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Abstract Many biological systems consist of branching
structures that exhibit a wide variety of shapes. Our under-
standing of their systematic roles is hampered from the start
by the lack of a fundamental means of standardizing the
description of complex branching patterns, such as those of
neuronal trees. To solve this problem, we have invented the
Topological Morphology Descriptor (TMD), a method for
encoding the spatial structure of any tree as a “barcode”, a
unique topological signature. As opposed to traditional mor-
phometrics, the TMD couples the topology of the branches
with their spatial extents by tracking their topological evo-
lution in 3-dimensional space. We prove that neuronal trees,
as well as stochastically generated trees, can be accurately
categorized based on their TMD profiles. The TMD retains
sufficient global and local information to create an unbi-
ased benchmark test for their categorization and is able to
quantify and characterize the structural differences between
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distinct morphological groups. The use of this mathemati-
cally rigorous method will advance our understanding of the
anatomy and diversity of branching morphologies.
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Introduction

The analysis of complex branching structures, such as
branched polymers (Alexandrowicz 1985), viscous finger-
ing (Agam et al. 2002), and fractal trees (Mandelbrot and
Freeman 1983), is essential for understanding a great vari-
ety of physical and biological processes. For example, the
fundamental units of the nervous system, neurons, possess
highly ramified arborizations (Jan and Jan 2010) that are
thought to reflect their involvement in different compu-
tational tasks (Cuntz et al. 2007; Zomorrodi et al. 2010;
Van Elburg and Van Ooyen 2010; Ferrante et al. 2013). In
order to understand the properties of branching morpholo-
gies we must study the differences between distinct arbor
types. Much effort has therefore been devoted to grouping
morphologies into distinct classes (DeFelipe et al. 2013;
Markram et al. 2004; The Petilla Interneuron Nomenclature
Group P 2008), a categorization process that is important
in many fields (Lyons et al. 1999). However, an efficient
method for quantitatively analyzing the morphology of such
structures has proved difficult to establish.

In general, the properties of branching morphologies
have been rigorously studied in two extreme cases: in the
limit of the full complexity of the structures (Carlsson
2009), where the entire set of points is used, and in the
opposite limit of feature extraction (DeFelipe et al. 2013;
Gomez-Gil et al. 2008; Blackman et al. 2014), where a
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(typically small) number of selected morphometrics (i.e.,
statistical features) are extracted from the morphology.

Topological data analysis (TDA) has been shown to reli-
ably identify geometric objects based on a sampled point
cloud when they are built out of well-understood pieces,
such as spheres, cylinders and tori (Carlsson 2009). It suf-
fers, however, from the deficiency that reliable grouping of
complex geometric trees by standard TDA methods, such
as Rips complexes (Edelsbrunner and Harer 2008), requires
thousands of sampled points, which is expensive in terms of
both computational complexity and memory requirements.

Feature extraction is thus the only currently feasible
solution to establishing a more quantitative approach to ana-
lyzing branching morphologies (Scorcioni et al. 2008; Ling
et al. 2012; The Petilla Interneuron Nomenclature Group P
2008). While this approach has been efficiently used in spe-
cific fields of image recognition (Schurer 1994), the extreme
diversity of the branching patterns of neurons (Markram
et al. 2004) makes it difficult to identify an optimal set of
statistical features that can reliably describe all their shapes.
Neuronal classification has traditionally focused on visu-
ally distinguishing the shapes observed under a microscope
(Masseroli et al. 1993), a method that is subject to large
variation between experts (DeFelipe et al. 2013).

For this reason, experts generate a digital version of a
cell’s structure - a neuronal reconstruction (Dieter 2000) as
a set of points in R

3 sampled along each branch, together
with edges connecting adjacent pairs of points. This recon-
struction is a mathematical tree that represents the neuron’s
morphology and can be used for the extraction of its mor-
phological properties. To avoid overfitting, which is a result
of using a large number of features when few individual
cells are available, feature selection is performed by experts
who identify the relevant morphometrics for each group of
cells. Many sophisticated variants of the standard morpho-
logical features have been proposed over the years, such as
tree asymmetry (Van Pelt et al. 1991, 2001, 2005), centrifu-
gal ordering (Van Pelt et al. 1989) and Strahler ordering
(Strahler 1952; Berry and Bradley 1976; Ledderose et al.
2014), to describe the topology of branching structures.
However none of those measurements preserves the correla-
tions between distinct features. In addition, feature selection
is subjective, and alternative sets of morphometrics result
in different classifications (DeFelipe et al. 2013), as illus-
trated in Fig. 1 (see also SI: Figs. S1-S2), since the statistical
features commonly overlap even across markedly differ-
ent morphological types. This is a direct consequence of
the significant loss of information introduced by feature
selection, as the dimensionality of the data is substantially
reduced.

Fig. 1 Illustration of the separation of similar tree structures into
distinct groups, using topological analysis. The colored pie segments
show six distinct tree types: three neuronal types (upper half) and three
artificial ones (lower half). The thick blue lines show that our topolog-
ical analysis can reliably separate similar-looking trees into groups. It
is accurate both for artificially-generated trees and neuronal morpholo-
gies. The dashed green lines show that classification using an improper
set of user-selected features (number of branches, total length) cannot
distinguish the correct groups

As a result, neither using the full point cloud of the
trees nor performing expert-dependent feature selection are
suitable to reliably study complex branching morphologies.
In order to address this issue, we propose a standardized
topological descriptor, the Topological Morphology Des-
criptor (TMD), of any branching morphology. The TMD
algorithm encodes the branching pattern of the morphology
by discarding local fluctuations with little information con-
tent, such as the position of the nodes between branch points
and thus reduces the computational complexity of a tree.
The TMD couples the topology of the branching structure
with the embedding in the metric space, encoding the over-
all shape of the tree. Note that the TMD is not a complete
invariant that fully describes the original tree, but a simpli-
fication that retains enough information to perform well in
the proposed discrimination tasks, by mapping the tree to
a topological representation with less information loss than
the usual morphometrics.

The TMD algorithm takes as input the partially ordered
set of branch points (nodes with more than one child) and
leaves (nodes with no children) of the tree, where the order
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Fig. 2 Application of
topological analysis to a
neuronal tree (A) showing the
largest persistent component
(red). The persistence barcode
(B) represents each component
as a horizontal line whose
endpoints mark its birth and
death in units that depend on the
choice of the function f used
for the ordering of the nodes of
the tree. In our case, it is radial
distance of the nodes from the
root (R), so the units are
microns. The largest component
is again shown in red together
with its birth (I) and death (II).
This barcode can be
equivalently represented as
points in a persistence diagram
(C) where the birth (I) and death
(II) of a component are the X
and Y coordinates of a point
respectively (in red). The
diagonal line is a guide to the
eye and marks points with the
same birth and death time

a b

c

is given by the parent-child relation, and produces a multi-
set of intervals on the real line known as a persistence
barcode (Carlsson 2009), Fig. 2b. Each interval encodes
the lifetime of a connected component in the underlying
structure (see Glossary), identifying when a branch is first
detected (birth) and when it connects to a larger subtree
(death). This information can be equivalently represented in
a persistence diagram (Carlsson 2009), Fig. 2c in which the
pair of birth-death times determines a point in the real plane.
Either representation greatly simplifies the mathematical
analysis of the trees.

This approach provides a simplified comparison pro-
cess, since distances inspired by persistent homology theory
(Carlsson 2009) can be defined between the outputs of
the TMD algorithm (see SI: Distances between persis-
tence diagrams). Existing methods for computing distances
between trees, such as the edit distance (Bille 2005), the
sequence representation (Gillette and Ascoli 2015; Gillette
et al. 2015), the blastneuron distance (Wan et al. 2015)
and the functional distortion distance (Bauer et al. 2014),
are in general not universally appropriate, and therefore
not biologically useful, and computationally expensive (see
SI:Distances between trees).

Our method, in contrast, is applicable to any tree-like
structure. We demonstrate its generality by applying it first
to a collection of artificial random trees, (see SI: Random

trees generation), and then to various groups of neuronal
trees (see Information Sharing Statement). Our results show
that the TMD of tree shapes can be used effectively to
assign a reliability measure to different proposed groupings
of random and neuronal trees (Fig. 1). Provided that the
available set of morphologies is representative of the bio-
logical diversity, we generate a diversity profile (Leinster
and Cobbold 2012) that reflects the abundance of species as
well as their differences, in order to further investigate the
effects of different classification schemes (see SI: Diversity
Index).

Methods

The extraction of the barcode from an embedded tree T is
described by the TMD algorithm. Let T be a rooted, and
therefore oriented, tree (Knuth 1998), embedded in R

3. Note
that the operation described here is generalizable to trees
embedded in any metric space. We denote by N := B ∪ L

the set of nodes of T , which is the union of the set of branch
points B and the set of leaves L. In the case of a neuron, the
root R is the node representing the soma. Each node n ∈ N

has references to its parent, i.e., the first node on the path
toward the root, and to its children. Nodes with the same
parent are called siblings.
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Let f be a real-valued function defined on the set of
nodes of T . Any function f that is defined on the nodes of
T can be used with the TMD algorithm, such as the radial
distance, the path distance, the branch length, or the branch
order (see SI, Fig. S4). Alternative functions should serve to
reveal shape characteristics that are independent from each
other and therefore be suitable for different tasks. For the
purpose of this study we define f to be the radial distance
from the root R. For each n ∈ N , let Tn denote the sub-
tree with root at the node n, and Ln the set of leaves of Tn.
We define a function v : N → R, computed by the TMD
algorithm, by v(n) = max{f (x) | x ∈ Ln}. An ordering of

siblings can then be defined based on v: if n1, n2 ∈ N , are
siblings and v(n1) < v(n2), then n1 is younger than n2.

The algorithm is initialized by setting the value of
v(l), l ∈ L equal to the value of f (l). The leaves l ∈ L are
added to a set of nodes, denoted A, which keeps a record
of the active nodes. Following the path of each leaf l ∈ L

toward the root R, all but the oldest (with respect to v) sib-
lings are killed, i.e., removed from A, at each branch point.
If siblings have the same value v it is equivalent to kill any
one of them. For each killed component one interval (birth-
death) is added to the persistence barcode (Fig. 2). The older
sibling cm is replaced by its parent in A and the value v(p)
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of its parent is set to f (cm). This operation is applied iter-
atively to all the nodes until the root R is reached. At this
point A contains only one component, the largest one.

When all the branches are outgoing, i.e., the radial dis-
tance of the origin of a branch is smaller than the radial
distance of its terminal point, the TMD algorithm is equiv-
alent to computing the barcode associated to a filtration
of concentric spheres of decreasing radii, centered at R

(Fig. 2). In this case, the birth time of a component is the
supremum of the radii of the spheres that do not contain
the entire component. The death time is the infimum of the
radii of the spheres that contain the branch point at which
the component merges with a longer one.

The computational complexity of the TMD algorithm is
linear in the number of nodes. Note that the if statement
in line 9 of the algorithm is critical for the linear complex-
ity. The number of currently active children is saved at each
parent node to avoid quadratic complexity.

This process results in a set of intervals on the real line,
each of which represents the lifetime of one component of
the tree. The TMD algorithm that associates a persistence
barcode TMD(T , f ) to a tree T is invariant under rotations
and translations, as long as the function f is also. In this
paper, f is the radial distance from R and as such it is
invariant under rotations about the root and rigid translations
of the tree in R

3.

The most common topological metric that is used to
compare persistence diagrams is the bottleneck distance
(Edelsbrunner and Harer 2008), denoted dB . Given a match-
ing (i.e., a bijection) between two persistence diagrams
D1, D2, we define the L∞ distance as the maximum dis-
tance between matched points. The bottleneck distance
dB(D1, D2) is the infimum over all L∞ distances for the
possible matchings between the two persistence diagrams
(Edelsbrunner and Harer 2008).

We prove that TMD: (T , f ) �→ TMD(T , f ) is stable with
respect to the bottleneck distance (see SI: Stability of TMD).
For ε-small modifications of certain types in the tree T ,
the persistence diagram TMD(T , f ) is not modified more
than O(ε). In particular, the method is robust with respect
to small perturbations in the positions of the nodes and the
addition/ deletion of small branches.

However, none of the standard topological distances
between persistence diagrams is appropriate for the com-
parison of neuronal trees. The bottleneck distance as well
as distances stable with respect to it, such as the persis-
tence distortion distance (Dey et al. 2015) (see SI: Distances
between trees) cannot distinguish diagrams that differ in
their short components, which are nevertheless important
for the distinction of neuronal morphologies.

We therefore define in the space of the barcodes an
alternative distance dBar that we use to compare branch-
ing morphologies. For each barcode we generate a density
profile as follows: ∀x ∈ R the value of the histogram is
the number of intervals that contain x, i.e., the number of
components alive at that point. The TMD-distance between
two barcodes TMD(T1, f ) and TMD(T2, f ) is defined as
the integral of the absolute differences between the den-
sity profiles of the barcodes. This distance is not stable for
a large number of ε-perturbations of the tree, but it is the
only distance we are aware of that succeeds in capturing
the differences between the short components of persistence
barcodes. This distance is similar to Sholl analysis (Sholl
1953) with a few fundamental differences (see SI: Distances
between neurons). However, since this density profile col-
lapses the barcodes into a one-dimensional distribution, it
fails to capture the local differences between the branching
structures of similar neuronal trees.

For this reason, the persistence diagram was also con-
verted into an unweighted persistence image, inspired by
persistence images introduced in Adams et al. (2016). We
choose to use unweighted persistence images, since points
close to the diagonal, which represent short components, are
important for the discrimination of the neuronal trees, and
these points are ignored in the weighted persistence images.
The unweighted persistence image representation allows
the construction of an average image for groups of trees,
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which is useful for quantifying the differences between tree
types, since we are not aware of any unambiguous and
computationally feasible calculation of an average of per-
sistence barcodes or diagrams. This method is based on the
discretization of a sum of Gaussian kernels (Scott 2008),
centered at the points of the persistence diagram. This dis-
cretization generates a matrix of pixel values, encoding the
persistence diagram in a vector, called the unweighted per-
sistence image. Machine learning tools, such as decision
trees and support vector machines can then be applied to
this vector for the classification of the persistence diagrams.
Note that the unweighted persistence images, unlike the
persistence images defined in Adams et al. (2016), do not
satisfy stability for the Euclidean distance between their
vectors with respect to the perturbations of trees that we
consider (see SI: Stability of TMD).

Results

We demonstrate the discriminative power of the TMD by
applying it to four examples of increasing complexity.
The first application is the grouping of artificial random
trees that provide a well-defined test case to explore the
method’s performance. The random trees are generated by
a constrained stochastic algorithm (see SI: Random trees
generation) and have properties that can be precisely mod-
ified. Next, we have analyzed datasets of more biological
relevance: neurons from different species, downloaded from
Ascoli et al. (2007), and distinct types of trees obtained
from several morphological types of rat cortical pyramidal
cells (Romand et al. 2011) (see Information Sharing State-
ment). This last example is interesting because, although
there is biological support for their separation into distinct

groups, no rigorous mathematical model has been pro-
posed for their objective classification. Finally, we used the
TMD-distance to rank automatic reconstructions from the
BigNeuron project (Peng et al. 2015). We thereby illustrate
the usefulness of the TMD across non-trivial examples.

Mathematical random trees are defined by a set of param-
eters that constrain their shape: the tree depth Td , the branch
length Bl , the branch angle Ba , the degree of randomness
Dr , and the asymmetry of branches Ab (see SI: Random
trees generation). We defined a control group as a set of trees
generated with predefined parameters (Td = 5, Bl = 10,
Ba = π/4, Dr = 10%, Ab = 0.0) and independent random
seeds. Each parameter was varied individually to generate
groups of trees that differed from the control group in only
one property. A tree is assigned to the group which is closer
based on the comparison of the distances dBar between the
tree’s barcode and the barcodes of the trees in every group.
This distance is used to construct a classifier based on a
simple hierarchical clustering algorithm (Ward 1963). The
accuracy of this classifier is defined as the percentage of
successful trials.

We prove that this classifier efficiently separates groups
of random trees that differ in their tree depth (Fig. 3), with
an accuracy of 96% ± 3% (see SI: Random trees group-
ing). In Fig. 3 the distance matrix indicates the existence of
three distinct groups, and the corresponding clustering. The
TMD of random trees generated by varying each of the other
parameters Ba , Bl , Dr , Ab are grouped with an accuracy
of 88%, 96%, 99% and 100% respectively (see SI: Random
trees grouping, Figs. S7-S11).

Next, the TMD is used to quantify differences between
neuronal morphologies. Neurons that serve distinct func-
tional purposes exhibit unique branching patterns (Cuntz
et al. 2007; Van Elburg and Van Ooyen 2010). In this study,

Fig. 3 Topological analysis of
artificial trees generated using a
stochastic process. Three sets of
trees are shown (only four
individuals out of twenty for
clarity). Each group differs from
the others only in the tree depth.
Each individual of the group is
generated using the same tree
parameters but a different
random number seed. The
TMD-distance of the trees allow
their accurate separation into
groups. The distance matrix
indicates the existence of three
groups which are identified with
high accuracy by a simple
dendrogram algorithm
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we used cat, dragonfly, fruit fly, mouse and rat neuronal
trees. The qualitative differences between the neuronal
tree types are evident from the individual geometrical
tree shapes (Fig. 4A) as well as the extracted barcodes
(Fig. 4B). The regions of different branching density are vis-
ible in the average unweighted persistence images of each
group (Fig. 4D). Since branching density is thought to be
correlated with connection probability (Snider et al. 2010),
we can identify the anatomical parts of the trees that are
important for the connectivity of different cell types.

The performance of a supervised classifier trained on the
unweighted persistence images (see SI: Supervised Classifi-
cation, Classification of neuronal trees) of the TMD results
is demonstrated by the grouping of neuronal trees from the

different species, shown in Fig. 4. The neuronal trees of the
five different species are accurately (84%) separated into
the original groups. We note here that the performance of
this process is reliable (> 70%) even for small training
sets that contain only 25% of the whole dataset (see SI:
Classification of neuronal trees).

We applied the TMD algorithm to a more challenging use
case, because it is difficult for a non-expert to distinguish
the different morphologies. While pyramidal cell (PC) mor-
phologies (Fig. 5A) of the rat appear superficially similar,
the unweighted persistence images (Fig. 5B) reveal funda-
mental morphological differences between them, related to
the existence and the shape of the apical tuft. The apical
tuft of PCs is known to play a key role in the integration of

a b c d

Fig. 4 Topological comparison of neurons from different animal
species. Each row corresponds to a species: (I) cat, (II) dragonfly, (III)
fruit fly, (IV) mouse and (V) rat. Trees from several exemplar cells
for each species are shown in the first column (A). Representative
persistence barcodes for the cells in A are shown in the second col-
umn (B). The structural differences of the trees are clearly evident in
these barcodes. II, III and V have clusters of short components, clearly
distinct from the largest component, while I and IV have bars of a
quasi-continuous distribution of decreasing lengths. Also, barcodes III,
and V show empty regions between dense regions of bars, indicating
the existence of two clusters in the morphologies, while barcodes I
and IV are dense overall. The unweighted persistence image for each

representative barcode in B and its superimposed persistence diagram
are shown in the third column (C). By combining the persistence dia-
grams in (C) for several trees we can define an average unweighted
persistence image (D) in order to study and quantify the structural dif-
ferences between distinct morphological groups. The trees in the first
row (cat) are more tightly grouped than those in the second row (drag-
onfly), and two clusters are visible in the dragonfly trees. Considering
rows 1 and 4, the extension of the elliptical peak perpendicular to
the diagonal line reflects the variance in the length-scale mentioned
earlier for a single cell’s barcode. Note that the trees, barcodes, and
unweighted persistence images are not shown to the same scale for
clarity: see the scale bar in each case
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Fig. 5 Comparison of the TMD of apical dendrite trees extracted
from several types of rat pyramidal neuron. Four cell types are shown
in (A): UPC, SPC, TPC-A, TPC-B (left to right). The morphologi-
cal differences between these cell types are subtle, but the unweighted
persistence images (B) clearly reveal them, particularly the presence
of two clusters in the TPC-A and TPC-B cell types. From these
unweighted persistence images we train a decision tree classifier on

the expert-assigned groups of cells. The binary classification (C) and
the confusion matrix (D) based on the TMD algorithm shows an over-
lap of TPC-A and TPC-B trees. When those two classes are merged (E,
F) the separation between the remaining types is evident. This result
shows that the unweighted persistence images objectively support the
expert’s classification when the morphological differences between the
classes are significant

neuronal inputs through their synapses in higher cortical
layers, and is therefore a key indicator for the functional role
of the cell.

The separation of the PC trees into four groups cannot
be justified based on purely morphological grounds, since
there is no coherent difference between the branching pat-
terns of TPC-A and TPC-B (Fig. 5C, D). On the contrary,
the separation in three groups (UPC, SPC and TPC -the
superset of TPC-A and TPC-B- Fig. 5E, F) is supported by
TMD-based classifiers, by detecting the fundamental dif-
ferences between their branching structures. Therefore, the
TMD provides a solid benchmark test to objectively support
or disprove proposed classification schemes.

Finally, the TMD algorithm can be used to assess the
quality of any manually or automatically reconstructed neu-
ron if a reference morphology is available. The best use case
for this application is the datasets of BigNeuron (Peng et al.
2015), a community effort to advance single-neuron auto-
matic reconstruction. The same stack of images of a scanned
morphology is used for manual reconstruction (reference
morphology) and for automatic reconstructions with a set of
algorithms (test set). Due to the large number of reconstruc-
tions generated by the BigNeuron project, the analysis of the
data requires a high-computational-performance algorithm.
The linear complexity of the TMD makes it highly suitable
for the analysis of this large dataset.
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Fig. 6 Comparison of the TMD of BigNeuron neuronal morpholo-
gies. An image stack is used for the manual reconstruction (reference
neuron) and for the automatic reconstructions produced by a variety
of community supplied algorithms. The results of each algorithm are
illustrated in panel C, from best (top left) to worst (bottom right). The
reference neuron (in black) is visualized against the density plot of

all the automatically reconstructed neurons (A, in blue), and the den-
sity plot of the ten best automatic reconstructions (B, in red), ranked
according to their TMD-distance from the reference neuron. A com-
parison between panels A and B shows that the density plot of the ten
highest ranked automatic reconstructions closely matches the structure
of the reference morphology

The automatic reconstructions were ranked based on
their TMD-distance from the reference morphology. The
TMD was able to accurately assess the quality of the
automatic reconstructions, as presented in Fig. 6, as the
similarity of the branching structure of the automatic recon-
structions to the reference neuron decreases with the TMD-
ranking. The density plot of all the automatic reconstruc-
tions Fig. 6A does not reproduce the shape of the reference
morphology, as reconstruction errors are over-represented.
On the contrary, the density plot of the ten TMD-best recon-
structions closely matches the structure of the reference
morphology.

Discussion

The morphological diversity of neurons supports the com-
plex information-processing capabilities of the nervous

system. A major challenge in neuroscience has therefore
been to reliably describe the shape of neurons. We have
introduced here the Topological Morphology Descriptor,
derived from principles of persistent homology. The TMD
of a tree retains enough topological information to allow
the systematic comparison between branching morpholo-
gies. Therefore, it provides a topological benchmark for
the rigorous comparison of different structures and it could
advance our understanding of the anatomy and diversity of
the neuronal morphologies.

This technique can be applied to any rooted tree equipped
with a function defined on its nodes. Further biological
examples include botanic trees (Lopez et al. 2010), corals
(Kruszyṅski et al. 2007) and roots of plants (Wang et al.
2009). The method is not restricted to trees in R

3, but can
be generalized to any subset T of a metric space M , with a
base-point R. A persistence barcode can then be extracted
using a filtration by concentric spheres in M centered at
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R, enabling us to efficiently study the shape of complex
multidimensional objects.

While the static neuronal structures presented in this
paper are biologically interesting themselves, our method
could also be generalized to track the morphological evo-
lution of trees. The topological study of the growth of an
embedded tree could be addressed through Multidimen-
sional Persistence (Carlsson and Zomorodian 2009), a new
area of TDA, for which computational tools are currently
being explored (Lesnick and Wright 2015; Gäfvert 2016).
In this case the spherical filtration identifying relevant topo-
logical features of the tree could be enriched with a second
filtration representing temporal evolution. This application
could be useful in agriculture to study growing roots (Wang
et al. 2009) and trees, and in neuroscience, to study neurons
in the developing brain.
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