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Abstract. This paper investigates the application of a novel method for classification called 

Feature Weighted Self Organizing Map (FWSOM) that analyses the topology information of a 

converged standard Self Organizing Map (SOM) to automatically guide the selection of 

important inputs during training for improved classification of data with redundant inputs, 

examined against two traditional approaches namely neural networks and Support Vector 

Machines (SVM) for the classification of EEG data as presented in previous work.  In particular, 

the novel method looks to identify the features that are important for classification automatically, 

and in this way the important features can be used to improve the diagnostic ability of any of the 

above methods.  The paper presents the results and shows how the automated identification of 

the important features successfully identified the important features in the dataset and how this 

results in an improvement of the classification results for all methods apart from linear 

discriminatory methods which cannot separate the underlying nonlinear relationship in the data. 

The FWSOM in addition to achieving higher classification accuracy has given insights into what 

features are important in the classification of each class (left and right-hand movements), and 

these are corroborated by already published work in this area.   

1. Introduction 

Previous work on the classification of EEG data as described in [1] show that machine learning 

methods can be used to achieve classification accuracies of up to 97.1%.  The work highlighted the 

difficulty of achieving better classification, and also highlighted that linear classification models 

performed poorly due to the nonlinear nature of the underlying data.  The results from this work [1] 

show that the performance of the various classification algorithms can vary considerably depending on 

which features are used for the classification.  Whilst for small numbers of features (such as in this 

work which had 4 features) this is possible and it is not an issue to exhaustively compare each and 

every combination of features as inputs, for larger datasets this clearly becomes impractical and is 

therefore otherwise accomplished either by hand or not at all. 

In addition, work by [2-4] shows that irrelevant features can result in low classification results.  A 

novel method presented in this paper looks to automatically identify the irrelevant features so that 

classification performance can be improved.  The same EEG data from [1] is used which is publically 

available data from Physionet [5]. Using this data we are able to compare with this earlier study and 

highlight that the proposed method is able to improve the classification performance by correctly 

identifying the relevant inputs and discarding automatically the irrelevant inputs. 

2. Methodology  

http://creativecommons.org/licenses/by/3.0
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The EEG data will be analysed and classified using a self-organizing map, by SVM linear and cubic 

methods, and the FWSOM method which are described in the following sections. 

2.1. Self-Organizing Map (SOM) 

The Self-Organising Map (SOM) is an unsupervised neural network clustering algorithm, referred as 

Kohonen’s SOM [6].  A SOM aims to map data patterns onto n-dimensional grids of neurons; this is 

inspired by the tendency of the biological neurons that have similar functions stored in the same region 

of the brain. The SOM’s mapping preserves a topological relation by maintaining neighbourhood 

relations such that patterns that are close in the input space are mapped to units that are close in the 

output space, and vice-versa. 

2.2. Support Vector Machines (SVMs)  

SVM is a well-known regression and classification learning algorithm [7, 8]. The basic aim of SVM is 

finding optimal hyperplanes (which could be linear or nonlinear) that segregate multiple groups. 

2.3. Feature Weighted Self Organizing Map (FWSOM) 

The FWSOM approach is a novel approach that looks to automatically identify what features are 

important in a given dataset so that the classification accuracy can be improved. 

In the proposed approach, information from what a standard SOM has learnt during training is used 

to identify what the SOM has seen as important for making decisions and to guide subsequent steps of 

the training, and to generate individual weightings at a node level which will reduce the importance of 

inputs that are considered to be irrelevant for that node. It is expected that samples from a given class 

may spread over multiple nodes (i.e. will not be mapped to a single node) due to any irrelevant 

features in the dataset.  When there are irrelevant inputs in the dataset the SOM will see samples from 

the same class as different due to these irrelevant inputs.   

The analysis of input relevance begins after the SOM is trained.  The distances between all nodes in 

relation to each individual class is calculated in order to identify what is important and irrelevant in the 

mapping of each class. 

For each class, we defined a winner node           as the node with highest number of samples 

from a given class   , neighbouring nodes          as all other nodes with samples from the class 

mapped, and the distant nodes         as other nodes with no samples from the class mapped. 

A similarity matrix is calculated as the distance between the mean of the input samples     
 from 

the class in neighbouring nodes          to corresponding           weight values as (Eqn 1) below; 

                                                        
        

             
                                                              

Where    is the input dimension of a given sample   belonging to class    and   is the weight 

value of the winner node          . 

The distance values in the similarity matrix for important inputs for defining the class is expected 

to be low since it is assumed that these inputs will share similar values for the same class.  The 

distance for the irrelevant inputs is expected to be high since it is assumed that these inputs will have 

different values in the SOM for the nodes to which the class samples are mapped, and are the reason 

why the class samples are mapped to different nodes rather than a single node.  This process clearly 

makes the assumption that the class has a single underlying set of features that define the class, and so 

these assumptions will not be correct when a class is made up of a number of different feature 

relationships. 

In addition, a dissimilarity matrix (Eqn 2) describing the features that can be identified as being 

different from the current class and all other classes is computed as the distance between the mean of 

the class samples in the winner node            
  to the weight values of         as; 
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This calculation uses the assumption that the SOM did not map the samples from a given class to 

these other distant nodes due to the inputs that the SOM sees as different, and therefore the distance 

values in the dissimilarity matrix for these inputs will be high. 

For each class, important inputs are identified as inputs with > 0 percentage change from variance 

of similarity matrix       to the variance of dissimilarity matrix       as in Eqn 3 below; 

                                                            
             

     
                                                                

3. Experimental Design  

3.1.  EEG Dataset  

EEG signals record the differences of the voltage from two locations on the scalp over time. The EEG 

signals have an amplitude in the range of 1-100  v with frequency in the range of 0.5 to 10 Hz [9]. 

The data recorded and contributed by Physionet using the BCI2000 instrumentation system described 

in [5] is used. 

3.2. Feature Extraction  

Frequency bands   and   are chosen for the frequency domain feature extraction because of their 

ability to distinguish movements in the active state. The delta band is also chosen since research [10] 

supports that existence of Delta rhythm in the motor cortex within the pre-movement stages 

(Movement-Related Cortical Potential (MRCP). The EEG data is transformed by extracting Alpha, 

Beta and Delta band features for 8 electrodes for 6 subjects. For each of the left hand and right-hand 

tasks separately. The selected electrodes are (C3,C4, Cz, Fc3, Fcz, Fc4, C1, C2). The choice of fewer 

electrodes is also quite practical and allows the proposed method to be easily incorporated within a 

portable Wireless EEG system for use in prosthetics applications for example.  These electrodes were 

selected in corroboration with the literature and they include the C3, C4 and Cz electrodes (located on 

the top of the head) for which distinguishable difference in the Power Spectral Density (PSD) can be 

observed [11]. Three frequency domain features are extracted from the raw EEG data for each selected 

electrode by applying Fourier Transform [12]; converting from the time domain to frequency domain 

characteristics. 

3.3. Training and Validation Parameters  

The Datasets were separated into training and test sets with the 5-fold cross validation method, 

accuracy was measured using the confusion matrix [13]. 

4. Classification Accuracy Results  

The table as shown in Table 1 gives the results of classification using the various methods using all 

inputs, and then also the results using only those inputs identified by the FWSOM process 

The FWSOM method returns the identification of irrelevant inputs, and this allows the 

classification methods to be tested once more with a reduced feature set.  These results are also shown 

in Table 1 for each method, with the relevant features identified by the FWSOM when trained with a 

10x10 lattice being used.  From an initial input feature set of 24 the FWSOM reduces this to 12 

features for alpha band, 73 to 33 for beta band and 20 to 6 for delta band. 

The FWSOM has identified the instantaneous power spectrum of the frequency bands at various 

EEG sampling points as important features for separating the two groups. The location of where the 

power spectrum sample point features are important is different for the different frequency bands and 

across the 8 subjects investigated in this paper. The FWSOM has also identified that relative power 

and peak power features are consistently less important in the classification compared to the 

instantaneous power spectrum feature. This result is corroborated with those obtained in [11, 14] 

where it was found that the peak power feature is not a disguisable feature for classification when 

multiple frequency bands are used and that high and low values of relative power across frequency 

bands might not be able to be clear distinguisher for EEG data.  These results, therefore, show that the 

FWSOM method has correctly identified the important inputs for this particular dataset. 
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After application of the FWSOM method, the results of the SVM cubic method have improved, 

showing that the SVM method is indeed affected by the poor choice of features for training and can 

struggle to ignore the effect of irrelevant inputs.  Interestingly, the SVM linear method shows virtually 

no change with one result even giving a worse result. 

It can be seen that the standard SOM using all inputs gives a poor performance for the small 2x2 

lattice size although this does improve when a larger SOM is used of 10x10 lattice.  The results also 

improve when the inputs identified by the FWSOM only are used for training, but 100% diagnosis can 

still not be achieved. 

The results presented in the FWSOM column show that 100% classification performance can be 

achieved through the use of the feature weighting element that allows the samples to be differentiated 

from each other based on their class membership more easily as seen in figures 1 to 6. 

Table 1. Classification Accuracy Results 

EEG 

Band 

Method 

 

SVM (Linear) SVM (Cubic) SOM  

(2x2 Lattice) 

SOM  

(10x10 Lattice) 

FWSOM 

(2x2 

Lattice) 

FWSOM 

(10x10 

Lattice) 

all 

Inputs 

10x10 

FWSOM 

Inputs 

all 

Inputs 

10x10 

FWSOM 

Inputs 

all 

Input 

10x10 

FWSOM 

Inputs 

All 

 

Input 

10x10 

FWSOM 

Inputs 

2x2 

FWSOM 

Inputs 

10x10 

FWSOM 

Inputs 

   63% 63% 83% 88% 53% 63% 78% 88% 66% 100% 

   79% 78% 88% 90% 66% 68% 73% 84% 60% 100% 

   53% 53% 72% 80%  60% 40% 76% 82% 53% 100% 

The figures (1-6) show the hits for nodes in the 10x10 lattice from a standard SOM and then for the 

FWSOM following the process that calculates weights for each node and remaps the samples against 

these nodes for each of the EEG band datasets.  The figures show pie charts for each node that a 

sample maps to. Therefore, not all nodes are shown in the figures when no samples map to them.  The 

colours of the pie chart relate to the class of the samples that map to it, and are % at a node level. 

These graphical representations of the results show clearly that the samples from class 1 (red node) 

can be represented by a single node, whereas the 2nd class (blue node) require a large number of 

nodes to allow the variability in this class to be properly represented. 

It is clear from the results of the standard SOM shown in the figures that this variability results in 

the classes being mixed throughout the nodes making classification difficult, and hints at the effect 

that the irrelevant features are having on the spread of data throughout the SOM.  This is likely to be 

similar to the SVM methods and explains why these methods are also finding classification difficult. 

The results of the two different sizes of SOM also indicate that this is an important factor in the 

analysis process.  If the SOM size is too small then the variability in the dataset will not be properly 

mapped resulting in the ineffective application of the FWSOM method. 

Figures (7-12) show bar charts of the equation given in Eqn 3, and illustrate the important indexes 

for each class found by the FWSOM process (those with a value >0) and the irrelevant indexes for 

each class (those with a value <0).  The analysis for this dataset shows clear differences in the values 

for the majority of features allowing straightforward identification of both relevant and irrelevant 

features. 

Class One  Class Two  

 

 

 

 

 

 

 

 

Figure 1. Standard SOM's Samples Hits - 

alphaBand 

 

 

 

 

 

 

 

 

Figure 2. FWSOM's Samples Hits - alphaBand 
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Figure 3. Standard SOM's Samples Hits - 

betaBand 

 

 

 

 

 

 

 

 

 

Figure 4. FWSOM's Samples Hits - betaBand 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 5. Standard SOM's Samples Hits – 

deltaBand 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. FWSOM's Samples Hits - deltaBand 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: FWSOM's relevant inputs  

for class 1 - alphaBand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: FWSOM's relevant inputs 

for class 2 - alphaBand 

 

 

 

 

 

 

 

 

 

Figure 9: FWSOM's relevant inputs  

for class 2 - betaBand 

 

 

 

 

 

 

 

 

 

Figure 10: FWSOM's relevant inputs  

for class 2 - betaBand 
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Figure 11: FWSOM's relevant inputs  

for class 1 - deltaBand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: FWSOM's relevant inputs  

for class 2 - deltaBand 

5. Conclusion 

The Temporal nature of the EEG data makes it difficult for classifiers especially linear to separate the 

groups distinctly without pre-processing, transformation and extraction of features that are well known 

to clearly distinguish different mental tasks (which is quite difficult to achieve in practice). We have 

demonstrated how the powerful topology property of the SOM in conjunction with a novel feature 

weighting method can be used to improve the classification of this data. 

The FWSOM in addition to achieving higher classification accuracy has given insights into what 

features are important in the classification of each class (left and right-hand movements), and these are 

corroborated by already published work in this area.  The exact location of each of the input features 

identified by the FWSOM method as important is an interesting area to explore in future work 

extension of this paper. 

The results also show that the identified features as relevant can also be used to improve the 

classification performance of other classification methods, which highlights again the importance of 

the features used during the SOM training process.  The application of the FWSOM method has the 

potential to help identify relevant features in any given dataset and to give much improved 

classification accuracy over other methods. 

Future work will focus on the usage of growing SOM methods so that a defined SOM lattice size is 

not required, a relaxing of the assumption for a class to be defined by a single relationship, and also 

improvements to the calculation of relevant and irrelevant inputs.  
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