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Highlights 

• Ecohydrological model captures multi-process response in wet, steep catchment 

• Data diversity constrains feasible parameter sets more than data quantity 

• Using all observation types for calibration yields best model performance 

• Riparian soil moisture and transpiration observations are most informative 

 

Abstract 

We assessed whether a complex, process-based ecohydrological model can be 

appropriately parameterized to reproduce the key water flux and storage dynamics at a 

long-term research catchment in the Scottish Highlands. We used the fully-distributed 

ecohydrological model EcH2O, calibrated against long-term datasets that encompass 

hydrologic and energy exchanges, and ecological measurements. Applying diverse 

combinations of these constraints revealed that calibration against virtually all datasets 
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enabled the model to reproduce streamflow reasonably well. However, parameterizing 

the model to adequately capture local flux and storage dynamics, such as soil moisture or 

transpiration, required calibration with specific observations. This indicates that the 

footprint of the information contained in observations varies for each type of dataset, and 

that a diverse database informing about the different compartments of the domain, is 

critical to identify consistent model parameterizations. These results foster confidence in 

using EcH2O to contribute to understanding current and future ecohydrological couplings 

in Northern catchments. 

Keywords 

Catchment hydrology; ecohydrology; process-based modelling; multi-objective 

calibration; information content; EcH2O 

1. Introduction 

Numerical models are crucially important in the environmental sciences: models can 

complement and integrate theory and empirical data by incorporating testable hypotheses 

and by extending knowledge at spatial and/or temporal scales inaccessible to current 

observation methods. In particular, process-based models seek to explicitly represent the 

“state variables and fluxes that are theoretically observable and can be used in the 

closure of assumed forms of the laws of conversation of mass, energy, and momentum at 

temporal scales characterizing the underlying physical processes” (adapted from Fatichi 

et al., 2016). In contrast to conceptual and empirical approaches, physically-based models 

facilitate investigation of specific variables at local, process-specific scales (e.g., Endrizzi 

et al., 2014; Manoli et al., 2017; Niu and Phanikumar, 2015; Pierini et al., 2014). 

Additionally, a fully-distributed description of the simulation domain opens the 

possibility for tracking intra-system patterns and dynamics (e.g. Maxwell and Condon, 

2016; Pierini et al., 2014), a task much less accessible to coarser spatial representations 

(i.e., lumped or semi-distributed models). Combining these two methodological choices 

with physically-based, fully-distributed models is thus a way to disentangle feedbacks 

and non-linear dynamics across fundamentally different processes (e.g. Drewry et al., 

2010; Tague, 2009), and better predict system behaviour outside recorded environmental 

conditions (Seibert, 2003; Uhlenbrook et al., 1999). These tools are of particular 
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relevance for the emerging field of critical zone science (National Research Council, 

2012), which seeks integrated understanding of   (Brooks et al., 2015). 

Within the field of hydrology the issue of appropriate model complexity is a focus of 

ongoing discussion. The corollary of expanding process-based approaches towards an 

“universal model” is an inevitable increase in complexity as explicit descriptions of 

additional system characteristics are added (e.g. topography, soil texture, tree height, 

canopy density etc.) (Band et al., 2001; Maxwell and Condon, 2016). Arguing that many 

of these numerous parameters cannot be appropriately measured, some fear that evolution 

of complex multi-disciplinary models only layer up unavoidable uncertainty and are 

prone to equifinality, whereby several combinations of parameter values –realistic or not– 

yield comparable performance (e.g. Beven and Binley, 1992; Beven and Freer, 2001; 

McDonnell et al., 2007). 

The utility of measurements to help constrain the model solution space and identify 

feasible model configurations has been an increasingly central issue in hydrological 

model calibration. Sufficiently informative observations are necessary to ensure that the 

goodness of model-data fit attained effectively translates into physically-sound 

information for the internal model parameters; i.e., getting the right answers for the right 

reasons (Beven and Binley, 1992; Kirchner, 2006). The problem of equifinality – a 

particular case of underdetermination (Duhem, 1954) – is apparent when stream 

discharge is the only monitored variable available for calibration. Unfortunately, this 

remains the most common situation. The widespread use of streamflow time series to 

calibrate and validate models has spurred the development of elaborate single and 

multiple-criteria goodness-of-fit metrics (Kling et al., 2012; Krause et al., 2005; Legates 

and McCabe, 1999; Madsen, 2003; van Werkhoven et al., 2009) and calibration 

algorithms (Duan et al., 1992; Gupta et al., 1998; Sorooshian and Dracup, 1980; Tang et 

al., 2007; Tolson and Shoemaker, 2007) directed toward extracting a maximum of 

information content from this type of data (He et al., 2015; Rouhani et al., 2007; Shafii et 

al., 2017).  

However, the information contained in streamflow time series is often insufficient to 

inform the parameterization of physically based models. Parameter values that represent 

physical properties of the catchment are usually poorly identified and become very 
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sensitive to boundary conditions (Maneta et al., 2007). The situation deteriorates as more 

complex models incorporate increasingly detailed descriptions of catchment functioning. 

To constrain parameters of components associated with different subdomains of the 

model (ecological, surface, subsurface, etc.) it is desirable – but often impractical – to 

diversify data sources (Fang et al., 2013; Larsen et al., 2016; Rajib et al., 2016; 

Thorstensen et al., 2015). Combining different types of observations reduces information 

redundancy and provides direct insights into the different groups of physical processes 

represented in the model (Clark et al., 2011; Fatichi et al., 2016). A data-extensive 

approach to model calibration makes the choice of performance metrics easier because 

the information contained in observations is more directly related to the model 

compartment being calibrated (e.g. Birkel et al., 2014). Information diversity, however, 

brings other issues related to the assimilation of observations with diverse characteristics 

during calibration: some are technical e.g. combining spatio-temporal scales and 

associated uncertainties, while others are more fundamental to modelling, e.g. parameters 

compensating for model imperfections (Clark and Vrugt, 2006), or overlapping 

constraints and thus, possibly “pulling” the model in different directions (Efstratiadis and 

Koutsoyiannis, 2010). In other research fields, this approach is exemplified by the current 

efforts and associated challenges in assimilating multiple types of carbon cycle data to 

optimise Earth system models (Kaminski et al., 2013; Peylin et al., 2016).   

The ecohydrology of high-latitude, energy-limited landscapes has traditionally been 

understudied despite the global ecological importance of this region. Since studies of 

plant-water couplings across disciplines gained momentum in the late 90s (Bonell, 2002), 

research efforts in ecohydrology have been primarily conducted in environments where 

water scarcity (Newman et al., 2006) or permanent presence (e.g., wetlands (Rodriguez-

Iturbe et al., 2007)) makes hydrology an obvious, critical control upon how plants 

distribute and compete. Only recently, efforts have been directed towards understanding 

the specific ecohydrological processes of boreal, energy-limited regions (e.g. Cable et al., 

2014)  While there have been process-based model developments dedicated to the 

hydrology of high-latitude environments (e.g. Endrizzi et al., 2014; Kuchment et al., 

2000; Lindström et al., 1997; Pomeroy et al., 2007), most model applications in these 

regions lack an explicit implementation of vegetation dynamics (e.g. Ala-aho et al., 
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2017a), and thus, cannot finely capture ecosystem imprints on water partitioning at the 

catchment scale. 

 High-latitude regions comprise mixed temperate forests, boreal forests and tundra, 

covering nearly 20% of the continental land mass (Tetzlaff et al., 2015a). These regions 

are subject to rapid climate change, with significant regional to global-scale implications 

(Hinzman et al., 2013), including shifts in precipitation regime and snow-mediated water 

balance (Bintanja and Andry, 2017; Jiménez Cisneros et al., 2014) and associated 

implications for runoff generation (Peterson et al., 2002; Zhang et al., 2014). While such 

environmental change has been observed to alter water pathways and flow regimes (Dye 

and Tucker, 2003; McClelland et al., 2006; Tetzlaff et al., 2013) and ecosystem dynamics 

(Naito and Cairns, 2015; Piao et al., 2008), further work is needed to identify the 

underlying mechanisms. Reasons for the limited understanding so far lie in the fine-scale 

landscape heterogeneity and the implications for spatial variation in energy inputs, as 

well as the logistical difficulties of collecting data in comparatively remote areas 

(Pomeroy et al., 2013; Tetzlaff et al., 2013), and the alarming recent decline in long-term 

monitoring of northern catchments (Laudon et al., 2017). However, we need to 

understand such processes and the related uncertainties of water cycling in these regions, 

while ongoing/projected biome shifts (e.g., (Beck et al., 2011; Williams et al., 2007)) call 

for particular scrutiny of ecosystem influence on water availability (Law, 1956) and vice-

versa.  

In this study, our main aim was to investigate to what extent a data-extensive 

approach to calibration can constrain the range of behavioural configurations of a highly-

parameterized, physically-based model, such that the achieved parameter sets can be used 

as falsifiable hypotheses of the internal functioning of the catchment. For this, we used a 

distributed ecohydrologic model (EcH2O, see (Maneta and Silverman, 2013) that 

integrates a kinematic hydrologic and energy balance model, with a vegetation dynamics 

model. The model is calibrated using several combinations of data types covering a range 

of ecohydrological variables collected at a long-term experimental northern montane 

catchment. We ask the following questions through  our modelling experiments, 1) what 

are the physical insights gained across ecohydrological processes? 2) how valuable are 

the information contents brought by the different constraining datasets? Addressing these 
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questions will help building a robust ecohydrological modelling framework dedicated to 

critical zone functioning in high-latitude environments. 

 

2. Material and methods 

2.1. Study site 

The Bruntland Burn (Fig. 1) is a small catchment (3.2 km2) located in the eastern 

Scottish Highlands (57°8’N 3°20’W). It is a headwater of the River Dee, which provides 

drinking water for the city of Aberdeen (250,000 people), ecosystem services such as an 

Atlantic salmon fishery, and has EU conservation designations. The region receives 

around 1100 mm of average annual precipitation (P), distributed quite evenly throughout 

the year, although November-February and June-August are usually wettest and driest 

periods, respectively. Less than 5% of P occurs as snowfall. The climatic water balance is 

energy-limited, with 400 mm of annual Potential Evapotranspiration (PET). The mean 

annual temperature (T) is 7ºC with no monthly-averaged T below 0ºC in a transitional 

temperate / boreal oceanic climate.  
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Figure 1. Bruntland Burn catchment, showing (a) topography, stream network, and the 

monitoring locations and associated instrumentation: stream gauge (triangle), soil moisture 

sensors (diamonds and circle), square for sapflow transpiration (square and circle), and 

micrometeorology (including net radiation, star). The conceptualisation used for simulations (b-f, 

30×30m2 resolution) comprises (b) pedology, aggregated from the Hydrology of Soil Types 

(HOST) classes, and (c-f) the pixel fraction covered by the four considered vegetation types (in 

addition to scree/bare soil, not shown). 

 

The local topography reflects glacier retreat, with a wide valley bottom (~220 

m.a.s.l.) surrounded by steeper slopes reaching up to 560 m.a.s.l. (Fig. 1a). This slope 

gradient is reflected by widespread glacial drift deposits (60% of the catchment) with 

depths ranging from ~40m in the valley bottom to ~5m on steeper slopes. These deposits 

are mostly saturated and form significant groundwater reservoirs that sustain stream base 

flow and maintain wet conditions in the valley bottom (Soulsby et al., 2016). The 

pedology comprises deep (0.5-4m), organic-rich soils (histosols: peat and gley) in the 
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riparian area bordering the stream channel network (Fig. 1b). These soils are persistently 

saturated and rapid overland flow is the dominant runoff generation mechanism following 

rainfall events (Tetzlaff et al., 2014). Hillslopes are characterised by shallower, freely-

draining podzols (spodosols) overlying moraines and marginal ice deposits, while thin 

regosols (rankers) dominate above 400 m.a.s.l. where the drift is thin or absent (Fig. 1b). 

These hydropedological units are somewhat reflected in the vegetation cover (Fig. 1c-f). 

Podzols and rankers predominantly support heather shrublands (Calluna vulgaris and 

Erica spp.), though this land cover is the result of overgrazing by red deer (Cervus 

elaphus) and sheep. Scots pine trees (Pinus sylvestris), the naturally-occurring vegetation, 

is confined to the northern steep hillslopes and to plantation stands near the catchment 

outlet. Riparian gley soils are characterized by herbaceous cover (Molinia caerulea), the 

latter being also found as secondary species in the peat where bog mosses (Sphagnum 

spp.) dominate the land cover. 

 

2.2. The ecohydrological model EcH2O 

We used a new formulation of the spatially-distributed, process-based model EcH2O 

(Maneta and Silverman, 2013). Here, EcH2O couples a two-layer (canopy and 

understory) vertical energy balance scheme (Fig. 2a), a kinematic hydrologic module 

solving vertical and lateral water transfers (Fig. 2b), and a transpiration-based simulator 

of carbon uptake and allocation for plant growth (Lozano-Parra et al., 2014; Maneta and 

Silverman, 2013). The reasons for choosing EcH2O lie in its original development aimed 

at filling a research gap between hydrology-focused catchment models and land surface 

models (LSMs) simulating biophysical and biogeochemical cycles in the critical zone. 

While catchment models provide a fit-for-purpose conceptualization of water pathways, 

in most cases they lack a process-based representation of energy balance and plant-water 

interactions. On the other hand, most state-of-art LSMs have historically been developed 

as surface components of climate models, to be run over large regions or continents. 

Despite the recent advances in representing land processes such as vegetation phenology 

and carbon/nutrient cycles, hydrology remained simplistic in most LSMs; overland flow 

routing, channel routing, and lateral subsurface flow are typically neglected or highly 

simplified (see Fan (2015) for a further discussion). Without these components, it is not 



9	
	

possible to study the ecohydrological effects of upstream water subsidies, and the spatial 

organization of catchments imprinted by the water redistribution network. This is 

especially critical for studies in small catchments at high spatial resolution, like the one 

studied here. Finally, the parsimonious implementation of EcH2O was preferred over 

other recent, potentially more sophisticated, ecohydrological models (e.g., Fatichi et al., 

2012; Maxwell and Condon, 2016). 

EcH2O’s calculation of energy and water fluxes, water storage dynamics and 

vegetation states is made at time steps subordinated to that of the meteorological forcing. 

The atmospheric boundary conditions for each time step are: Precipitation (P), incoming 

shortwave radiation (RSW), downwelling longwave radiation (RLW), T (maximum Ta,max, 

minimum Ta,min, and average Ta,mean during the time step period), relative humidity (hr) 

and wind speed (Wxy). New developments that we implemented in EcH2O are 

documented in the Appendices, to complement other model details described elsewhere 

(Lozano-Parra et al., 2014; Maneta and Silverman, 2013). Here, we provide a brief 

summary of the model philosophy and main features.  

The spatial domain of EcH2O is mapped on a regular grid defined by that of the input 

digital elevation data. Each cell of the domain can have multiple vegetation covers 

(including bare soil). The energy and the water balance is solved for each cover and 

integrated over the cell area according to the fraction of the cell they occupy. The energy 

balance equations are solved at the top of the canopy (see Appendix A1 for details) and 

then at the soil or snowpack surface. Turbulent fluxes (momentum, heat, and vapour) are 

resolved using a first-order, local closure approximation under gradient similarity theory, 

valid for small eddies and neutral stratification conditions.  

Canopy interception is simulated using a linear bucket approach. The partition of P 

and throughfall between the solid (snow) and liquid components during a time step is 

done according to the minimum and maximum air T during the time step, and to a snow-

rain transition T threshold. Snowpack melt and liquid throughfall feed surface ponding 

which infiltrates following a Green and Ampt approximation of the Richard’s equation 

(Mays, 2010). All ponded water at the end of each time step becomes overland flow, i.e., 

run-on to the downstream cell where it can reinfiltrate or, in turn, generate further 

overland flow. This calculation cascade follows the local drainage direction until the 
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remaining surface water reaches the outlet or a channel cell. Flow in a channel is routed 

using a 1D solution for a kinematic wave (see Appendix A2 for details). 

 

Figure 2. Schematics of the processes taken into account in a) the energy balance and b) the 

hydrologic modules of the EcH2O model. 

The soil is divided into three hydraulic layers: the shallow topsoil where soil 

evaporation takes place, the intermediate layer which typically shares the bulk of the 

roots with the topsoil, and the bottom layer where groundwater can be transferred 

laterally to the downstream cell or seep into the stream. Vertical water redistribution is 

based on the theory that only soil moisture in excess of field capacity (gravitational 

water) can move under gravity to deeper soil layers or laterally to the next cell 

downstream. Diffusive effects driven by local pressure gradients are therefore assumed to 
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be negligible, and water below field capacity is retained by the soil and only removed by 

evapotranspiration.  

Simulation of vegetation dynamics are adapted from the 3-PG and TREEDYN3 

models (Bossel, 1996; Landsberg and Waring, 1997; Peng et al., 2002), with 

differentiated carbon allocation and growth schemes for ligneous and herbaceous species 

(Lozano-Parra et al., 2014). A Jarvis-type model is used to simulate the response of 

canopy conductance to environmental drivers (Cox et al., 1998; Jarvis, 1976). 

	

2.3. Model setup and landscape characterization 

All simulations were performed at a 30×30 m2 resolution. A LiDAR-derived 1×1 m2 

DEM (Lessels et al., 2016) was used to delineate the catchment boundary, and further 

processed with the PCRaster tool suite (http://pcraster.geo.uu.nl/) to obtain local slopes 

and local drainage direction; the latter was determined for each cell using the steepest 

descent among the eight adjacent cells (D8 algorithm, Fairfield and Leymarie, 1991). The 

model was run at daily time steps. Simulations covered a 64-month-long time period 

from June 2011 to September 2016, with the period from June 2011 to October 2012 used 

for model spin-up and therefore, discarded from the analysis (see Sect. 2.5). 

P, Ta,mean, Ta,min, Ta,max, hr, and Wxy data were collected at three meteorological 

stations installed in the catchment in different landscape positions: valley bottom, bog, 

and hilltop (Fig. 1a) and used from July 2014. Prior to that period, P was interpolated 

using a square elevation inverse distance-weighted algorithm applied to five Scottish 

Environment Protection Agency (SEPA) rain gauges located around the Bruntland Burn 

catchment within 10 km, similarly to (Birkel et al., 2011), while Ta,mean, hr and Wxy fields 

were taken from the Balmoral station (~5km NW) as available from the Centre for 

Environmental Data Analysis (CEDA) (Met Office, 2017). Ta,min and Ta,max (prior to July 

2014), RSW and RLW (whole study period) were retrieved from the ERA-Interim climate 

reanalysis (Dee et al., 2011). Finally, we took into account altitudinal effects on P and T 

by respectively assuming a 5.5% increase of P every 100 m.a.s.l. as measured along a 

hillslope covering 200 m elevation difference (Ala-aho et al., 2017b), and a decrease of 
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0.6°C/100 m.a.s.l based on the moist adiabatic temperature lapse rate (Goody and Yung, 

1995). 

Soil hydrological properties were mapped by splitting the model domain into four 

hydropedological units aggregated from the soil classes defined by the Hydrology of Soil 

Types (HOST) (Fig. 1b) (Tetzlaff et al., 2007). Energy-related soil characteristics were 

considered as spatially uniform. Five land cover types were considered: Scots pine 

stands, heather moorland, peat moss, grassland and bare rock/scree. Vegetation fraction 

of Scots pine in each cell (Fig. 1c) was estimated by aggregating a 1×1 m2-resolution 

LiDAR canopy cover measurements conducted over the catchment to the 30×30 m2 grid 

used for simulations. For the other vegetation fractions, we additionally used the soil 

classification, extensive land use mapping and aerial imagery (Tetzlaff et al., 2007). 

Heather was assumed to occupy 95% of the treeless surface of podzols and rankers, 

except for the steep northern rocky hillslopes (40% cover in treeless areas), a few 

sparsely vegetated moorlands on the west hillslopes (20% cover in treeless areas) and the 

gley (5% cover) (Fig. 1d). Peat moss was assumed to occupy 90% of an extensive raised 

peat bog in the NW parts of the catchment  (see Fig. 1 in (Sprenger et al., 2017), and 70% 

of the remaining peat soils (Fig. 1e). In the latter areas, Molinia grasses compete (30% 

cover) with peat moss, while grasslands are dominant on gley soils (95% of the tree-and-

shrub-free surface) and in patches of managed lands near the catchment outlet (Fig. 1f). 

The list of model parameters calibrated in this study is given in Table 1. We selected 

16 types of parameters, based on  a preliminary sensitivity analysis following (Morris, 

1991)  performed with the calibration dataset described in section 2.4. As shown in Table 

1, 10 parameters are soil-dependent and 6 are vegetation-specific. Since we considered 4 

soil types and 4 vegetation types, the total number of calibrated variables was 64 

(10×4+6×4). The uncalibrated model parameterization, including initial conditions, was 

prescribed based on literature values and expert knowledge (Supplementary Table S1). 

 

2.4. Calibration and evaluation datasets 

A specific advantage of the Bruntland Burn experimental catchment is the length and 

diversity of data records across ecohydrological processes which is unusual for northern 
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regions. We made use of 10 datasets for the calibration as summarized in Fig. 3. Daily 

discharge at the catchment outlet (Fig. 1a) was derived from 15-minute stage height 

records (Odyssey capacitance probe, Christchurch, New Zealand) using a rating curve 

calibrated for a stable stream section.  

Soil moisture data was collected at 15-minute intervals at four locations: three of 

them along a transect representative of the main hydropedological units –podzol, gley and 

peat– on heather (Tetzlaff et al., 2014), and one plot in a Scots pine forest (Wang et al., 

2017a) (Forest site B, Fig. 1a). We used time domain reflectometry (TDR) soil moisture 

probes (model CS616, Campbell Scientific, Inc. USA) located 0.1, 0.2 and 0.4 m beneath 

the surface –corresponding to the main soil horizons (Geris et al., 2015) – except in the 

peat where only two probes were present, at depths of 0.1 and 0.2m. Additionally, each 

group of probes was replicated at the same depths but ~2 m apart. These TDR sensors 

were calibrated using laboratory analyses of gravimetric soil water content and bulk 

density, from samples collected at each horizon (Geris et al., 2015). Finally, a single 

daily, vertically-averaged volumetric water content value was used for calibration and 

evaluation of the EcH2O model. 

Table 1. Calibrated parameter types and their allowed ranges of variation during calibration, for 

each of their four components: soil units or vegetation types (⧧: logarithmic scale used for 

sampling). 

Parameter Calibration range 
Name Description 

Soil-distributed 

  Peat Gley Podzol Ranker 
Dsoil Total soil depth (m) 0.8 – 8 0.8 – 8 0.65 – 4 0.65 – 4 

DL1 Depth of the 1st hydrological layer (m) 0.02 – 0.25 0.02 – 0.25 0.01 – 0.2 0.01 – 0.2 

DL2 Depth of the 2nd hydrological layer (m) 0.02 – 0.25 0.02 – 0.25 0.01 – 0.2 0.01 – 0.2 

Η Porosity (m3.m-3) 0.7 – 0.98 0.4 – 0.9 0.3 – 0.6 0.3 – 0.6 

Khx 
Saturated horizontal hydraulic 

conductivity (m.s-1) ⧧ 
10-7 – 0.01 10-5 – 10-3 10-4 – 0.1 10-4 – 0.1 

Khratio Ratio of vertical-to-horizontal hydraulic 10-3 – 0.4 10-3 – 0.6 10-3 – 0.6 10-3 – 0.6 
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conductivity (–) ⧧ 

λBC Brooks-Corey exponent parameter (–) 3 – 12 3 – 12 3 – 12 3 – 12 

𝜓#$ Air-entry pressure head (m) 0.05 – 0.8 0.05 – 0.8 0.05 – 0.8 0.05 – 0.8 

θr Residual soil moisture 0.02 – 0.2 0.02 – 0.2 0.02 – 0.2 0.02 – 0.2 

kroot Exponential root profile (m-1) 5 – 40 5 – 40 5 – 40 5 – 40 

Vegetation-distributed 

  Pine Heather Peat moss Grass 

gsmax Maximal stomatal conductance (m.s-1) ⧧ 0.003 – 0.05 0.003 – 0.05 
0.003 – 

0.05 

0.003 – 

0.05 

CWSma

x 

Maximum interception storage per unit 

LAI (m) ⧧ 
10-4 – 0.005 10-4 – 0.005 10-4 – 0.005 10-4 – 0.005 

Topt Optimal photosynthesis temperature (°C) 6 – 24 6 – 24 6 – 24 6 – 24 

𝜓% 
Soil water potential halving stomatal 

conductance (-m) 
0.5 – 8 0.5 – 8 0.5 – 8 0.5 – 8 

	𝑐 
Sensitivity of stomatal conductance to 

soil water potential (–) 
0.5 – 5 0.5 – 5 0.5 – 5 0.5 – 5 

Kbeer Light attenuation coefficient (–) 0.3 – 0.6 0.3 – 0.6 0.3 – 0.6 0.3 – 0.6 

 

 Scots pine transpiration was measured between July and September 2015 at Forest 

site A and between April and September 2016 at Forest site B (Fig. 1a), using 32 sets of 

Granier-type thermal dissipation sap flow sensors (Dynamax Inc., Houston, USA) 

installed on 10 and 14 trees in the South and North Forest, respectively, with 2-to-4 

sensors per tree depending on the stem size (10 to 32 cm in diameter). Average stand-

scale pine transpiration was derived using a sapwood-area-to-tree-diameter relationship 

estimated from incremental wood cores sampling in surrounding trees at the end of the 

study period (see (Wang et al., 2017a) for more details), and then daily averaged. Net 

radiation (Rn) was measured every 15 min at the three meteorological stations (Fig. 1a), 

and then daily averaged. 
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Figure 3. Temporal window –at daily resolution– covered by each of the considered data sets 

(black), used to constrain the model during the calibration period (orange) after leaving at least a 

full year of spinup for simulations (green), and then to evaluate the calibrated model (blue). Note 

the shortness of some data sets (e.g. transpiration) explains the (partial or total) overlap between 

some calibration and evaluation periods. 

Finally, to provide a novel independent verification of the model’s ability to represent 

seasonal storage dynamics, we compared modelled and empirical-based estimates of 

catchment-scale saturation area from June 2011 to September 2014. A conceptual 

rainfall-runoff model that linked antecedent wetness and soil moisture to saturation area 

was used to estimate the extent of saturation in the catchment. This model was previously 

calibrated against maps of measured saturation area extent and isotopic tracers 

measurements (Ali et al., 2014; Birkel et al., 2010). These estimates were compared with 

saturation extent in EcH2O, which was defined as the proportion of cells in the domain 

where the volumetric water content in the top hydraulic layer exceeded 99% of soil 

porosity. 

2.5. Model-data fusion method 
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We sampled the parameter space by conducting 100,000 Monte Carlo simulations 

using uniform parameter distributions with prescribed bounds based on literature values 

and prior experience (Table 1). Each run spanned the entire 64-month simulation period, 

but the first 16 months of each run were used to spin-up the model and stabilize water 

storages and flux simulations (notably soil moisture and stream discharge). After 

discarding the spin-up period, the calibration dataset was split whenever possible into two 

non-overlapping periods, one for calibration and one for evaluation (Fig. 3). However, 

this was not possible for the transpiration dataset (3 and 6 months long) or for the net 

radiation at the hilltop weather station (15 months long), and no split-sample evaluation 

was performed for these variables. For each simulation, the goodness-of-fit (GOF) for the 

calibration and for the evaluation datasets was quantified. We used the mean absolute 

error (MAE) for stream discharge, because other metrics based on squared model-data 

difference, such as root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE; 

Nash and Sutcliffe, 1970), are known to overemphasize the constraint brought by high-

flow measurements and neglects low-flow portions of the dataset (Krause et al., 2005; 

Legates and McCabe, 1999). In addition, high flow measurements typically carry more 

uncertainty and in our system flow conditions vary over several orders of magnitude (see 

Sect. 3). Conversely, all other observables (volumetric water content, pine transpiration 

and net radiation) comparatively display a much more compact and symmetric 

distribution, with median values close to mean values. RMSE has been recommended 

when no information is given on model error distribution – the latter is then 

conservatively assumed as being Gaussian – (Chai and Draxler, 2014), which is why we 

chose this metric in this case. For cross-variable evaluations of model performance after 

calibration, the fit between the respective dispersion of model and data time series was 

quantified using Pearson’s correlation coefficient r, complemented by the dataset-

normalized RMSE extended to all variables, where model-data biases are notably taken 

into account. 

To investigate the extent to which each type of measurement is capable of informing 

the calibration of a wide range of model parameters, we assessed multiple calibration 

scenarios each using a different subset of the 10 datasets for a multi-variable, multi-site 

calibration run as described in (Ala-aho et al., 2017b). In this method the GOF functions 
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are used as informal measures of the likelihood. The GOF for each dataset was calculated 

for 100,000 Monte Carlo runs (MAE for streamflow, RMSE for the other outputs), and 

the dataset-specific empirical cumulative distribution function (CDF) of these was 

determined. Next, these CDFs were used to identify the 30 “best” model runs. The 

method iteratively identifies the quantile threshold common to all corresponding GOF’s 

CDFs, below which the GOF of exactly 30 model runs simultaneously meets the 

calibration target for the objectives. In the case of using only one dataset as a constraint, 

this is equivalent to finding the 30 smallest values for MAE or RMSE. Although it 

remains an aggregative approach to the multi-objective problem (Cohon, 1978), this 

simple method advantageously avoids having to combine the different GOFs into a single 

numerical objective function. Note also that likelihood estimates are not used to guide the 

exploration of the model parameter space, which eliminates potential search biases if the 

characteristics of the model error residuals are incorrectly specified in the likelihood 

function. Overall, all this has five important advantages: 1) no need to choose pooling 

weights to combine the individual objective into a single function, 2) results are less 

sensitive to the choice of factors used to scale observations in dimensional GOF 

functions, 3) no compensatory effects between well-performing and poorly-fitted runs 

can occur, 4) less risk that potentially 'good' sections of the parameters space may be left 

unexplored if the specification of model errors are incorrect, and 5) independence of runs 

make the process trivially parallelizable. The first three of these advantages address some 

of the classical shortcomings in aggregated objective functions (Efstratiadis and 

Koutsoyiannis, 2010). The last two relax some of the disadvantages associated with more 

formal Markov Chain-based search methods. 

Lastly, predictive uncertainty (PU) was taken as the 90%-spread for each simulated 

daily values across the 30 best runs (thus, avoiding making assumptions about the output 

distribution), then averaged over the whole simulation period (excluding the initial spin-

up). Depending on the analysis being carried out (see Sect. 3 and 4), this uncertainty is 

kept dimensional (Eq. 1a) or normalized (Eq. 1b): 

 𝑃𝑈 =
1

𝑁$-#.
𝑀01 𝑡3 − 𝑀1 𝑡3

56789

3:;
, 

(1a) 
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 𝑃𝑈∗ =
1

𝑁$-#.
𝑀01 𝑡3 − 𝑀1 𝑡3
𝑀(𝑡3) @ABC	DEFB

56789

3:;
,	

(1b) 

 

where 𝑀01 𝑡3 , 𝑀1 𝑡3 , and 𝑀(𝑡3)  are respectively the 95th-percentile, the 5th-

percentile and average absolute value for the i-th time step in the evaluation period. 

 

3. Results 

3.1. Simulation of multiple data time series 

The model captures well the main characteristics of the stream hydrograph for the 45 

months period (Oct 2012 – June 2016) shown in Fig. 4. Moderate and high flow 

conditions are well reproduced, with a slight underestimation of low flows during 

summers, especially in 2013 and 2015. The simulation of the hydrograph shows minor 

differences when  the model was calibrated using the entire suite of observations versus 

using only streamflow data, with modified Kling-Gupta Efficiency (KGE) scores (Kling 

et al., 2012) over the evaluation period (Fig. 3) ranging from 0.60 to 0.95  across these 

best runs (not shown). In both calibration cases, the 90%-spread interval shows that the 

dispersal among the 30 best runs remains similarly small with respective PU values of 

0.023 and 0.041 m3.s-1. 
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Figure 4. Time series of (a) measured precipitation, and stream discharge, with (b) normal and 

(c) logarithmic scale the data in black and in colour the average of the 30 best and 90%-spread 

interval for two types of calibration: (green) using only stream discharge and (yellow) when 

simultaneously constraining the model against all datasets. 

 

Figure 5 shows the time series of volumetric soil water content (θ) in the shallow 

subsurface at the four monitored sites (shown in Fig. 1a). At each location, the depth-

averaged measured data (see sect. 2.4) is compared to thickness-weighted averages of 

simulated θ in the two upper layers of EcH2O in three calibration scenarios: using the 

local soil moisture dataset, using all four soil moisture datasets, and constraining against 

all datasets. The model generally provides consistent results in the peat in terms of timing 

and amplitude of θ dynamics (Fig. 5a). However, simulated soil moisture is often too 

prompt in rewetting the peat in autumn, while it displays an unrealistic drying event in 

the summer of 2015. Similar observations can be made about the gley (Fig. 5b) where the 

model tends to underestimate the annual amplitude because simulated soil saturation is 

reached at lower volumetric water contents than observed. In both peat and gley 
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locations, the different calibration scenarios display a very similar average behaviour 

across best runs, but the 90%-spread interval among time series grows significantly when 

adding more constraints, with predictive uncertainties of 0.04, 0.11, and 0.22 m3.m-3 

(peat) and 0.02, 0.08, and 0.25 m3.m-3 (gley) when respectively calibrating using θ 

measurements in peat, all θ data, and all datasets. At the podzol at the upslope end of the 

transect, the model satisfactorily captures soil moisture dynamics at daily-to-seasonal 

time scales (Fig. 5c). High-frequency peaks of θ tend, however, to be underestimated by 

EcH2O, this discrepancy becoming more marked when adding more constraints in the 

calibration. Similar behaviour occurs in the podzolic soil at Forest site B (Fig. 5d): while 

the simulated high-frequency dynamics are consistent with the measurements, the model 

markedly underestimates long-term θ variations. In both podzol locations, the increase in 

predictive uncertainty as constraints are diversified is less marked than in the valley 

bottom (peat and gley).  

Summer pine transpiration is well simulated by EcH2O at both Forest sites A and B 

(Fig. 6). This is particularly true when calibrating the model against local and all-

transpiration datasets. Adding all other constraints leads EcH2O to underestimate some 

peak values at Forest site B (Fig. 6b), while in this configuration the baseline 

transpiration becomes underestimated at Forest site A (Fig. 6a).  
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Figure 5. Time series of profile-averaged soil volumetric water (a-c) in the transect – (a) peat 

plot, b) gley plot and c) podzol plot – and (d) at Forest site B, showing data in black and in colour 

the average of the 30 best runs and 90%-spread interval for three types of calibration: (green) 

using only the plotted quantities, (pink) using all soil moisture datasets and (yellow) using all 

collected datasets. 
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Figure 6. Time series of measured and simulated pine stand transpiration at (a)  Forest site A 

and b) Forest site B, showing data in black and in colour the average of the 30 best runs and 90%-

spread interval for three types of calibration: (green) using only the plotted quantities, (pink) 

using all soil moisture datasets and (yellow) using all collected datasets. 

 

Figure 7 compares measured net radiation to the simulated top-of-canopy value – 

averaged over vegetation and bare soil fractions – at the three weather stations. In all 

shown cases, the temporal dynamics of the seasonal signal are well reproduced by the 

model, as are the day-to-day fluctuations, with a very small dispersal among best runs 

(PU < 5.5 W.m-2). However, EcH2O tends to underestimate net radiation at all three sites, 

which may indicate an overestimation of soil temperatures to compensate for potentially 

low evaporative losses (see Eq. (A1) and discussion in sect. 4.1). This feature is 

especially marked at the heather-dominated hillslope location (Fig. 7c) where the 

simulated summer net radiation is only half of the observed values. 
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Figure 7. Time series of measured and simulated net radiation at the 3 weather stations: a) Valley 

bottom, b) Bog and c) Hilltop, showing data in black and in colour the average of the 30 best runs 

and 90%-spread interval for three types of calibration: (green) using only the plotted quantities, 

(pink) using all soil moisture datasets and (yellow) using all collected datasets.  

 

3.2. Overall performance and uncertainty reduction 

The model performances are summarized using heat maps in the dual space of 

calibration scenarios and simulated variables (Fig. 8), quantifying model-data correlation 

(rm,o, Fig. 8a) and data-average-normalized RMSE across the evaluation period 

(𝑅𝑀𝑆𝐸J,K∗ , Fig. 8b). In these plots, the columns θall, Tpall, Rnall and All show the metrics 

averaged over one type of output or all outputs. The most notable feature in these plots is 

that stream discharge is well reproduced regardless of the datasets used for calibration, 
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with rm,o > 0.89 ( p < 0.001) in all cases and 𝑅𝑀𝑆𝐸J,K∗  values between 0.53 and 0.68. 

Secondly, the temporal dynamics of volumetric water content is generally best captured 

in the podzolic soils (podzol at transect and Forest site B, Fig. 8a), while the lowest  

𝑅𝑀𝑆𝐸J,K∗  for soil moisture (θ) are found in the peat (Fig. 8b). Soil moisture is reasonably 

simulated in the gley only when the corresponding dataset is included in the calibration, 

although model-data correlation there remains low in most cases. Similarly, it is found 

that accurate simulation of transpiration is achieved only when the observations of 

transpiration are included in the calibration (rows TpForestA, TpForestB, Tpall and All). Fourth, 

the scores for net radiation are somewhat insensitive to the calibration scenarios, with 

good temporal dynamics but high 𝑅𝑀𝑆𝐸J,K∗  due to the recurrent underestimation by the 

model mentioned in 3.1.  
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Figure 8. Heat map of model-data fit over the evaluation period, as measured by (a) the 

Pearson’s correlation coefficient and (b) normalized root mean square error averaged over the 30 

best runs. The horizontal axis gives the variable or group or variables evaluated, depending on the 

dataset or combination of datasets used as a constraint over the calibration period (vertical axis).  
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For most individual observables (column 1 to 5, 7 to 8, and 10 to 12) the all-datasets 

calibration scenario (last row) yields the highest scores, surpassed only by the scores of 

each simulated state calibrated against its direct observation (diagonals of Fig. 8). The 

improved model-data fit with more constraints becomes clearer when the average scores 

over observable types are considered (column 1, 6, 9, and 13). Finally, using all datasets 

as a simultaneous constraint yields the lowest overall model-data misfit across 

observables (bottom right square in Fig. 8b, as compared to the rest of the last column).  

 

 

Figure 9. Relative predictive uncertainty PU*, computed for each observable as the daily 90%-

spread interval across the 30 best runs divided by the inter-run mean, then averaged over the 

evaluation period (Eq. 1b). The horizontal axis gives the variable or group or variables evaluated, 

depending on the dataset or combination of datasets used as a constraint over the calibration 

period (vertical axis). 
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The impact of different calibration scenarios on individual and overall predictive 

uncertainty of simulations, i.e., the average 90%-spread interval among best runs (PU*, 

normalized as defined in Eq. 1b), is shown in Fig. 9 –following the same layout of Fig. 8. 

When the model is calibrated against individual datasets, PU* values for corresponding 

observables remain below 0.5 (diagonals in Fig. 9) and generally below 1 when 

simulating other variables (off-diagonal squares), even if the latter is not included in the 

calibration (e.g., uncertainty of θpeat when calibrating against streamflow only – 1st row 

and 2nd column). Notable exceptions are streamflow where PU* remains above 1 

whenever discharge is not included in the calibration, and simulated pine transpiration, 

for which this feature is even more marked. A smaller overall predictive uncertainty is 

found for the all-dataset calibration scenario (PU*=0.65), as it is the only case where 

large individual reductions in simulation dispersal are simultaneously achieved for 

streamflow, soil moisture, net radiation, and to a smaller extent, pine transpiration (Fig. 9, 

last row).  

 

3.3. Parameter values 

Figure 10 shows the selected parameter values across the best runs within the 

prescribed sampling interval, displaying only 5 calibration scenarios; grouping all 

datasets of a same type and the “all-datasets constraint” case. Calibrated soil depths show 

consistent results, with deep (4-6 m) soils in the valley bottom and shallower podzol and 

rankers (~2m), somewhat reflected in the depth of the two upper hydraulic layers (top 

row). Porosity takes markedly different values across soil types, from 0.85 in the peat, 

0.5-0.7 in the gley down to 0.35-0.5 on the hillslope. This spatial variability is somewhat 

mirrored by an increasing saturated horizontal hydraulic conductivity 𝐾MN over several 

orders of magnitude, from 10-5 m.s-1 in the peat to nearly 0.01 m.s-1 in the rankers. Other 

hydrological parameters such as air entry pressure (𝜓#$), residual soil moisture (𝜃P) and 

anisotropy (𝐾P#Q3K) mostly displays similar values across soil types and calibration 

scenarios, centred in the sampling intervals. The same applies for vegetation parameters 

such as optimal photosynthesis temperature (𝑇KSQ), soil water potential control on 

stomatal closure 𝜓%, and maximum stomatal conductance (𝑔𝑠J#N). The light extinction 
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coefficient (𝐾V$$P) of heather and peat moss displays distinctively higher, well-

constrained values when pine transpiration is used as a constraint. For pine trees, the 

sensitivity of stomatal conductance to soil water content (𝑐) is much lower in the all-

datasets calibration case, while canopy interception capacity (𝐶𝑊𝑆J#N) becomes much 

higher than in other cases. 
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Figure 10. Calibrated value of the constrained parameters, showing the individual and average 

value, and the interquartile range across the 30 best runs for each parameter component, as 

indicated by the colour code, and five different calibration case (symbols): against each data type 

(including all corresponding datasets) and all datasets together. Horizontal dashed lines indicate 

the allowed range of variation, and the asterisk that a logarithmic scale was used for sampling. 

3.4. Independent evaluation at catchment scale 

The empirically-based estimate of catchment-wide saturated area fraction (Areasat) is 

compared to the simulations provided by the 30 best parameters sets in five calibration 

scenarios (using each data type, plus the full suite of measurements) in Fig. 11. In all 

cases, the model broadly reproduces the observed temporal dynamics reasonably well, 

but apart from the peaks, the simulated saturation extent is generally overestimated. 

Slight differences appear between scenarios, with higher Areasat values associated with 

the highest predictive uncertainty (24%) when only soil moisture is used as a constraint 

(θall), while the stream discharge constraints brings the narrowest range of simulated 

Areasat between best runs (PU = 17%).  

 

 

Figure 11. Time series of saturated area at the catchment scale, comparing an independent data-

driven estimate (Ali et al., 2014) (black) to simulation outputs using parameters sets from 

different calibration cases (average and 90%-spread interval). 

 



30	
	

4. Discussion 

4.1. Insights into ecohydrological processes 

This study shows the ability of a process-based model to consistently simulate not 

only water storages and fluxes in the critical zone at local-to-catchment scales, but also 

energy balance and ecohydrological couplings in a comprehensive model evaluation 

exercise. These are very encouraging results for the prospect of explicitly incorporating 

vegetation dynamics into a mechanistic description of catchment water partitioning, and 

towards improved prediction of the functional changes that catchments in northern 

latitude are likely to experience in the coming decades.  

The most robustly simulated observable was stream discharge, with 90% of all 

optimisation-selected runs (30 for each of the 14 calibrations scenarios, 12 of the latter 

excluding discharge measurements) showing modified KGE scores between 0.67 and 

0.87 across the simulation period (11/2012 – 06/2016, excluding spin-up, not shown). In 

particular, the model was able to capture well extreme events such as the 200-year return 

period flood during the winter 2015-2016. Note that the kinematic approximation for 

groundwater and stream routing in EcH2O neglects diffusive water redistribution through 

pressure gradients. Therefore, this model-data consistency points at a reasonable 

adequacy of using a gravity-driven conceptualization of the Bruntland Burn catchment at 

the spatio-temporal scales considered. This hypothesis is consistent with strong 

topographic gradients in the catchment and the wet, low energy hydroclimate, which both 

sustain a quasi-permanently saturated valley bottom (Tetzlaff et al., 2014) and generally 

high water tables even on the steeper hillslopes (Blumstock et al., 2015). These settings 

result in a flashy response of the stream network to run-off events (Soulsby et al., 2015), 

generally driven by saturation overland flow from the peat and gleys, but in larger storm 

events the podzolic soils also connect to the saturated areas (Tetzlaff et al., 2014). 

The general hydrological behaviour, which is broadly representative of other 

northern/boreal catchments (Tetzlaff et al., 2015b), contrasts with semiarid regions, 

which are characterized by a more transient hydraulic connection and disconnection 

within hillslopes and between hillslopes and the channel during dry periods. Although 

bedrock topography remains critical to understand shallow subsurface flows in water-
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limited environments (e.g. Jobbágy et al., 2011; Maneta et al., 2008), diffusive effects by 

local pressure gradients are also highly relevant, reducing the spatial extent for which 

local measurements are representative, and limiting the propagation of information from 

the location where fluxes are measured to the location where model parameters need to  

be identified (Maneta and Wallender, 2013).  

More detailed insights into storage dynamics were provided by including volumetric 

water content for the upper half-meter of soil profile into the calibration, at the four 

monitored locations across the main hydropedological units. A good model-data fit was 

achieved in most cases (Fig. 5); EcH2O overall managed to capture the very different 

dynamics between locations across almost 13 data-years, including the variability within 

the same podzolic soil unit (i.e., with a common set of parameters) at two contrasting 

sites (Figs. 5c and 5d). Further, the calibration yields a depth of about 2 meters of a 

“hydrologically-active” profile on the hillslope, which is much deeper than typical soil 

depth estimates from geophysical methods (Soulsby et al., 2016) but consistent with the 

hypothesis that groundwater recharge on the hillslope and downhill movement actively 

contributes to saturation overland flow through exfiltration in the valley bottom (Ala-aho 

et al., 2017a; Birkel et al., 2011). We note, nonetheless, that the riparian areas are the 

most challenging locations when attempting to capture soil moisture dynamics. In part, 

this reflects the very small variability measured, though the modelled θ remained too 

“reactive” as compared to the damped variability in the measurements (Fig. 5a and 5b). 

In addition, the gley porosity remained underestimated, leading to unrealistic saturated 

conditions outside the summer. It might also explain why the simulated gley soil seemed 

slightly too deep while it should be shallower than in the peat areas, as the model likely 

compensated in order to close the water balance in the valley bottom.  

The other notable model-observation mismatch was the underestimation of the 

seasonal amplitude of net radiation at the hilltop site, a location mostly covered by 

heather shrubs (Fig. 1). Using independent estimates of transpiration and total 

evapotranspiration (ET) on a heather plot near the podzol transect in the same catchment 

(Wang et al., 2017b), a preliminary analysis hinted at an underestimation of transpiration 

and overestimation of soil evaporation in the EcH2O model (not shown). By contrast, net 

radiation was well simulated in the riparian areas, suggesting an accurate estimation of 
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energy conversion from radiative to turbulent fluxes such as soil evaporation and sensible 

heat. Further modelling-measurement comparison studies focusing on evaporative 

processes will help better constraining the energy balance on the catchment hillslopes 

(Gong et al., 2016; Larsen et al., 2016).  

It is uncommon in catchment-scale calibration studies to use direct measurements of 

plot-scale tree transpiration (Du et al., 2014; Wei et al., 2016). This is not only because 

this type of measurements is rarely available, but also because most current hydrologic 

models cannot single out the transpiration fraction of evapotranspiration (Méndez-

Barroso et al., 2014; Paniconi and Putti, 2015). The inclusion of an ecohydrological 

observable such as plot-scale transpiration of Scots pine, introduced direct knowledge of 

the exchanges between the physical and ecological components of the catchment, and 

reduced the number of possible internal model configurations that were consistent with 

observed soil moisture and streamflow. The calibrated model reproduced the major 

features of the transpiration time series surprisingly well, which increases our confidence 

that the internal water and energy exchanges at Bruntland Burn were adequately captured. 

At Forest site B, the simulated transpiration remained very similar across calibration 

scenarios over the summer 2016 (Fig. 6b), while soil moisture was more sensitive to the 

data used to calibrate the model (Fig 5d). This is consistent with results reported using a 

data-oriented approach (Wang et al., 2017a), which showed weak controls of soil 

moisture on pine transpiration outside infrequent dry periods in this humid catchment.  

 

4.2. Information content brought by the different observations  

The multiplicity of datasets of this study, used in different combinations for model 

calibration and evaluation, brings novel insights in how informative and representative 

these measured quantities are for improving our modelling approach. This may help with 

the design of more efficient data collection campaigns. In the following we first discuss 

the spatio-temporal footprint, related to how time- and/or location-specific the measured 

signal is. The issue subsequently discussed is the behavioural footprint, i.e. how specific 

to some processes the retrieved information content is. 
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Streamflow was simulated reasonably well in all reported cases (Fig. 8), but with a 

substantially higher predictive uncertainty whenever discharge data was not included in 

the calibration (Fig. 9). Streamflow is well-known to integrate information of many 

catchment-scale processes (Beven and Binley, 1992), but this knowledge is too 

ambiguous to determine the exact catchment configuration that produces the observed 

signal. This is because streamflows integrate downstream following a convergent 

network towards a unique outlet, but the divergent nature of an upstream network makes 

it impossible to uniquely backtrack the locations where the flow was generated (Kirchner 

et al., 2001). This has two consequences: streamflow can be well simulated with 

numerous alternative model parameterizations (physically-consistent or not) (Kirchner, 

2006), and the spatio-temporal and behavioural footprints are large and therefore less 

informative of individual processes happening at specific locations in the catchment 

(Guse et al., 2016). This was illustrated in the predictive uncertainties of the simulated 

catchment states: using only discharge as the calibration constraint yielded the most 

variable results for simulated soil moisture in the gley and net radiation (Fig. 9).  

Some variables were only well-simulated when the model was calibrated against 

observations of that type, which indicates a more restricted behavioural and spatio-

temporal footprint of the information. For instance, soil moisture in the gley displayed a 

significantly higher (up to ten-fold) model-observation mismatch whenever θgley was not 

part of the calibration constraints, even if other θ dataset were included in the calibration 

(Fig. 8b, 3rd column), therefore exhibiting a very localized spatial footprint. Moisture in 

podzols, on the other hand, displayed slightly more homogeneous performances across 

calibration scenarios (Fig. 8b, 4th and 5th columns), indicating that having two different 

podzolic soil moisture locations in this study additionally increased the spatial footprint 

of the associated calibration constraints. Transpiration in Scots pine stands (Tp) was also 

characterized by poor model-data fits unless the calibration scenarios involved a 

transpiration dataset (Fig. 8). Performances remained consistent when using data from 

Forest site B to calibrate Tp at Forest site A and vice-versa, even when the two sites cover 

different growing seasons (2015 and 2016). It indicates that in this catchment the Tp 

datasets has a narrow behavioural footprint but a more extensive spatial and temporal 

footprint. Conversely, this footprint of Tp datasets made them ill-suited as sole 
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constraints to calibrate the model across processes, as seen for example from soil 

moisture goodness-of-fit (Fig. 8) and predictive uncertainty (Fig. 9).  

The above considerations highlight the benefits of combining streamflow 

observations with other types of information that have a more specific footprint, such as 

measurements of volumetric water content and transpiration (Du et al., 2014). Compared 

to using streamflow alone, adding the two latter types of variables improved model 

calibration by increasing model-data fit scores (Fig. 8) and by reducing the dispersion 

among best runs (Fig. 9). These enhanced performances were, moreover, generalizable to 

using a diversified combination of observations in the calibration, as seen from the 

improved overall model-data fit and low predictive uncertainty across model outputs. It 

supports a mitigation of the equifinality problem as the increased number of scale- and/or 

process-specific “diagnostics” (Clark et al., 2011) helped discarding unfeasible model 

configurations that may otherwise have given high performance scores.  

However, we have also observed that the predictive uncertainty of some outputs (the 

case for peat and gley soil moisture) can increase substantially when the model was 

calibrated with increasing amounts of information. This may be an indication that with 

the catchment functioning hypothesis embedded in the model, the datasets have 

overlapping footprints that inform the calibration process with conflicting or inconsistent 

information. Note that such conflicts only occurred for individual outputs, as the overall 

uncertainty across all outputs was indeed lowest when using the full of datasets in the 

calibration (Fig. 9, bottom-right square).  

The Monte Carlo approach that we used in this study uses the GOF as an informal 

measure of the likelihood of each of these parameters. After the best parameters are 

selected, the likelihood measure is not further used and the spread across best runs shown 

in Fig. 10 cannot be interpreted as a probability distribution. This avoids having to make 

assumptions about the structure of model residual errors, which in more formal statistical 

frameworks determine how the parameter space is sampled. If these assumptions are 

incorrect, some 'good' sections of the parameter space may end up being excluded from 

the search. Note that parameters with good performance have been found in the entire 

range of “permitted” parameter values. Also as a result, in our methodology all the 

selected parameter values contribute the same to the predictive spread, and their average 



35	
	

does not necessarily represent better the hydrologic behaviour of a given catchment unit. 

In fact, from Fig. 10 no single combination of parameters can be picked to represent 

better the average behaviour of the predictive ensemble. For this, interpreting parameter 

means in terms of the hydrologic behaviour of the catchment behaviour can easily be 

misleading. However, the fact that the mean value of the parameters (Fig. 10) is often not 

at the centre of the feasible search space (or of the interquartile range) indicates that some 

values in the allowed range are more preferred than others, and that the information 

contained in the alternative calibration datasets informs these preferences differently. 

Understanding the mechanisms by which the parameters are nudged in a specific 

direction when calibrated with a specific dataset is desirable, but also difficult and 

complicates any meaningful interpretation of the differences between mean parameter 

values.    

 

5. Conclusions 

In the growing field of critical zone modelling, a process-based description of energy-

plant-water relationships is a promising basis for a mechanistic understanding of 

vegetation influence on water pathways and stores, and projecting their responses to 

environmental change. More generally, these types of interdisciplinary models are 

increasingly needed in critical zone studies, where water is a fundamental medium for 

energy and material cycles in a wide range of processes at multiple time scales (White et 

al., 2015) likely to be altered over time (Goddéris and Brantley, 2013).	 Although the 

problem of equifinality is exacerbated with the increasing complexity of models, using 

multiple measurements informative of the range of processes implemented in the models 

can assist in constraining models to a limited subset of feasible configurations. When this 

is achieved, newer more integrated models offer an opportunity for deeper process 

insight. We demonstrated this by applying the fully-distributed model EcH2O to a small 

northern headwater catchment, using different combinations of 10 datasets relative to 4 

types of ecohydrological processes (discharge, soil moisture, pine stand transpiration and 

above-canopy net radiation). While EcH2O was able to perform well for single objectives 

when calibrated against individual datasets, constraining its overall behaviour with 

multiple datasets in a rigorous multi-objective calibration experiment yielded an 
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improved cross-output average model performance and smaller overall predictive 

uncertainty. The resulting model configuration also reproduced the main features of the 

temporal dynamics of an independent estimate of catchment-scale saturated area fraction. 

Successful comparison against this independent dataset indicated that the internal 

transient storage dynamics were generally captured correctly by the model. We also 

discussed the informational footprint resulting from each dataset across scales (spatio-

temporal footprint) and processes (behavioural footprint). This modelling experiment 

increases our confidence that a data-intensive calibration approach constrains the set 

behavioural model configurations in an effective way, i.e., that our approach allows for 

broadly getting “the right answers for the right reasons” (Kirchner, 2006). Among other 

approaches, ongoing model extensions to include tracking of stable water isotopes (2H 

and 18O) fluxes and water age across ecohydrological compartments will provide means 

to test this further. The experiments to date provide a foundation for using EcH2O to 

project the impact of climate variability on catchment functioning in sensitive high-

latitude systems. Acknowledging that we have applied EcH2O in a location where 

snowfall is quite modest, a critical next step will be to conduct simulations in snowier 

catchments. More generally, we intend to assess the reciprocal links between ecosystem 

functioning, land cover change and the mediating role of vegetation in buffering 

atmospheric impacts on water fluxes and storage. 
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Code and data availability 

The source code (c++ programming language) of the EcH2O model is available at 

https://bitbucket.org/maneta/ech2o, while the associated documentation, compiled 

binaries and case study files can be found at 

http://hs.umt.edu/RegionalHydrologyLab/software/default.php. The Python routine and 

dataset used for calibration are available upon request to the authors. 

 

Appendix: Recent developments in EcH2O model 

In the following equations, the parameters calibrated in this study (Table 1) are 

highlighted in bold font. 

A1. Canopy processes 

Canopy-level processes link the radiation budget (solar radiation, incoming 

longwave, and outgoing longwave radiation) to conductive energy transfers (sensible 

heat), evaporative losses from the canopy (evaporation of intercepted water and plant 

transpiration), soil water availability, and soil water potential energy.  The core of the 

canopy processes is a set of 3 equations (energy balance, soil water balance, and soil 

water potential energy) and 3 unknowns (canopy temperature Tc, plant-available soil 

moisture St+1, and soil matric potential, ψsoil), solved for each vegetation type present in 

the grid cell: 
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The topmost equation in (A.1) is the water balance in the root zone after infiltration has 

been accounted for in the initial soil moisture, where St is the weighted average degree of 

soil saturation in the soil over Zr95 at the beginning of the time step, St+1, is the weighted 

average degree of soil saturation over Zr95 at the end of the time step. In both cases, the 

weights for the saturation averages are given by the fraction of roots in each layer of the 

soil. Additionally, 𝜂 is soil porosity, 𝜃P is residual moisture content, Zr95 is the total soil 

depth of the layers containing 95% of roots, ∆𝑡 is the size of the time step, 𝜌\ is density 

of liquid water, 𝜆- is latent heat of vaporization, and 𝐿𝐸𝑇(𝑇_, 𝜓`K3.) is a function 

calculating latent heat consumed for transpiration, which is dependent on the temperature 

of the canopy and the soil water potential. The second equation in (A.1) is the Brooks and 

Corey prognostic equation, where 𝜓#$ is the soil air entry pressure, 𝜓`K3. is soil matric 

potential, and λBC is the pore size index (Brooks and Corey exponent parameter). The 

lower equation in (A.1) is the energy balance in the canopy as described in Maneta and 

Silverman (2013), but reproduced here for completeness. This equation assumes that the 

available radiative energy (NR) will be consumed as sensible heat (H), as latent heat from 

transpiration (LET), or as latent heat from evaporation of intercepted water (LE): 

 , (A.2) 
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heat capacity of air, 𝑒# is air vapour pressure at 𝑇#, 𝑒_∗ is the canopy saturation vapour 

pressure at 𝑇_, hr is air relative humidity, 𝛾 is the  psychrometric constant, 𝑟# is 

aerodynamic resistance, 𝑟  is stomatal resistance, CWS is the current amount of canopy 

water storage, and CWSmax is the maximum canopy storage allowed by unit LAI. See 

Maneta and Silverman (2013) for additional details on the calculation of these quantities. 

The current calculation of stomatal resistance differs from the original formulation in that 

the efficiency factor that provided the stomatal dependency on soil moisture has been 

changed to a dependency on soil water potential. The new stomatal resistance formulation 

and the soil water potential efficiency factor are: 

 , (A.6) 

 

in which 𝜓% is the soil water potential at which 0.5 efficiency for soil water potential is 

achieved, and 𝑐 is a function shape parameter. Other efficiency factors are calculated as 

in Maneta and Silverman (2013).  

  

A2. Soil hydrology 

The soil hydrology component has been improved over the original formulation in 

Maneta and Silverman (2013) by including a vertical soil water redistribution model with 

three hydraulic layers. The topmost layer receives infiltration from the surface, its soil 

moisture content controls infiltration rates in the Green and Ampt infiltration equation, 

and is also the only layer from which evaporation occurs. The middle layer typically 

contains most of the root system and therefore its moisture controls the hydrologic 

limitation to transpiration. The deepest layer transfers gravitational water laterally using 

the original kinematic wave formulation. The condition at the bottom of the third layer 
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can now be impervious (no flow) or can leak at a rate given by a bedrock leakance 

parameter.  

As in the original formulation, only water in excess of field capacity can move by gravity. 

When soil water exceeds field capacity in the topmost or second layer, the water excess 

(gravitational water) moves downward to the next layer at a rate determined by the 

linearized unsaturated hydraulic conductivity function 𝐾 𝜃 = 𝑲𝒉𝒙𝑲𝒉𝒓𝒂𝒕𝒊𝒐𝐿d
uv𝜽𝒓
uxyv𝜽𝒓

, 

where 𝐾MN is the saturated horizontal hydraulic conductivity, 𝐾MP#Q3K is the anisotropy 

ratio, while Lb is a bedrock leakance parameter set to 1 for layers 1 and 2, and that can 

vary between 0 (no flow) and 1 (free gravitational drainage) for soil hydraulic layer 3. 

Water leaking through the bedrock leaves the domain.  

Horizontal water transfers to the downstream cell only occur in the third soil hydraulic 

layer following the linearized kinematic wave formulation described in Maneta and 

Silverman (2013). When the storage capacity of the bottom layer is exceeded, saturation 

excess water is transferred to the middle layer, increasing the middle layer moisture 

content. If the middle layer saturates, saturation excess is transferred to the topmost layer, 

increasing the topmost layer moisture content. If the topmost layer saturates, saturation 

excess produces return flow to the surface (seepage face). Return flow is added to the 

pool of ponded water that generates overland flow the following time step.  

A3. Channel routing  

Channel flow is simulated using a 1D solution of the kinematic wave equation. The 

equation is solved for stream discharge, using a power function (𝐴 = 𝛼𝑄{) to relate 

cross-section flow area to stream discharge: 

 
,
 (A.7) 

where 𝑄 [L3T-1] is stream discharge, 𝑞d} [L2T-1] are groundwater contributions to 

streamflow per unit length of channel, 𝑞K-} [L2T-1] are overland flow contributions to 

streamflow per unit length of channel , and  𝑥 [L] and 𝑡 [T] are distance in the flow 

direction and time, respectively.  
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Using Manning’s equation to approximate flow velocity, and assuming rectangular 

channel cross-sections, parameters 𝛼 and 𝛽 can be determined to be and 

𝛽 = 3/5, in which n [TL-1/3] is Manning’s roughness coefficient, 𝑃 [L] is the channel 

wetted perimeter, approximated by channel width, and 𝑆 is the streambed slope. Equation 

(A.7) is solved using a first-order implicit finite-difference scheme and is unconditionally 

stable.    

 

A4. Exponential root profile 

The new model formulation requires the fraction of roots in each soil layer, 𝑓D��C
�;,�,�, to be 

specified. In this paper, we have assumed an exponential root profile modulated by a 

single parameter kroot: 

 

 ,	
(A.8) 

where 𝐷`K3. is the total depth of the soil hydrologically active layer, and 𝐷h;,� are the 

depth of layers 1 or 2.  
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