1	Selective catalytic reduction of NO _x with NH ₃ over short-range ordered W-O-Fe structures
2	with high thermal stability
3	
4	Ying Xin ¹ , Nana Zhang ¹ , Qian Li ¹ , Zhaoliang Zhang ^{1,*} , Xiaoming Cao ² , Lirong Zheng ³ , Yuewu
5	Zeng ⁴ , James A. Anderson ^{5,*}
6	
7	¹ School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of
8	Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China
9	² Center for Computational Chemistry, School of Chemistry and Molecular Engineering, East
10	China University of Science and Technology, Shanghai 200237, China
11	³ Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
12	⁴ Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Zhejiang
13	University, Hangzhou 310027, China
14	⁵ Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, University of
15	Aberdeen, AB24 3UE, United Kingdom
16	
17	
18	*Corresponding authors:
19	Zhaoliang Zhang: chm_zhangzl@ujn.edu.cn
20	James A. Anderson: j.anderson@abdn.ac.uk
21	

23 Abstract

24 The selective catalytic reduction (SCR) of NO_x with NH₃ was studied over poorly-25 crystalline W-Fe composite oxides (W_a FeO_x). The short-range order present within the W-O-26 Fe structure was found to be responsible for the excellent SCR activity, in which the strong 27 atomic-level interaction between Fe and W atoms promoted the formation of both Lewis and 28 Brønsted acidity. The W-O-Fe structure existed as amorphous overlayers, approximately 2 nm 29 thick over the surface of crystalline particles after high-temperature aging as shown by high-30 angle annular dark field scanning transmission electron microscopy (HAADF-STEM). After 31 treatment at 800°C for 5 h, the W_aFeO_x catalysts still showed almost 100% NO conversion in 32 the range 300-450°C with 100% N₂ selectivity, despite the loss in surface area. This resistance 33 to the impacts of high temperature ageing guarantees high activity of SCR catalysts which 34 often suffer during high-temperature excursions as in the case of diesel exhaust due to diesel 35 particulate filter (DPF) regeneration.

36

Keywords: Nitrogen oxides; Selective catalytic reduction; Ammonia; Short-range order; High
 thermal stability

- 39
- 40
- 41
- 42
- 43

44

46 1. Introduction

47 Nitrogen oxides (NO_x, referring to NO and NO₂) are major air pollutants, which contribute to 48 environmental issues such as acid rain, photochemical smog, atmospheric oxidant ozone increase 49 and haze and harm human health [1, 2]. To reduce these effects, the removal of NO_x from 50 anthropogenic sources including stationary (coal-fired power plants, etc.) and mobile sources 51 (motor vehicles) is crucial. Selective catalytic reduction (SCR) of NO_x with NH₃ has proved to 52 be an efficient means of reducing NO_x emission (deNO_x) [3-5]. V₂O₅-WO₃/TiO₂ is the most 53 widely used NH₃-SCR catalyst, which has been commercialized for deNO_x. However, the 54 disadvantages including the toxicity of vanadium, the narrow operational temperature window, 55 and the deterioration of the structure and constituents after high-temperature aging, restricts its 56 wider application [6, 7]. Development of new catalysts with improved NH₃-SCR performance 57 and research on active site identification continues. Amorphous active catalysts/active species 58 have attracted considerable attention due to their high activity.

59 As early as 1990s, the amorphous Cr_2O_3 catalyst was reported to exhibit superior SCR activity 60 and N_2 selectivity compared to its crystalline counterpart [8, 9]. In 2007, Tang *et al.* found that 61 the amorphous phase of MnO_x was much more active than its crystalline counterpart at low 62 temperatures [10]. Similar phenomena were also found for composite oxides, for example, 63 amorphous Mn and Ce species were thought to be responsible for SCR activity in Mn-supported TiO₂ [11, 12], and Ce-Ti mixed oxides [13-15], respectively. Significantly, the consensus for 64 65 composite oxides is that short-range ordered structure is the location of as active sites, as in Fe-66 O-Ti [16-18], Ce-O-Ti [19], and Ce-O-W [20] systems, thereby highlighting the pivotal role of 67 atomic-scale interaction.

68 It is well known that the amorphous structure is characterized by the absence of long-range 69 order [21], which is metastable and readily transformed into the crystalline phase or is 70 to phase separation after high-temperature treatment [22]. Both transformations generally lead 71 to decreased SCR activity [10, 14]. For instance, during the diesel particulate filter (DPF) 72 regeneration, the diesel exhaust gas temperature occasionally rises above 600°C, which may 73 causes severe deactivation of V_2O_5 -WO₃/TiO₂ catalysts [23]. Hence, the thermal stability of an 74 SCR catalyst is crucial if it is to withstand such harsh environment. In this study, short-range 75 ordered W-O-Fe active species in poorly-crystalline W-Fe composite oxides (W_a FeO_x) have 76 been developed which exhibit excellent NH₃-SCR activity. Most importantly, the W-O-Fe 77 structure was retained on the surface of a crystalline phase even after aging at 800°C for 5 h. 78 Despite a significant loss in surface area, NO conversion in the range 300-450°C was close to 79 100% with 100% N_2 selectivity. These findings demonstrate the importance of fabrication of 80 materials with short-range ordered W-O-Fe structure, which are highly dispersed at the 81 outermost surface layer of crystallites after high-temperature and long-term operation.

82

83 **2. Experimental**

84 **2.1 Sample preparation**

The W_{*a*}FeO_{*x*} catalysts (with a W/Fe atomic ratio of *a*, ICP data) was prepared by a coprecipitation method using an aqueous solution of sodium tungstate (Na₂WO₄·2H₂O, 200 mL) and ferrous sulfate (FeSO₄·7H₂O, 100 mL) with ammonium hydroxide (NH₃·H₂O, 25-28 wt.%) at 35°C, with the pH of the precipitation process maintained above 6.0 and that of the resulting solution maintained at 9.0. The total amount of the metallic salt precursor was 0.03 mol. Ascorbic acid (C₆H₈O₆, 100 mg) was added to the initial iron precursor solution to mol. 91 ascorbic acid ($C_6H_8O_6$, 100 mg) was added to the initial iron precursor solution to enhance the 92 reducibility of the Fe²⁺. The obtained slurry was aged at 35°C with stirring for 3 h and 93 subsequently filtrated and washed. The resulting solid was dried overnight at 70°C and calcined 94 at 500°C (or 800°C) for 5 h. For comparison purposes, Fe₂WO₆ was prepared by calcination of a 95 stoichiometric mixture of iron oxide and tungsten oxide [24]. The mechanically mixed catalyst 96 (Fe₂O₃-800+Fe₂WO₆) is thought to simulate the ideal W_{0.13}FeO_x catalyst with complete 97 crystallization.

98 2.2 Sample characterization

99 X-ray diffraction (XRD) patterns were recorded on a Rigaku D/max-2500/PC diffractometer 100 employing Cu K α radiation ($\lambda = 1.5418$ Å) operating at 50 kV and 200 mA. The Brunauer-101 Emmett-Teller (BET) surface area and pore structure were measured by N_2 102 adsorption/desorption using a Micromeritics 2020 M instrument. Before N₂ physisorption, the 103 sample was outgassed at 300°C for 5 h. Inductively coupled plasma-atomic emission 104 spectrometer (ICP-AES) experiments were carried out on the IRIS Intrepid IIXSP instrument 105 from Thermo elemental. Field emission scanning electron microscope (FESEM) was performed 106 on a Hitachi SU-70 microscope. High-resolution transmission electron microscopy (HRTEM) 107 equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analysis 108 (EDX) was conducted on a JEOL JEM-2010 microscope at an accelerating voltage of 200 kV. 109 High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) 110 images were recorded in a Tecnai F20. X-ray photoelectron spectroscopy (XPS) data were 111 obtained on an AXIS-Ultra instrument from Kratos Analytical using monochromatic Al Ka 112 radiation (225 W, 15 mA, 15 kV) and low-energy electron flooding for charge compensation. To 113 compensate for surface charge effects, the binding energies were calibrated using the C 1s

114 hydrocarbon peak at 284.80 eV. X-ray absorption fine structure (XAFS) measurements at the 115 W L_{III}-edge and Fe K-edge were performed in the transmission mode and fluorescence mode 116 at room temperature on the XAFS station of the 1W1B beamline of Beijing synchrotron 117 radiation facility (BSRF, Beijing, China), respectively. XAFS data were analyzed using 118 IFEFFIT software package [25]. In the least-squares-fitting procedure, the possible scattering 119 paths were also calculated using this software package.

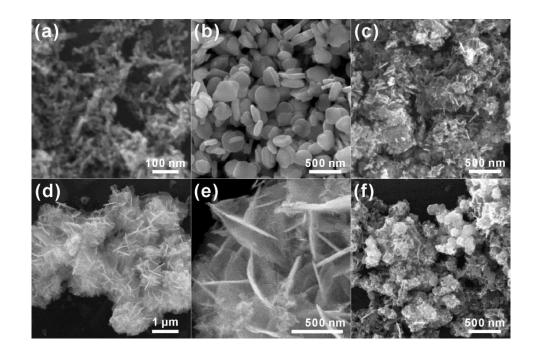
Temperature-programmed reduction in H_2 (H_2 -TPR) was performed in a quartz reactor with a thermal conductivity detector (TCD) to monitor the H_2 consumed. A 50 mg sample was pretreated *in situ* at 500°C for 1 h in a flow of O₂ and cooled to room temperature in the same gas. TPR was conducted at 10°C/min to 900°C in a 30 mL/min flow of 5 vol.% H_2 in N₂. CuO was used as a calibration reference.

The temperature-programmed desorption of NH₃ (NH₃-TPD) experiments were performed in a quartz reactor using 50 mg catalyst. NH₃ was monitored using a quadrupole mass spectrometer (MS; OmniStar 200, Balzers) with m/z=16. Prior to the experiments, the samples were pretreated at 500°C for 30 min in 10 vol% O₂/He (50 mL/min) and cooled to 100°C. Sample was exposed to 0.4 % NH₃ (50 mL/min) until the outlet NH₃ concentration was stable. The samples were then purged with He to remove any weakly absorbed NH₃ and then the heated to 800°C at 10°C/min.

The *in situ* FTIR spectra of reaction were recorded using a Bruker Tensor 27 spectrometer over the range 4000-400 cm⁻¹, with 16 scans, at a resolution of 4 cm⁻¹. Self-supporting wafers were pretreated in the IR cell at 500°C in a flow of He for 30 min to remove adsorbed species. After cooling to room temperature (RT) or 100°C, the background spectrum was recorded. The IR spectra were recorded at RT or 100°C in a flow of 500 ppm NH₃ + He (150 mL/min) 137 or 500 ppm NO + 500 ppm NH₃ + 5.3 % O₂ + He (300 mL/min). Samples were then heated to 138 450°C at 10°C/min.

139 **2.3 Catalytic testing**

140 The steady state SCR and NO oxidation activity over W_aFeO_x catalysts was tested in a fixed-141 bed quartz tube reactor (6.0 mm i.d.) with a thermocouple placed inside catalysts in the 142 temperature range of 150-500°C. In the SCR reaction, the model flue gas consisting of 500 ppm 143 NO, 500 ppm NH₃, 5.3 vol.% O₂, 10 vol.%, and balanced with He. The total flow rate 144 maintained at 300 mL/min, corresponding to a gas hourly space velocity (GHSV) of 50000 h⁻¹. 145 In the case of NO oxidation, the feed consisted of 500 ppm NO, and 5 vol.% O₂ with He as 146 balance. The total flow rate kept at 100 mL/min and the same GHSV (50000 h⁻¹) was used. 147 Concentrations of NO and NO₂ were monitored by chemiluminiscence analyzer (42i-HL, 148 Thermo). N₂O and NH₃ were detected by a quadrupole mass spectrometer (MS, OmniStar 200, 149 Balzers) using the m/z signals of 44 for N₂O, and 17 for NH₃. The data for steady-state activities 150 of catalysts were collected after ca. 1 h on stream. The durability tests of the catalysts were 151 performed in the SCR reaction feed at 300°C for 12 h.

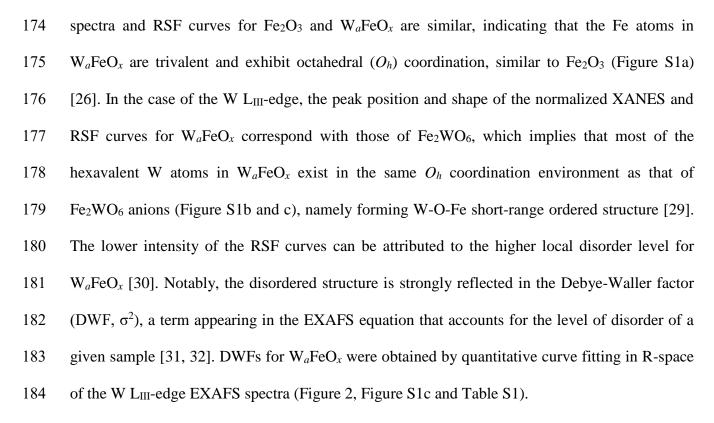

The reaction rate was measured using the same conditions as for steady-state reaction. However, in this case, the powder samples were pressed, crushed and sieved (100-200 mesh) prior to use. The GHSV was estimated as 200,000 h⁻¹. Isothermal reactions at 180°C were conducted at a stable and low NO_x conversion (\leq 15%) ensuring operation within the kinetic regime.

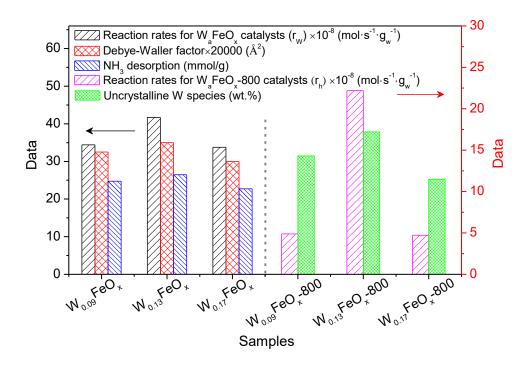
157

158 **3. Results and discussion**

159 XRD patterns of $W_a FeO_x$ show the presence of few Fe₂O₃ microcrystals in the large-scale 160 amorphous phase [26]. Strong interaction between W and Fe in the $W_a FeO_x$ inhibits 161 crystallization of the individual components during the precipitation process, and results in 162 much higher surface areas [19, 26, 27] and gives rise to the geometry and morphology changes 163 observed (Figure 1). The 3D flower-type structure of $W_a FeO_x$ is composed of numerous 164 irregular nanosheets which randomly stack together. The HAADF-STEM image and 165 corresponding elemental mapping confirmed that the W atoms are incorporated into the 166 rhombohedral matrix of Fe₂O₃ [26].

167




168

169 **Figure 1.** SEM images of W_a FeO_x catalysts: (a) Fe₂O₃, (b) WO₃, (c) $W_{0.09}$ FeO_x, (d, e) $W_{0.13}$ FeO_x,

170 and (f)
$$W_{0.17}$$
FeO_x.

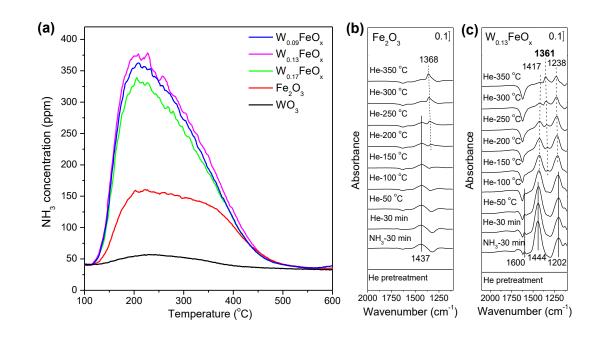
172 XAFS spectra were measured in order to obtain information about the local environment 173 around the specific atoms in poorly-crystalline W_a FeO_x [19, 28]. The Fe K-edge XANES

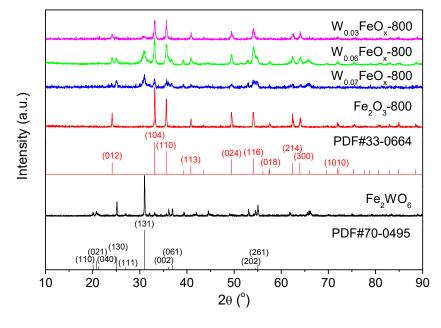
187Figure 2. Reaction rates normalized by W contents (r_W) , Debye-Waller factor (DWF), NH3188adsorption amount for W_a FeOx catalysts; reaction rates (r_h) and amount of non-crystalline W189species for W_a FeOx-800 catalysts.

190

191 In our previous studies [26], $W_a FeO_x$ promoted NO conversion at low temperature 192 compared with Fe₂O₃ and WO₃ due to the higher surface area and surface W/Fe atomic ratios 193 (Table S2). In the present work, the reaction rates of $W_a FeO_x$ normalized by W content (r_W) 194 were measured to provide a reliable correlation between the intrinsic activity and the amount 195 of W-containing species. As shown in Figure 2, the rw at 180°C shows a clear positive 196 correlation with the DWF for W_a FeO_x, suggesting that the W-O-Fe structure acts as the active 197 sites for $W_a FeO_x$ catalysts, as all W atoms participate in the formation of the W-O-Fe 198 structure.

199




Figure 3. (a) NH₃-TPD profiles for Fe₂O₃, WO₃, and W_aFeO_x catalysts; *in situ* FTIR spectra of NH₃ exposed to (b) Fe₂O₃ and (c) W_{0.13}FeO_x at room temperature and subsequently heated to 350° C in a flow of He.

204

205 To further clarify how the chemical properties of $W_a FeO_x$ were improved by the presence of 206 short-range ordered W-O-Fe structures, the redox properties and acidity were assessed, as these 207 are key characteristics associated with the SCR activity [7, 33-35]. As shown in the H₂-TPR 208 (Figure S2), the reduction of the Fe species was delayed for $W_a FeO_x$ in comparison with Fe₂O₃, 209 suggestive of interactions between W and Fe [36]. On the other hand, NH₃-TPD spectra show a 210 greater amount of ammonia desorption in the range 100-500°C (NH₃ adsorption on WO₃ is 211 negligible) (Figure 3a), indicating numbers of acid sites in W_a FeO_x. By using the integrated NH₃-212 TPD peak areas, the relative amounts of adsorbed NH₃ show a clear correlation with the reaction 213 rates of $W_a FeO_x$ (Figure 2), suggesting that the enhanced activity is primarily related to the 214 enhanced acidity derived from the strong interactions in the W-O-Fe structure.

215 To study the nature of species adsorbed on sites within the short-range ordered W-O-Fe 216 structure during NH₃ exposure, in situ FTIR spectra were collected (Figure 3b and c). Fe₂O₃ does 217 not show evidence for Lewis acidity although Brønsted acid sites are detected (~1437 cm⁻¹, 218 Figure 3b). The coordinated NH₃ (~1202 and 1600 cm⁻¹) suggests the presence of Lewis acidity on W_{0.13}FeO_x (Figure 3c) [12]. As for Brønsted acidity, a greater intensity peak ~1440 cm⁻¹ was 219 220 observed for $W_{0,13}$ FeO_x than Fe₂O₃. The increase in amounts of both the Lewis and Brønsted 221 acidity promotes catalytic activity [37-42]. With increasing temperature, both the peak intensities 222 due to adsorption at Lewis and Brønsted acid sites decreased, with the later exhibiting lower thermal stability compared with ammonia on Lewis acid sites. The band at ~1417 cm^{-1} nearly 223

disappeared at 350°C, whereas the band at 1238 cm⁻¹ is still clearly observed. An additional band at ~1361 cm⁻¹ was observed which could be ascribed to an oxidised product of adsorbed ammonia [38, 43, 44]. These results provide persuasive evidence that the atomic-scale interaction in the short-range ordered W-O-Fe structure enhances both Lewis and Brønsted acidity of the catalysts and these are favorable for catalytic activity.

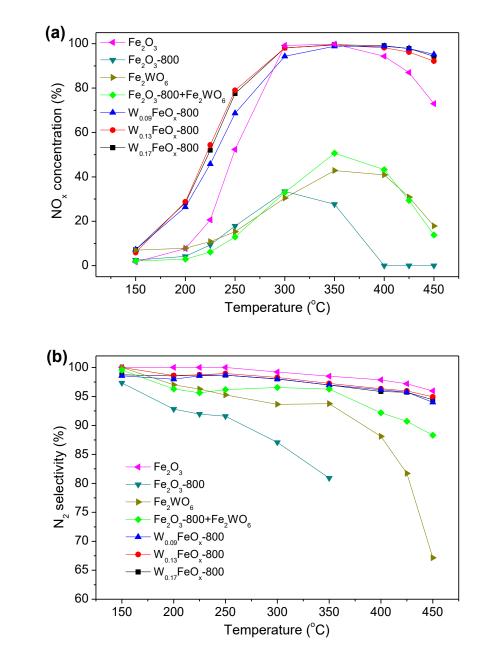
230

231

Figure 4. XRD patterns of Fe_2O_3 -800, Fe_2WO_6 , and W_aFeO_x -800 catalysts.

Table 1. Textural properties, XRD and ICP data of Fe_2O_3 -800 and W_aFeO_x -800 catalysts.

	.	_	_	Fe ₂ WO ₆	W mass	W contents	Non-
Sample	Surface area	Pore volume	Pore size	concentration	concentration	in Fe_2WO_6	crystalized W
Sample	alea	volume	SIZE	from XRD	from ICP[26]	phase	contents
	(m²/g)	/g) (cm³/g)	(nm)	(wt.%)	(wt.%)	(wt.%)	(wt.%)
W _{0.09} FeO _x -800	23.7	0.0843	16.4	4.42	16.4	2.1	14.3
W _{0.13} FeO _x -800	20.0	0.0573	14.1	12.82	23.2	6.0	17.2


W _{0.17} FeO _x -800	18.3	0.0657	14.4	33.91	27.4	15.9	11.5
Fe ₂ O ₃ -800	2.5	0.0078	67.3				

- 234
- 235

236 To determine the stability of the short-range ordered W-O-Fe structure at higher temperature, 237 the W_aFeO_x samples were calcined at high temperature (800°C, 5 h) (denoted as W_aFeO_x-800). 238 An increase in calcination temperature (Figure 4), results in the emergence of a new phase, 239 Fe_2WO_6 (JCPDS 70-0495) in addition to Fe_2O_3 , indicating a transformation from amorphous to 240 crystalline. This confirmed the XAFS results that W in $W_a FeO_x$ exists in the O_h coordination 241 environment as in Fe_2WO_6 . From quantitative analysis of W concentrations (wt.%) in Fe_2WO_6 242 phase over different samples on the basis of XRD data, it is interesting to note that the 243 concentrations are lower than those obtained by ICP, suggesting that only a part of the 244 amorphous W-containing species in W_a FeO_x are transformed into Fe₂WO₆ crystallites, while the 245 other remains in an amorphous state (Table 1). As shown in Table 1, $W_{0.13}$ FeO_x-800 possesses 246 the highest non-crystalized W content. As expected, the BET surface area was significantly 247 decreased on increasing the calcination temperature.

248 SCR performances of W_a FeO_x-800 catalysts show that the increasing calcination temperature 249 resulted only in the decrease of low-temperature activity due to the decreased BET surface area, 250 but had no clear influence on the high-temperature activity (Figure 5). Furthermore, NO_x 251 conversion for $W_{0,13}$ FeO_x-800, as an example, was stable over a 12 h test period (Figure S3). The 252 high activity at 300-450°C compared with the low activity of Fe₂O₃-800 might be ascribed to 253 Fe_2WO_6 microcrystals or the synergistic effect of Fe_2O_3 and Fe_2WO_6 microcrystals. However, 254 this proposal is rejected based on the poor SCR activity of pure Fe₂WO₆ and Fe₂O₃-800+Fe₂WO₆ 255 samples (Figure 5). The latter is thought to simulate the ideal $W_{0.13}$ FeO_x catalyst with complete

256 crystallization. It remains unanswered as to whether the retained activity is related with the 257 residual amorphous phase and where these are located.

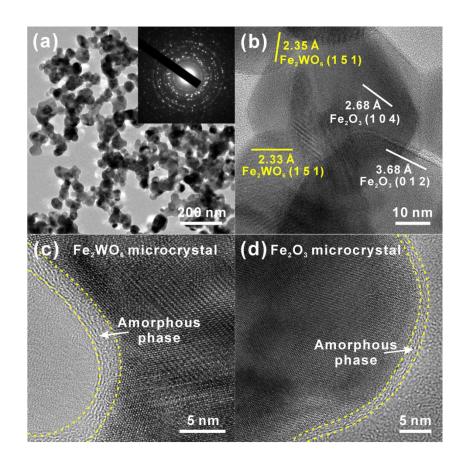


Figure 5. (a) NO_x conversion and (b) N₂ selectivity of W_aFeO_x-800 catalysts and reference

samples.

264 Figure 6 shows TEM images for W_{0.13}FeO_x-800. The well-crystallized Fe₂O₃ and Fe₂WO₆ 265 microcrystals are randomly aggregated for $W_{0.13}$ FeO_x-800 (Figure 6a). Based on the extensive 266 characterization, the Fe₂WO₆ phase consists of long-range ordered W-O-Fe structures, which are 267 derived from the sintering of the coordinated W, O, and Fe atoms in amorphous phase (Figure 268 S4). HRTEM was used to provide directly interpretable images of W_a FeO_x-800 to search for the 269 remaining amorphous phases (Figure 6b-d). Surprisingly, an amorphous phase layer of ~2 nm 270 thickness was detected on the surfaces of Fe₂WO₆ and Fe₂O₃ microcrystals for W_{0.13}FeO_x-800. 271 According to the semi-quantitative analysis of surface atomic concentrations (% as molar ratio) 272 over W_{0.13}FeO_x-800 from XPS data, the surface W/Fe atomic ratio was 0.48, which is much 273 higher than the surface and bulk ratios for $W_{0,13}$ FeO_x (XPS and ICP data [26], respectively, Table 274 S2), suggesting an enrichment of amorphous W-containing species on the surface.

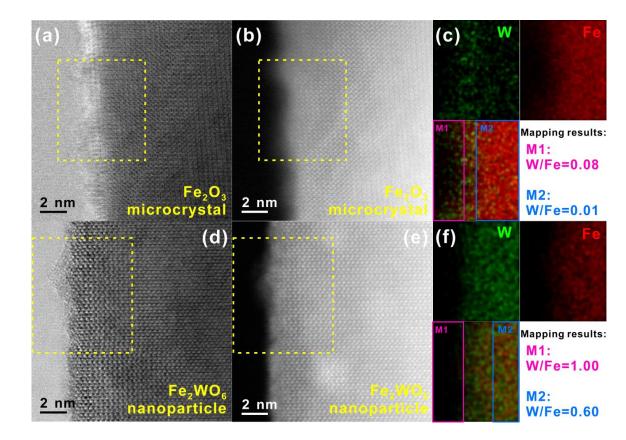

275

Figure 6. (a) TEM images with SAED patterns (insets), (b-d) HRTEM images for $W_{0.13}$ FeO_x-

800.

279

Figure 7. HRTEM images and EDX analysis of Fe_2O_3 and Fe_2WO_6 nanoparticles in $W_{0.13}FeO_{x^-}$ 800 catalyst: (a) HRTEM bright-field image, (b) HAADF image, and (c) EDX mapping results of the region in the yellow dashed box for a Fe_2O_3 nanoparticle; (d) HRTEM bright-field image (e) HAADF image, and (f) EDX mapping results of the region in the yellow dashed box for a Fe_2WO_6 nanoparticle.

286

The chemical composition of the amorphous overlayer was determined by HAADF-STEM in conjunction with the corresponding EDX mappings (Figure 7). The latter was acquired from both the overlayer and the inside of Fe_2O_3 and Fe_2WO_6 nanoparticles. HAADF-STEM clearly

290 shows that the Fe atoms are homogeneously distributed over the Fe_2O_3 nanoparticle, while the W 291 atoms are detected primarily on the surface of the amorphous overlayers of the Fe_2O_3 292 nanoparticles (Figure 7a-c). EDX gives a W/Fe molar ratio of about 0.08 for the amorphous 293 overlayer on the Fe_2O_3 nanoparticle, which is much higher than that in the Fe_2O_3 nanoparticle 294 (0.01), suggesting that W atoms are primarily doped in the amorphous Fe-O overlayer of the 295 Fe₂O₃ nanoparticle (Figure 7a-c), with similar short-range ordered W-O-Fe structure as in 296 W_aFeO_x. Comparatively, HAADF-STEM images of the Fe₂WO₆ nanoparticle show Fe and W 297 atoms throughout the whole section (Figure 7d-f). EDX indicates that the W/Fe molar ratio of the 298 overlayer on the Fe_2WO_6 nanoparticle is 1.00, consistent with that of the short-range ordered W-299 O-Fe structure. On extending to the inside of the Fe_2WO_6 nanoparticle, the W/Fe molar ratio 300 decreases to 0.60, which is very close to that of the bulk Fe_2WO_6 . The above analysis confirms 301 that the non-crystallized W species as derived from XRD are mainly located in the amorphous 302 overlayers of the Fe₂O₃ and Fe₂WO₆ nanoparticles, which agrees well with the XPS. 303 Consequently, the retained high-temperature activity of $W_a FeO_x$ -800 is a consequence of the 304 amorphous phase on the surface of microcrystals.

Following the same strategy as applied to W_aFeO_x , the reaction rates (r_h) of W_aFeO_x -800 were also measured (Figure 2). Apparently, the variation of r_h correlates well with the amount of amorphous W-containing species (Figure 2 and Table 1), providing proof that the intrinsic activity was derived from the W-O-Fe structure on the surface amorphous overlayer. In other words, the short-range ordered W-O-Fe active sites in W_aFeO_x were retained in the W_aFeO_x -800 in the form of the surface amorphous overlayer, which ensures retained the high-temperature activity at 300-450°C after aging at 800°C for 5 h.

313 4. Conclusions

314 Poorly-crystalline W-Fe composite oxides (W_a FeO_x), consisting of short-range ordered W-315 O-Fe structures were prepared. A direct correlation between the level of disorder and the 316 intrinsic activity indicated that the short-range ordered W-O-Fe structure hosts the active 317 catalytic sites. Strong atomic-level interactions between Fe and W atoms within the disordered 318 W-O-Fe structure was shown and this enhanced the amounts of Lewis and Brønsted acidity, 319 leading to improved $deNO_x$ activity. Of significance, the short-range ordered W-O-Fe 320 structure was retained as amorphous overlayers over the surface of crystalline particles after 321 aging at 800°C for 5 h, leading to the retention of activity. This finding may open up new 322 pathways in the fabrication of the active $deNO_x$ catalysts with high thermal stability by 323 rationally enhancing atomic-scale interactions between heteroatoms in composite oxides.

324

325 Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 21477046, 21333003, and 21673072) and Key Technology R&D Program of Shandong Province (No. 2016ZDJS11A03).

329

330 **References**

- 331 [1] H. Bosch, F. Janssen, Catal. Today 2 (1988) 369-532.
- 332 [2] M.V. Twigg, Appl. Catal. B: Environ.70 (2007) 2-15.
- 333 [3] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B: Environ. 18 (1998) 1-36.
- 334 [4] J.H. Li, H.Z. Chang, L. Ma, J.M. Hao, R.T. Yang, Catal. Today 175 (2011) 147-156.
- 335 [5] S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Catal. Rev. 50 (2008) 492-531.

- 336 [6] Z.G. Liu, N.A. Ottinger, C.M. Cremeens, Atmos. Environ. 104 (2015) 154-161.
- 337 [7] F.D. Liu, Y.B. Yu, H. He, Chem. Commun. 50 (2014) 8445-8463.
- 338 [8] E. Curry-Hyde, A. Baiker, Ind. Eng. Chem. Res. 29 (1990) 1985-1989.
- 339 [9] H.E. Curry-Hyde, H. Musch, A. Baiker, Appl. Catal. 65 (1990) 211-223.
- 340 [10] X.L. Tang, J.M. Hao, W.G. Xu, J.H. Li, Catal. Commun. 8 (2007) 329-334.
- 341 [11] P.G. Smirniotis, D.A. Peña, B.S. Uphade, Angew. Chem. Int. Ed. 40 (2001) 2479-2482.
- 342 [12] D.A. Peña, B.S. Uphade, P.G. Smirniotis, J. Catal. 221 (2004) 421-431.
- 343 [13] W.Q. Xu, Y.B. Yu, C.B. Zhang, H. He, Catal. Commun. 9 (2008) 1453-1457.
- 344 [14] X. Gao, Y. Jiang, Y. Zhong, Z.Y. Luo, K.F. Cen, J. Hazard. Mater. 174 (2010) 734-739.
- 345 [15]X. Gao, Y. Jiang, Y.C. Fu, Y. Zhong, Z.Y. Luo, K.F. Cen, Catal. Commun. 11 (2010) 465346 469.
- 347 [16] F.D. Liu, H. He, C.B. Zhang, Chem. Commun. (2008) 2043-2045.
- 348 [17] F.D. Liu, H. He, Y. Ding, C.B. Zhang, Appl. Catal. B: Environ. 93 (2009) 194-204.
- [18]F.D. Liu, H. He, C.B. Zhang, Z.C. Feng, L.R. Zheng, Y.N. Xie, T. D. Hu, Appl. Catal. B:
 Environ. 96 (2010) 408-420.
- [19] P. Li, Y. Xin, Q. Li, Z.P. Wang, Z.L. Zhang, L.R. Zheng, Environ. Sci. Technol. 46 (2012)
 9600-9605.
- 353 [20] Y. Peng, K.Z. Li, J.H. Li, Appl. Catal. B: Environ. 140-141 (2013) 483-492.
- 354 [21] D.A. Drabold, Eur. Phys. J. B 68 (2009) 1-21.
- 355 [22]D.L. Cocke, Int. J. Min. Met. Mater. 38 (1986) 70-75.
- 356 [23] B. Guan, R. Zhan, H. Lin, Z. Huang, Appl. Therm. Eng. 66 (2014) 395-414.
- 357 [24] J.J. Pak, M. Bahgat, M.K. Paek, J. Alloy. Compd. 477 (2009) 357-363.
- 358 [25] M. Newville, J. Synchrotron Radiat. 8 (2001) 322-324.

- 359 [26] Y. Xin, N.N. Zhang, Q. Li, Z.L. Zhang, X.M. Cao, L.R. Zheng, Y.W. Zeng, J.A. Anderson,
- 360 ACS Catal. (2018) DOI: 10.1021/acscatal.7b02638.
- 361 [27]B.M. Reddy, A. Khan, Catal. Rev. 47 (2007) 257-296.
- 362 [28] D. C. Koningsberger, R. Prins, Trac-Trend. Anal. Chem. 1 (1981) 16-21.
- 363 [29] S. Yamazoe, Y. Hitomi, T. Shishido, T. Tanaka, J. Phys. Chem. C 112 (2008) 6869-6879.
- 364 [30] L.S. Cavalcante, M.A.P. Almeida, W.A. Jr., R.L. Tranquilin, E. Longo, N.C. Batista, V.R.
- 365 Mastelaro, M.S. Li, Inorg. Chem. 51 (2012) 10675-10687.
- 366 [31]B.K. Teo, EXAFS: Basic principles and data analysis. Springer-Verlag: Berlin, 1986.
- 367 [32]Z.M. Qi, C.S. Shi, Y.G. Wei, Z. Wang, T. Liu, T.D. Hu, Z.Y. Zhao, F.L. Li, J. Phys.:
- 368 Condens. Matter 13 (2001) 11503-11509.
- 369 [33]S.J. Yang, J.H. Li, C.Z. Wang, J.H. Chen, L. Ma, H.Z. Chang, L. Chen, Y. Peng, N.Q. Yan,
 370 Appl. Catal. B: Environ. 117-118 (2012) 73-80.
- 371 [34] J.P. Chen, R.T. Yang, Appl. Catal. A: Gen. 80 (1992) 135-148.
- 372 [35]R.K. Grasselli, A.W. Sleight, Structure-activity and selectivity relationships in
 373 heterogeneous catalysis. Elsevier: New York, 1991.
- 374 [36]K. Arakawa, S. Matsuda, H. Kinoshita, Appl. Surf. Sci. 121-122 (1997) 382-386.
- 375 [37] R.Q. Long, R.T. Yang, J. Catal. 207 (2002) 224-231.
- 376 [38]Q. Li, H.C. Gu, P. Li, Y.H. Zhou, Y. Liu, Z.N. Qi, Y. Xin, Z.L. Zhang, Chin. J. Catal. 35
 377 (2014) 1289-1298.
- 378 [39] R.Q. Long, R.T. Yang, J. Catal. 190 (2000) 22-31.
- 379 [40] M.A. Larrubia, G. Ramis, G. Busca, Appl. Catal. B: Environ. 27 (2000) L145-L151.
- 380 [41] S.D. Lin, A.C. Gluhoi, B.E. Nieuwenhuys, Catal. Today 90 (2004) 3-14.
- 381 [42] Y. Shu, H. Sun, X. Quan, S. Chen, J. Phys. Chem. C 116 (2012) 25319-25327.

- 382 [43]Z.M. Liu, H. Su, J.H. Li, Y. Li, Catal. Commun. 65 (2015) 51-54.
- 383 [44] L. Chen, J.H. Li, W. Ablikim, J. Wang, H.Z. Chang, L. Ma, J.Y. Xu, M.F. Ge, H. Arandiyan,
- 384 Catal. Lett. 141 (2011) 1859-1864.