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Figure	3. Bruntland Burn	catchment,	showing	(a) topography,	stream	network,	and	
the	monitoring	locations	and	associated	instrumentation:	stream	gauge	(triangle),	soil	
moisture	sensors	(diamonds	and	circle),	sapflow transpiration	(square	and	circle),	and	
micrometeorology	(including	net	radiation,	star).	The	conceptualisation	used	for	
simulations	(b-f,	30×30m2 resolution)	comprises	(b) pedology,	aggregated	from	the	
Hydrology	of	Soil	Types	(HOST)	classes,	and	(c-f)	the	pixel	fraction	covered	by	the	four	
considered	vegetation	types	(in	addition	to	scree/bare	soil,	not	shown).

Model	and	calibration

Figure	4. Temporal	window	covered	by	each	of	the	
data	sets	(black),	used	to	constrain	the	model	
during	the	calibration	period	(orange),	and	then	to	
evaluate	the	calibrated	model	(blue).

Figure	5. Hydrological	processes	simulated	by	the	EcH2O	model.
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Figure	2. Heat	map	of	best-runs-averaged	(a) root	mean	square	error	between	model	and	observations,	normalized	with	the	
observation	average	(RMSE*m,o),	and	(b) normalized	predictive	uncertainty	(PU*):	daily	90%-spread	interval	across	the	30	best	
runs	divided	by	the	inter-run	mean,	then	averaged	over	the	evaluation	period.	The	x-axis	gives	the	variable	or	group	of	variables	
evaluated,	the	y-axis	shows	the	dataset(s)	used	as	a	constraint	over	the	calibration	period.	

Figure	9. Time	series	of	measured	and	simulated	pine	stand	transpiration	at	Forest	site	A,	
showing	data	in	black	and	in	colour	the	average	of	the	30	best	runs	and	90%-spread	interval	
for	three	types	of	calibration:	(green)	using	only	the	plotted	quantities,	(pink)	using	all	soil	
moisture	datasets	and	(yellow)	using	all	collected	datasets.

Figure	7. Time	series	of	(a)measured	precipitation,	and	stream	discharge,	with	(b) normal	and	
(c) logarithmic	scale	the	data	in	black	and	in	colour	the	average	of	the	30	best	and	90%-spread	
interval	for	two	types	of	calibration:	(green)	using	only	stream	discharge	and	(yellow)	when	
simultaneously	constraining	the	model	against	all	datasets.

Figure	8. Time	series	of	profile-averaged	soil	volumetric	water	at	the	two	transect	sites:	peat	
(a)	and	podzol (b).	Observations	are	shown	in	black,	while	colours	display	the	average	of	the	30	
best	runs	and	90%-spread	interval	for	three	types	of	calibration:	(green)	using	only	the	plotted	
quantities,	(pink)	using	all	soil	moisture	datasets	and	(yellow)	using	all	collected	datasets.

Figure	10. Time	series	of	saturated	area	at	the	catchment	scale,	comparing	an	
independent	data-driven	estimate	[6]	(black)	to	simulation	outputs	using	
parameters	sets	from	different	calibration	cases	(average	and	90%-spread	interval).

¨ Ecohydrological	model	captures	multi-process	response	in	wet,	energy-limited	steep	
catchment.

¨ Using	all	observation	types	(streamflow,	soil	moisture,	pine	transpiration	and	net	radiation)	
for	calibration	yields	best	performance	and	lowest	predictive	uncertainty	(Fig.	2).

¨ Stream	discharge	brings	poorly-focused	leverage	to	ecohydrological	simulations.
¨ Riparian	soil	moisture	and	transpiration	observations	are	most	informative.

Critical	zone	science	seeks	an	integrated	understanding	of	
hydrological	processes	considering	ecological,	geological,	
geomorphological	and	pedological couplings	[1].	
Physically-based,	fully-distributed	modelling is	a	promising	
approach,	but	its inherent	complexity	(parameterization) requires	
a	consistent	identification	of	feasible	model	configurations.
Can	we	use	ecohydrological	datasets	across	processes	to	bring	
differentiated	information	content	to	such	models?
We	tested	this	approach	using	the	EcH2O	model in	a	long-term	
monitored	high-latitude	catchment [2],	where	ecohydrological	
couplings	are	poorly	understood	and	potentially	climate-sensitive.

Physically-based

Fully-distributed

Process-specific variables

M
O
DE

L

Intra-system patterns

Analysis Potential insights
• Disentangle feedbacks/non-linearities
• Behaviour outside recorded conditions

Ecohydrological
Processes

Observation
datasets

Useful
information 
content?

Numerous 
parameters

Behavourial
model?

Figure	1. Opportunities	and	issues	
raised	by	process-based,	fully-
distributed	modelling	approaches	in	
ecohydrology.
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Figure	6.Methodology	used	to	select	the	30	best	
model	configurations,	using	the	cumulative	
distribution	functions	(CDF)	of	dataset-specific	
goodness-of-fit	(GOF)	[2,5]:	mean	absolute	error	
(MAE)	for	streamflow	and	root	mean	square	error	
(RMSE)	for	all	other	datasets.	It	identifies	the	quantile	
threshold	common	to	all	GOF’s	CDFs	below	which	30	
model	runs	simultaneously	meet	the	calibration	target.
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Soils:	Shallow,	freely-draining	(hillslopes)	
to	saturated,	deep	organic-rich	(riparian	
area).	Vegetation: heather	shrublands on	
hillslopes,	Scots	pine	(steep	slopes,	
plantations),	and	Molinia grasses	and	
Sphagnum bog	mosses	(riparian	area).

Table	1. List	of	optimized	parameters.EcH2O	model	[3]:	Process-based,	fully-distributed.	Tightly	couples	two-
layer	(canopy	and	surface)	energy	balance,	hydrologic	module	for	lateral	
(kinematic	wave)	and	vertical	transfers	(Fig.	5),	and	transpiration-based	
plant	phenology	(trees	and	grasses	[4]).	Resolution: 30´30	m2,	daily.

¨ Robust	basis	for	water	pathways	characterization across	ecohydrological	compartments:	
® using	process-based	tracking	of	stable	isotopes	and	water	age	(Kuppel	et	al.,	in	prep.)	
® prediction	of	consequences	from	land	use	and	climate	alterations

¨ Advocates	for	diversifying	observations	in	catchment	instrumentation	(when	possible)	for	
advancing	mechanistic	understanding	of	critical	zone	functioning

¨ Is	this	model-data	approach	efficient	for	other	climatic	and	topographical	settings?
® Planned	application	to	other	well-instrumented	catchments	across	the	wider	north

10	calibration	datasets across	
ecohydrological	processes	(Fig.	4).
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Calibration:	uniform	Monte-Carlo	sampling,	
100000	sets	of	the	64	parameters	(Table	1).	
Several	combination	of	data	constraints	using	
a	multi-objective	function	(Fig.	6).

Stream	discharge (ensemble	mean	and	90%-
spread)	well	simulated,	with	low	spread	(Fig.	7):	
0.6	<	KGE2012<	0.95.	Slight	underestimation	of	low	
flows.
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Good	seasonal	and	high-frequency	timing	of
volumetric	soil	water	content	(q)	(Fig.	8).
Riparian	area: Amplitude	overestimated	(Fig.	8a)
Hillslope: Amplitude	underestimated	(Fig.	8b)
Adding	more	constraints	increases	observation-
specific 90%-spread.	Less	marked	on	hillslopes.

Summer pine	transpiration	(Tp)	well	simulated	at	
both	forest	sites	(Forest	site	A	shown	in	Fig.	9).	
Adding	more	constraints	yields	underestimated	Tp.

Top-of-canopy	net	radiation well	captured,	
seasonally	and	daily,	with	low	90%-spread.	
Underestimation	of	summer	values	on	hilltop	(not	shown).

Overall	performance	and	uncertainty (Fig.	2)
Streamflow	well	reproduced	regardless	of	calibration	data.	
Simulation	of	q and	Tpmost	sensitive	to	including	
local/same-type	datasets	® specific	information	footprint.
Best	(lowest)	overall score	(uncertainty)	when	using	all	
datasets	as	constraints.

Reasonable	consistency	of	EcH2O	with	catchment-wide	
estimate of	saturated	area fraction	(Fig.	10).
Good	timing,	general	overestimation	outside	saturation	peaks.

Independent	evaluation

Main	findings

Outlook
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a Peat

b Podzol

a

3.2	km2 headwater	catchment	in	Scottish	Highlands	(Fig.	3).	Climate:	
Boreal/temperate	oceanic;	precipitation	~1000	mm⋅yr-1 (low	seasonality,	
snowfall	<5%),	low-energy	(pot.	ET	~400	mm	⋅yr-1).	Topography:	glacier-
shaped;	wide	valley	bottom,	underlying	drift	deposits.


