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Abstract. 

Transverse cracking, i.e. matrix cracking in the off-axis plies of the laminate, is widely recognized 

as the first damage mode to appear in continuous fibre-reinforced composite laminates subjected 

to in-plane loading. Since transverse cracking has a great influence on the subsequent damage 

steps such as delaminations or oblique cracks, it is important to be able to predict its onset and 

growth accurately. In this paper, it is proposed to use a combination of the Coupled Criterion of 

Finite Fracture Mechanics (FFM) and the Equivalent Constraint Model (ECM) to predict the 

evolution of crack density with increasing applied load. Two formulations – a discrete formulation 

and a continuous formulation – are developed for the energy criterion within the Coupled 

Criterion. Some dependences between the two formulations are proved, which justifies the good 

agreement found by the models based on continuous formulations presented by other authors 

despite the inherent discrete nature of the phenomenon. Dependence of the failure load 

predicted by the Coupled Criterion on the layer thickness ratio and brittleness number (a 

structural parameter that characterizes a combination of stiffness, strength, fracture toughness 

and the thickness of the cracked ply of the laminate) is examined and discussed for carbon/epoxy 

and glass/epoxy laminates. Finally, comparison against experimental results shows a good 

agreement. 
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1. Introduction 

Failure of continuous fibre-reinforced composite laminates subjected to in-plane loading involves 

sequential accumulation of various type of damage. The first damage mode to appear is usually 

transverse cracking, i.e. matrix cracking in the off-axis plies of the laminate. Transverse cracking 
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reduces the laminate stiffness and triggers development of other damage modes such as 

delaminations. It is therefore important to be able to predict accurately the onset and evolution of 

transverse cracking. 

 

Transverse cracking in composite laminates has been the subject of extensive research, see 

reviews by Nairn (2000), Berthelot (2003), Kashtalyan and Soutis (2005). 

 

Garrett and Bailey (1977) were arguably the first to propose to use maximum stress criterion for 

predicting the initiation of matrix cracking in cross-ply laminates. However, stress-based 

approaches do not agree well with experimental data which show that onset of matrix cracking 

strongly depends on the laminate structure. Subsequent developments in this direction involved 

using more sophisticated failure criteria, as well as taking into account the probabilistic and 

statistical nature of strength, see reviews by Silberschmidt (2005) and Singh (2016). 

 

Recognizing limitations of strength-based models, Parvizi et al (1978) proposed to use an energy 

criterion to predict the initiation of transverse cracking. According to this criterion, the first crack 

forms when the energy release rate associated with its formation exceeds some critical value. This 

critical value may be taken as IcG , the Mode I transverse fracture toughness (Cepero et al, 2014), 

or mcG , the microcracking fracture toughness (Nairn, 2000). However, more research is required to 

confirm that mcG  is a material property, independent of the laminate stacking sequence. Caslini et 

al (1987) suggested to use the energy release rate for predicting the development of transverse 

cracking. They predicted transverse crack density as a function of applied load, treating the total 

area of transverse cracks as continuous variable and deriving analytical expressions for the strain 

energy release rate and its derivative. Laws and Dvorak (1988) and Nairn (1989) recognized the 

discrete nature of transverse crack formation and estimated the energy released during the 

formation of a new transverse cracks between two existing transverse cracks, using a one-

dimensional shear-lag and a variational approach, respectively. Zhang, Fan and Soutis (1992b) 

proposed to use the resistance curve concept with the energy criterion in order to capture the 

experimental observation that it becomes more difficult for new transverse cracks to form as the 

transverse crack density increases. 

 



In the last decades, Finite Fracture Mechanics (FFM) (Hashin, 1996) has emerged as a novel 

approach that aims to address the limitations of Classical Linear Fracture Mechanics which can 

only deal with the growth of pre-existing cracks (see review by Weiβgraeber et al. 2016). The FFM 

concept assumes the instantaneous formation of cracks of finite size at initiation. Within the 

framework of FFM, Leguillon (2002) proposed a coupled stress and energy criterion to identify the 

critical loading and the corresponding crack size. As an application of this Coupled Criterion, first, 

initiation of transverse cracking in fibre-reinforced composites was investigated by Mantič (2009) 

and Mantič and García (2012), who examined crack onset and growth at fibre/matrix interface 

under transverse tension and biaxial load, respectively, assuming dilute fibre packing so that the 

influence of neighbouring fibres can be neglected. Second, García et al. (2014) investigated 

transverse cracking onset and growth in cross-ply laminates under tension, focusing on formation 

of the very first crack within the 90o ply and studying its growth within that ply. More recently, 

multiple cracking in cross-ply laminate using FFM and numerical modelling has been examined by 

Leguillon et al. (2017) and Li and Leguillon (2017). 

 

In this work, we extend Leguillon’s Coupled Criterion of FFM (Leguillon, 2002) to multiple 

transverse cracking in composite laminates. The plies are assumed to be homogeneous, therefore 

the processes inherent to the heterogeneities at the micro scale (e.g. in Aerteiro et al. (2014), 

Herráez et al. (2015), Saito et al. (2014), Távara et al (2017)) are not introduced explicitly in this 

analysis. The objective of this work is the prediction of the evolution of crack density with the 

increasing external load. The relationship between the evolution of crack density and the external 

load is predicted by the combination of the Coupled Criterion and the Equivalent Constraint Model 

(ECM) (Kashtalyan and Soutis, 2000; 2006). Thanks to the ECM, which provides analytical 

expressions for the energy released by the onset of a transverse crack in a damaged laminate and 

the stresses inside it, the applications of the Coupled Criterion can provide a semi-analytical 

expression relating the evolution of crack density and the external load. 

 

This paper describes in Sections 2 and 3 how the ECM is used to obtain closed-form expression for 

the stresses in the cracked laminate and its effective stiffness as a function of the crack density. 

Based on this expressions, in Section 4 the conditions given by the stress and energy criteria for 

the crack density progression are presented. The main results are discussed in Section 5. Finally, a 

comparison with experiments is presented in Section 6. 
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2. Stress analysis 

 

 
 

Figure 1. Schematic representation of a cross-ply laminate with multiple matrix cracks in the 90o 

layer. 

 

Consider a symmetric cross-ply s]90/0[ °°  composite laminate that consists of a 90o layer of 

thickness 902t  fully bonded between two 0o layers of thickness 0t . The inner 90o layer contains 

multiple transverse cracks spanning the full thickness of the inner layer and width w2  of the 

laminate. The cracks are assumed to be spaced uniformly with crack spacing s2 . The laminate is 

referred to the co-ordinate system 321 xxx , with 1x  axis parallel to the cracks (Fig. 1) and subjected 

to biaxial tension 2211,σσ  and in-plane shear loading 12σ . Due to periodicity of damage and 

symmetry of the sample, only a quarter of the representative segment bounded by two cracks 

(Fig. 1) needs to be considered in the analysis. 

 

The equilibrium equations in terms of ply stresses, averaged across the thickness of the layer and 

the depth of the laminate, have the form 
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where 21,ττ  are the interface shear stresses at the 0o/90o interface.  

 

 
Figure 2. Schematic of the assumptions made for the stress distribution along the laminate 

thickness. 

 

It is assumed that out-of-plane shear stresses vary linearly with 3x  in each ply but in the outer 0o 

layer this variation is restricted to the shear layer of thickness sh  (Fig. 2), so that 
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The interface shear stresses 21,ττ  can be expressed in terms of the in-plane displacements 
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The constitutive equations in terms of ply strains and ply stresses are 

 

































=
















)90(
12

)90(
22

)90(
11

)90(
66

)90(
22

)90(
12

)90(
12

)90(
11

)90(
12

)90(
22

)90(
11

~
~
~

00
0
0

~
~
~

σ
σ
σ

γ
ε
ε

S
SS
SS

, 
































=
















)0(
12

)0(
22

)0(
11

)0(
66

)0(
22

)0(
12

)0(
12

)0(
11

)0(
12

)0(
22

)0(
11

~
~
~

00
0
0

~
~
~

σ
σ
σ

γ
ε
ε

S
SS
SS

  (4a) 

 

,),,(
4

1~
90

90

31321
)90(

90

)90( ∫ ∫
− −

=
w

w

t

t
ijij dxdxxxx

wt
εε  .),,(

2
1~

090

90

31321
)0(

0

)0( ∫ ∫
−

+

=
w

w

tt

t
ijij dxdxxxx

wt
εε  (4b) 

 

In addition, it is also assumed that )0(
11

)90(
11

~~ εε =  associated to the generalized plane strain 

assumption, and crack surfaces are stress-free, i.e. 
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Equations (1)-(4) can be reduced to two uncoupled second-order ordinary differential equations 

with respect to in-plane ply stresses in the 90o layer 
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Solutions of these equations that satisfy boundary conditions, Eqn. (5), can be found as 
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where 
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The detailed derivation of the above equations can be found in Kashtalyan and Soutis (2000, 2006, 

2013), where a slightly different notation is used. 

 

3. Effective stiffness of the cracked layer 

Consider now an equivalent constraint laminate, in which the damaged layer is replaced with an 

equivalent homogeneous layer with degraded stiffness properties. The constitutive equations of 

the “equivalent” layer in the co-ordinate system 321 xxx  are 
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The macrostresses }{ )90(σ  and macrostrains }{ )90(ε  in the equivalent homogeneous layer can be 

determined from the in-plane ply stresses )90(~
ijσ  and ply strains )90(~

ijε  by integrating over the length 

s2 of the representative segment (Fig. 1) as 
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where s2  is the crack spacing. 

The equality between )90(
ijε  and )0(

ijε  is based on the assumption of generalized plane strain. The 

reduced in-plane stiffness matrix ][ )90(Q  of the equivalent homogeneous layer is related to the in-
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plane stiffness matrix ]ˆ[ )90(Q  of the undamaged layer via the In-situ Damage Effective Functions 

(IDEFs) )90(
66

)90(
22 , ΛΛ  (Zhang, Fan and Soutis, 1992a) as 
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where stDmc /90=  is the relative transverse crack density. The IDEFs )90(
66

)90(
22 , ΛΛ  can be expressed in 

terms of macrostresses )90(
ijσ  and macrostrains )90(

ijε  as 
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By substituting Eqn. (7a) into Eqn. (10) and then into Eqn. (12), closed-form expressions for the 

IDEFs, representing them as explicit functions of the relative transverse crack density stDmc /90=  

are obtained 
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The extension stiffness matrix of the equivalent constraint laminate can be calculated as 
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which relates the laminate macrostresses 2211 ,σσ  and in-plane shear loading 12σ  with the 

homogenised strains 11ε , 22ε  and 12γ . 
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4. Coupled criterion for multiple transverse cracking 

Formation of more cracks and the corresponding increase in the relative crack density from mc
iD  

to mc
fD  (Fig. 3) may be viewed as a finite fracture event (Hashin, 1996), which, in accordance with 

the Coupled Criterion (Leguillon, 2002), can occur if both energy criterion and stress criterion are 

fulfilled. 

 

 
 

Figure 3. Schematic representation of the laminate with transverse cracks (top view) 
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According to the maximum stress criterion, new cracks can form between the existing cracks if the 

following condition for the applied load 22σ  
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is fulfilled at some position(s) sx <|| 2 ; here tY  is the transverse tensile strength of the 

unidirectional lamina, and constants )90(
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22Ω  are given by Eq. (8). 

 

The condition expressed in Eq. (17) can be reformulated as a condition for the applied uniaxial 
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the stress criterion is, 
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where 22/ EYY tt=ε  is the unidirectional critical transverse strain of the lamina and 22E  is the 

transverse Young modulus of the lamina. 

 

Assuming that new cracks will appear at the most loaded position, i.e. in the middle between two 

cracks ( 02=x ), the previous condition can be specified as 
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From the energy perspective, formation of new cracks and increase of the crack density from mc
iD  

to mc
fD  is possible if the following condition is fulfilled 
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where iU  is the total strain energy stored in the laminate with the cracking density mc
iD , fU  is 

the total strain energy stored in the laminate with the crack density mc
fD , mcA∆  is the increase in 

the total fracture area of multiple transverse cracks, and cG  (J/m2) is the critical fracture 

toughness associated with matrix cracking, which could be taken as IcG  if Mode I cracking is 

assumed.  

 

The total strain energy stored in the laminate with the crack density mcD  can be calculated using 

the equivalent constraint laminate of the same length L  and same width w2  as 
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If the area of a single crack is 904wtamc = , the total area covered by all cracks is equal to 
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Since the coupled criterion requires the comparison of the stress and the energy criterion it is 

useful to express the condition in (23) in the same terms used for the stress criterion in Eq. (19). 

After some rearrangement the condition in (23) writes as, 
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where γ is a dimensionless brittleness number given by the following expression, 

 

90

221
t
EG

Y
c

t

=γ           (26) 
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id DDg  a dimensionless function which represents the ratio of dimensionless 

dissipated energy to dimensionless released energy, 
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For an increase in the number of cracks from N  cracks to 1+N  cracks, and the corresponding 

increase in crack density from mc
ND  and mc

ND 1+ , the energy criterion can be formulated as 
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Using Eqs. (21), (15), it can be re-written as 
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Under the applied uniaxial strain 22ε , Eq. (29) simplifies to 
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Replacing small increment with derivative yields a continuum formulation of the energy criterion 
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which can be rewritten in the same terms as the discrete version, 

 

,)(22 mc
c

t
Dg

Y
γε

ε
≥           (32) 

 

with γ  being given by Eq. (26) and the dimensionless function )( mc
c Dg  as, 
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Lim and Li (2005) have shown, using the variation approach, that the difference between 

incremental and continuous expressions for the energy release rates associated with transverse 

cracking is negligible provided that the number of cracks N  is large enough. 

 

The present approach is in fact based on the assumption that the parameters used in the Coupled 

Criterion, as maximum stress value and released energy, are only weakly influenced by some 

irregularities in crack distribution. Actually, according to experimental observations at the 

beginning, for small crack densities, the crack distribution in real specimen may not be very 

regular, but for larger crack densities it becomes quite regular and the present approach could 

capture the real behavior accurately. Thus, we can expect that the predictions by the present 

approach will fit well the real growth of crack density variable for large values. However, for very 
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small crack densities values, some differences, associated to a random and irregular location of 

cracks and to other statistical effects like scattering in strength within the lamina, can appear. 

 

5. Results and discussion 

The stress criterion, expressed in condition (19), is represented in Figure 4 for carbon/epoxy. In 

the context of the discrete formulation, this figure shows the relation between the normalized 

applied strain and the initial and final crack densities, assuming the crack density is doubled when 

the conditions for the damage progress are fulfilled. The material is carbon/epoxy, with properties 

listed in Table 1, and tYε  is the ultimate failure strain for transverse tension. For the continuous 

formulation the curve for the stress condition matches the curve for the discrete formulation 

which is function of the initial crack density. Observe that below a value of the applied strain no 

damage is expected because transverse stresses do not exceed the nominal unidirectional 

transverse strength of the lamina. Above a certain value the crack density grows with the applied 

strain. 

 

 

 

Figure 4. Stress criterion: Relative crack density stDmc /90=  as a function 

of the applied strain tYεε 22  for carbon/epoxy and 1/ 900 =tt . 

 

The energy criterion, expressed in Eqns. (25) and (32), is represented in Figure 5. The two 

formulations of the energy criterion are examined. Figure 5a-f shows the normalized crack density 

stDmc /90=  versus the normalized applied strain tYεε /22  as predicted by the discrete and 

continuous energy criteria, for a range of brittleness numbers tcT YtGE 90=γ and carbon/epoxy. 



Brittleness number γ , introduced by Mantič (2009) into the framework of FFM and specified for 

this problem by Garcia et al (2014), is a structural parameter that characterizes the transition from 

brittle to tough configurations by a suitable combination of stiffness, strength, fracture toughness 

and transverse layer thickness in a laminate. It can be viewed as a generalization to orthotropic 

materials of Carpinteri’s brittleness number introduced initially for isotropic materials (Carpinteri, 

1982). It can be observed from Fig 4 that the energy criterion curves shift upward with increasing γ

. This is due to the fact that the values of the critical strain predicted by the energy criterion are 

actually directly proportional to γ  (cf. Garcia et al, 2014). This can be viewed as a size effect where 

the predicted critical strain is inversely proportional to the square root of the transverse layer 

thickness 90t . 

 

Table 1. Elastic properties and thickness of composite laminates. 

Material 𝐸𝐸𝐿𝐿 (GPa) 𝐸𝐸𝑇𝑇 (GPa) 𝜈𝜈𝐿𝐿𝑇𝑇 𝐺𝐺𝐿𝐿𝑇𝑇(GPa) 𝑡𝑡 (mm) 

Carbon/epoxy 

(Zhang, Fan and Soutis, 1992a) 

144.8 11.38 0.3 6.48 0.150 

Glass/epoxy 

(Parvizi et al, 1978) 

42 14 0.278 5.83 0.150 

SiC/CAS 

(Soutis and Kashtalyan, 2011) 

121 112 0.2 44 0.150 
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a) 2.0=γ  b) 6.0=γ  

  
c) 0.1=γ  d) 4.1=γ  

  
e) 8.1=γ  f) 2.2=γ  

Figure 5. Energy criterion: Relative crack density stDmc /90= as a function of the normalised 

applied strain tYεε 22 for carbon/epoxy and 1/ 900 =tt . 

 



In the discrete formulation, doubling of the relative crack density is assumed, i.e. mc
i

mc
f DD 2= . The 

assumption of doubling the number of cracks is also used in Garrett and Bailey (1977), Nairn (2000) 

and Leguillon et al (2017). Thus, for any given crack density mc
i

mc DD ≡ , the discrete energy criterion 

estimates conditions for doubling that crack density. In contrast, the continuous energy criterion 

estimates conditions, under which, for any given mcD , just one new crack would appear. Both 

criteria predict an increase in the transverse crack density with the applied strain as expected, with 

the curve for the continuous formulation of the energy criterion lying between the curves for the 

discrete formulation (expressed as a function of the initial and final crack density). This has been 

proved in Appendix A and is a very relevant result because it explains why the continuous 

formulation of related approaches, widely used in the literature, see e.g. Hashin (1996), obtains a 

good agreement with experiments despite the inherent discrete nature of the process. In addition, 

as has been also proved in Appendix A, for small values of the relative crack density the two energy 

criteria are very close in their predictions, however as the crack density becomes larger they diverge 

from one another.  

 

To clarify the relationship between the discrete and continuous formulation, some possible crack 

density evolution according to the discrete formulation for different initial values of the crack 

density are plotted in Figure 6. As can be noticed the two curves corresponding to the discrete 

formulation represents the boundary of a region which encloses the possible paths for crack density 

progression. As can be observed these possible paths depend strongly on the initial crack density. 

Thus, the entire region between the two curves should be taken for prediction purposes. In this 

context, the continuous formulation, used in other works applying only the energy criterion, lies 

here in the middle of the region of possible states. 
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Figure 6. Energy criterion: Crack density evolution predicted by the discrete 

formulation for different values of the initial crack density and 

carbon/epoxy and 1/ 900 =tt . 

 

When applying the Coupled Criterion of FFM, the energy criterion is combined with the stress 

criterion. According to Leguillon’s hypothesis (Leguillon, 2002), the fracture event (in this case, the 

evolution of crack density) is governed by the more restrictive of the stress and energy criteria in 

each situation (in this case, for each value of the damage parameter mc
iD or mcD ).  

 

Figure 7a-f shows the relative crack density stDmc /90=  versus the normalized applied strain 

tYεε /22 as predicted by the coupled criterion comprising the stress criterion (SC) and the continuous 

energy criterion (EC), for a range of brittleness number 𝛾𝛾 values and for three composites whose 

properties are listed in Table 1. We observe that for brittleness numbers 2.0=γ  (Fig. 7a), 6.0=γ  



(Fig. 7b), and 0.1=γ  (Fig. 7c), the coupled criterion is dominated by the stress criterion, which 

appears to be more restrictive for the three material systems. However, for example, when 4.1=γ  

(Fig. 7d), the dominance switches from the stress criterion to the energy criterion for carbon/epoxy 

and glass/epoxy for certain values of crack densities. This transition happens at approximately

45.0≈mcD . For the brittleness number 8.1=γ  (Fig. 5e), the transition point is at 8.0≈mcD for 

carbon/epoxy laminate and at 9.0≈mcD  for glass/epoxy system. For higher values of brittleness 

number 2.2=γ  (Fig. 7f), the coupled criterion is dominated by the energy criterion for the three 

material systems.  

 

  
a) 2.0=γ  b) 6.0=γ  

  
c) 0.1=γ  d) 4.1=γ  
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e) 8.1=γ  f) 2.2=γ  

Figure 7. Relative crack density as a function of the normalized applied strain, as predicted by the 

stress criterion (SC) and the continuous formulation of the energy criterion (EC) for 1/ 900 =tt  and 

three composites whose properties are listed in Table 1.  

 

Figure 8a-d shows dependence of the relative crack density stDmc /90=  on the normalized applied 

strain tYεε /22 , as predicted by the Coupled Criterion, using the continuous formulation, for a range 

of layer thickness ratios 900 / tt . The material system is carbon/epoxy. As can be seen from Fig. 8a-d, 

the Coupled Criterion predictions match for 0.1;6.0;2.0=γ for all considered layer thickness ratios. 

The reason for this is that in this situation the failure is governed by the stress criterion. For 4.1=γ

, a clear transition from the energy criterion to the stress criterion within the coupled criterion is 

observed, while for 2.2;8.1=γ , the coupled criterion is dominated by the energy criterion. As can 

be observed the curves are very similar when varying the layer thickness ratio 900 / tt , showing a 

weak influence of this parameter.  

  



 

  

a) 5.0/ 900 =tt  b) 3.1/ 900 =tt  

  

c) 1.2/ 900 =tt  d) 9.2/ 900 =tt  

Figure 8. Relative crack density as a function of the normalized strain as predicted by the coupled 

criterion, for a range of layer thickness ratios and carbon/epoxy. 

 

Comparison with experimental data of Nairn (2000) 

Nairn (2000) plots crack density (in 1/mm) as a function of stress. To enable a preliminary 

comparison with our predictions, which show relative crack density as a function of normalized 

applied strain, we assume that stresses in Nairn’s (2000) curves correspond to the applied stress 

(i.e. applied force divided by the total cross-sectional area of the specimen). The change is carried 

out using Eqn. (16). The strength data for AS4/3506-1 are from Soden et al. (1998). 

 

Figure 9 presents the comparison between Nairn´s experiments and the model presented here. The 

comparison shows a good agreement for moderate and high values of the crack density in all 

laminates. Below a certain damage level 𝐷𝐷 ≈ 0.25 the model overestimates the strain level 

necessary for the progress of the crack density. This disagreement is likely due to the presence of 
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defects which generate premature transverse cracks. This idea suggests the need of including the 

randomness of the strength and fracture properties in the model. Although the damage level below 

which the prediction fails it is independent of the laminate thickness, in terms of the final damage 

level the damage interval for which the model fails is more relevant for the thinnest laminates. 

 

The three laminates studied by Nairn correspond to a) 38.4=γ , b) 09.3=γ and c) 19.2=γ , all being 

governed by the energy criterion. It would be interesting to compare with experiments of thicker 

laminates which corresponds to low values of gamma governed by the stress criterion. The stress 

criterion has been shown to be essential to explain transverse crack initiation, so it is foreseeable to 

be relevant for the whole transverse cracking process. 

 

 

a) s]90/0[  

 

b) s]90/0[ 2  



 

c) s]90/0[ 4  

Figure 9. Comparison of predictions by the model generated here with the experiments by Nairn 

(2000). 

 

Concluding remarks 

A new model to predict crack density evolution in cross-ply laminates subjected to tension is 

presented. Closed-form expressions for the evaluation of the criteria involved are provided thanks 

to the combination of the Equivalent Constraint Model and the Coupled Criterion of the Finite 

Fracture Mechanics. In addition this model can be evaluated using only some material properties 

which can be easily measured using well established standards as the typical elastic properties, 

transverse strength and transverse fracture toughness. 

It should be mentioned that for analysis of multiple matrix cracking in cross-ply laminate, the 

Coupled Criterion of FFM, combined here with the ECM, can be also used with any other method 

for stress analysis and released energy evaluation, for example, with variational approaches such 

as Nairn’s (2000) or finite element modelling such as in Leguillon et al. (2017), Li and Leguillon 

(2017). 

 

The discrete formulation of the energy criterion, with the assumption of doubling crack density 

lead to similar step-wise predictions of crack density evolution with the applied strain as 

presented by Leguillon et al. (2017). All possible paths for crack density progression have been 

demonstrated to be enclosed by the two curves of the discrete energy which are referred to the 

initial and the final crack density. Thus, the region of possible states between the two curves 

should be a good prediction. 

The first comparison with experiments shows a good agreement except for low values of the crack 

density, likely due to the presence of defects generating premature transverse cracking leading to 
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initially somewhat irregular crack distribution. This could be solved by including the effect of 

randomness in strength and fracture properties. In addition, in this paper, we assumed that matrix 

cracks are spaced uniformly, however, in reality this is not always the case. Small variations in the 

uniformity of crack distribution should not affect the predictions, but in general the effect of 

randomness needs to be taken into account when predicting initiation of matrix, see Li and 

Wisnom (1997), Wisnom (2000). However a new model including the randomness effect would 

require additional material properties which need extensive test campaigns. This fact would 

reduce the usability of the model proposed. 
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Appendix A. Proof of the relation between the different energy criteria 

The objective of this appendix is to show the relationship between the different curves 

representing the energy criteria in Figure 5. The curve corresponding to the energy criterion in the 

continuous formulation, Eqn. (31), is given by the derivative of the dimensionless strain energy (1-
)90(

220Λb ) with respect to the crack density. Figure A.1 shows the dimensionless strain energy as a 

function of the crack density for carbon/epoxy, which is a convex curve, as expected. Thus, the 

derivative implicated in the continuous formulation corresponds to the slope of the tangent to this 

curve. For comparison with the discrete formulation, we focus on a certain value 0DD = . The 

discrete formulation is based on the difference between two energetic states divided over the 

jump of crack density, see Eq. (23). In Figure A.1 this value corresponds to the slope of the secant 

between  0DD =  and 02DD = if the energy criterion is expressed as a function of the initial crack 

density or between 2/0DD =  and 0DD = if the criterion is expressed as a function of the final 

crack density. As can be observed in Figure A1 the slope of the tangent (giving the continuous 

formulation of the energy criterion) lies between the slopes of the two secants (giving the two 

curves for the discrete formulation) due to the convexity of the curve. As a consequence the curve 

corresponding to the continuous formulation of the energy criterion lies between the two curves 



of the discrete formulation as can be observed in Figure 5. In addition, for lower values of the 

crack density the difference between the slopes will be lower because the jumps and the 

curvature will be smaller. Thus, the three curves tend to the same point for vanishing crack density 

as can be observed in Figure 5. 

 

 
Figure A1. Dimensionless strain energy as a function of the normalized 

crack density. 
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