality over (F1×F2)/Z. As observed before,
the map α : T/Z → S,Zt 7→ tα induces an isomorphism from (F1×F2)/Z to F . Observe also that
(ρ|T ) ◦ α = α and thus Γρα = Γα = ∆. Hence, by Proposition 3.19, there exists β : M/Z → L
such that β is an isomorphism of localities from (M/Z,Γρ, Tρ) to (L,∆, S). Set Li := Miιiρβ.
As (ρ|T ) ◦ α = α, we have ιi ◦ ρ ◦ β = ιi ◦ α = idSi for i = 1, 2. In particular, Siιiρβ = Si
and ∆iιiρβ = ∆i for i = 1, 2. So by Lemma 6.8, (Li,∆i, Si) is a sublocality of (L,∆, S) for
i = 1, 2, β|Miιiρ : Miιiρ→ Li is a projection of localities from (Miιiρ,∆iιiρ, Siιiρ) to (Li,∆i, S),
and (L,∆, S) is a central product of (L1,∆1, S1) and (L2,∆2, S2). Observe that the composition
of projections of localities is a projection of localities again. Hence, ρ ◦ β is a projection of
localities from (M,Γ, T ) to (L,∆, S), and for i = 1, 2, (ρ ◦ β)|Miιi is a projection of localities
from (Miιi,∆ιi, Siιi) to (Li,∆i, Si). Hence, by [9, Theorem 5.7(b)], (ρ ◦ β)|Siιi = α|Siιi induces

an epimorphism from F̂i = FSiιi(Miιi) to FSi(Li). Hence, FSi(Li) = F̂i(ρ ◦ β)|Siιi = F̂iα = Fi.
As β is an isomorphism of localities and ker(ρ) = Z ≤ Z(M), we have ker((ρ ◦ β)|Miιi) =
ker(ρ|Miιi) = ker(ρ)∩ (Miιi) = Z ∩ (Miιi) ≤ Z(Miιi). Hence, (Li,∆i, Si) is a linking locality by
[9, Proposition 9.3]. This completes the proof. �
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