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The characterization of neuronal connectivity is one of the most important matters in neuroscience. In this

work, we show that a recently proposed informational quantity, the causal mutual information, employed with
an appropriate methodology, can be used not only to correctly infer the direction of the underlying physical
synapses, but also to identify their excitatory or inhibitory nature, considering easy to handle and measure
bivariate time series. The success of our approach relies on a surprising property found in neuronal networks by
which nonadjacent neurons do “understand” each other (positive mutual information), however, this exchange
of information is not capable of causing effect (zero transfer entropy). Remarkably, inhibitory connections,
responsible for enhancing synchronization, transfer more information than excitatory connections, known to
enhance entropy in the network. We also demonstrate that our methodology can be used to correctly infer
directionality of synapses even in the presence of dynamic and observational Gaussian noise, and is also successful
in providing the effective directionality of intermodular connectivity, when only mean fields can be measured.

DOI: 10.1103/PhysRevE.97.022303

I. INTRODUCTION

Many real systems have been modeled by complex networks
with different topological characteristics. Network theory has
been applied in a large number of examples and different
research fields, such as biology [1], economics [2], and physics
[3]. In neuroscience, the application of network theory provides
a way to analyze the structure and the functional behavior
of neuronal systems [4]. A fundamental research topic in
neuroscience is the determination of the brain structure, to
better understand its functioning. Some neuronal networks had
their structure directly mapped by means of diffusion tensor
imaging tractography [5].

One of the most challenging problems in neuronal networks
is the inference of its topology, that is, the determination of
the underlying synaptic connectivity by indirect means, based
on functional measurements of time series of the membrane
potential [6,7]. There are works that infer the topology based
on functional measures such as correlation [8,9] and syn-
chronization [10], or functional magnetic resonance imaging
[11]. And there are those based on informational quantities
[12-14,17,18]. Inference based on functional measures re-
quires a threshold analysis that establishes a link between the
measurement and the physical connection [12,19,20]. Rubido
et al. [17] showed that a threshold can be calculated whenever
a functional measure between nodes [cross correlation (CC)
or mutual information] in a network is dissimilar. Higher
functional values correspond to a pair of adjacent nodes, lower

24770-0045/2018/97(2)/022303(7)

022303-1

functional values to nonadjacent nodes. Bianco-Martinez et al.
[18] used the mutual information rate (MIR) to successfully
infer the connectivity of a network composed of Hindmarsh-
Rose (HR) neurons [21] connected by electrical synapses.
Both works in Refs. [17,18] have shown that the threshold
technique could surprisingly provide an inferred network that
matched exactly with the real network. These works have
considered undirected networks, where nodes were connected
bidirectionally with the same intensity.

This work considers HR networks with chemical synapses.
Unlike electrical synapses that are undirected, chemical
synapses are directed [22]. Whereas undirected networks can
have their topologies properly inferred by CC and MIR,
directed networks require methodologies capable of detecting
the directionality of the physical influence [12,19,23]. Granger
causality [12] is a concept construct on the idea that one
can obtain optimal fittings of mathematical models about the
measured time series that provide the structure and direction
of the connectivity. These models are statistically optimized to
improve the predictability of events in one time series based
on observations of other time series and have been shown
to be a powerful tool to infer [24]. Informational quantities
have also been demonstrated to provide a framework that
is at the frontier to infer. In Ref. [17] it was shown that
inference based on mutual information is more reliable than
those based on correlational measurements. In Ref. [23] it was
shown that directed information had advantages over Granger
causality for quantifying effective connectivity in the brain.
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One question that remains open is whether information mea-
sures can reliably infer the connectivity of complex neuronal
networks for all existing synapses by only accessing bivariate
measurements, in contrast to more complex and computational
demanding techniques such as multivariate analysis based on
informational analysis [14,15], a technique that takes into
consideration time series from more than two neurons at each
time, or modeled-based multivariate approaches such as those
that employ compressive sensing [16].

In this work, we use the recently defined causal mutual
information (CaMI) [25,26] calculated using an appropriate
methodology to infer the direction of chemical synapses in
complex neuronal networks without any mistake, by only
considering easy to handle and to measure bivariate time series.
Moreover, we show that inhibitory connections are responsible
for a considerably larger amount of information transfer than
that compared to neurons connected by excitatory synapses.
This allows one to infer also the nature of the connection (ex-
citatory and inhibitory), and not only its existence as previous
techniques. The role of the inhibitory connections have been
also found by Montani et al. [27] to have a critical role on
the information transmission. That is, when a population of
neurons is considered with an important number of inhibitory
neurons, they help to rapidly phase lock neural populations and
induce synchronization at small time windows and produce
stable firing patterns. Inhibitory neurons can easily help to
regulate the level of activity of other neurons. Furthermore, we
will also show that nonadjacent neurons transmit roughly null
amount of directed information, indicating that indeed causal
information has a direct relationship with the existence of a
synapse.

The CaMI was constructed from the idea that if there is a
flow of information from system A to system B, then longer
time series (or measurements with higher precision) from
B should have a positive mutual information to short time
series (or to observations with lower precision) in A. This
quantity, measuring the influence from A to B, was shown
to be equal to the transfer entropy (TE) [13] from A to B
plus the mutual information between A and B when both
systems are being measured with the same resolution. The
advantage of CaMI, however, is that it allows one to calculate
TE, and therefore the directionality of the flow of information,
by using measurements with arbitrary resolution, which in
turn also allows for the correct calculation of the TE using
binary partitions of the phase space, i.e., appropriated when
measurements have the lowest possible resolution. Moreover,
CaMI can be calculated in lower-dimensional space of only
two dimensions, without the need to consider conditional
probabilities, but only marginal and joint probabilities, and
finally, it is a quantity that fully expresses not only the exchange
of information (MIR), but also its causal directionality (TE).

II. NEURONAL NETWORK

A. Hindmarsh-Rose network

We consider the random neuronal network (RNN) [28,29]
introduced by Gelenbe [30] and the neuronal network of
the nematode worm C. elegans [31] whose structure was
completely mapped at a cellular level [32]. The node dynamics

in the network is expressed by the Hidmarsh-Rose (HR) neuron
model. Hindmarsh and Rose [21] proposed a phenomenolog-
ical neuron model that is a simplification of the Hodgkin-
Huxley model [33]. The HR is described by

p=q—ap’ +bp* —n+ I,
g=c—dp’—q,
n=rls(p — po) —nl, (D

where p(t) is the action potential of the membrane, ¢(¢) is
related to the fast current, KT or Na™, and n(z) is associ-
ated with the slow current, for instance, Ca®t. We use the
parameters a =1, b=3, c=1,d =5, s =4, r =0.005,
po = —1.60, and 3.24 < I < 3.25, so that the HR neuron
exhibits a chaotic burst behavior. Presynaptic neurons with an
action potential p; coupled by chemical synapses to neurons i
modifying its action potential p; according to

pi =qi —ap} +bp? —n; + Iy

N
+2c(Vagn — pi) ) _ &, T(p)), )

j=1
where (i,j) = 1,...,N, N is the neurons number, and g, is the

chemical coupling strength. The chemical synapse function is
modeled by the sigmoidal function,
1

, (3)
1 + exp[—)»(pj - ®syn)]

L(pj) =

with Oy, = 1.0, A = 10, Vi, = 2.0 for excitatory and Vi, =
—1.5 for inhibitory synapses. The adjacency matrix &;; de-
scribes the neurons chemically connected.

B. Encoding the trajectory into symbolic sequences

To do our analysis, we normalize p; through the equation,

max
X = @

Di DPi
where p"™® and p™" are the maximum and minimum values,
respectively, of the time series of p;(¢). Figure 1 shows the
normalized membrane potential for two chemical coupled
HR neurons with connection from x; (red squares) to x;
(black circles). The black and red circles correspond to X
and X, respectively, where the mapping step time At is
equal to 1 ms. With the forward-time trajectory X’ (n) =
Xt ,xf“fl, where L is the length of the time series X (n)
and 7 is the discrete time, we generate a symbolic sequence
SiL(n) =, ... ,S;H'L_l,where we consider s = 0ifx]' < 0.5
and s? = 1if x! > 0.

Table I exhibits some mapped values of x| and x; with
their respective length-1 symbolic values s{ and 55, and also the
length-2 and length-4 symbolic sequence SF=2(n) and S¥=*(n),
respectively.

Considering the symbolic sequences S* and SJZ-L is possible
to find the probabilities P(SiL), P(SJZ.L), and P(SiL,SJZL).
These probabilities are used to calculate the casual mutual
information.
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FIG. 1. Normalized membrane potential of two chemical coupled
HR neurons with connection from x, (red line) to x; (black line).
We consider the coupling strength g. = 1 and the mapping time step
At = 1 ms. The black circles and red squares correspond to X; and
X,, respectively.

III. CASUAL MUTUAL INFORMATION

In order to be able to describe most of the information
content of the time series by a short-length binary symbolic
representation, we make a time-Poincaré map of the time
series. Ideally, in the case one wants short symbolic sequences
to fully express the amount of information of infinitely long
sequences, points in the mapping should be spaced by a time
step such that the symbolic representation of the time series
behaves as a random process, i.e., the next symbolic sequence
is decorrelated with the previous. We are interested in obtaining
a good estimation of CaMI to correctly infer the network’s
topology, its synaptic nature, and to obtain a sufficiently
accurate value for the magnitude of the flow of information
(e.g., CaMI, MIR, and TE). Given a time step A¢, a mapping
for neuron i X; is constructed by collecting a point of the
membrane potential at times ¢ = nAt producing the discrete

TABLE I. Mappings for At = Ims and L = 2.

n x7 st SE2(m) x2 sy Sk
285 0.163043 0 00 0.374431 0 0110
286 0.161350 0 00 0.500448 1 1100
287 0.274266 0 00 0.886694 1 1000
288 0.265589 0 00 0.213396 0 0000
289 0.279589 0 00 0.174788 0 0000
290 0.306991 0 00 0.174349 0 0000
291 0.349396 0 00 0.173966 0 0000
292 0.427650 0 01 0.173642 0 0000
293 0.645130 1 11 0.173384 0 -
294 0.725724 1 10 0.173200 0 -
295 0.180110 0 - 0.173100 0 -

time series described x' = x; (t = nAt). In this way, we obtain
the mapping X; = x°,x},x2,...,x[ =" for neuron i, where T is
the number of points in the mapping. In the following, we will
study coupled neurons to determine a time step for which CaMI
is maximized, aiming with this maximization to construct a
time-Poincaré map that tends to behave as a Markov process,
allowing CaMI, M1, and TE to express a good approximate of
their real values.

Bianco-Martinez and Baptista [25,26] defined a new quan-
tity named CaMl from X; to X ; (Cx, - x,) as the MI (/) between
joint events in X L and the set composed by the joint events

of X;* and X% as
Cx—x, = 1(X75 (X7 X7)) = 1(XEWiE)., ()
where the mutual information /(X[; X¥) is given by
1(X:X5) = H(XP) + H(XF) = H(XP.XF). (©)

and H(XF) is the Shannon entropy of length-L trajectory
points of the discrete mapping. It is also true that

Cx,—»x, = 1(xF; XJL) + Tx,>x;» @)

where Ty, x, is the transfer entropy (TE). Probabilities to
calculate CaMI are constructed considering the probabilities
of the encoded binary symbolic sequences. CaMI is thus
calculated by

Cx,—x, = »_ P(S}.53")log
S;,S,‘

PSLSY
P(sF)P(S7)

where the summation indexes S; and S; represent the space of
possible length-L symbolic sequences coming from neuron
i and S; the space of possible joint events of finding a
length-L symbolic sequence coming from neuron j at time
n — L followed by a length-L symbolic sequence in this same
neuron at time n, or in other words, of finding a length-2L
symbolic sequence in neuron j starting at the time n — L.
P(SF) is the probability of finding symbolic sequences S* =
{siy...,sF '} in X, P(S3") is the probability of finding a
particular length-L symbolic sequence S?* = {s;, ...,s?-7"}
in X;, and P(S},S3") is the joint probability between length-
L symbolic sequences in neuron i and length-2L symbolic
sequences in neuron j. The directionality index (DI) defined
in Ref. [13] in terms of the TE can be calculated by

Dy, x;, = Cx,»x; — Cx,>x,- &)
For simplicity in notation we consider that
DX,—)Xj = DU (10)

This index measures the net amount of directed information
flowing from X; to X;. Thus, if D;; is positive (negative),
there is a net amount of information flowing from neuron i
to neuron j (from neuron j to neuron i). Our hypothesis,
also sustained by the works of [17,18] and others, is that if
there is a directed adjacent connection from neuron i to j,
thus D;; will be considerably larger than the directionality
index of neurons that are not adjacently connected. So, the
connectionis X; — X if D;; > h, the connectionis X; — X;

if D;; < —h, and there is no connection if D;; = 0. In the latter
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FIG. 2. Directional index (DI), causal mutual information
(CaMI), and mutual information (MI), as a function of the coupling
strength (g.) for the mapping step time At = 0.5 ms and L = 8.
The red squares, green diamonds, blue triangles, and black circles
correspond to D;;, C;;, Cj;, and I;;, respectively.

case, the directionality index will be close to zero because the
transfer entropy will be roughly zero for nonadjacent nodes.
The mutual information is a symmetric quantity and therefore
I(X;,X;) = 1(X;,X)).

In Fig. 2 we calculate DI (D;;), CaMI (C;; and Cj;), and
MI (/;;) as a function of g, for two coupled neurons with one
directional connection from x; to x;. We observe that D =0
when the neurons are uncoupled (g, = 0),and D > Ofor g, >
0. The information is transmitted from x; to x;, in accordance
with the direction of the connection. We verify that C;; ~ I;;,
therefore Tj; ~ 0 and T;; ~ D;;. For the following analysis,
we fix At = 0.25ms, and L = 8 that maximizes DI values.

IV. INFERENCE OF TOPOLOGY
AND NATURE OF SYNAPSES

A. Random networks

We build a directed network where the connections among
the neurons are randomly chosen. We consider a random
neuronal network with 64 HR neurons and average degree of
connectivities K equal to 4. As a consequence, the network
has 256 of a total of 4096 directed connections (ij). Figure 3
shows the normalized directional index, ranked from larger to
smaller values, for three different neuronal connectivity config-
urations: 256 excitatory synapses (black line), 256 inhibitory
synapses [red line (dark gray)], and 128 excitatory and 128
inhibitory synapses [green line (light gray)]. In Fig. 3(a) there
are two regions with D;; # 0, that represent the connections
fromi to j, while D;; ~ 0 corresponds to the situation in that
there is no connection between i and j. The magnification
[Fig. 3(b)] exhibits two abrupt transitions. The transition to
D;;j ~ h allows the detection of directed connections in the
neuronal network. The transition that occurs for D;; > h
allows one to infer the excitatory and inhibitory synapses, as
shown by the dashed blue line, where we observe the existence
of 128 excitatory and 128 inhibitory synapses.

Notice that the DI values between adjacent and nonadjacent
neurons are notably dissimilar, meaning that a small threshold

AT of = -
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ol inhibitory : excitatory : | —
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FIG. 3. (a) Normalized directional index, ranked from larger to
smaller values, for a random neuronal network with N = 64 HR
neurons, K =4, At =025, L =8, T =4 10° and g. = 0.1. We
consider three cases for the connectivity: 256 excitatory synapses
(black line), 256 inhibitory synapses (red line), and 128 excitatory
and 128 inhibitory synapses (green line). (b) Magnification of (a).
(c) Matrix of the normalized directional index (D;;) of the latter case.

h can be chosen such that D;; > h implies a directed connec-
tion from neuron i to neuron j. For the network whose neurons
are connected by both inhibitory and excitatory synapses, we
notice in the green (light gray) line of Fig. 3 two ranges of
DI dissimilar values. For h < D;; < 0.4, the connection is
excitatory and for D;; > 0.4 the connection is inhibitory. In
Fig. 3(c) we see the adjacency matrix, where the colored (gray
scale) elements of the matrix indicate if the pairs of neurons
are connected. The uncoupled pairs of neurons are indicated
in black, while the coupled pairs are in color scale according
to the normalized directional index. We consider the same
parameters used to calculate the green (light gray) line in Fig. 3.
For D;; < 0.4 the color scale shows the excitatory synapses
and for D;; > 0.4 the synapses are inhibitory.

We analyze the noise effect in the inference of the connec-
tions. Neuronal noise can be related to several sources, such
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FIG. 4. Normalized directional index for o, = 3 (black line) and
o4 = 4 (green line). We consider At = 0.25, L = 8§, and g, = 0.15.

as synaptic noise [34] and ion conductance noise [35]. In the
action potential equation, we add a Gaussian noise with zero
mean and variance o4. We calculate the D;; values for the
neuronal network with o; = 3 (black line) and o; = 4 (green
line), as shown in Fig. 4. We verify that the inference for
the existence of a synapse is robust to dynamic noise in the
membrane potential. However, for o, 2 3.5 itis not possible to
infer whether the synapse is excitatory or inhibitory. Therefore,
the inference of the connectivities is more robust than the
inference of its nature of the synapses.

We also consider an additive noise to analyze the CaMI-
based inference. The additive noise is related to the imprecision
of the equipment responsible for capturing the electrical signals
in the neural membrane, so in our simulations we add to the
values of p(t) a noise with zero mean and standard deviation
o,. In Figs. 5(a) and 5(b) we observe the change in the
dynamics of the membrane potential of a network neuron

o 2 (a) |
4
Z |
g oL
_|_
—_
., _
= -
Il ‘ Il ‘ Il ‘ Il
T T T I T [ T b
o 2k (®) |
4
z 1 |
g 0,_ —
+ | |
—_
SRl |
= -
\ \ \
0 250 500 750 1000
time(ms)
1 = T
S— ‘ (©
=L I i
A ! '
|
| \
o 1nh1b1tory: excitatoryL
— | | 1 I I
0 128 256 384 512

ij
FIG. 5. Membrane potential for the neuron i = 32 for additive
noise standard deviation (a) o, = 0.1 and (b) o, = 0.35. (c) Nor-

malized directionality index for o, = 0.1 (black line) and o, = 0.35
(green line). We consider At = 0.5, L =4, and g. = 0.1.

inhibitory excitatory
. | | . |
0 500 IQQO 1500 2000

1

FIG. 6. Normalized directional index, ordered from larger to
smaller values for N = 277 HR neurons. We consider o, = 1, g, =
0.035, At = 0.25,and L = 8.

under the application of additive noise with o, = 0.1 and
o, = 0.35, respectively. The difference between the minimum
and maximum values reached by the membrane potential of the
HR model is approximately 3.5, so o, = 0.35 corresponds to
10% of this value. For o, = 0.1 the observed dynamics remains
very similar to the case with no noise observed in Fig. 1,
however, when o, = 0.35 the noise intensity can change the
values of the symbolic sequence S*(n). In Fig. 5(c) we see that
the DI calculation does not present significant changes when
considering the additive noise with o, = 0.1 (black line). For
o, = 0.35 (green line) it is no longer possible to distinguish
excitatory connections from inhibitory ones, but all 256 con-
nections are detected. Therefore, CaMI-based inference is also
robust to additive noise of moderate amplitude.

B. C. elegans neuronal network

In the literature, there are many works that consider
C. elegans neuronal network to study the nervous system
[36,37]. The C. elegans is a soil worm with body size about
1 mm and a simple nervous system [38]. We consider in our
study the connectome of the large somatic nervous system
according to Ref. [39] that consists of 277 neurons. To test
our inference approach, we consider approximately 50% of
excitatory and 50% of inhibitory synapses in the C. elegans
network with 1731 directed connections. The directed adja-
cency matrix (g;;) is obtained from the brain connectivity of
the C. elegans. Figure 6 exhibits the DI values, where the two
discontinuity transitions in the DI values correspond to the
excitatory and inhibitory synapses. In Fig. 6 it is possible to
identify the connected neurons of the C. elegans, where from
i =1toi =138 and from i = 139 to i = 277 there are 850
inhibitory synapses and 881 excitatory synapses, respectively.

V. INFORMATION FLOW BETWEEN NETWORKS

In many experimental cases it is not possible to directly
measure the membrane potential of each neuron, but only
an average field of a group of them, or a brain region.
Through the analysis of the mean field between two neural
networks, we show that it is possible to infer if distinct
networks are connected to each other, and identify the direction
of the effective connectivity by the direction of the flow of
information.

In order to do this analysis, we considered two random
networks with N = 64 neurons each, with an average degree
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FIG. 7. (a) Directionality index (DI) as a function of coupling
strength (g.). For At = 0.25 ms, where L = 1 (black circles), L = 2
(red squares), L = 4 (green diamonds), and L = 8 (blue triangles).
Time evolution of the normalized mean field (NMF) for network
1 (black line) and network 2 (red line), both with (b) g. = 0.025,
(¢) g- = 0.175, and (d) g. = 0.275.

of intraconnections within the networks Kj-. = 24 and an
average degree of interconnections between networks Kiper =
12. To study the flow of information between the two networks,
we consider that there are only directed connections from
neurons of network 1 to neurons of network 2. In each of
the networks we calculated the mean field of the membrane
potential and made the symbolic sequence using this time
series. The process of calculating DI was performed in the
same way as in the case of isolated neurons.

In Fig. 7(a) we show the values obtained from the DI as
a function of the intensity of the coupling g., where we set
At = 0.25 ms and we evaluate different sizes for the symbolic
trajectory: L = 1 (black line), L = 2 (red line), L = 4 (green
line), and L = 8 (blue line). We find that, as in the case of
two neurons, the highest DI values are observed when using
symbolic trajectories of size L = 8. In this case, we observed
that when the coupling is low, the DI values are small, since the
influence of network dynamics 1 on network 2 is smaller. For
a coupling around g. = 0.175 we have the highest calculated
value of DI and for g, > 0.275 the value of DI decreases,
tending to a constant value. This happens when the neurons
of both networks are roughly completely synchronous. The
neurons had been completely synchronous, thus the transfer
entropy would be zero, resulting in a DI of zero. To understand
more about the dynamical behavior leading to the curve

presented by the blue line in Fig. 7(a), we analyze the temporal
evolution of the normalized mean field (NMF) for three values
of the coupling. In Fig. 7(b) we have g. = 0.025 and we
observe that the NMF of network 1 (black line) and network 2
(red line) show that the neurons of these networks present the
behavior of bursting synchronization, when neurons start the
bursting of firing activities roughly simultaneously. Firings are
asynchronous. In Fig. 7(c) we have g, = 0.175 and the NMF of
networks 1 and 2 show that not only intra- but also interneurons
are roughly synchronous. Firing spikes in the NMF indicates
intrasynchronization. Intersynchronization is evidenced by the
fact that the curves are roughly identical. Both of these factors
are responsible for the high DI values. Finally, in Fig. 7(d) we
have g. = 0.275 which is intense enough to make the networks
almost fully synchronized.

Therefore, even in the case when we have only the data of
the average field of networks, we show that it is possible to
infer the effective directionality of the connections in a similar
way to the case between two neurons only. This method may
be thus suitable to be considered for information flow studies
in different regions of the brain, analyzing data obtained from
several experimental sources such as structural and functional
MRYI, diffusion tensor imaging, magnetoencephalography, and
electroencephalography.

VI. CONCLUSION

In conclusion, we propose a successful methodology based
on CaMI to infer, characterize, and investigate the transmission
of information in neuronal networks with chemical synapses.
Through the CaMI, we show not only how to infer the existence
of synapses, but also to identify the nature of the synapse. Our
technique can be applied to the time series generated with
Gaussian dynamical noise built-in in the neuron equations,
or to the time series contaminated by observational noise.
Moreover, we also showed that when access to the neuron
potential is not possible, but rather only local mean fields can
be measured, such as those coming from EEG signals, our
CaMlI-based technique can correctly determine the effective
net directed connectivity between different neuronal clusters.
This work also shows that excitatory connections are not
so efficient to transfer information as inhibitory connections,
and that nonadjacent neurons transfer roughly zero amount
of information. This latter observation suggests that a pre-
synaptic neuron (a neuron that has an adjacent connection to
the postsynaptic one) not only exchanges information (positive
mutual information), but is also capable of using information
to cause an effect in a postsynaptic neuron (positive transfer
entropy). Nonadjacent neurons only exchange information.
This one-to-one relationship between structure and informa-
tion transmission remains valid for a wide range of the coupling
strength g., constraint within an interval with not so small
(to prevent full decorrelation) and not so large (to prevent full
synchronization) bounds. For an inference with no mistakes,
the time series should be sufficiently long, more specifically,
their size in seconds (i.e., t) should scale with the size of
the network, and it is a function of the coupling strength,
a relationship that was studied in much detail in Ref. [17].
When dealing with real data, a method for removing bias due
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to limited data points should be applied. Another option would
be to do several experiments and do the analysis considering
all the samples from all the experiments.

In future works, we plan to consider a model with spike
timing-dependent plasticity [40] to study the transfer of in-
formation between not only adjacent but also nonadjacent
neurons.
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