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ABSTRACT 

Background: Maximal lung function in early adulthood is an important determinant of mortality and 

COPD.  We investigated whether there are distinct trajectories of lung function during childhood, and 

whether these extend to adulthood and infancy. 

Methods:  To ascertain trajectories of forced expiratory volume in 1 second (FEV1), we studied two 

population-based birth cohorts with repeat spirometry from childhood into early adulthood (1046 and 

1390 participants).  To ascertain whether trajectories extend to early life, we used a third cohort with 

repeat lung function measures in infancy (V′maxFRC) and childhood (FEV1; n=196).  We identified 

trajectories using latent profile modelling.  We created an allele score to investigate genetic associations 

of trajectories, and constructed a multivariable model to identify their early-life predictors.   

Results: We identified four childhood FEV1 trajectories: Persistently High; Normal; Below Average; and 

Persistently Low. Persistently Low trajectory (~5% of participants) was associated with persistent 

wheezing and asthma throughout follow-up. In genetic analysis, compared with the Normal trajectory, 

the pooled relative risk ratio (95%CI) per allele was: 0.96 (0.92, 1.01), P=0.10, for Persistently High; 1.01 

(0.99, 1.03), P=0.49 for Below Average; and 1.05 (1.003, 1.09), P=0.036 for Persistently Low. The 

majority of children in low V′maxFRC trajectory in infancy (~75%) did not progress to low FEV1 trajectory in 

childhood. Early-life factors associated with Persistently Low trajectory included recurrent wheeze with 

severe exacerbations, early allergic sensitization, and tobacco smoke exposure. 

Conclusion: Reducing childhood smoke exposure and minimising the risk of early-life sensitization and 

wheezing exacerbations may reduce the risk of diminished lung function in early adulthood.  
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Research in context 

Evidence before this study 

Early life factors, such as weight at birth, are associated with low lung function and chronic obstructive 

pulmonary disease (COPD) in late adulthood. Lung function development reaches a plateau in early 

adult life, and low lung function in young adults is associated with early mortality from all causes. Failure 

to attain maximal lung function at its plateau is associated with COPD in later life, even when with 

physiological rate of decline of lung function is maintained.  This strengthens the evidence that early life 

influences may be critical for normal lung function growth in childhood and COPD pathogenesis. 

Added value of this study 

Using data from population-based, birth cohort studies, we demonstrated four discrete trajectories of 

FEV1 development from early childhood to young adulthood. Persistently low FEV1 was associated with 

wheezing and asthma through childhood, tobacco smoke exposure and was predicted by severe 

recurrent wheezing and allergic sensitization by age 3 years. We were able to determine from a third 

independent cohort that the majority of infants with low infant lung function trajectory during the first 

year after birth transitioned to normal or above average FEV1 trajectories 

Implications of all the available evidence 

A persistently low trajectory of FEV1 development can be identified during childhood, which is 

associated with potentially modifiable influences in early childhood. This trajectory was replicated in a 

companion study that followed FEV1 growth from childhood to late adulthood. Although perinatal 

factors are associated with low lung function during childhood and with later COPD, the majority of 

infants with low lung function trajectories during the first year appeared to recover to average or above 

average FEV1 growth in later childhood. Interventions to maximise lung growth in early childhood may 

modify the risk of COPD in older age.  
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INTRODUCTION  

Low forced expiratory volume in 1 second (FEV1) in early adult age (at its physiological plateau) is as 

important in the genesis of chronic obstructive pulmonary disease (COPD) as a rapid decline of FEV1 in 

later years.1-3 Furthermore, low lung function in young adult life is associated with early mortality,4 and 

low FEV1 is a marker of premature death from all causes.5 A recent study by Agusti et al has shown that 

low lung function in early adulthood (around the time of the physiological plateau) is associated with 

earlier onset of COPD, other chronic diseases, and death.6 An accompanying Editorial highlighted the 

need to use longitudinal studies and modern statistical approaches to gain better understanding of the 

causal pathways, understand the critical windows for lung function development, and identify targets 

for early intervention.4,5,7-11   

Hypothesis-driven analyses in unselected longitudinal cohorts and children with asthma have shown 

that lung function in adult life is in part determined by childhood events. The observation that FEV1 was 

consistently lower amongst individuals with clinical phenotypes such as severe asthma,8 and persistent 

wheezing9 provided foundations for the concept that lung function tracks from school-age to 

adulthood.9,10 This is supported by the data-driven analysis of spirometry records from childhood (age 11 

years) to the fourth decade of life in Tucson cohort, which identified two distinct lung function 

trajectories (low and normal).11 Persistently low trajectory comprised nearly 10% participants, and 

individuals in this class were predisposed to COPD later in life.  

We hypothesized that a population comprises several distinct groups of individuals with similar lung 

function trajectories from pre-school age to adolescence, which extend to the physiological plateau in 

early adulthood, and that these trajectories are in part established at birth. However, factors which 

determine lung function growth may differ from those affecting the rate of decline after the plateau,12 

and inference from models that combine a limited number of measures in childhood (before peak lung 
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function is reached in early adulthood), with those in later adulthood (during the decline phase), may 

not adequately disaggregate the effects of risk factors which differentially impact growth and decline.  

To address our hypotheses, and ascertain trajectories during the lung function growth and their risk 

factors, we combined data from three population-based birth cohorts in which lung function was 

assessed on multiple occasions from infancy, through early school age and adolescence, into early 

adulthood. We first set out to establish whether a method to categorise FEV1 trajectories using latent 

profile analysis could be applied across different cohorts, and whether it yields consistent results across 

different populations. We proceeded to identify genetic and early-life factors associated with FEV1 

trajectories at the population level. Finally, we investigated whether FEV1 trajectories track back to lung 

function patterns in infancy.    
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METHODS 

Study design, setting and participants 

We studied three population-based birth cohorts: Manchester Asthma and Allergy Study (MAAS)13 and 

the Avon Longitudinal Study of Parents and Children (ALSPAC)14 from the UK STELAR consortium15, and 

the Australian Perth Infant Asthma Follow-up (PIAF) study.16 All participants were recruited prenatally 

and followed prospectively. All studies were approved by research ethics committees. Informed consent 

was obtained from parents, and study subjects gave their consent when applicable. 

Data sources/measurement  

We investigated trajectories of FEV1 from early school-age to adolescence in MAAS13 and replicated 

these using data from ALSPAC from school age to early adultood14. We ascertained whether FEV1 

trajectories extended to lung function in early infancy using data from PIAF.17   

We performed spirometry according to ATS/ERS criteria18,19 at ages 5, 8, 11 and 16 years in MAAS; ages 

8, 15 and 24 years in ALSPAC; and 6, 12 and 18 years in PIAF. We expressed FEV1 as % predicted at each 

age.20 In  PIAF, we assessed infant lung function at ages 1, 6 and 12 months using the rapid 

thoracoabdominal compression test to determine the maximal flow at functional residual capacity 

(V′maxFRC).16,17 In MAAS we measured specific airways resistance (sRaw) at age 3 years.21 In MAAS and 

ALSPAC, we measured post-bronchodilator FEV1 after administration of 400 g of salbutamol (5, 11 and 

16 years in MAAS, and 15 and 24 years in ALSPAC), and assessed assessed airway hyper-reactivity (AHR) 

using methacholine challenge.22  

Details of clinical follow up, genotyping (MAAS and ALSPAC), and definitions of clinical outcomes 

(asthma,23 wheeze phenotypes,24 severe asthma exacerbations,25 airway hyper-reactivity (AHR),26 lower 

respiratory tract infections [LRTIs]27), and environmental exposures are presented in the supplementary 

appendix. 
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Statistical Analysis 

Longitudinal profile analysis to assess prototypical FEV1 trajectories: We used a latent profile model to 

assign children to their most likely group based on the profile of FEV1 over time. Latent profile modelling 

has been described extensively elsewhere.28 Briefly, we assumed that each child belonged to one of a 

set of N latent profiles, the number or size of which were unknown a priori. We used two-level random 

intercept and random coefficients regression models to examine trajectory classes with no change over 

time, and under the assumption that the profile of FEV1 changes linearly over time. The models were 

compared for goodness-of-fit using the Bayesian Information Criterion (BIC). For each child, the 

posterior probability of belonging to each of the classes was calculated, and children were assigned to 

the latent profile with the largest probability. Latent profile modelling was carried out using the gllamm 

(generalised linear latent and mixed models) package implemented in Stata (StataCorp, College Station, 

TX).  Characteristics of trajectories were investigated using multinomial regression.  

Genetic associations with FEV1 trajectories:  We constructed a weighted allele score from 77 SNPs found 

to have genome-wide evidence for association with FEV1/FVC, or FEV1 decline in adults29 (Table S1, 

supplementary appendix). The dosage of the risk allele at each locus was multiplied by a SNP-specific 

weight (linear coefficient [beta] divided by the average of 77 linear coefficients), then averaged across 

SNPs.  SNP-specific risk alleles and weights were based on the reported meta-analysis.29 The units of the 

derived genetic score were per-beta per-SNP. Setting the ‘Normal’ trajectory as the baseline group, we 

used a multinomial logistic regression model to investigate the risk of the membership of other 

trajectories per 1-unit increase of the genetic score. The independent associations of the resulting 

genetic risk score with FEV1 trajectories in MAAS and ALSPAC were meta-analysed with fixed and 

random effect models using the method of Mantel and Haenszel (metan command in Stata). Using 

multinomial logistic regression models, we also calculated the relative risk ratios for ‘Persistently Low’ 
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(vs. ‘Normal’ trajectory) in extreme quantiles of the allelic risk score in two cohorts independently 

(deciles in ALSPAC; eight quantiles in MAAS). 

Identification of the early-life predictors of FEV1 trajectories:  We constructed a multivariable regression 

model to identify early-life predictors of subsequent latent profiles of FEV1. We carried out these 

analyses in MAAS, in which we had richer data collected in early life.  We used receiver operating 

characteristic (ROC) curves to evaluate the predictive ability of these predictors. 

Role of the funding source 

The study sponsors had no role in study design; in the collection, analysis, and interpretation of data; in 

the writing of the report; or in the decision to submit the paper for publication.  
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RESULTS 

We included 1046 participants from MAAS, 1390 from ALSPAC, and 196 from PIAF. Participant flow is 

presented in the Supplementary appendix.  

FEV1 trajectories from early school-age to young adulthood (MAAS and ALSPAC) 

We selected 4-class model in MAAS and ALSPAC (please see Supplementary appendix and Table S2).  

The posterior probability of class membership was high in both cohorts (Table S3). The proportion of 

participants and the mean FEV1 over time in each of the classes were similar across the cohorts (Table 

S4).  We labelled the classes (FEV1 trajectories) as: (1) Persistently High; (2) Normal; (3) Below Average; 

and (4) Persistently Low (Figure 1). Children within these four trajectories had stable lung function that 

tracked from age 5 to age 16 years (MAAS), and from ages 8 to 24 years (ALSPAC), with no overlap in 

FEV1 at any time. The solutions remained stable and results unchanged when we included only children 

who had spirometry on at least 3 follow-ups (Tables S5-6).   

Characteristics of children in each of the FEV1 trajectories are shown in Tables S7 and S8. Persistently 

Low trajectory was consistently associated with wheeze and asthma throughout the follow-up in both 

cohorts; in MAAS, almost half the children in this trajectory had asthma, and in ALSPAC this was 

approximately one third, significantly higher than in the rest of the population. The proportion of 

children with LRTIs in the first 3 years (data from medical records, available only in MAAS27) was 

significantly higher in the Persistently Low trajectory (32.3%) compared to the Normal trajectory 

(12.1%). Post-bronchodilator FEV1 and FEV1/FVC followed similar patterns as the baseline FEV1 in both 

cohorts. In MAAS, sRaw at age 3 years was significantly higher in Persistently Low compared to other 

trajectories, indicating diminished lung function (P=0.001). Persistently Low trajectory was significantly 

associated with AHR in both cohorts. There was no association between trajectory membership and 
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allergic sensitisation in adolescence in MAAS, or at age 7 years in ALSPAC. Sensitisation in early 

childhood in MAAS was significantly more common in Persistently Low trajectory.  

There was no difference in gender between trajectories. Birth weight was significantly higher in the 

Persistently High trajectory in ALSPAC, but not in MAAS. In MAAS, children in the Persistently High 

trajectory were less likely to be exposed to environmental tobacco smoke (ETS) compared to all others 

(Figure 2a). Children continuously exposed to ETS from birth to age 16 years were at increased risk of 

belonging to the Below Average and Persistently Low trajectories. We observed similar trends in 

ALSPAC, with Persistently High trajectory having the lowest proportion of ETS-exposed participants 

(Figure 2b). 

Genetic associations  

Genotyping data was available in 927 participants in ALSPAC, and 902 in MAAS. The weighted genetic 

score based on 77 SNPs was inversely associated with the order of FEV1 trajectories (Persistently High to 

Persistently Low) in both cohorts (Table S9). The meta-analysis is shown in Figure 3: compared with the 

Normal trajectory, the pooled relative risk ratio (95%CI) per allele was: 0.97 (0.92, 1.01), P=0.13, for 

Persistently High; 1.01 (1.00, 1.03), P=0.49 for Below Average; and 1.05 (1.00, 1.09), P=0.036 for 

Persistently Low. Results using the inverse variance method were very similar. Risk of Persistently Low 

FEV1 (vs. Normal) in 10th decile of risk score (vs. 1st decile) was 2.03 (0.62, 6.67), p=0.24 in ALSPAC. In 

MAAS, the risk of Persistently Low FEV1 in the highest compared with the lowest of eight quantiles was 

4.19 (0.83-21.05), p=0.08. 

Do FEV1 trajectories extend back to lung function in early life (PIAF)? 

In PIAF, a 3-class model provided the optimal solution for FEV1 (Above Average, Normal and Below 

Average, Figure 4a), and a 2-class model for V′maxFRC (Above Average and Below Average, Figure 4b). 

Among children in the Below Average FEV1 trajectory, V′maxFRC was significantly lower compared to other 
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trajectories at age 1 month (P=0.05) and 6 months (P=0.018), but not at age 1 year (Table S10). Although 

children in the Below Average V′maxFRC trajectory were significantly more likely to remain in the Below 

Average FEV1 trajectory (OR=3.63, 95%CI 1.21–10.90, P=0.022), the majority of these children (~75%) 

transitioned to the Above Average (12.2%) or Normal (63.4%) FEV1 trajectories in later childhood (Figure 

4, panel c). 

Early-life predictors of FEV1 trajectories (MAAS) 

Children with recurrent severe wheeze exacerbations by age 3 years, with allergic sensitization at age 3 

years, and who have been exposed to ETS by age 3 years, were more likely to belong to the Persistently 

Low trajectory (Table S10). This set of variables provided a good predictive ability in MAAS for 

discriminating between subjects in Persistently Low from Persistently High trajectory (Figure 5, Area 

Under the ROC Curve-AUROC=90.7%, sensitivity=81.8%; specificity=80.95%), and a fair predictive ability 

for discriminating between subjects in Persistently Low from all others (Figure S1, AUROC=77.2%, 

sensitivity=81.8%; specificity=67.8%). 

We found an association between low birth weight and low childhood FEV1 trajectories. In MAAS, which 

included no preterm infants, low birth weight (LBW) at term (<2500g) was associated with Peristently 

Low FEV1 (Odds ratio 3.39 [95% CI 0.98-11.77], p=0.055). In ALSPAC, LBW adjusted for preterm (<37 

weeks) gestation at birth was associated with Persistently Low FEV1 (OR 1.98 [0.65-5.99], p=0.226, and 

Below Average FEV1 (OR 1.84 [0.91-3.73], p=0.09).   
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DISCUSSION 

In two population-based birth cohorts, using data-driven analyses we identified four distinct lung 

function trajectories extending from early school age, through mid-school age, into adolescence and 

early adulthood. Subjects assigned to the Persistently Low trajectory, representing approximately 1 in 20 

participants, had low lung function in the third decade of life, around the time of the physiological 

plateau. Individuals in this trajectory had FEV1 below 80% predicted from early childhood to the point 

beyond which lung function starts to decline with aging.3,20 In the Persistently Low trajectory, both 

baseline and post-bronchodilator FEV1 was up to 25% lower, and FEV1/FVC up to 10% lower than the 

next lowest category. This tracking of lung function from early school-age is consistent with previous 

reports from population-based studies9,10, and provides confirmatory empirical evidence of this 

phenomenon based on a hypothesis-free approach. In addition to using data-driven analyses, another 

novel feature of the present study was the extension of lung function trajectories to early childhood, 

where spirometry is not practicable, and the observation that “low” lung function recovered in the 

majority of cases. At group level, children in the Low FEV1 trajectory in PIAF had significantly diminished 

lung function in infancy (measured by V′maxFRC), which is very similar to the finding in MAAS that, as a 

group, those in Persistently Low FEV1 trajectory had significantly diminished lung function at age 3 years 

(measured by sRaw). However, comparison of lung function trajectories in infancy and in school-age in 

PIAF has shown that although infants in the Below Average V′maxFRC trajectory were significantly more 

likely than children in the higher V’maxFRC categories to be classified in the Below Average FEV1 trajectory 

in childhood, the majority of these children (~75%) transitioned to the Above Average (12.2%) or Normal 

(63.4%) FEV1 trajectories. These findings are consistent with previous results from PIAF obtained using 

standard hypothesis-testing analyses,17,30 and support the concept of postnatal “recovery” of low 

neonatal lung function. The application of the same data-driven approach to longitudinal analysis as 

used in the MAAS, ALSPAC and Tasmanian Longitudinal Health Study (TAHS),31 allows some inference to 
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the general population on the patterns of lung function from one month of age to the sixth decade. 

Disaggregation of this population into discrete trajectories suggests that the opportunity for lung 

function recovery extends beyond the neonatal period. 

Our data revealed no evidence of groups of children with declining FEV1. A report from TAHS published 

in this issue of the journal, which used a similar statistical approach to discovery of lung function 

trajectories and spanned childhood (7-18 years) and later adulthood (45-55 years), described six 

trajectories, four of which were strikingly similar to ours.31 One further trajectory with below average 

FEV1 by age 18, and accelerated decline in later adulthood after reaching the plateau, could not be 

captured within our data set. This trajectory was characterized by both childhood factors and personal 

smoking in adulthood, which were independent risk factors. Together, our studies and TAHS elucidate 

the developmental patterns of lung function through the life-course, confirm their link with COPD, and 

provide evidence that different factors affect lung function growth from those affecting lung function 

decline. We have shown that Persistently Low trajectory is determined by both genetic factors and 

early-life events. We showed relatively weak evidence that SNPs discovered through GWAS of adult lung 

function29 were associated with a low childhood trajectory of FEV1. This suggests an influence of at least 

some of the included variants on lung function in early life but, as they were derived from studies of 

adults, it is likely that they consisted of a combination of factors influencing lung function growth and 

decline. A recent study of adults with repeat lung function measures showed that genetic variants 

associated with cross-sectional lung function in adults were not associated with longitudinal decline, 

suggesting that some of the observed association may be explained by developmental influences32. We 

did not have sufficient statistical power in this sample to investigate the individual contributions of risk 

alleles, nor to construct a de novo GWAS. 

Individuals with Persistently Low FEV1 in childhood have low maximally attained lung function in early 

adulthood, and are consequently at higher risk of COPD31, with or without additional adverse exposures 
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in adulthood. Personal smoking acts as an independent risk factor which contributes to accelerated lung 

function decline in middle adulthood, predominantly among individuals with below average lung 

function.31 In this group, in addition to early-life risk factors contributing to the diminished lung function 

at physiological plateau, adverse exposures in adult life lead to COPD development. Childhood asthma 

and early-life LRTIs are associated with low lung function trajectories and higher COPD risk in both 

scenarios. We found an association between asthma reported at all available ages and persistently Low 

FEV1 trajectory. This is consistent with previously reported associations between persistent asthma in 

childhood and subsequent lung function,8, 9 but we acknowledge the potential for misclassification of 

symptoms associated with pre-existing airway obstruction and asthma diagnosis, particularly when 

relying on self-report from questionnaires for the latter. This limits interpretation of the causal pathway 

between asthma in childhood and low lung function trajectories in later life. 

Although children with severe wheeze and early sensitization had lower FEV1 throughout childhood, 

their FEV1 remained relatively stable. In contrast, a recent study of FEV1 trajectories between ages 7 and 

26 years among patients with childhood asthma described two trajectories characterized by decline 

(Normal growth and early decline, and Reduced growth with early decline).33 However, direct 

comparison with our findings is not possible, as our cohorts are population-based, and we used data-

driven approach rather than predetermined categorization to identify trajectories. In MAAS, similar 

proportions of children (approximately one third) in Persistently Low trajectory had persistent wheeze 

and transient early wheeze, whist <10% had late-onset wheezing.  This is in contrast with the Australian 

high-risk cohort, which suggested that only persistent wheeze is associated with reduced growth in FEV1 

over adolescence, but that transient wheeze is a benign condition with no sequelae.34 In MAAS, an 

important predictor of subsequent Persistently Low FEV1 trajectory was severe exacerbation of 

wheezing in early life, rather than only wheezing persistence.  Low birth weight, which is associated with 

tobacco some exposure during pregnancy and early onset wheezing in infancy was associated with low 
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childhood FEV1 trajectories in our study independently of preterm delivery. This may be explained by 

restricted intrauterine growth influencing airway development and subsequent lung function35 with an 

associated tendency to wheezing in the context of LRTIs. 

Persistently Low lung function trajectory was also identified in the Tucson cohort (comprising nearly 10% 

participants),11 and is remarkably similar to our Persistently Low trajectory, which comprised a sizeable 

proportion (3.4%-6.7%) of our study populations. Assuming that 13.3% of the population develop COPD 

(http://www.hse.gov.uk/Statistics/causdis/copd/copd.pdf), and that among these, subjects in the 

Persistently Low trajectory would likely be diagnosed with COPD,34 the calculated population 

attributable risk is 22.9%-46.7%. This also represents the estimated reduction in COPD which would 

occur if early interventions improve lung function for this group. To inform potential strategies for 

improving lung function in early adulthood, we have identified early-life risk factors associated with 

Persistently Low trajectory, which included early-life ETS exposure, recurrent severe exacerbations of 

wheezing, and early allergic sensitisation. A recent study suggested that adult smoking, but not parental 

smoking history, can negatively influence adult lung function trajectory and modify the adverse impact 

of early-life exposures.35 Our and TAHS data demonstrate that both are important. We identified an 

association between the absence of early-life tobacco smoke exposure and Persistently High trajectory, 

which In TAHS had markedly lower risk of COPD at age 55 years.31 Thus, while tobacco smoke exposure 

will not necessarily lead to a disease, the absence of this exposure is associated with exceptionally good 

lung function and subsequent health. The risk of being in one of the diminished lung function profiles 

was decreased by 76% among children who were not exposed to parental smoking, suggesting that ETS 

exposure in early childhood may be causally related to COPD development, and that this may be 

mediated via the effect of early-life exposure on subsequent trajectories of lung function into 

adulthood.  

 

http://www.hse.gov.uk/Statistics/causdis/copd/copd.pdf
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Strengths and limitations 

One of the limitations of our study is that it was not possible to have identical measures of lung function 

through the life-course in our cohorts. We did not measure spirometry before age five years, since 

forced expiratory manoeuvres are difficult to carry out in young children. We used different cohorts and 

age-appropriate measures of pulmonary function to make inference about the life-course (rapid 

thoraco-abdominal compression in infancy16, plethysmography in pre-school age36, spirometry from 

school age onwards), which may represent the best available approximation of what might be 

happening from birth to adulthood. Another limitation is that the questions we used contained small 

differences in wording.37 ALSPAC included pre-term babies, which may explain slightly higher proportion 

of children in the Persistently Low trajectory in ALSPAC (6.7%, compared to 3.4% in MAAS).  One of the 

strengths of this study is the ability to disambiguate the temporal structure of profiles during childhood, 

allowing us to identify patterns during the lung function growth phase. It is striking that although we 

modelled data collected at different time points, and separately for each cohort, the results indicated 

almost identical latent profiles. In PIAF, we did not observe Persistently Low FEV1 trajectory.  This is not 

surprising, given a relatively small proportion of children in this trajectory (~5%), and a considerably 

smaller size of PIAF compared to MAAS and ALSPAC. 

We wish to emphasise that our current study is exploratory in nature. Therefore, the results should 

be interpreted with caution, and need to be validated in a larger population. We are also cognizant of 

the potential effect of the withdrawal/missing data rates. We carried out our analyses under the 

assumption that data was missing at random. To test this assumption, we carried out analyses using 

both children with at least three data points available, and those with at least one time point. Both 

analyses gave consistent optimal goodness-of-fit using the BIC, and the child class assignments were 

stable across the two analyses. This suggests that the missing at random assumption was plausible, 
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given that if children with missing data points were not missing at random, there would have been a 

higher mismatch between classes. 

Conclusion 

Using data from population-based birth cohort studies, we demonstrated four discrete trajectories of 

FEV1 development from early childhood to young adulthood. Interventions to reduce the risk of 

Persistently Low FEV1 trajectory should start in early childhood, and should include aggressive strategies 

to reduce tobacco smoke exposure, and novel strategies to prevent early-life sensitization and 

exacerbations of early-childhood wheezing.   
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Figure 5:   Receiver Operating Characteristic Curve showing predictive ability of a logistic regression 

analysis using the Persistently Low vs. Persistently High trajectory as the outcome (or predicted) 

measure with the following covariates: (1) recurrent wheeze with severe exacerbations by age 3 years, 

(2) at least one positive skin test by age 3 years, and (3) Environmental Tobacco Smoke exposure by age 
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ABSTRACT 

Background: Maximal lung function in early adulthood is an important determinant of mortality and 

COPD.  We investigated whether there are distinct trajectories of lung function during childhood, and 

whether these extend to adulthood and infancy. 

Methods:  To ascertain trajectories of forced expiratory volume in 1 second (FEV1), we studied two 

population-based birth cohorts with repeat spirometry from childhood into early adulthood (1046 and 

1390 participants).  To ascertain whether trajectories extend to early life, we used a third cohort with 

repeat lung function measures in infancy (V′maxFRC) and childhood (FEV1; n=196).  We identified 

trajectories using latent profile modelling.  We created an allele score to investigate genetic associations 

of trajectories, and constructed a multivariable model to identify their early-life predictors.   

Results: We identified four childhood FEV1 trajectories: Persistently High; Normal; Below Average; and 

Persistently Low. Persistently Low trajectory (~5% of participants) was associated with persistent 

wheezing and asthma throughout follow-up. In genetic analysis, compared with the Normal trajectory, 

the pooled relative risk ratio (95%CI) per allele was: 0.96 (0.92, 1.01), P=0.10, for Persistently High; 1.01 

(0.99, 1.03), P=0.49 for Below Average; and 1.05 (1.003, 1.09), P=0.036 for Persistently Low. The 

majority of children in low V′maxFRC trajectory in infancy (~75%) did not progress to low FEV1 trajectory in 

childhood. Early-life factors associated with Persistently Low trajectory included recurrent wheeze with 

severe exacerbations, early allergic sensitization, and tobacco smoke exposure. 

Conclusion: Reducing childhood smoke exposure and minimising the risk of early-life sensitization and 

wheezing exacerbations may reduce the risk of diminished lung function in early adulthood.  
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Research in context 

Evidence before this study 

Early life factors, such as weight at birth, are associated with low lung function and chronic obstructive 

pulmonary disease (COPD) in late adulthood. Lung function development reaches a plateau in early 

adult life, and low lung function in young adults is associated with early mortality from all causes. Failure 

to attain maximal lung function at its plateau is associated with COPD in later life, even when with 

physiological rate of decline of lung function is maintained.  This strengthens the evidence that early life 

influences may be critical for normal lung function growth in childhood and COPD pathogenesis. 

Added value of this study 

Using data from population-based, birth cohort studies, we demonstrated four discrete trajectories of 

FEV1 development from early childhood to young adulthood. Persistently low FEV1 was associated with 

wheezing and asthma through childhood, tobacco smoke exposure and was predicted by severe 

recurrent wheezing and allergic sensitization by age 3 years. We were able to determine from a third 

independent cohort that the majority of infants with low infant lung function trajectory during the first 

year after birth transitioned to normal or above average FEV1 trajectories 

Implications of all the available evidence 

A persistently low trajectory of FEV1 development can be identified during childhood, which is 

associated with potentially modifiable influences in early childhood. This trajectory was replicated in a 

companion study that followed FEV1 growth from childhood to late adulthood. Although perinatal 

factors are associated with low lung function during childhood and with later COPD, the majority of 

infants with low lung function trajectories during the first year appeared to recover to average or above 

average FEV1 growth in later childhood. Interventions to maximise lung growth in early childhood may 

modify the risk of COPD in older age.  
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INTRODUCTION  

Low forced expiratory volume in 1 second (FEV1) in early adult age (at its physiological plateau) is as 

important in the genesis of chronic obstructive pulmonary disease (COPD) as a rapid decline of FEV1 in 

later years.1-3 Furthermore, low lung function in young adult life is associated with early mortality,4 and 

low FEV1 is a marker of premature death from all causes.5 A recent study by Agusti et al has shown that 

low lung function in early adulthood (around the time of the physiological plateau) is associated with 

earlier onset of COPD, other chronic diseases, and death.6 An accompanying Editorial highlighted the 

need to use longitudinal studies and modern statistical approaches to gain better understanding of the 

causal pathways, understand the critical windows for lung function development, and identify targets 

for early intervention.4,5,7-11   

Hypothesis-driven analyses in unselected longitudinal cohorts and children with asthma have shown 

that lung function in adult life is in part determined by childhood events. The observation that FEV1 was 

consistently lower amongst individuals with certain clinical phenotypes (such as severe asthma,8 and 

persistent wheezing9) provided foundations for the concept that lung function tracks from school-age to 

adulthood.9,10 This is supported by the data-driven analysis of spirometry records from childhood (age 11 

years) to the fourth decade of life in Tucson cohort, which identified two distinct lung function 

trajectories (low and normal).11 Persistently low trajectory comprised nearly 10% participants, and 

individuals in this class were predisposed to COPD later in life.  

We hypothesized that a population comprises several distinct groups of individuals with similar lung 

function trajectories from pre-school age to adolescence, which extend to the physiological plateau in 

early adulthood, and that these trajectories are in part established at birth. However, factors which 

determine lung function growth may differ from those affecting the rate of decline after the plateau,12 

and inference from models that combine a limited number of measures in childhood (before peak lung 
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function is reached in early adulthood), with those in later adulthood (during the decline phase), may 

not adequately disaggregate the effects of risk factors which differentially impact growth and decline.  

To address our hypotheses, and ascertain trajectories during the lung function growth and their risk 

factors, we combined data from three population-based birth cohorts in which lung function was 

assessed on multiple occasions from infancy, through early school age and adolescence, into early 

adulthood. We first set out to establish whether a method to categorise FEV1 trajectories using latent 

profile analysis could be applied across different cohorts, and whether it yields consistent results across 

different populations. We proceeded to identify genetic and early-life factors associated with FEV1 

trajectories at the population level. Finally, we investigated whether FEV1 trajectories track back to lung 

function patterns in infancy.    
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METHODS 

Study design, setting and participants 

We studied three population-based birth cohorts: Manchester Asthma and Allergy Study (MAAS)13 and 

the Avon Longitudinal Study of Parents and Children (ALSPAC)14 from the UK STELAR consortium15, and 

the Australian Perth Infant Asthma Follow-up (PIAF) study.16 All participants were recruited prenatally 

and followed prospectively. All studies were approved by research ethics committees. Informed consent 

was obtained from parents, and study subjects gave their consent when applicable. 

Data sources/measurement  

We investigated trajectories of FEV1 from early school-age to adolescence in MAAS13 and replicated 

these using data from ALSPAC from school age to early adultood14. We ascertained whether FEV1 

trajectories extended to lung function in early infancy using data from PIAF.17   

We performed spirometry according to ATS/ERS criteria18,19 at ages 5, 8, 11 and 16 years in MAAS; ages 

8, 15 and 24 years in ALSPAC; and 6, 12 and 18 years in PIAF. We expressed FEV1 as % predicted at each 

age.20 In  PIAF, we assessed infant lung function at ages 1, 6 and 12 months using the rapid 

thoracoabdominal compression test to determine the maximal flow at functional residual capacity 

(V′maxFRC).16,17 In MAAS we measured specific airways resistance (sRaw) at age 3 years.21 In MAAS and 

ALSPAC, we measured post-bronchodilator FEV1 after administration of 400 g of salbutamol (5, 11 and 

16 years in MAAS, and 15 and 24 years in ALSPAC), and assessed assessed airway hyper-reactivity (AHR) 

using methacholine challenge.22  

Details of clinical follow up, genotyping (MAAS and ALSPAC), and definitions of clinical outcomes 

(asthma,23 wheeze phenotypes,24 severe asthma exacerbations,25 airway hyper-reactivity (AHR),26 lower 

respiratory tract infections [LRTIs]27), and environmental exposures are presented in the supplementary 

appendix. 
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Statistical Analysis 

Longitudinal profile analysis to assess prototypical FEV1 trajectories: We used a latent profile model to 

assign children to their most likely group based on the profile of FEV1 over time. Latent profile modelling 

has been described extensively elsewhere.28 Briefly, we assumed that each child belonged to one of a 

set of N latent profiles, the number or size of which were unknown a priori. We used two-level random 

intercept and random coefficients regression models to examine trajectory classes with no change over 

time, and under the assumption that the profile of FEV1 changes linearly over time. The models were 

compared for goodness-of-fit using the Bayesian Information Criterion (BIC). For each child, the 

posterior probability of belonging to each of the classes was calculated, and children were assigned to 

the latent profile with the largest probability. Latent profile modelling was carried out using the gllamm 

(generalised linear latent and mixed models) package implemented in Stata (StataCorp, College Station, 

TX).  Characteristics of trajectories were investigated using multinomial regression.  

Genetic associations with FEV1 trajectories:  We constructed a weighted allele score from 77 SNPs found 

to have genome-wide evidence for association with FEV1/FVC, or FEV1 decline in adults29 (Table S1, 

supplementary appendix). The dosage of the risk allele at each locus was multiplied by a SNP-specific 

weight (linear coefficient [beta] divided by the average of 77 linear coefficients), then averaged across 

SNPs.  SNP-specific risk alleles and weights were based on the reported meta-analysis.29 The units of the 

derived genetic score were per-beta per-SNP. Setting the ‘Normal’ trajectory as the baseline group, we 

used a multinomial logistic regression model to investigate the risk of the membership of other 

trajectories per 1-unit increase of the genetic score. The independent associations of the resulting 

genetic risk score with FEV1 trajectories in MAAS and ALSPAC were meta-analysed with fixed and 

random effect models using the method of Mantel and Haenszel (metan command in Stata). Using 

multinomial logistic regression models, we also calculated the relative risk ratios for ‘Persistently Low’ 
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(vs. ‘Normal’ trajectory) in extreme quantiles of the allelic risk score in two cohorts independently 

(deciles in ALSPAC; eight quantiles in MAAS). 

Identification of the early-life predictors of FEV1 trajectories:  We constructed a multivariable regression 

model to identify early-life predictors of subsequent latent profiles of FEV1. We carried out these 

analyses in MAAS, in which we had richer data collected in early life.  We used receiver operating 

characteristic (ROC) curves to evaluate the predictive ability of these predictors. 

Role of the funding source 

The study sponsors had no role in study design; in the collection, analysis, and interpretation of data; in 

the writing of the report; or in the decision to submit the paper for publication.  
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RESULTS 

We included 1046 participants from MAAS, 1390 from ALSPAC, and 196 from PIAF. Participant flow is 

presented in the Supplementary appendix.  

FEV1 trajectories from early school-age to young adulthood (MAAS and ALSPAC) 

We selected 4-class model in MAAS and ALSPAC (please see Supplementary appendix and Table S2).  

The posterior probability of class membership was high in both cohorts (Table S3). The proportion of 

participants and the mean FEV1 over time in each of the classes were similar across the cohorts (Table 

S4).  We labelled the classes (FEV1 trajectories) as: (1) Persistently High; (2) Normal; (3) Below Average; 

and (4) Persistently Low (Figure 1). Children within these four trajectories had stable lung function that 

tracked from age 5 to age 16 years (MAAS), and from ages 8 to 24 years (ALSPAC), with no overlap in 

FEV1 at any time. The solutions remained stable and results unchanged when we included only children 

who had spirometry on at least 3 follow-ups (Tables S5-6).   

Characteristics of children in each of the FEV1 trajectories are shown in Tables S7 and S8. Persistently 

Low trajectory was consistently associated with wheeze and asthma throughout the follow-up in both 

cohorts; in MAAS, almost half the children in this trajectory had asthma, and in ALSPAC this was 

approximately one third, significantly higher than in the rest of the population. The proportion of 

children with LRTIs in the first 3 years (data from medical records, available only in MAAS27) was 

significantly higher in the Persistently Low trajectory (32.3%) compared to the Normal trajectory 

(12.1%). Post-bronchodilator FEV1 and FEV1/FVC followed similar patterns as the baseline FEV1 in both 

cohorts. In MAAS, sRaw at age 3 years was significantly higher in Persistently Low compared to other 

trajectories, indicating diminished lung function (P=0.001). Persistently Low trajectory was significantly 

associated with AHR in both cohorts. There was no association between trajectory membership and 
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allergic sensitisation in adolescence in MAAS, or at age 7 years in ALSPAC. Sensitisation in early 

childhood in MAAS was significantly more common in Persistently Low trajectory.  

There was no difference in gender between trajectories. Birth weight was significantly higher in the 

Persistently High trajectory in ALSPAC, but not in MAAS. In MAAS, children in the Persistently High 

trajectory were less likely to be exposed to environmental tobacco smoke (ETS) compared to all others 

(Figure 2a). Children continuously exposed to ETS from birth to age 16 years were at increased risk of 

belonging to the Below Average and Persistently Low trajectories. We observed similar trends in 

ALSPAC, with Persistently High trajectory having the lowest proportion of ETS-exposed participants 

(Figure 2b). 

Genetic associations  

Genotyping data was available in 927 participants in ALSPAC, and 902 in MAAS. The weighted genetic 

score based on 77 SNPs was inversely associated with the order of FEV1 trajectories (Persistently High to 

Persistently Low) in both cohorts (Table S9). The meta-analysis is shown in Figure 3: compared with the 

Normal trajectory, the pooled relative risk ratio (95%CI) per allele was: 0.97 (0.92, 1.01), P=0.13, for 

Persistently High; 1.01 (1.00, 1.03), P=0.49 for Below Average; and 1.05 (1.00, 1.09), P=0.036 for 

Persistently Low. Results using the inverse variance method were very similar. Risk of Persistently Low 

FEV1 (vs. Normal) in 10th decile of risk score (vs. 1st decile) was 2.03 (0.62, 6.67), p=0.24 in ALSPAC. In 

MAAS, the risk of Persistently Low FEV1 in the highest compared with the lowest of eight quantiles was 

4.19 (0.83-21.05), p=0.08. 

Do FEV1 trajectories extend back to lung function in early life (PIAF)? 

In PIAF, a 3-class model provided the optimal solution for FEV1 (Above Average, Normal and Below 

Average, Figure 4a), and a 2-class model for V′maxFRC (Above Average and Below Average, Figure 4b). 

Among children in the Below Average FEV1 trajectory, V′maxFRC was significantly lower compared to other 
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trajectories at age 1 month (P=0.05) and 6 months (P=0.018), but not at age 1 year (Table S10). Although 

children in the Below Average V′maxFRC trajectory were significantly more likely to remain in the Below 

Average FEV1 trajectory (OR=3.63, 95%CI 1.21–10.90, P=0.022), the majority of these children (~75%) 

transitioned to the Above Average (12.2%) or Normal (63.4%) FEV1 trajectories in later childhood (Figure 

4, panel c). 

Early-life predictors of FEV1 trajectories (MAAS) 

Children with recurrent severe wheeze exacerbations by age 3 years, with allergic sensitization at age 3 

years, and who have been exposed to ETS by age 3 years, were more likely to belong to the Persistently 

Low trajectory (Table S10). This set of variables provided a good predictive ability in MAAS for 

discriminating between subjects in Persistently Low from Persistently High trajectory (Figure 5, Area 

Under the ROC Curve-AUROC=90.7%, sensitivity=81.8%; specificity=80.95%), and a fair predictive ability 

for discriminating between subjects in Persistently Low from all others (Figure S1, AUROC=77.2%, 

sensitivity=81.8%; specificity=67.8%). 

We found an association between low birth weight and low childhood FEV1 trajectories. In MAAS, which 

included no preterm infants, low birth weight (LBW) at term (<2500g) was associated with Peristently 

Low FEV1 (Odds ratio 3.39 [95% CI 0.98-11.77], p=0.055). In ALSPAC, LBW adjusted for preterm (<37 

weeks) gestation at birth was associated with Persistently Low FEV1 (OR 1.98 [0.65-5.99], p=0.226, and 

Below Average FEV1 (OR 1.84 [0.91-3.73], p=0.09).   
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DISCUSSION 

In two population-based birth cohorts, using data-driven analyses we identified four distinct lung 

function trajectories extending from early school age, through mid-school age, into adolescence and 

early adulthood. Subjects assigned to the Persistently Low trajectory, representing approximately 1 in 20 

participants, had low lung function in the third decade of life, around the time of the physiological 

plateau. Individuals in this trajectory had FEV1 below 80% predicted from early childhood to the point 

beyond which lung function starts to decline with aging.3,20 In the Persistently Low trajectory, both 

baseline and post-bronchodilator FEV1 was up to 25% lower, and FEV1/FVC up to 10% lower than the 

next lowest category. This tracking of lung function from early school-age is consistent with previous 

reports from population-based studies9,10, and provides confirmatory empirical evidence of this 

phenomenon based on a hypothesis-free approach. In addition to using data-driven analyses, another 

novel feature of the present study was the extension of lung function trajectories to early childhood, 

where spirometry is not practicable, and the observation that “low” lung function recovered in the 

majority of cases. At group level, children in the Low FEV1 trajectory in PIAF had significantly diminished 

lung function in infancy (measured by V′maxFRC), which is very similar to the finding in MAAS that, as a 

group, those in Persistently Low FEV1 trajectory had significantly diminished lung function at age 3 years 

(measured by sRaw). However, comparison of lung function trajectories in infancy and in school-age in 

PIAF has shown that although infants in the Below Average V′maxFRC trajectory were significantly more 

likely than children in the higher V’maxFRC categories to be classified in the Below Average FEV1 trajectory 

in childhood, the majority of these children (~75%) transitioned to the Above Average (12.2%) or Normal 

(63.4%) FEV1 trajectories. These findings are consistent with previous results from PIAF obtained using 

standard hypothesis-testing analyses,17,30 and support the concept of postnatal “recovery” of low 

neonatal lung function. The application of the same data-driven approach to longitudinal analysis as 

used in the MAAS, ALSPAC and Tasmanian Longitudinal Health Study (TAHS),31 allows some inference to 
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the general population on the patterns of lung function from one month of age to the sixth decade. 

Disaggregation of this population into discrete trajectories suggests that the opportunity for lung 

function recovery extends beyond the neonatal period. 

Our data revealed no evidence of groups of children with declining FEV1. A report from TAHS published 

in this issue of the journal, which used a similar statistical approach to discovery of lung function 

trajectories and spanned childhood (7-18 years) and later adulthood (45-55 years), described six 

trajectories, four of which were strikingly similar to ours.31 One further trajectory with below average 

FEV1 by age 18, and accelerated decline in later adulthood after reaching the plateau, could not be 

captured within our data set. This trajectory was characterized by both childhood factors and personal 

smoking in adulthood, which were independent risk factors. Together, our studies and TAHS elucidate 

the developmental patterns of lung function through the life-course, confirm their link with COPD, and 

provide evidence that different factors affect lung function growth from those affecting lung function 

decline. We have shown that Persistently Low trajectory is determined by both genetic factors and 

early-life events. We showed relatively weak evidence that SNPs discovered through GWAS of adult lung 

function29 were associated with a low childhood trajectory of FEV1. This suggests an influence of at least 

some of the included variants on lung function in early life but, as they were derived from studies of 

adults, it is likely that they consisted of a combination of factors influencing lung function growth and 

decline. A recent study of adults with repeat lung function measures showed that genetic variants 

associated with cross-sectional lung function in adults were not associated with longitudinal decline, 

suggesting that some of the observed association may be explained by developmental influences32. We 

did not have sufficient statistical power in this sample to investigate the individual contributions of risk 

alleles, nor to construct a de novo GWAS. 

Individuals with Persistently Low FEV1 in childhood have low maximally attained lung function in early 

adulthood, and are consequently at higher risk of COPD31, with or without additional adverse exposures 
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in adulthood. Personal smoking acts as an independent risk factor which contributes to accelerated lung 

function decline in middle adulthood, predominantly among individuals with below average lung 

function.31 In this group, in addition to early-life risk factors contributing to the diminished lung function 

at physiological plateau, adverse exposures in adult life lead to COPD development. Childhood asthma 

and early-life LRTIs are associated with low lung function trajectories and higher COPD risk in both 

scenarios. We found an association between asthma reported at all available ages and persistently Low 

FEV1 trajectory. This is consistent with previously reported associations between persistent asthma in 

childhood and subsequent lung function,8, 9 but we acknowledge the potential for misclassification of 

symptoms associated with pre-existing airway obstruction and asthma diagnosis, particularly when 

relying on self-report from questionnaires for the latter. This limits interpretation of the causal pathway 

between asthma in childhood and low lung function trajectories in later life. 

Although children with severe wheeze and early sensitization had lower FEV1 throughout childhood, 

their FEV1 remained relatively stable. In contrast, a recent study of FEV1 trajectories between ages 7 and 

26 years among patients with childhood asthma described two trajectories characterized by decline 

(Normal growth and early decline, and Reduced growth with early decline).33 However, direct 

comparison with our findings is not possible, as our cohorts are population-based, and we used data-

driven approach rather than predetermined categorization to identify trajectories. In MAAS, similar 

proportions of children (approximately one third) in Persistently Low trajectory had persistent wheeze 

and transient early wheeze, whist <10% had late-onset wheezing.  This is in contrast with the Australian 

high-risk cohort, which suggested that only persistent wheeze is associated with reduced growth in FEV1 

over adolescence, but that transient wheeze is a benign condition with no sequelae.34 In MAAS, an 

important predictor of subsequent Persistently Low FEV1 trajectory was severe exacerbation of 

wheezing in early life, rather than only wheezing persistence.  Low birth weight, which is associated with 

tobacco some exposure during pregnancy and early onset wheezing in infancy was associated with low 
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childhood FEV1 trajectories in our study independently of preterm delivery. This may be explained by 

restricted intrauterine growth influencing airway development and subsequent lung function35 with an 

associated tendency to wheezing in the context of LRTIs. 

Persistently Low lung function trajectory was also identified in the Tucson cohort (comprising nearly 10% 

participants),11 and is remarkably similar to our Persistently Low trajectory, which comprised a sizeable 

proportion (3.4%-6.7%) of our study populations. Assuming that 13.3% of the population develop COPD 

(http://www.hse.gov.uk/Statistics/causdis/copd/copd.pdf), and that among these, subjects in the 

Persistently Low trajectory would likely be diagnosed with COPD,34 the calculated population 

attributable risk is 22.9%-46.7%. This also represents the estimated reduction in COPD which would 

occur if early interventions improve lung function for this group. To inform potential strategies for 

improving lung function in early adulthood, we have identified early-life risk factors associated with 

Persistently Low trajectory, which in addition to genetic factors included early-life ETS exposure, 

recurrent severe exacerbations of wheezing, and early allergic sensitisation. A recent study suggested 

that adult smoking, but not parental smoking history, can negatively influence adult lung function 

trajectory and modify the adverse impact of early-life exposures.35 Our and TAHS data demonstrate that 

both are important. We identified an association between the absence of early-life tobacco smoke 

exposure and Persistently High trajectory, which In TAHS had markedly lower risk of COPD at age 55 

years.31 Thus, while tobacco smoke exposure will not necessarily lead to a disease, the absence of this 

exposure is associated with exceptionally good lung function and subsequent health. The risk of being in 

one of the diminished lung function profiles was decreased by 76% among children who were not 

exposed to parental smoking, suggesting that ETS exposure in early childhood may be causally related to 

COPD development, and that this may be mediated via the effect of early-life exposure on subsequent 

trajectories of lung function into adulthood.  

 

http://www.hse.gov.uk/Statistics/causdis/copd/copd.pdf
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Strengths and limitations 

One of the limitations of our study is that it was not possible to have identical measures of lung function 

through the life-course in our cohorts. We did not measure spirometry before age five years, since 

forced expiratory manoeuvres are difficult to carry out in young children. We used different cohorts and 

age-appropriate measures of pulmonary function to make inference about the life-course (rapid 

thoraco-abdominal compression in infancy16, plethysmography in pre-school age36, spirometry from 

school age onwards), which may represent the best available approximation of what might be 

happening from birth to adulthood. Another limitation is that the questions we used contained small 

differences in wording.37 ALSPAC included pre-term babies, which may explain slightly higher proportion 

of children in the Persistently Low trajectory in ALSPAC (6.7%, compared to 3.4% in MAAS).  One of the 

strengths of this study is the ability to disambiguate the temporal structure of profiles during childhood, 

allowing us to identify patterns during the lung function growth phase. It is striking that although we 

modelled data collected at different time points, and separately for each cohort, the results indicated 

almost identical latent profiles. In PIAF, we did not observe Persistently Low FEV1 trajectory.  This is not 

surprising, given a relatively small proportion of children in this trajectory (~5%), and a considerably 

smaller size of PIAF compared to MAAS and ALSPAC. 

We wish to emphasise that our current study is exploratory in nature. Therefore, the results should 

be interpreted with caution, and need to be validated in a larger population. We are also cognizant of 

the potential effect of the withdrawal/missing data rates. We carried out our analyses under the 

assumption that data was missing at random. To test this assumption, we carried out analyses using 

both children with at least three data points available, and those with at least one time point. Both 

analyses gave consistent optimal goodness-of-fit using the BIC, and the child class assignments were 

stable across the two analyses. This suggests that the missing at random assumption was plausible, 
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given that if children with missing data points were not missing at random, there would have been a 

higher mismatch between classes. 

 

Conclusion 

Using data from population-based birth cohort studies, we demonstrated four discrete trajectories of 

FEV1 development from early childhood to young adulthood. Interventions to reduce the risk of 

Persistently Low FEV1 trajectory should start in early childhood, and should include aggressive strategies 

to reduce tobacco smoke exposure, and novel strategies to prevent early-life sensitization and 

exacerbations of early-childhood wheezing.   
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LEGENDs FOR FIGURES 

 

Figure 1: Mean % Predicted FEV1 over time by FEV1 trajectory:  

a) MAAS 

b) ALSPAC  

Figure 2: % Children exposed to Environmental Tobacco Smoke over time by FEV1 trajectory:  

a) MAAS  

b) ALSPAC 

Figure 3: Meta-analysis (random effects model) of weighted genetic score based on 77 SNPs with FEV1 

trajectories 

Figure 4: Lung function trajectories in PIAF: 

a) Mean % Predicted FEV1 over time by FEV1 trajectory 

b) Mean % Predicted V′maxFRC over time by V’maxFRC trajectory  

c) Membership of FEV1 trajectory in relation to the V′maxFRC trajectories 

Figure 5:   Receiver Operating Characteristic Curve showing predictive ability of a logistic regression 

analysis using the Persistently Low vs. Persistently High trajectory as the outcome (or predicted) 

measure with the following covariates: (1) recurrent wheeze with severe exacerbations by age 3 years, 

(2) at least one positive skin test by age 3 years, and (3) Environmental Tobacco Smoke exposure by age 

3 years  
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Use of Asthma medication 1.000 (0.132) 1.00 

Current Wheeze 0.906 (0.116) 0.44 

Sensitization (SPT) 0.930 (0.132) 0.61 

Any smoking exposure 1.305 (0.151) 0.022 

Maternal Asthma 0.966 (0.125) 0.79 

Paternal Asthma 1.094 (0.161) 0.54 

Maternal atopy (SPT) 0.960 (0.104) 0.71 

Paternal atopy (SPT) 1.048 (0.118) 0.68 

Socio-economic Status (Baseline= Managerial Group)   
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Not Working 3.819 (1.491) 0.001 

ALSPAC   
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Sensitization (SPT) at 7 years 0.989 (0.025) 0.66 
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Maternal asthma 1.004 (0.031) 0.90 

Paternal asthma 0.969 (0.032) 0.33 

Social class (ref= non-manual) 1.415 (0.020) p<0.001 
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