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Abstract—We propose a simple scheme to generate high 
energy ultrashort pulses by combination and compression of 
multiple input pulses which share the same chirp profile. First, 
the multiple raised-cosine pulses in the input pulse train are 
modulated by a phase modulator in which each modulation cycle 
covers two, three, four, or five pulses. Then, the modulated pulses 
are launched into a nonlinear fiber with the exponentially 
decreasing dispersion.  We find that these pulses initially coalesce 
into a single pulse whose pulse profile is nearly hyperbolic secant, 
which then undergoes self-similar compression. Thus in the 
proposed method, first the combination of the multiple optical 
pulses occurs and then self-similar compression takes over. 
Besides, we also report the generation of ultrashort pulses by 
combination and compression of multiple hyperbolic secant 
pulses with the same chirp. The numerical results reveal that the 
resulting ultrashort pulse possesses a large portion of the input 
pulses for both raised-cosine and hyperbolic secant pulses. 
However, the compression factor and energy ratio are relatively 
higher for the hyperbolic secant pulses when compared to the 
raised-cosine pulses.  

Index Terms—Computational modeling, fibers, pulse 
compression, nonlinear optics.  
 

I. INTRODUCTION 
N recent years, the generation of high energy ultrashort 
pulses (USPs) is of great interest as these USPs find a wide 

range of applications in ophthalmology, nonlinear microscopy, 
micro-machining, and ultrahigh bit rate communication 
system [1-3]. It is already reported that the high energy USPs 
could be generated from the fiber lasers [4] and fiber 
amplifiers [5, 6]. However, these fiber lasers are typically 
complex and also they are not economically viable. The 
maximum output power from a fiber laser is limited by the 
thermal tolerance and the nonlinear effects, namely, stimulated 
Raman scattering (SRC) and stimulated Brillouin scattering 
(SBS) [7]. Instead of achieving USPs from complicated laser 
systems, pulse compression can be an alternative way. Pulse 
compression techniques including adiabatic pulse compression 
[8] and higher-order soliton compression [9] have been 
proposed for generating the USPs. In the adiabatic pulse 
compression, it is challenging to satisfy the adiabatic condition 
which typically demands a monotonically decreasing 
dispersion profile along the propagation direction for a long 
fiber length [10]. Further, the maximum compression factor is 
typically limited to ~20 [11]. The higher-order soliton 
compression helps achieve a high degree of compression in a 
short fiber length, but at the cost of significant pedestal 
generation which, in general, leads to nonlinear interactions 

between neighboring solitons. For example, compression of a 
15-th order soliton can achieve a compression factor of 60, but 
up to 80% of the compressed pulse energy appears as pedestal 
[9]. Further, the compression of a higher order soliton has 
been studied in dispersion decreasing fibers with a 
compression factor of 55 and a pedestal energy of 28% [11]. 
Thus, the conventional pulse compression techniques do not 
provide the expected and desired USPs. Thus an effective and 
compact compressor capable of generating high quality pulses 
with large compression factor is needed.  

Moores pointed out the existence of an exact chirped soliton 
in nonlinear optical fibers with either constant or 
exponentially varying dispersion in 1996 [12]. It has also been 
suggested that these chirped solitary waves could be 
compressed more efficiently if the dispersion decreases 
approximately exponentially [12]. Since then, the self-similar 
pulse compression technique has attracted much attention. 
One of the salient features of self-similar compression is that it 
facilitates the rapid compression without satisfying the 
adiabatic condition [13]. Kruglov et al employed the 
self-similar analysis to obtain the linearly chirped solitary 
wave pulses and discussed efficient pulse compression in an 
optical fiber where both the dispersion and nonlinearity vary 
exponentially [14, 15]. An efficient and compact pulse 
compressor, capable of producing nearly chirp-free and 
pedestal-free USPs, has been modeled using non-uniform fiber 
Bragg gratings with exponentially decreasing dispersion [16, 
17]. Further, the generation of self-similar USPs at 850 nm has 
also been investigated in a tapered photonic crystal fiber 
(PCF) [18]. Recently, multiple pulses have been used to 
generate high-repetition-rate pulse train [19-23]. Olupitan et 
al. studied the possibility of generating a train of USPs by 
injecting multiple RC or hyperbolic secant optical pulses into 
a solid core PCF as well as chloroform-filled PCF [20]. 
Besides, Olupitan et al. also studied the robustness of such a 
compression scheme by perturbing the loss coefficient of the 
solid core PCF as well as the chloroform-filled PCF [21]. The 
presence of amplitude and frequency modulation of the seed 
wave have significant impact on the formation of the pulse 
train [22]. In addition, the generation of a train of USPs with 
high-repetition-rate has been reported based on the beating of 
a dual-frequency optical signal [23]. Contrary to the multiple 
input pulses of separate initial linear chirp across each pulse 
[19-23] in the generation of high-repetition-rate pulse train, in 
this paper, we address the issue of what would happen to the 
pulse train if the multiple input pulses share the same linear 
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chirp across the entire pulse train. Our initial results with 
combination and compression of multiple optical pulses have 
been reported in [24,25]. As a first step, input pulse train is 
modulated by a phase modulator in which the modulation 
cycle covers two, three, four or five pulses. In other words, 
one could also assume that a number of low repetitive rate 
pulses of the same wavelength is multiplexed. The 
multiplexed beam is phased modulated by a phase modulator 
to achieve the same chirp profile across the multiple pulses. 
As a next step, the modulated pulses which have the same 
linear chirp are injected into a nonlinear optical fiber with 
exponentially decreasing dispersion. These multiple input 
pulses first coalesce into a single pulse and then the resulting 
combined single pulse undergoes compression continuously. 
We find that the compressed pulse attains a hyperbolic secant 
profile with a large portion of the input pulses’ energy. Thus, 
the energy of final compressed pulse is nearly thrice when 
compared to that of the single pulse in the initial RC pulse 
train. We also study the formation of high energy USPs with 
multiple hyperbolic secant input pulses. The proposed pulse 
compression scheme is simple and can provide the high 
energy USPs within a short fiber length. 

The paper is organized as follows. Section II introduces the 
theoretical model for describing the pulse propagation in 
dispersion varying nonlinear optical fibers. Section III 
discusses the formation of high energy USPs, via combination 
and compression, using multiple chirped RC pulses in a 
nonlinear optical fiber with exponentially decreasing 
dispersion. In Section IV, we show the compression of 
multiple chirped hyperbolic secant pulses and different 
pulse-to-pulse separation. Besides, we also study the 
combination length for both RC and hyperbolic secant pulse 
profiles with different initial pulse number and pulse width. In 
Section V, we address the role of initial chirp on the multiple 
pulse compression and study the pulse compression 
performance if the initial pulse chirp or dispersion decay rate 
varies. In Section VI, we summarize the research findings.   

II. THEORETICAL MODEL 
Pulse evolution in a dispersion varying nonlinear optical 

fiber is governed by the generalized nonlinear Schrödinger 
equation (GNLSE) [26]. 
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where the parameters A, z and t represent the amplitude of 

the slowly varying pulse envelope, distance and time, 
respectively. ( )zβ2  and γ  are the second-order dispersion and 
nonlinearity coefficient of the fiber, respectively. Here ( )zβ2  
is assumed to decrease exponentially as 

( ) ( )2 20 expz zβ β σ= − , where 20β  is the initial fiber 

dispersion and σ  is the decay rate. In this study, γ  is 
assumed to be a constant along the fiber length. 1 0/γ γ ω≈ , 
where 0ω  is the center frequency and is chosen to be 1550 
nm. The nonlinear response function is given by 
( ) ( ) ( ) ( )1 R R RR t f t f h tδ= − + , where  = 0.18Rf , and the 

Raman response function Rh  is determined from the 
experimental fused silica Raman cross-section [27]. 

III. CHIRPED RC PULSES 

A. Input Pulse Shape 
In this section, we consider the compression of multiple 

chirped RC pulses in the form 

( )( )0 2
0 201 cos / exp( / 2)

2
P t T i tπ α+

, 

                                      [ ]0/ ,t T N N∈ −     (N is odd)          (2) 

or 

( ){ }0 2
0 201 cos / 1 exp( / 2)

2
P

t T i tπ α+ +⎡ ⎤⎣ ⎦ , 

                                    [ ]0/ ,t T N N∈ −    (N is even)     (3) 

Here N is the number of pulses sharing part of the same 
chirp profile. The parameters 20α , 0P , and 0T  are the initial 
chirp, peak power and pulse width, respectively. The raised 
cosine pulse train may be generated from beating of two 
frequency optical signals, and its pulse-to-pulse separation is 
fixed and equals to twice of initial pulse width 0T . In this 
investigation, the fiber is chosen to have an exponentially 
decreasing second-order dispersion and the nonlinearity 
remains a constant. The decay rate of the second-order 
dispersion is related to the initial chirp and dispersion 
coefficient as 20 20σ α β= . The fiber parameters considered 

are 2
20 = 200 ps /kmβ − , 53 /kmσ = , 20 /W/kmγ =  and the 

fiber length 80 mL = . In what follows, we delineate the 
compression of multiple chirped RC pulses with various 
numbers in the input. 

B. Two Chirped RC Pulses 
First, we consider the compression of two chirped RC 

pulses in a nonlinear fiber with exponentially decreasing 
dispersion. The two chirped RC pulses are defined based on 
(3) with 2N = . The parameters of the pulses are, 

0 1.374 psT =  which corresponds to the full width at 

half-maximum (FWHM) of 1 ps, 2
20 0.265 THzα = − , 

and 0 10.6 WP =  ( 2
0 20 02 / /P Tβ γ= ). The peak power of 

initial pulse is optimized for the compression factor larger than 
10 and energy ratio larger than 50%. The corresponding initial 
dispersion length LD, nonlinear length LN, and chirp length LC 
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are 9.4 m, 4.7 m and 18.9 m, respectively. Dispersion, 
nonlinear and chirp lengths with comparable lengths are 
suggested because the interaction between dispersion, 
nonlinearity and chirp can lead to efficient pulse compression. 
Figures. 1(a) and 1(b) illustrate the two chirped RC input 
pulses in both (a) linear and (b) logarithmic scales, 
respectively. Figs. 1(c) and 1(d) depict the output compressed 
pulse (solid line) and fitted hyperbolic secant pulse (dashed 
line) for a fiber length of 80 m in both (c) linear and (d) 
logarithmic scales, respectively. The fitted hyperbolic secant 
pulse is assumed to have the same FWHM and peak power as 
the compressed pulse. We define a single chirped RC pulse 
( 1N = ) according to Eq. (2) with the same FWHM, peak 
power and chirp as that of two chirped RC pulses. The pulse 
widths of the input single chirped RC pulse and the 
compressed pulse are 1 and 0.044 ps, respectively. This leads 
to a compression of 22.58. The peak power of the compressed 
pulse is 24.8 times greater than that of the initial pulse. It is 
essential to compute the energy ratio in order to understand 
the energy possessed by the compressed pulse. Therefore, it is 
defined as the ratio of the fitted hyperbolic secant pulse energy 
to the total input pulse energy and the fitted hyperbolic secant 
pulse is of the peak power and pulse width as the compressed 
pulse. The energy ratio of the compressed pulse is computed 
to be 60.5%. From Figs. 1(c) and 1(d), we note that the 
compressed pulse attains nearly hyperbolic secant pulse 
profile. The curves in Figs. 1(e) and 1(f) are the spectra of the 
single chirped RC initial pulse (dashed line) and compressed 
pulse in (t − tc)/T0 ∈ [−0.5, 0.5] (solid line) in (e) linear and (f) 
logarithmic scales, respectively. Here tc is the central position 
of compressed pulse. As shown in Figs. 1(e) and 1(f), obvious 
bandwidth broadening occurs owing to nonlinearity. In this 
case, the bandwidth broadening factor (BBF) is 13.55. 
Another important parameter that quantities the quality of the 
compressed pulses is the time-bandwidth product (TBP). TBP 
of the compressed pulse in (t − tc)/T0 ∈ [−0.5, 0.5] is 0.3149 
which is very close to the value of transform-limited 
hyperbolic secant pulse of 0.315. Fig. 1(g) depicts the 
temporal evolution of compressed pulse at various stages of (0 
m, 23 m, 40 m, 60 m, 80 m) the compression process. Here we 
define the combination length as the fiber length when the 
peak power of the pedestal is less than 10% of the peak power 
of the compressed pulse. From Fig. 1(g), it is clear that the two 
chirped RC pulses coalesce into a single pulse at 23 m which 
is the combination length for the two chirped RC pulse 
compression. Then, the resulting combined pulse does 
undergo the self-similar pulse compression for a distance of 57 
m till it reaches the end of the optical fiber of 80 m. Because 
of the stimulated Raman scattering, there are temporal and 
spectral shifts in the output pulse as illustrated in Figs 1(c) and 
1(e). Fig. 1(h) represents the compression factor of the two 
chirped RC pulse compression (solid line) for a length of 57 m 
when the combination process is just over and the dashed lines 
indicate the compression factor of the self-similar compression 
with the same fiber parameters exp( ( 23))zσ × − . The FWHM 
of the pulse at the fiber length of 23 m is 0.82 ps, and the 

FWHM for the final 57 m is 0.044 ps corresponding to the 
compression factor of 18.6, which is close to the value 20.5 in 
the self-similar pulse compression. Thus, in the multi-pulse 
compression considered here, multiple input pulses first 
coalesce into a single pulse and then this single pulse 
undergoes nearly self-similar pulse compression. 

 
(a)                                                    (b) 

 
                            (c)                                                    (d)   

    
                                   (e)                                                    (f) 

   
                                    (g)                                                   (h)  

Fig. 1. Two chirped RC input pulses in (a) linear and (b) logarithmic scales. 
The compressed pulse (solid line) at fiber length of 80 m and fitted hyperbolic 
secant pulse (dashed line) in both (c) linear and (d) logarithmic scales. Spectra 
of the single chirped RC initial pulse (dashed line) and compressed pulse at 80 
m in (t−tc)/T0∈[−0.5, 0.5] (solid line) in both (e) linear and (f) logarithmic 
scales. (g) Temporal evolution at 0, 23 m, 40 m, 60 m, 80 m (from top to 
bottom). (h) The compression factor of the two chirped RC compression (solid 
line) and corresponding compression factor (dashed line) of self-similar 
compression.  

We also look into the property of the pulse at the 
combination length. Figures 2(a) and 2(b) show the 
combined pulse at 23 m in both linear and logarithmic 
scales, where the solid line and dashed line represent the 
combined pulse and fitted hyperbolic secant pulse, 
respectively. The resulting combined pulse nearly 
maintains the hyperbolic secant pulse shape, and contains 
64.4% of input pulses’ energy. Besides, we find that the 
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FWHM of the combined pulse is 0.82 ps and hence it 
undergoes a slight compression when compared to input 
pulse of width 1 ps. The TBF of the combined pulse is 
0.599 which is close to that of the single pulse in the input 
pulse train (0.525).  

The main reason for the combination of the multiple 
pulses into a single pulse is owing to the common chirp 
profile shared by all the input multiple pulses. That is, the 
different spectral components in the multiple pulses do 
undergo almost the same phase shift at a particular distance. 
Consequently, the spectral components, which acquire like 
phase shift, are coalesced into a single pulse. The distance 
at which this process takes place is referred to as 
combination length. Then, the resulting combined pulse 
does undergo compression under the influence of nonlinear 
effects. Finally, it evolved into a hyperbolic secant pulse 
shape from the initial RC pulse shape.  

 
                            (a)                                                     (b) 

Fig. 2. The combined pulse (solid line) and fitted hyperbolic secant pulse 
(dashed line) at 23 m in (a) linear and (b) logarithmic scales. 

C. Three, Four and Five Chirped RC Pulses 
Here we consider the compression of three, four and five 

chirped RC input pulses. The three and five pulses are chosen 
based on Eq. (2) and four pulses are according to Eq. (3). The 
three, four and five chirped RC input pulses are chosen to 
have the same T0 and 20α  as the two chirped RC pulses in Sec. 
III.A. However, the initial peak power P0 is different for 
different pulses of different numbers, that is, P0 = 5.3 W, 2.91 
W, and 1.85 W (which corresponds to 1, 0.55, and 0.35, 
respectively, according to the relation, P0 /(|β20|/γ/T0

2) for N = 
3, 4 and 5, respectively. Similarly, the peak power of initial 
pulse is optimized for the compression factor larger than 10 
and energy ratio larger than 50%. Figure 3(a) shows the input 
of three, four and five (top to bottom) chirped RC pulses. 
Figure 3(b) gives the compression factor for three (dots), four 
(circles) and five (crosses) chirped RC pulses along the fiber 
propagation direction. For a given fiber length of 80 m, we 
observe that the fiber length required to combine multiple 
pulses, i.e., the combination length gets increased as the 
number of pulses increases. Consequently, the compression 
factor becomes smaller for higher pulse numbers. Figures 3(c) 
and 3(d) represent the compressed self-similar USPs at 80 m 
for three (dotted-dashed line), four (dashed line) and five 
(solid line) chirped RC pulses in (c) linear and (d) logarithmic 
scales, respectively. Figures 3(e) and 3(f) portray the spectra 
of the compressed pulse in (t − tc)/T0 ∈ [−0.5, 0.5] for three 
(dotted-dashed line), four (dashed line) and five (solid line) 

chirped RC pulses in (e) linear and (f) logarithmic scales. 
From Figs. 3(e) and 3(f), it is obvious that the bandwidth 
broadening is relatively less for the USPs that are resulted 
from the higher numbers of input pulses since they undergo 
less compression. Distinct temporal and spectral shifts occur 
for the input pulses with lower numbers due to the stimulated 
Raman scattering. To gain the much insight in these 
compression processes, in Table I, we compare all the 
important out characteristics, namely, compression factor, 
BBF, TBP, peak power, energy ratio, and combination length 
of the compressed self-similar USPs that are resulted from 
different numbers of chirped RC pulses (N = 2, 3, 4, and 5).  
According to Table I, we find that both the compression factor 
and bandwidth broadening factor (BBF) decrease with the 
pulse number. This is because the combination length 
increases with the pulse number. Therefore, the combined 
pulses do undergo compression only for a short length of a 
fiber. In addition to this, we compute the TBP of the 
compressed USPs and it is close to transform-limited value of 
0.315. Undoubtedly, these two output characteristics imply 
that the generated high energy self-similar USPs are almost 
free from chirp. These are desirable characteristics of any 
USPs which are generated from pulse compression technique. 
Further, bandwidth broadening does occur which signify the 
nonlinear compression process. Finally, we calculate the 
energy ratio that stays around 60% for different input pulse 
numbers. This indirectly implies that the generated USPs 
possess high energy.  

      

                                  (a)                                                      (b)  

     
                                    (c)                                                       (d)   

  
   (e)                                                        (f) 

Fig. 3. (a) Input three, four, and five chirped RC pulses (from top to bottom). 
(b) The compression factor of three (dots), four (circles) and five (crosses) 
chirped RC pulses along the fiber propagation direction. Output pulses at fiber 
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length of 80 m for three (dot dashed line), four (dashed line) and five (solid 
line) chirped RC pulses in (c) linear and (d) logarithmic scales. Spectra of the 
output pulses at 80 m in (t−tc)/T0∈[−0.5, 0.5] for three (dot dashed line), four 
(dashed line), five (solid line) pulses in both (e) linear and (f) logarithmic 
scales.  

 
 

TABLE I 
COMPARISON OF VARIOUS OUTPUT CHARACTERISTICS, NAMELY, 

COMPRESSION FACTOR, BBF, TBP, PEAK POWER, ENERGY RATIO AND 
COMBINATION LENGTH FOR N CHIRPED RC PULSES  

 N = 2 N = 3 N = 4 N = 5 
Comp. factor 22.58 18.22 13.82 10.97 

BBF 13.55 10.50 8.24 6.64 
TBP 0.315 0.303 0.313 0.318 

Peak Power 
(W) 

262.74 156.75 86.33 53.98 

Energy Ratio 60.5 % 59.6% 59.1% 58.6% 
Combination 
length (m) 

23 33 44 52 

IV. CHIRPED HYPERBOLIC SECANT PULSES  

A. Input Pulse Shape 
Having discussed the generation of high energy USPs from 

RC pulses, in this section, we intend to investigate the 
generation of similar USPs by injecting the chirped hyperbolic 
secant pulse profiles. Here, the chirped hyperbolic secant 
pulses are described by the following form of:  

( ) ( )2
0 0 20sech / exp / 2N

m N P t T m i tξ α=−∑ + ,   

 (odd pulse number, pulse number: 2N+1)       (4) 

( ) ( )1 2
0 0 20sech / / 2 exp / 2N

m N P t T m i tξ ξ α−
=−∑ + + ,      

(even pulse number, pulse number: 2N)             (5) 

where 20α , 0P , and 0T  are the initial chirp, initial peak power 
and initial pulse width parameters, respectively. Here, ξ  is the 
separation between two neighboring hyperbolic secant pulses. 
In this case, the fiber parameters are assumed to be the same 
as in Sec. III. 

B. Two Chirped Hyperbolic Secant Pulses 
Now, we discuss the compression of chirped multiple 

hyperbolic secant pulses. To start with, we consider the two 
chirped hyperbolic secant pulses according to (5). The pulses 
parameters are 1N = , 0   5 psTξ = , 0 0.908 psT =  which 

corresponds to FWHM of 1.6 ps, 2
20 0.265 THzα = − , and 

0  3.0 WP =  ( 2
0 20 00.25 / /P Tβ γ= ).  Similarly, the peak 

power of initial pulse is optimized for the compression factor 
larger than 10 and energy ratio larger than 50%. Using these 
pulse parameters as well as fiber parameters, the length scales, 
namely, LD, LN, LC are 4.1 m, 16.7 m and 18.9 m, respectively. 
Figures 4 (a) and 4(b) portray two chirped hyperbolic secant 
input pulses in (a) linear and (b) logarithmic scales, 

respectively. Figsures 4(c) and 4(d) depict the compressed 
high energy USP at the fiber length of 80 m (solid line) and 
the fitted hyperbolic secant pulse (dashed line) in both (c) 
linear and (d) logarithmic scales, respectively. We define the 
single chirped hyperbolic secant pulse (N = 0) using Eq. (4) 
with the same 0T , 0P  and 20α  as that of two chirped 
hyperbolic secant pulses. When a chirped hyperbolic secant 
pulse with a width of 1.6 ps is launched, it is temporally 
compressed down to 58 fs, resulting in a compression factor of 
27.78. Hence, the peak power of the compressed pulse gets 
increased and is greater 47 times than the initial pulses. As we 
deal with the high energy USPs, we also calculate the energy 
ratio of the compressed pulse and is found to be 79.6%. From 
Figs. 4(c) and 4(d), we note that the compressed pulse is 
nearly hyperbolic secant pulse shape. Figures 4(e) and 4(f) 
show the spectra of the single chirped hyperbolic secant initial 
pulse (dashed line) and compressed pulse in (t−tc)/T0 ∈ [−0.5, 
0.5] (solid line) in (e) linear and (f) logarithmic scales, 
respectively. As depicted in Figs. 4(e) and 4(f), the bandwidth 
broadening occurs owing to the nonlinear effect and the BBF 
is 22.68. The TBP of the compressed pulse is 0.320 in (t−tc)/T0 

∈ [−0.5, 0.5]. Figure 4(g) represents the dynamics of the 
compressed pulse at various stages of the fiber during the 
compression process. The well separated initial pulses are 
combined at a fiber length of 21 m. The FWHM of the pulse at 
the combination length is 1.00 ps. This combined pulse does 
undergo self-similar pulse compression for the remaining 
length of 59 m. Fig. 4(h) depicts the compression factor of the 
two chirped hyperbolic secant pulses after combination 
process (solid line) and the corresponding compression factor 
of the self-similar compression (dashed line). As shown in Fig. 
4(h), the compression factor after the combination process (for 
59 m) is 17.52 and the compression factor in the self-similar 
approximation is exp( ( 21))=22.81Lσ × − . We note that the 
compression factor due to the former one is close to the direct 
self-similar pulse compression.   

   
                                 (a)                                                         (b) 

     
                                 (c)                                                          (d) 
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                                  (e)                                             (f)       

    
                                   (g)                                                       (h)  

Fig. 4.  Two chirped hyperbolic secant input pulses in (a) linear and (b) 
logarithmic scales. The compressed pulse (solid line) at fiber length of 80 m 
and fitted hyperbolic secant pulse (dashed line) in both (c) linear and (d) 
logarithmic scales, respectively. Spectra of the single chirped hyperbolic 
secant initial pulse (dashed line) and compressed pulse at 80 m in (t−tc)/T0∈
[−0.5, 0.5] (solid line) in both (e) linear and (f) logarithmic scales. The (g) 
temporal evolution and (h) compression factor of the two chirped hyperbolic 
secant pulses compression (solid line) and the corresponding compression 
factor of the self-similar compression (dashed line) after the combination 
process. 

C. Three, Four and Five Chirped Hyperbolic Secant Pulses 
In this sub-section, we extend the above analysis for three, 

four and five chirped hyperbolic secant pulses. The pulse 
parameters are same as the two chirped hyperbolic secant 
pulses in Sec. IVA except the peak power. The peak power of 
initial pulse is optimized for the compression factor larger than 
10 and energy ratio larger than 50%. As a result, different 
initial peak power P0 are selected for different pulses of 
different numbers, i.e., P0 = 1.214, 0.728, and 0.486 W for the 
pulses of 3, 4, and 5, respectively. The input pulses of three 
and five pulses are based on Eq. (4) with N = 1 and 2, 
respectively. The four pulses are in the form of Eq. (5) with N 
= 2. Fig. 5(a) illustrates the input of three, four and five 
chirped hyperbolic secant pulses. The evolution of 
compression factor of the three (dots), four (circles) and five 
(crosses) chirped hyperbolic secant pulses compression at 
various stages of the propagation in the exponentially 
decreasing fiber is depicted in Fig. 5(b). As in the previous 
case, here also we find that the compression factor decreases 
with the pulse number. Figures 5(c) and 5(d) represent the 
intensity of the generated USPs that are resulted from three 
(dot-dashed line), four (dashed line) and five (solid line) 
chirped hyperbolic secant pulses in (c) linear and (d) 
logarithmic scales, respectively. Further, we also provide the 
spectra of the compressed pulses in (t−tc)/T0 ∈ [−0.5, 0.5] for 
three (dot-dashed line), four (dashed line) and five (solid line) 
chirped hyperbolic secant pulses in terms of linear scale in 
Fig. 5(e) linear and logarithmic scales in Fig. 5(f). From Figs. 
5(c) to 5(f), we observe the temporal and spectral shifts in the 
output pulse owing to the stimulated Raman scattering. Table 

II gives the comparison of the compression factor, BBF, TBP, 
peak power, energy ratio and combination length for N = 2, 3, 
4, and 5 chirped hyperbolic secant pulses with the separation 
parameter of 5T0. As in Sec. III, the compression factor and 
BBF decrease with input pulse number, while the combination 
length increases with input pulse number. For different input 
pulse numbers, the energy ratios stay around 78% and hence 
the generated USPs possesses high energy. 

  
                                         (a)                                                                        (b) 

       
         (c)                                                                      (d) 

   
(e)                                                                        (f) 

Fig. 5. (a) Input of three, four and five (from top to bottom) chirped 
hyperbolic secant pulses. (b) The compression factor of three (dots), four 
(circles) and five (crosses) chirped hyperbolic secant pulses compression 
along the fiber propagation direction. Output pulses at fiber length of 80 m for 
three (dot-dashed line), four (dashed line) and five (solid line) hyperbolic 
secant pulses in (c) linear and (d) logarithmic scales. Spectra of output pulses 
at 80 m in (t−tc)/T0∈[−0.5, 0.5] for three (dot-dashed line), four (dashed line), 
five (solid line) pulses in both (e) linear and (f) logarithmic scales.  

TABLE II 
 COMPRESSION FACTOR, BBF, TBP, PEAK POWER, ENERGY RATIO AND 
COMBINATION LENGTH FOR N CHIRPED HYPERBOLIC SECANT PULSES 

COMPRESSION WITH SEPARATION OF 5 

 N = 2 N = 3 N = 4 N = 5 
Comp. factor 27.78 17.87 14.46 11.68 

BBF 22.68 14.74 12.69 9.21 
TBP 0.320 0.324 0.344 0.309 

Peak Power (W) 141.57 55.73 36.05 24.03 
Energy Ratio 79.6% 78.5% 77.7% 76.3% 
Combination 
length (m) 

21 31 39 47 

 
Figure 6 depicts the variation of (a) compression factor, (b) 

energy ratio and (c) combination length against the 
pulse-to-pulse separation ξ  for three input pulses. Here, the 
fiber and pulse parameters are the same in Fig. 5. We find that 
both the compression factor and energy ratio decrease with the 
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pulse-to-pulse separation. However, the combination length 
increases. Thus, the numerical results in Fig. 6 support that the 
proposed compression scheme works well even if the 
pulse-to-pulse separation of the input pulses is varied. 

   
                                    (a)                                                     (b)  

  
      (c) 

Fig. 6. The (a) compression factor, (b) energy ratio and (c) combination length 
versus different pulse-to-pulse separation. 

 
Figure 7 provides a detailed study about the combination 

length and compression factor, considering different input 
pulse shape, number of input pulses, input pulse width. The 
peak power is the optimized peak power for input RC and 
hyperbolic secant pulses. Figures 7(a) and 7(b) show the 
combination length and corresponding compression factor for 
input RC pulses, and Figs. 7(c) and 7(d) are the results for 
input hyperbolic secant pulses. The cross, circle, dot, diamond 
and plus symbols in Figs. 7(a) and 7(b) represent initial 
FWHM of 0.8 ps, 0.9 ps, 1.0 ps, 1.1 ps, 1.2 ps for combining 
2, 3, 4, 5 chirped RC pulses. Similarly, the cross, circle, dot, 
diamond, plus and square symbols in Figs. 7(c) and 7(d) 
indicate initial FWHM of 1.0 ps, 1.2 ps, 1.4 ps, 1.6 ps, 1.8 ps, 
2.0 ps for combining 2, 3, 4, 5 chirped hyperbolic secant 
pulses. For both input RC and hyperbolic secant pulses, the 
combination length increases with input pulse width for given 
pulse shape and number of pulses as shown in Figs. 7(a) and 
7(c). Similarly, for given pulse width, the combination length 
increases but the compression factor decreases with the input 
number of pulses as shown in Figs. 7(a-d). 
 

        
(a)                                                                           (b) 

     
(c)                                                                    (d) 

Fig. 7. (a) The combination length and (b) compression factor for the initial FWHM of 
0.8 (crosses), 0.9 (circles), 1.0 (dots), 1.1 (diamonds), 1.2 (pluses) with 2, 3, 4, 5 chirped 
RC pulses; (c) The combination length and (d) compression factor for the initial FWHM 
of 1.0 (crosses), 1.2 (circles), 1.4 (dots), 1.6 (diamonds), 1.8 (pluses), 2.0 (squares) with 2, 
3, 4, 5 chirped hyperbolic secant pulses. 

V. DISCUSSIONS 

A. Significance of the initial pulse chirp 
The self-similar compression in [13-16] is based on the chirped 

soliton solution to the NLS equation with exponentially decreasing 
dispersion. In self-similar compression, the evolution of self-similar 
soliton is mainly governed by the interplay of the pulse chirp with the 
fiber dispersion and nonlinearity all along the propagation [16]. The 
initial chirp plays a critical role in the self-similar compression. In this 
Section, we study the significance of the initial chirp in the 
multi-pulse compression. We consider the compression of three 
chirp-free RC and hyperbolic secant pulses and compare the results 
with that of the chirped pulses. The chirp-free RC pulses are in the 
form of ( )( ) [ ]0 0 0/ 2 1 cos / / ,P t T t T N Nπ+ ∈ −，  where N, T0, 
P0 are the same as three chirped RC pulses in Sec. III B. The 
chirp-free hyperbolic secant pulses are in the form of 

( )0 0sech /N
m N P t T mξ=−∑ +  where ξ  is  5 and N, T0, P0 are the 

same as three chirped hyperbolic secant pulses in Sec. IV B. Figures 
8(a) and 8(b) depict the compressed pulse of three chirp-free RC 
pulses (solid line) and three chirped RC pulses (dashed line) for a 
fiber length of 80 m in (a) linear and (b) logarithmic scales, 
respectively. Figures 8(a) and 8(b) show the significant role played 
by the initial pulse chirp for better compression as the chirped RC 
pulses (dashed line) go through more compression than the chirp-free 
RC pulses (solid line). Figures 8(c) and 8(d) are the intensity contour 
plots of the evolution of three chirp-free RC and chirped RC input 
pulses along the fiber.  For the chirped input RC pulses, the energy 
ratio is 59.6%, and the compression factor is 18.22. For the chirp-free 
RC input pulses, the energy ratio is only 30.1%, and the compression 
factor is 9.47. The compressed pulses of the three chirp-free 
hyperbolic secant pulses (solid line) and three chirped hyperbolic 
secant pulses (dashed line) are given in linear (Fig. 8(e)) and 
logarithmic (Fig. 8(f)) scales, respectively. Figures 8(g) and 8(h) are 
the intensity contour plots of the evolution of three chirp-free 
hyperbolic secant and three chirped hyperbolic secant input pulses 
along the fiber. As shown in Fig. 8(g), three chirp-free hyperbolic 
secant pulses could not combine into one single pulse. Thus, it is 
clear that the initial pulse chirp plays an important role in the pulse 
compression scheme proposed here. 
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                                           (a)                                                                     (b)  

       
       (c)                                                                     (d) 

     
                                (e)                                                                      (f) 

        
       (g)                                                                        (h) 

Fig. 8. The compressed pulse of three chirp-free RC pulses (solid line) and 
three chirped RC pulses (dashed line) at the fiber length of 80 m is depicted in 
(a) linear and (b) logarithmic scales, respectively. (c) and (d) are the 
corresponding evolution of the three (c) chirp-free and (d) chirped RC input 
pulses along the fiber. The compressed pulse of three chirp-free hyperbolic 
secant pulses (solid line) and three chirped hyperbolic secant pulses (dashed 
line) at the fiber length of 80 m is depicted in (e) linear and (f) logarithmic 
scales. (g) and (h) are the corresponding evolution of the three (g) chirp-free 
and (h) chirped hyperbolic secant input pulses along the fiber. 

B. Variation of the initial pulse chirp or dispersion decay rate 

    According to the self-similar analysis, decay rate of the 

dispersion is given by 20 20σ α β= . Here, 20α , 20β andσ  are 
the initial pulse chirp, initial fiber dispersion and dispersion 
decay rate, respectively. In this sub-section, we will study the 
performance of the proposed pulse compression scheme by 
varying the initial pulse chirp or dispersion decay rate. 
   The initial pulse chirp is calculated by the 

relation 20 20σ α β=  based on a condition in the self-similar 
pulse compression. Here, the initial pulse chirp is varied by 
±20% and other pulse and fiber parameters remain the same as 
in Fig. 1. When the initial pulse chirp is carefully chosen as 

20 20= /α σ β , the corresponding pulse compression factor is 
22.58. However, if the initial chirp is less 20% ( 20 20=0.8 /α σ β ) 
or greater than 20% ( 20 20=1.2 /α σ β ) of the original value, then 
the resulting compression factor turns out to be 22.01 or 22.34, 
which is quite close to that of the ideal condition 20 20= /α σ β . 
The energy ratio also maintains around 60% when the initial 
pulse chirp is varied. The final compressed pulse (solid line) 
and fitted hyperbolic secant pulse (dashed line) for two 
chirped RC input pulses are shown in Fig. 9 when 20 20=0.8 /α σ β  
in Figs. 9(a, c) and when 20 20=1.2 /α σ β  in Figs. 9(b, d). Here, 
the compressed pulse maintains the hyperbolic secant pulse 
shape when the initial pulse chirp is varied. By carrying out 
extensive simulations, we have found that the change of 
compression factor is generally less than 5% when the initial 
pulse chirp is varied by ±20%. 
 

 
(a)                                                   (b) 

 
(c)                                                    (d) 

Fig. 9. The compressed pulse (solid line) at fiber length of 80 m and fitted 
hyperbolic secant pulse (dashed line) for two chirped RC input pulses in linear 
(a, b) and logarithmic scales (c, d) with 20α equals to (a, c) 200.8 /σ β  and (b, 
d) 201.2 /σ β . 

Secondly, the dispersion decay rate is varied by ±20% and 
the other pulse and fiber parameters remain the same as in Fig. 
1. When the dispersion decay rate is carefully chosen as 

20 20=σ α β , the corresponding pulse compression factor is 
22.58. When 20 20=0.8σ α β , the resulting compression factor is 
11.75 and the energy ratio is 64%.  When 20 20=1.2σ α β , the 
resulting compression factor is 42.91 and the energy ratio is 
only 44%. The final compressed pulse (solid line) and fitted 
hyperbolic secant pulse (dashed line) for two chirped RC input 
pulses are shown in Fig. 10 when 20 20=0.8σ α β  in Figs. 10(a, c) 
and when 20 20=1.2σ α β in Figs. 10(b, d). If the dispersion decay 
rate is reduced, the compressed pulse nearly maintains the 
hyperbolic secant pulse, but the compression factor is much 
less. If the dispersion decay rate is increased, the compression 
factor becomes much higher, but the compressed pulse 
deviates from the hyperbolic secant pulse shape. Thus, based 
on these results, the proposed scheme is less sensitive to the 
variation of initial pulse chirp. 
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(a)                                                   (b) 

  
(c)                                                    (d) 

Fig. 10. The compressed pulse (solid line) at fiber length of 80 m and fitted 
hyperbolic secant pulse (dashed line) for two chirped RC input pulses in linear 
(a, b) and logarithmic scales (c, d) with σ equals to (a, c) 20 200.8α β and (b, d) 

20 201.2α β . 

VI. CONCLUSION 
In conclusion, we have studied the multi-pulse combination 

into a single pulse and then compression using two different 
pulse profiles, namely, RC and hyperbolic secant pulses in 
nonlinear optical fibers with the exponentially decreasing 
dispersion. The input pulse train is firstly modulated using a 
phase modulator in which each modulation cycle could cover 
two, three, four, or five pulses. The resulting pulses possess 
the same linear chirp, could combine into a single pulse, 
which, in turn, did experience effective pulse compression in 
the nonlinear fiber with the exponentially decreasing 
dispersion. It turns out the final compressed pulse contains 
majority of the input pulses energy to become an ultrashort 
high-energy single pulse. In the case of initial hyperbolic 
secant shaped pulses combination and compression, the final 
high-energy pulse is almost chirp free. We have also studied 
the compression of 2, 3, 4, and 5 pulses with both the pulse 
profiles. The energy ratio of the compressed pulses for both 
RC and hyperbolic secant stays almost the same and the 
compression factor decreases with the increase of the number 
of pulses. For the hyperbolic secant input pulses, both the 
compression factor and energy ratio decrease while the 
combination length increases with the pulse-to-pulse 
separation. For a given pulse shape (RC or hyperbolic secant) 
and number of pulses, the combination length increases with 
input pulse width. The combination length increases and the 
compression factor decreases with the increase in the input 
number of pulses for the same input pulse width. Besides, we 
have also compared the compression of chirped and chirp-free 
input pulses in order to understand the influence of initial 
chirp. By dint numerical simulation, we have inferred that the 
multiple hyperbolic secant pulses do not combine into a single 
pulse and hence no compression at all, which implies the 
importance of the initial pulse chirp. We have also varied the 
initial pulse chirp or dispersion decay rate, and find the 
suggested scheme is less sensitive to the change of initial 

pulse chirp. The proposed compression scheme is a good 
candidate for high energy ultrashort pulse generation. 
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