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Abstract 

This paper proposes and explains the application of an accident precursor probabilistic method (APPM) 

that aims to overcome the usual limitations of existing quantitative risk analyses (QRA), with a focus on 

offshore drilling blowouts. This limitation is implicit in generic QRAs that do not appropriately reflect the 

specificities of the rig and its environment, without considering systems arrangements, risk influencing 

factors (RIF) or current operational conditions.  

The proposed method is divided into three pillars: (i) a guideline for modeling the blowout probability 

considering specific conditions or well, rig, safety barriers and risk influencing factors (RIF) objectives; (ii) 

a proposed axiom combined with a scoring system to quantify the RIF into the QRA; and (iii) a risk based 

plan framework, to allow risk update and sequential learning during the operational phase.   

The APPM is based on a Bayesian Network (BN) mathematical framework. It allows the pre-defined axiom 

to be entered into a conditional probability table (CPT). This approach, combined with the assessment of 

the company’s safety management system, allows the incorporation of RIF into the QRA.  

The developed APPM is applied to a theoretical micro-scale calculation. The result demonstrates its 

suitability for addressing common aspects inherent to the blowout phenomenon, including uncertainty, 

dependability between variables (common cause factors and redundant failures), and dynamism due to 

planned or unplanned operational changes in systems, drilling parameters and current conditions of RIF. 

Limitations of the APPM are also identified, and suggestions are made for future work on this topic. 
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List of Definitions and Abbreviations 

BN – Bayesian Network 

BOP – Blowout Preventer 

BT – Bow Tie 

CPT – Conditional Probability Table 

DAG – Direct Acyclic Graph 

ET – Event Tree  

FT – Fault Tree  

G&G – Geological and geophysical parameters 

HOF – Human and Organizational Factors 

KPI – Key Performance Indicator 

MoC - Management of Change 

MTTF – Mean Time to Failure 

QRA – Quantitative Risk Analysis 

RIF – Risk Influencing Factors 

SMS – Safety Management System 

 

List of symbols 

 
Ci Random variable of potential cause Ci. 

Ei A set of random events or, when used in the risk analysis model, a set of basic events. 

E Random variable characterizes the evidence in the Bayesian theorem. 

ph Hydrostatic pressure caused by the mud column inside the well.  

pf Pressure caused by the fluids that are stored inside the pores of a geological formation. 

P Probability 

R(t) Reliability of a system or piece of equipment over a period of time t. 

𝜆 Failure rate of a system or piece of equipment 
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1. INTRODUCTION 

Offshore drilling is an activity inherent to the oil and gas industry, as it is essential in confirming the 

economic feasibility of hydrocarbon reservoirs. However, risks related to uncertainties, i.e: lack of 

knowledge about risk influence factors (RIF), and risks inherent to typical major accident hazards are 

associated with this activity. Blowouts are assumed to be one of the major contributors to risk in offshore 

drilling (Rosenberg & Nielsen, 1997).  

The risks inherent to drilling projects are assessed prior to and during operations. Risk assessment studies 

are part of the regulatory framework in several countries and are critical documents for the permit process 

for drilling activities. For instance, the UK Health and Safety Executive (UK) (Health and Safety Executive, 

2006) states that the primary objectives of risk assessment in this context are to identify and rank risks so 

that they can be adequately managed, and to examine associated risk reduction measures to determine those 

which are most suitable for implementation.  

On new frontiers, most exploratory blocks and potential reservoirs are generally located in deep waters and 

unknown geological and geophysical (G&G) environments. This requires design and construction of wells 

under complex, hazard conditions (high pressures and temperatures) and with higher degrees of uncertainty, 

leading to the conclusion that the blowout risk also increases. According to the National Commission 

(Skelet et al., 2006b) on the BP Deepwater Horizon Oil Spill and Offshore Drilling, the Macondo blowout 

requires a reassessment of the risks associated with the activity of offshore drilling. 

Nevertheless, the current practice in the oil & gas industry has been to assess the risks of complex drilling 

projects based on the same traditional QRA methods that are applied to common drilling projects, with a 

lesser degree of complexity and uncertainty, i.e: where wells have standard designs and are located in 

environments where geological and geophysical (G&G) information is readily available. In cases when 

wells are designed under uncertainty and risk, deterministic safety factors are seldom applied to estimate 

the risk and, in some cases, may even discontinue the project (Dahlin et al., 1998). 

Traditional QRA methods are characterized by relying on traditional statistical techniques and, as 

consequence, are limited in addressing dependability, uncertainty and changes in the risk picture overtime 

(risk update) (Aven & Bjerga, 2009). These methods may be suitable for assessing regular drilling projects, 

but when applied to complex, risky and dynamic drilling projects, it generates generic risk assessments that 

are not reliable in reflecting specifics that could significantly change the risk profile of the activity. 

This research paper proposes an accident precursor probabilistic method (APPM) that was designed for 

overcoming the limitations of traditional QRA, with a focus on addressing specificities related to blowout 

risk in deep-water offshore drilling. Therefore, the following specifications for the APPM were established: 

address specificities of well and top-side safety barrier systems and elements, easily reflect changes in 

drilling operational conditions and properly reflect the effect of risk influencing factors (RIF) on the 

performance of safety barriers.  

This research paper is divided into the following sections: 

 Review of traditional and contemporary QRA methods, focusing on the oil and gas industry; 

 Presentation of the APPM, including expected advantages and limitations; 

 Demonstration and discussion of its application in a micro-scale theoretical example; 

 Discussion about the APPM’s limitations and suggestions for future research work; and  
 Conclusions; 
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2. REVIEW OF OFFSHORE QRA METHODS 

The IADC HSE Case Guidelines (International Association of Drilling Contractors, 2015) are the present 

benchmark for offshore drilling risk assessment.  The Guidelines provide a framework for developing an 

integrated health, safety and environmental management system for use in reducing the risks associated 

with drilling activities. The guidelines are divided into the following major parts: 

 Drilling contractor management system; 

 RIG/ MODU description and support information; 

 Risk management; 

 Emergency response; and 

 Performance monitoring. 

The HSE Case Guidelines demonstrate that risks associated with major and other workplace hazards have 

been adequately assessed and that risk-reducing controls within the drilling contractor’s management 

system have been applied (International Association of Drilling Contractors, 2015). IADC HSE Guidelines 

are the outcome of good practices for drilling contractors. Even though they are not compulsory, they are a 

standardized aspect of HSE that operators, drilling contractors, authorities, and oil and gas producers 

(industry stakeholders) should consider as part of their Health, Safety and Environmental (HSE) 

Management Systems.  

They are also a methodology for drilling contractors to acknowledge the application and requirements of 

operations aligned with other offshore international standards, such as International Safety Management 

Code requirements (ISM) of the International Maritime Organization (IMO).  They are a risk management 

tools which helps to demonstrate the compliance of agreed HSE-applicable regulations with stakeholders’ 

expectations. This is especially useful when drilling contractors operate in different global regulatory 

jurisdictions (Holand, 1997). 

The challenge when modeling a blowout hazard is to conduct an analysis which reflects the actual 

equipment and procedures that are being used. Commonly utilized models are unable to distinguish between 

different platforms, systems and operators(Vinnem, 2007). In addition, the models used for quantification 

are not suitable for dealing with significant levels of operational uncertainty and changes, which are also 

inherent to most drilling projects. This combination leads to generic and static risk analyses. 

A review of several studies (Skogdalen & Vinnem, 2012), reinforced by the author’s own professional 

experience, has identified the following limitations of blowout QRAs: 

 Blowout risk assessments are generic. They do not reflect the specific risk influence factors (RIF) of 

the project, mainly those related to human and organizational factors (HOF) (Skogdalen & Vinnem, 

2011); 

 They are strongly dependent upon historical accident data banks that don’t address the uncertainty 

or specificities of the project. However, in some cases the frequencies can be adjusted based on the 

types of operations(International Association of Oil and Gas Producers, 2010); 

 They are modeled using a set of event trees (ET) and fault trees (FT), without considering 

dependability effects on the calculations, as demonstrated by (Khakzad et al., 2013); 

 Risk assessments are static, as the risk is not updated in light of operational changes and new 

information that becomes available (Khan et al., 2016); 

The risk models also do not address the specificities inherent to the basic causes of a kick, which is the 

major blowout accident precursor. In addition, quantification is limited to a review of accident frequency 

data banks that, in most cases, are not adjusted for the specificities of the system and operations. As a 

consequence, specific risk influencing factors (RIF) of geology, equipment, systems, and human and 

organizational factors (HOF) are not considered in the risk model, as already discussed by Skogdalen & 

Vinnem (2011, 2012) and Vinnem (2007). These findings are also in line with the limitations of QRA 
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applied to chemical process industries, as presented by Villa et al. (2016), who highlight that conventional 

risk analysis methodologies suffer the disadvantage of being intrinsically static, which may preclude 

possible updates and integrations with overall average risk. For this reason, during the past decade, great 

effort has been devoted to the development of dynamic assessment and management approaches that 

consider the evolution of conditions affecting risk. 

These contemporary approaches are mostly designed for chemical process industries, but some of them are 

derived from the nuclear industry. Villa et al. (2016) presents an overview on how risk analysis 

methodologies and applications have rapidly evolved in a dynamic direction (Dynamic Risk Analysis), to 

address risk issues in a continuously evolving environment and to overcome the limitations of traditional 

techniques. 

Khan et al. (2016), investigated the main contributions in the areas of Dynamic Risk Assessment (DRA) 

and proposes an overall framework for dynamic risk management for process facilities. The update 

mechanism, advantages, and disadvantages of the following methods were addressed:  Bayesian network, 

dynamic bow-ties, principal component analysis (PCA), loss functions, and risk barometer. The authors 

highlight the existence of improvement opportunities in technical aspects of the DRA field, especially for 

overcoming the inherent structural limitations of the Bayesian Network (BN) which is broadly used, as it 

does not allow consideration of multivariate systems with different marginal distributions and complex 

non-linear dependencies.  

Paltrinieri et al. (2016) reviewed, analyzed, and classified different risk assessment approaches, then 

presented their limitations for application to the process industry. The work highlights the application of a 

novel method based on indicators, the Risk Barometer, that demonstrated valuable features in its first 

applications, as it is capable of continuously monitoring risk-picture changes and supporting decision 

makers on a daily basis. However, the method requires the availability of a large amount of real-time data, 

the collection of which is made easier by the extensive use of information and communication technologies 

in process systems. 

In addition, Paltrinieri et al. (2016) suggests that the incorporation of Bayesian Network (BN) into risk 

assessment may be another interesting focus for both research and industry purposes, mostly because it 

allows a systematic approach that considers human error and management influences. Ale et al. (2014) also 

highlights the BN capability of providing a useful tool for dealing with uncertainty and with information 

from different sources, such as expert judgment, observable information or experience, and common causes 

and influences of human factors (Paltrinieri et al., 2016).  

Drilling projects may differ in many aspects when compared to chemical process systems, mostly in terms 

of the degree of automation and process stability. Chemical processes have well-defined design and 

operational envelopes, combined with relatively automated instrumentation systems. However, in drilling, 

operational parameters are mostly related to operational performance and Geological and Geophysical 

(G&G) conditions. In addition, instrumentation is less automated and consequently the drilling system’s 

reliability is more dependent upon human and organizational factors (HOF). This combination of 

uncertainty, planned and unplanned changes in the well operations, and a significant degree of dependency 

on human and organizational factors (HOF) when compared to other high reliability industries, makes 

drilling and consequently blowout risk assessment and management, a quite singular subject.  

Extensive reviews and studies (Reason, 1997) have already estimated that 70% of offshore accidents happen 

due to human failures and the remaining 30% is attributed to technical failures (Cai et al., 2013). 

Specifically, in the Macondo well blowout, there were a series of technical mistakes, bad engineering 

judgements, improper maintenance and communication, lack of leadership, structure, and component 

failures that all contributed to the tragedy (Pranesh et al., 2017). 
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Specific approaches for the oil & gas sector have also been a focus of the scientific field, dedicated to 

improving current QRA methods. A brief review of some of these modern methods, capable of updating 

risk and/ or incorporating RIF into the QRA with a focus on the oil and gas sector, is provided as follows: 

 Khakzad et al. (2013) present a risk analysis of drilling operations using both bow-tie and Bayesian 

network approaches. Bayesian network is shown to take priority over bow-tie since: (i) it considers 

both common cause failures and conditional dependencies among the primary events of the well 

control system; (ii) it allows probability updates and sequential learning by considering accident 

precursors, and (iii) it also helps to identify the most probable sequence of events leading to a 

blowout.  

 Khakzad et al. (2014) present a Bow-tie analysis and real-time barrier failure probability assessment 

of offshore drilling operations involving subsurface Blowout Preventers. The Bow-tie model is 

used to represent the potential accident scenarios, their causes, and the associated consequences. 

Real time predictive models are developed for the failure probabilities of key blowout barriers using 

a physical reliability model of constant strength and random stress to allow risk updates using real-

time observed data. 

 Abimbola et al. (2014) illustrate the application of a precursor-based hierarchical Bayesian analysis 

for updating the risk of major accidents, examining two types of likelihood functions (binomial and 

multinomial distributions). The method was applied in a case study, updating the failure probability 

of traditional offshore blowouts’ safety barriers. 
 (Ahmad, Pontiggia, & Demichela, 2014) propose a Bayesian methodology (MEDIA) to incorporate 

human and organizational factors into the risk assessment of technical systems. In MEDIA, a 

Bayesian Network combines a set of organizational factors classified into two states (good or bad) 

with a set of human factor taxonomies. The model can be used in two possible ways: (i) if an 

industry provides states of organizational factors to calculate HOF risks, or (ii) if they evaluate 

different organizational characteristics to compare HOF risks associated with specific 

organizational structures, to recommend the most suitable solution for an industry. 
 Landucci & Paltrinieri (2016a, 2016b) propose the TEC20 method (frequency modification 

methodology based on Technical Operational and Organizational Factors), which is based on an 

aggregated set of indicators, and their contribution to the expected leak frequency is systematically 

evaluated though a specific procedure. The method is suitable for implementation in dynamic risk 

assessments to provide an update mechanism that allows revision of accident frequency during the 

lifecycle of an installation. This work also compares TEC20 with other relevant methods for 

frequency tailoring, such as: CCPS Method (Center of Chemical Process Safety, 2000) based on 

arbitrary expert judgment evaluation; API 581 Method (American Petroleum Institute, 2000), 

which is based on the determination of equipment and management modification factors obtained 

from design data and site inspection; MANAGER (Pitblado, Williams, & Slater, 1990) which is 

based on the determination of a management modification factor obtained from site inspection, 

implicitly covering technical aspects; and DNV (Pitblado, Bain, Falck, Litland, & Spitzenberger, 

2011) which is based on scoring safety barriers, obtaining frequency reduction factors, and 

implicitly covering managerial aspects. 

Regarding human factors specifically, for about a decade the oil and gas industry have been looking for 

alternatives to incorporating HOF into QRA, as verified by the 2010 OGP report (International Association 

of Oil and Gas Producers, 2010). More recently, successful projects have been implemented in this specific 

area, such as Risk OMT program (Vinnem et al., 2012) that represent a further development of Barrier and 

Operational Risk Analysis (BORA) (Aven et al., 2006; Skelet et al., 2006a, 2006b).  

BORA (Skelet et al., 2006a, 2006b) analyses the effect of safety barriers introduced to prevent hydrocarbon 

releases, and how platforms’ specific conditions of technical, human, operational, and organizational risk 

influencing factors influence barrier performance. This work was based on the general framework and 

definition of safety barrier systems and elements suggested by (Sklet, 2006), which is also adopted in the 
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context of the present research paper. (Sklet, 2006) defines safety barriers as physical and/or non-physical 

measures planned to prevent, control or mitigate undesired events or accidents. The measures may range 

from human actions or a single technical unit, to a complex socio-technical system. ‘Planned’ implies that 

at least one of the purposes of the measures is to reduce risk. In line with (ISO 13702, 2015), ‘prevent’ 

means to reduce the likelihood of a hazardous event, ‘control’ means to limit the extent and/or duration of 

a hazardous event to prevent escalation, and ‘mitigate’ means to reduce the effects of a hazardous event.  

A ‘barrier element’ is a component or subsystem of a barrier system that itself is not sufficient to perform 

the designed safety function, and ‘risk influencing factor’ (RIF) is any factor, whether technical or human 

and organizational (HOF), capable of affecting the performance of a barrier function by affecting an element 

or system (Sklet, 2006). 

The Risk OTM method (Vinnem et al., 2012) departs from the safety barrier framework introduced by 

BORA (Skelet et al., 2006a, 2006b), taking advantage of a Bayesian approach combined with a scoring 

system for modelling human influences on both an operational and organizational level on offshore process 

leaks, focusing on maintenance work. The evaluation of the method’s application in this context was 

demonstrated by (Gran et al., 2012).  

More recently, (Strand & Lundteingen, 2016)  applied the principles of Risk OMT to offshore drilling 

operations, with a focus on quantifying human reliability. The authors concluded that the method is still 

novel for well drilling human reliability analysis (HRA) and QRA, but may need further empirical 

validation to demonstrate it has the necessary reliability to be a practical tool for risk management in global 

offshore drilling operations. The same authors (Strand & Lundteingen, 2016) suggest that there are 

improvement opportunities in regard to limiting the number of assumptions, and the use of expert judgments 

to substitute observations such as field data, human resource data, and simulator training data. 

The proposed accident precursor Bayesian Network (BN) method for modeling the risk of deep-drilling 

blowouts suggested by this research paper also takes advantage of these works, especially Risk OMT 

(Vinnem et al., 2012), since it employs a Bayesian approach to allow risk updates based on the effect of 

RIF in the performance of safety barriers.  

The major differences between Risk OMT and the APPM are the following: (i) the procedure for 

quantifying the effect of the RIF and integrating it into the QRA (scoring system and axiom); (ii) the 

proposed modeling approach divided into three levels; and the proposed risk update mechanism (risk-based 

plan). 

 

3. APPM FOR MODELING AND ASSESSING THE RISK OF OFFSHORE 

DRILLING BLOWOUTS 

The APPM for modeling and assessing the risk of drilling blowouts relies on the pillars illustrated in Figure 

1.  
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Figure 1: Pillars of the proposed risk-assessment method. 

 

The Bayesian Network method (BN) is the mathematical framework that integrates all pillars presented by 

Figure 1, allowing them to: decode the proposed axiom into a simple mathematical rule; address 

dependability between random variables, including common cause RIF affecting the performance of a 

safety barrier; and implement sequential learning and risk updates based upon new evidence collected by 

the routine implementation of SMS. Each one of these pillars was defined in accordance with the previously 

mentioned specifications of the design method: 

 Three-level modeling (Section 3.1) consists of simple guidelines to facilitate modelling, in 

accordance with the specifications of the proposed method. It assures that specificities inherent to 

drilling projects, including safety critical barrier elements and RIF, are properly identified; 
 The axiom and scoring system (Section 3.2) were designed to allow the incorporation of RIF into 

QRA, in a simpler and more transparent way when compared with similar Bayesian methods; 
 The design and implementation of a customized risk-based plan (Section 3.3), aligning the 

company’s Safety Management Systems (SMS) with the axiom and scoring system allows risk 

updating and sequential learning based on operational changes and the observation of new evidence. 

 

3.1 Three-Level Modeling Guidelines 

The three-level modeling guidelines were organized in accordance with three distinct modeling objectives. 

The three-level modeling guidelines are presented in Table 1.  
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Table 1: Three-level modeling guidelines. 

Level Objective Modeling Guidelines 

1 

To reflect specific risks related to 

the well drilling phase and well 

operations. 

 Customize a generic blowout model for reflecting a 

specific drilling phase, accounting for G&G risk 

exposure and arrangements of blowout safety 

critical systems. 

 In 100% of the cases, the kick is the blowout major 

accident precursor (Grace, 2003; Rosenberg & 

Nielsen, 1997) and, for this reason, is the top event 

(TE) of the risk model. 

 Identify the failure probabilities of safety critical 

systems and barrier elements of the model, based on 

historical databases. 

2 

To reflect specific design and 

operational conditions of safety 

barriers’ systems (top side and 

well) that affect the failure 

probability of these systems. 

 The failure probability of each safety critical barrier 

system must be modeled into its major basic 

elements, accounting for instrumentation 

technology, the elements' arrangement in the 

system, and operational aspects of the system. 

 Map potential interdependency between the safety 

barrier's systems. 

 Identify the failure probabilities of the barrier 

elements of each system based on historical 

databases. 

 Calculate the specific independent failure probability 

of each safety barrier system specific to the rig and 

well. 

3 
To reflect the specificities of risk 

influencing factors (RIF) 

 Identify a group of RIF (Technical and HOF) 

affecting the performance of each safety barrier 

element of Level 1 and 2. 

 Map the relationship between the group of risk 

influencing factors (RIF) and safety barriers' 

elements. 

 Correlate the RIF to the Company’s Safety 

Management System (SMS) to allow verification of 

the adequacy of the RIF, based on the most up-to-

date information from audit programs, inspections, 

and KPI. 

 Quantify the risk influencing factors (RIF) based on 

the proposed axiom and scoring system. 

 

3.2 Axiom and Scoring System 

Bayesian statistics were adopted to solve several variations of problems, mostly involving dynamism and 

uncertainty, as demonstrated by (Pourret, Naim, & Marcot, 2008). Directed acyclic graphs (DAG) are used 

to map the cause-and-effect relationships between barrier elements and systems with the groups of risk 

influencing factors (RIF) that may affect their performance.  
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A basic DAG mapped cause-and-effect relationship between two events (A and B) is based on the simplest 

form of the Bayes' theorem (Equation 1): 

 

𝐏(𝐀 | 𝐁) =
𝐏(𝐁 | 𝐀)𝐏(𝐀)

𝐏(𝐁)
 

(1) 

 P(A) and P(B) are the probabilities of A and B independent of each other;  

 P(A | B), is known as posterior probability, it is the probability of A given that B is true; and 

 P(B | A), is the conditional probability of event B given that event A is true. 

A simple change to the mathematical framework is proposed, changing the focus of the analysis to the term 

P(B | A) instead of the traditional posterior probability term P(A | B), from the most simple form of the 

Bayes' theorem. 

Thus, the updated failure probability of a barrier element or system, in accordance with the conditions of a 

group of ‘n’ risk influencing factors (RIF), is represented by the direct acyclic graph DAG shown in Figure 

2. 

 

Figure 2: DAG representation of failure probability of barrier element or system. 

Equation 2 is a Bayesian inference obtained from the traditional Bayes theorem (Equation 1), with the 

purpose of calculating the posterior failure probability of a barrier element or system given the specific 

conditions of ‘n’ RIF:  

 

P(Ē |C1, C2, … , Cn) = P(Ē) ×  ∏
P(Ci |Ē)

P(Ci)

n

i=1

 

(2) 

Bayesian inference derives the posterior probability as a consequence of two antecedents, a prior 

probability and a probability distribution which, in this case, is derived from observable data:  

 P(Ē | C1, C2, … , Cn)  is the posterior probability (Failure if TRUE and Operational if FALSE) of the 

barrier element or system given the influence of a specific group of risk factors (C1, C2, … , Cn); 

 P(Ē) is the prior failure probability of a barrier element or system. 

https://en.wikipedia.org/wiki/Posterior_probability
https://en.wikipedia.org/wiki/Consequence_relation
https://en.wikipedia.org/wiki/Antecedent_(logic)
https://en.wikipedia.org/wiki/Prior_probability
https://en.wikipedia.org/wiki/Prior_probability
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 P(Ci) is a probability distribution that represents the different possible observable conditions (states) 

of a risk influencing factor (Cn) in accordance with the proposed scoring system and axiom; and 

 P(Ci | Ē) is the probability of a specific RIF given Failure (TRUE) or functionality (FALSE) of the 

barrier element, which can be expressed by the conditional probability table (CPT) which complies 

with the APPM axiom. 

This slight adjustment to the mathematical framework is necessary for applying the main axiom of the 

method, the main objectives of which are to simplify the risk-update mechanism and to minimize 

subjectivity. The APPM axiom relies on the following assumptions: 

 Most oil companies prioritize their investments and management efforts seeking to comply with 

industry standards. Also, compliance of RIF in contrast with well-known industry standards is easy 

to measure using traditional elements available in every Oil Company’s Safety Management 

System (SMS). The metric, being simpler, facilitates implementation and reduces the subjectivity 

inherent to Bayesian Network methods, that in most cases relies on the implementation of 

probability elicitation  procedures; and  

 Catastrophic engineering system failures still occur. This leads to the conclusion that the average 

failure probability of an operating engineering system incorporates the socio-technical management 

practices that are designed and implemented to comply with regulations. In other words, accidents 

and failure data banks reflect the failure probabilities of socio-technical systems that, on average, 

have their performance managed to comply with industry standards. However, failure probabilities 

need to be industry specific whenever possible. This is because, as discussed by R., (Pitblado et al., 

2011; Spouge, 2005), generic leak frequencies can change significantly in accordance with the 

industry, including onshore and offshore facilities. Therefore, offshore leak frequencies provide 

more reliable data as they reflect the application of specific industry requirements. 

Based on these two assumptions, a main axiom for the method was established, which is: 

If a RIF (including HOF) complies with industry standards, the failure probability of the barrier element 

affected by the RIF is expected to be approximately equal to the failure probability available from 

historical data banks. Or, in mathematical terms: 

P(Ēi | RIF = IS) ~ P(Ēi) 

(3) 

where, Ēi is defined as the failure of a random event Ei and IS stands for “compliance to Industry 

Standards”. 

Consequently, one can derive the following hypothesis from the proposed axiom: 

 When the scores of the RIFs inherent to a safety barrier lean towards best industry standards, the 

performance of the safety barrier function affected by these RIFs will lean towards high reliability 

performance; 

 When the scores of the RIFs inherent to a safety barrier lean towards complete non-compliance to 

the standard, the performance of the safety barrier function affected by these RIFs will lean towards 

low reliability performance; 

To implement the aforementioned axiom and hypothesis, the RIFs were quantified by combining a four-

scale scoring system (Table 2) and a conditional probability table (CPT), presented in Table 3. This CPT 

was engineered with the single purpose of making the system comply with the proposed axiom and 

sustaining its subsequent hypothesis.  
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Table 2: Description of RIF scoring classification. 

RIF Compliance score Abbreviation Description 

Best practice BP - Control processes associated with the management of a RIF 

that is above what is defined by associated industry standards. 

Industry standard IS - Control processes associated with the management of a RIF 

that complies with associated industry standards. 

Below standard BS - Control processes associated with the management of a RIF 

that does not fully comply with associated industry standards. 

Not adequate NA - Absence or systematic failures of control processes 

associated with the performance management of a RIF. 

 

Table 3: CPT engineered for modeling the effect of a RIF in the performance of the safety barrier in 

accordance with the axiom of the method. 

Scoring System for RIF 

P(Ci | Ē) 

False 

(Barrier Element Operational) 
True 

(Barrier Element Fails) 

BP  :⇔ C1 0,40 0,1 

IS   :⇔ C2 0,25 0,25 

BS  :⇔ C3 0,20 0,275 

NA :⇔ C4 0,15 0,375 

 

 

The CPT was tested using a basic DAG cause-and-effect model. The test consisted of confirming that the 

effect will change in accordance with the axiom and subsequent hypothesis. A prior failure probability of 

5% was represented as the effect P(Ē). Figure 3 presents the results obtained from this analysis and 

demonstrates the compliance of this basic model with the axiom of the method. Figure 4 presents the same 

results in a two-dimensional graph. 
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Figure 3: Basic net for a barrier element with a failure probability of 5%, influenced by a RIF with four 

states. 

 

Figure 4: Updated failure probability of barrier element, given RIF variation.  

Figure 4 presents the four possible updated failure probabilities given the variation of the scoring system 

applied to one specific RIF that affect the performance of a barrier element. The graph shows that the axiom 

and the derived hypothesis meet and can be mathematically described as a linear trend with a determination 

coefficient of R2=97,6%: 

 Main Axiom: P(Ē | C2) = P(Ē); and 

 Derived Hypothesis: P(Ē | C1) <  P(Ē | C2) < P(Ē | C3) < P(Ē | C4); 
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This update procedure, once implemented in all elements of a barrier system, will reflect the conditions of 

the system at a specific operational moment, functioning with the compliance of a group of RIF that affect 

performance. This is demonstrated in Section 4 through the application of the same test on a microscale 

theoretical blowout probability model. 

 

3.3 Design and Implementation of Risk-Based Plan 

Khan et al. (2016) highlight that a Dynamic Risk Analysis (DRA) can actually improve the risk 

management process. They suggest a dynamic risk management framework to ensure the continuous 

improvement of the risk-management process, based on real-time process performance that is revised using 

process and failure history. The application of a dynamic risk management framework enhances the risk 

informed decision-making process by constantly monitoring, evaluating and improving process 

performance.  

The use of safety or risk indicators may allow risk assessment to assume both dynamic and proactive 

features. Appropriate sets of indicators collected and evaluated on a regular basis can provide information 

on overall risk level variation. Indicators on technical equipment can often be automatically retrieved from 

online systems, such as maintenance management systems and condition monitoring systems. Indicators 

for human and organizational factors are generally more difficult to obtain, and rely on manual input and 

assessment (Paltrinieri et al., 2016). 

This sub-section suggests a specific framework for updating DRA, considering the specificities of both this 

method and a drilling project’s life cycle. Figure 5 summarizes this framework. 

 

Figure 5: Risk-based plan framework. 

 

The life cycle of the drilling project starts with the approval of the well design for a specific site. At this 

stage, risks related to the complexity of the well design and geological & geophysical (G&G) conditions 

are known. Consequently, the risk customized for the general characteristics of the drilling project can be 

estimated in accordance with the modeling guidelines of Level 1 of the proposed method.  
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After rig selection, the characteristics of the rig’s drilling systems and Safety Management System (SMS) 

are known, allowing the QRA to be customized by implementing the Level 2 and Level 3 guidelines. At 

this stage, the blowout safety critical systems and RIF are correlated with: applicable key performance 

indicators (KPI), audit and inspection programs encompassing both hardware (equipment/ systems), and 

software (HOF) elements. The assumption that the Company’s SMS is sufficient to monitor and manage 

critical processes against industry standards, the blowout QRA can be customized. This is done by 

reviewing the adequacy of the critical processes and updating the QRA by adjusting it to reflect specific 

system configurations and the scores of the RIF in accordance with the proposed axiom.  

This integration allows for specific conditions of RIF to be accounted for, without the necessity of time-

consuming effort, such as performing sections of probability elicitation involving different types of experts.  

Also, by the time the rig is selected, a risk-based plan reflecting the Plan, Do, Check and Adjust (PDCA) 

philosophy must have been designed. Since the safety critical systems and RIF will have been identified, 

the following additional guidelines must be defined to allow the implementation of the plan during the 

operational phase: 

 PLAN the frequency and strategy for performing periodic reviews aligned with the method’s 

axiom and scoring system. The following processes shall be considered:  drilling reports/ 

operational parameters, SMS and Maintenance KPI, Management of Change (MoC) records, test/ 

inspections results and audit programs related to the Company’s SMS and Maintenance Plan;  

 DO / Implement and record the results of periodic reviews and update the model with new 

evidence based on direct observations and reviews; 

 CHECK and communicate the updated risk to strategic and operational decision makers; 

 ADJUST the process based on the updated risk picture and implement corrective actions whenever 

applicable;  

 

3.4 Expected Advantages and Limitations of the Method 

Table 4 summarizes the most relevant characteristics of the model for different aspects that can be applied 

to assess dynamic risk analysis (DRA). 
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Table 4: Advantages/ Disadvantages of the Accident Precursor BN Method for Modeling Blowout Risks 

Aspects of 

DRA 

Comments 

Preciseness/ 

Subjectivity in 

incorporating 

RIF 

Advantages: 

- The processes of incorporating RIF into the QRA and implementing risk updates and sequential learning 

are less subjective. This is because the traditional probability elicitation process, similar to those reviewed 

by (Zhang & Thai, 2016), is substituted by a process of direct observations combined with a pre-set CPT 

that was engineered to make the model behave in accordance with the pre-defined axiom and subsequent 

hypothesis; 

- The incorporation of RIF into the QRA is transparent (white box) since it relies on a pre-defined 

straightforward axiom and subsequent hypothesis, the consistency of which can be easily tested; 

Disadvantages / Limitations: 

- The method is not free of subjectivity, but its subjectivity relies on the pre-defined CPT and not on a 

probability elicitation process. Sensitivity analyses can be performed to manage this limitation and, if 

required, to review the CPT; 

- The model relies on the same hypothesis defined by (Vinnem et al., 2012), stating that risk control can be 

achieved through the control of changes in the RIF.  Consequently, the precision and sensitivity of the 

model depends on all relevant RIF and conditional dependencies between variables of the model being 

identified and their relationship with risk being known and mapped in the BN; 

Data 

Processing 

and Update 

Capability 

Advantages: 

- The process of incorporating RIF into the QRA and implementing risk updates and sequential learning is 

relatively easy to implement. This is because the inputs required to customize and update the model can be 

obtained from the implementation of the Company’s SMS. This is less time-consuming when compared to 

traditional probability elicitation processes; 

- Neither complex nor high-demand computational processes are required; 

Disadvantages / Limitations: 

- Risk updates and sequential learning are not automatic as they depend upon the implementation of a Risk-

Based Plan. Therefore, the effectiveness of the implementation of the Company’s SMS may impact the 

quality of the information used in the model. 

Mathematical 

features 

Advantages: 

- Capable of dealing with uncertainty and with information from different sources, such as expert judgment, 

observable information or experience, as well as common causes and influences of human factors (Ale et 

al., 2014); (Paltrinieri, Villa, et al., 2016). 

Disadvantages / Limitations: 

- Structural limitations of the Bayesian Network (BN) do not allow consideration of multivariate systems 

with different marginal distributions and complex non-linear dependencies (Khan et al., 2016). 

Risk 

information to 

support 

operational 

decision 

making (*) 

Advantages: 

- The proposed method delivers risk information aligned with what (Yang & Haugen, 2015, 2016) defined 

as criteria for assessing if a certain type of risk information is good (or not) for operational decision making. 

They said that the information should enable comparison with “stop” criteria and be able to be compared 

and ranked against alternatives, should clearly elucidate risk contributing factors, should be updated to 

reflect current operational situation, should reflect future activities, and should be well-structured. 

Disadvantages / Limitations: 

- The stop criteria are not defined by this method. However, the updated blowout probability (output of the 

method) can be combined with any suggested stop criteria. 

(*)The chosen definition of operational decision making for this assessment (Yang & Haugen, 2015, 2016) that 

defines operational decisions is related to operational planning decisions, which are characterized by a relatively 

short time delay between decision and implementation, and mainly have short-term effects. 

Improving 

risk 

management 

process 

Advantages: 

- The dependency of the implementation of the Company’s Safety Management System (SMS) to allow risk 

updates will provide a feedback loop not only for the SMS but also for risk perception and the safety culture 

of operational decision makers and sharp end workers. 

Disadvantages / Limitations: 

- Depends on the effective implementation of the risk-management process itself to allow the feedback. loop. 
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4. MICRO-SCALE APPLICATION OF THE METHOD 

This section demonstrates the application of the method and tests it against the pre-defined axiom in a 

micro-scale blowout risk model. The model adopted in this example reflects the following: blowout while 

drilling into the reservoir (Level 1), Kick detection barrier system (Level 2) and the main risk influencing 

factors that affect the performance of the human element, responsible for detecting and reacting in the event 

of a kick (Level 3). 

4.1 Level 1: Modelling and quantification of a blowout scenario 

The suggested Level 1 blowout (step (i)) was developed using the bow-tie technique in Figure 6. This 

model represents the risk of a blowout when drilling into the reservoir. 

The top event of the bow-tie (in 100% of cases) is the kick (the blowout accident precursor), i.e. the influx 

of hydrocarbon to the wellbore from the reservoir. It depends upon two geological and geophysical (G&G) 

conditions, porosity and permeability. The loss of the primary barrier occurs when the hydrostatic pressure 

(ph) from the mud inside the well is lower than the formation pressure (pf). The event tree (ET) represents 

the escalation from the kick to the blowout and describes the secondary barrier system (well control system). 

 

Figure 6: General blowout bow-tie model. 

Table 5 presents the failure probabilities of the basic events available at Ref (Khan et al., 2016) that were 

calculated based on the failure rates (per 106 hours) available in the (Offshore Reliability Data Handbook, 

2002) data bank. 
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Table 5: Historical data used in the micro-scale analysis for Level 1(Bercha, 1978; Khan et al., 2016; 

Offshore Reliability Data Handbook, 2002). 

Bow-Tie 
Level 1 

Basic Events 
 

Description of the Event 
Prior Failure 
Probability 

E1 Pump failure 4.00 x 10-2 

E2 Power failure 2.70 x  10-4 

E3 Pump control failure 1.00 x 10-3 

E4 Loss of mud due to annular losses 1.00 x 10-2 

E5 Riser rupture 1.00 x 10-2 

E6 Temperature effects leading to lower mud weight 2.50 x 10-3 

E7 Gas-cut mud leading to lower mud weight 7.00 x 10-3 

E8 Failure in density measurement equipment 2.00 x  10-4 

E9 Operator failure in mixing mud 3.00 x 10-2 

E10 Proper G&G conditions for flow (porosity and permeability) 1.25 x 10-1 

E11 Kick detection before hydrocarbon reaches BOP To be calculated (*) 

E12 BOP shuts in the well To be calculated (**) 

(*) The basic “kick detection” event is calculated separately by modeling the barrier systems’ into barrier elements with a specific 

configuration aiming to demonstrate the application of the method (Section 5.2 - Level 2 Demonstration). 

(**) Calculation procedure based on data bank review, presented as follows. 

 

The BOP failure probability can be calculated based upon BOP reliability data. In 2008, several industry 

groups created a task force to define the work scope for a joint industry project to study the BOP reliability 

of wells drilled in the US Gulf of Mexico from 2004 to 2006. The high-level result of the study indicated 

that even though improvements were noted over time, subsea systems actually had better failure rates than 

surface systems (Sattler & Gallander, 2010). In accordance with the same study, the MTTF of a Class VIII 

BOP (the most complex deepwater system) is 121 days. 

Therefore, the BOP failure probability equals P (BOP Fails) = 1-R(t) = 8.23 x 10-3 assuming that failure 

rates are exponentially distributed with failure rate 𝛌, which is constant and independent of time. 

The solution of the micro-scale blowout bow-tie model is obtained by separately calculating the probability 

of kick formation, its escalation to the blowout, and solving the event tree. The kick formation (hydrocarbon 

influx from the reservoir into the wellbore) will occur when adequate geological and geophysical (G&G) 

conditions are available (hydrocarbon under pressure, porosity and permeability) and the hydrostatic 

pressure (Ph) of the mud column is lower than the formation pressure (Pf) (see Equation 4). 

 

(𝐊𝐢𝐜𝐤 𝐅𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧) = 𝐄𝟏𝟎 ∩ (𝒑𝒉 − 𝒑𝒇 < 𝟎) 

P(𝐊𝐢𝐜𝐤 𝐅𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧)=5.02 x 10-3 

(4) 

 

4.2 Level 2: Modeling and quantification of failure rate of barriers’ systems 

The main goal of Level 2 is to model the specifics of the barrier systems and calculate the failure probability 

of blowout barrier systems. Figure 7 presents an example of the performance assessment of the kick 
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detection’s safety barrier system using a fault tree (FT). The safety function of this critical safety barrier is 

to detect the well flow before it reaches the blowout preventer (BOP). To perform the planned safety 

function, at least one operator must recognize specific changes in operational parameters monitored by 

proper instrumentation systems, interpret this information and properly respond to control the kick by 

shutting in the BOP. 

This theoretical example assumed that the driller is responsible for monitoring two independent hardware 

systems: pit instrumentation and drilling instrumentation. This specific aspect of the operational condition 

generates a redundant failure element in the model (E2) in the fault tree presented in Figure 7. The failure 

probability of the basic events of the model are available in Table 6. 

 

 

Figure 7: Fault tree for failure of the kick detection system. 
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Table 6: Historical data used in the micro-scale analysis for Level 2 (Bercha, 1978; Khan et al., 2016; 

Offshore Reliability Data Handbook, 2002). 

Fault Tree Level 2 
Basic Events 

Description of the Event 
Prior Failure 
Probability 

E1 Pit sensor fails 1.40 x 10-4 

E2 Driller fails to interpret drilling instrumentation signs 1.00 x 10-1 

E3 Geologist fails to interpret G&G instrumentation 5.00 x 10-2 

E4 Gas sensor (A) fails 2.00 x 10-4 

E5 Flow meter (A) fails 1.10 x 10-4 

E6 Flow meter (B) fails 2.00 x 10-4 

E7 Gas sensor (B) fails 1.10 x 10-4 

E8 Drill pipe pressure sensor fails 2.00 x 10-4 

 

The fault tree (FT) for failure probability of the Kick Detection Barrier System, presented in Figure 7, was 

mapped into a Bayesian Network (BN). The purpose of mapping the fault tree into a Bayesian network is 

to adjust for the incorporation of RIF affecting the performance of selected barriers of the system that will 

be addressed in Level 3. The nodes of the BN are composed of basic events and sub-systems, connected by 

arcs that define their cause-and-effect relationship.  

Boolean nodes are suitable for modeling the Level 2 barrier systems in a BN as, on a micro scale, it can 

be assumed that the barrier systems are composed of independent variables with two operational 

conditions (Operational state = Yes) and (Not-Operational state = No).  

Table 7 presents the Boolean CPT correlating the three barrier systems that, if all of them failed, would 

cause the kick detection function to fail. 

 

Table 7: CPT for kick detection Bayesian Network. 

 

 

However, the specific configuration of this system presents a redundant failure element (E2). This specific 

condition of the system leads to the adoption of the BN method to facilitate modeling and calculation of the 

failure probability that reflects the redundant failure element. Figure 8 in the sequence presents a BN for 

kick detection failure, modeled and calculated by GENIE Software 2.0 (GENIE SOFTWARE 2.0 

COPYRIGHT 1998-2015, 2015). 
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Figure 8: BN for failure of kick detection safety barrier system. 

The failure probability of the kick detection system P(Ē)=0.05, in Figure 8 above, represented by the 

TRUE state of the central node which shows an approximated value of 1%. The FALSE state stands for the 

probability that the system operates effectively, P(E) = 0.995. 

 

 

4.3 Level 3: Modeling and quantification of RIF 

After modelling the barrier system into a BN (Level 2), it is necessary to identify the risk-influencing factors 

(RIF), including human and organizational factors (HOF) that affect the performance of the barriers. This 

process is what allows the model to be customized for the current operational reality of each rig, by 

incorporating human and organizational factor specifics into the model. 

Table 8 presented below provides examples of RIF that are applicable to the barrier element assessed in 

this example, which is the drilling operator’s performance.  
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Table 8: Examples of risk-influencing factors that can affect the performance of the human operator part 

of a kick detection system. 

# Risk Influencing Factors (RIF) Classification 

1 
The adequacy of the well control procedure to rig systems 

and operational conditions 
Organizational factor 

2 
Clarity of supervision and communication processes 

related to kick detection and reporting 
Organizational factor 

3 Stress due to time pressure for drilling Human factor – Cognitive (slips and lapses) 

4 Work load Human factor – Cognitive (slips and lapses) 

5 Well control drills (training) Human factor – Skill based 

6 Well control competence of the operator Human factor – Skill based 

 

It should be noted that failure of the human operators (driller and geologist) was chosen to demonstrate the 

mapping for Level 3, as human failure is a critical failure mode for kick detection. Based on the work of 

Reason (Reason, 1990), human failures can be divided into three main categories: human error, violations 

and sabotage. ‘Human errors’ may be defined as “occasions in which a planned sequence of mental or 

physical activities fails to achieve its intended outcome, and when these failures cannot be attributed to the 

intervention of some change agency” (Reason, 1990). ‘Violations’ have been defined as “deliberate - but 

not necessarily reprehensible - deviation from those practices deemed necessary (by designers, managers 

and regulatory agencies) to maintain the safe operation of a potentially hazardous system”. ‘Sabotage’ may 

be defined as deliberate actions with a prior intention to damage the system (Reason, 1990). 

A Bayesian network (BN) micro scale blowout risk model was designed for testing the axiom. The Level 

1 bow-tie (BT) and the Level 2 fault tree (FT) were integrated and mapped into a BN. Then, the set of nodes 

representing the human and organizational factors (HOF) presented in Table 8 were connected to the 

applicable barrier elements (human element), in accordance with the mathematical framework represented 

by Equation 2. Figure 9 presents the micro-scale blowout BN risk model. 
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Figure 9: Microscale theoretical blowout BN risk model. 

 

 

Level 1 

Level 2 

Level 3 



   
   

24 
 

The theoretical micro-scale blowout BN risk model (Figure 9) was tested by the following procedures: 

 randomly changing the states of risk influencing factors (RIF) that affect the reliability of the human 

operators responsible for detecting the kick;  

 updating the states of all RIF and barrier elements of the model in accordance with the major findings 

of the Macondo Blowout reviewed from (Deepwater Horizon Study Group, 2010; Hopkins, 2012) 

and 

 performing a sensitivity analysis. 

The major nodes of the test procedure, in their original state, are highlighted in Figure 9 to facilitate 

visualization and listed as follows:  

 the blowout, which is the major failure being analyzed :⇔ P(Ē)= 6.62 x 10−5 (TRUE); 

 the blowout accident precursor, which has a kick formation probability of  :⇔ P(Ē)= 5.00 x 10-3 

(TRUE); 

 the critical systems related to primary and secondary blowout barriers: 

o Failure of kick detection system  :⇔ P(Ē)= 5.02 x 10-3 (TRUE); and 

o BOP system failure :⇔ P(Ē)= 8.23 x 10-3 (TRUE); 

 the nodes from Level 1 and 2, updated in accordance with the major findings of the Macondo 

Blowout: 

o Level1_E10 stands for proper G&G conditions for kick :⇔ P(Ē)= 1.25 x 10-1 (TRUE); 

o Failure of the Pit System :⇔ P(Ē)= 1.00 x 10-1 (TRUE);, 

 The risk influencing factors (RIF) presented in Table 8 were modeled in accordance with Equation 

2 and the CPT, which was designed to meet the axiom of the method (See Table 3). The discrete 

probability distribution P(Ci) which is generated by this process is shown on the nodes of Level 3 

(RIF) in Figure 9. 

Figure 10 presents the posterior failure probabilities of the kick detection system given the variation of the 

scoring system applied to the RIF presented in the micro-scale example in Figure 9. The same figure 

presents two non-linear trend lines derived from this procedure, one describing the failure probability of 

the kick detection system and the other of the major failure (blowout), as the variation of the former directly 

affects the latter. The derived non-linear curves, represented by the equations also presented in Figure 10, 

have determination coefficients of R2=97,8% and R2=98,6% respectively. 

The non-linear behavior of the failure probability of the kick detection system and, consequently, of the 

blowout probability, is explained by the common risk influencing factors affecting the performance of the 

barrier elements. This system’s arrangement creates a dependence that significantly influences its reliability, 

partly by changing the order of the failure probability equations, as demonstrated by (Xiaowei, 2010).  
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Figure 10: Kick Detection Failure and Blowout Probability Update Given the Variation of Scores 

of RIF for Human Operators. 

The model behaved in accordance with the axiom and its subsequent hypothesis.  When “industry standard” 

was set as the evidence for all RIF, the failure probability of kick detection and blowout probability were 

both equal to the prior probability from failure rate data banks: 

 𝐏(Ē = Failure of Kick Detection |𝐂𝐢 = 𝐈𝐒) = 𝐏(Ē ) =  𝟓. 𝟎𝟎 𝐱 𝟏𝟎−𝟑; and 

 𝐏(Ē = Blowout |𝐂𝐢 = 𝐈𝐒) = 𝐏(Ē) =  𝟔. 𝟔𝟐 𝐱 𝟏𝟎−𝟓   

The derived hypothesis is also confirmed, as the variations applied to the scoring of RIF changed the failure 

probability of the safety barrier system from a low reliability standard (~10-1) to a high reliability standard 

(~10-6). As a result, the major failure of the system (blowout probability) was automatically updated. 

It was also noted that the CPT is more sensitive when best industry practices (BP) are set, since this 

prevalence more rapidly leads the system to a high reliability state when compared to the states where the 

RIF are classified as below industry standards. However, this configuration of having all RIF above what 

is expected by industry standards can be considered infrequent, since industry standards are becoming 

stricter and, for this reason, most companies consider their goals against these standards. 

The same model was updated with evidence from the Macondo blowout for testing its capability for 

performing probability updates and sequential learning. For the sake of simplicity, the risk update for the 

Macondo blowout considered the following sequence of selected general evidence gathered from available 

bibliography (Deepwater Horizon Study Group, 2010; Hopkins, 2012): 

 The rig crew knew that there were proper G&G conditions for a blowout, as the well was being 

completed for production; 

 The rig crew bypassed the pit system (one of the redundancies of the kick detection system) to send 

mud from the well to the supply vessel; 
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 It was inferred that organizational factors affecting blowout risk were not adequate at that moment, 

as well as human and organizational factors, as demonstrated in (Hopkins, 2012). 

This simplified evidence from the Macondo Blowout was cumulatively added to the Bayesian network, 

from C1 to C4. Consequently, the blowout risk was updated, as presented in the bar chart at Figure 11. 

Table 9 in the sequence presents the exact values of posterior probability obtained from this test, for 

blowout posterior probability and also for the failure of the kick detection system. 

 

Figure 11: Updated blowout probability, given general evidence collected from the Macondo 

blowout. 

Table 9: Updated kick detection failure and blowout probability, given general evidence collected from 

the Macondo blowout. 

Probability of 

Evidence Set 

in the BN 

Blowout 

Posterior 

Probability 

Kick Detection 

Failure 

Probability 

Description of updated evidence (Cn) 

P(Ē) 6.20 x 10-5 5.00 x 10-3 Prior probability  

P(Ē | C1) 5.30 x10 -4 5.00 x 10-3 Proper G&G conditions for blowout 

P(Ē | C2) 2.32 x 10-3 4.99 x 10-2 Pit system bypassed during completion 

P(Ē | C3) 1.83 x 10-2 4.51 x 10-1 Not adequate organizational factors 

P(Ē | C4) 3.73 x 10-2 9.27 x 10-1 Not adequate human factors 

 

The model also behaved as expected, as the evidence that was updated lead the kick detection system (which 

failed in the Macondo event) into a low reliability state, which lead the blowout probability to increase 

drastically. 

The last test of the micro-scale model consisted of performing a sensitivity analysis for the probability of a 

blowout occurring (Figure 12) and for the failure probability of the kick detection system (Figure 13). 
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Figure 12: Sensitivity analysis for the probability of a blowout occurring. 

 

Figure 13: Sensitivity analysis for the failure probability of the kick detection system. 

It is important to stress that a basic condition applicable to risk modeling was not fulfilled, which is “The 

precision and sensitivity of the model depends on all relevant RIF and conditional dependencies between 

variables of the model being identified and their relationship with risk being known and mapped”. However, 

this limitation is inherent to the nature of a microscale example, not representing the entire system, and 

therefore not directly affecting the sensitivity of the model. 

The micro-scale model only encompasses a very specific part of the entire blowout risk system, as the 

guidelines for modeling Level 2 objectives were exclusively applied to the kick detection system, and the 

objectives defined for Level 3 considered exclusively the HOF affecting the human elements. This effect 

can be perceived by the significance of human operators, represented by the codes Level 2_E3 and 

Level_2_E4 in both graphs, in the behavior of the model, mostly when assessing its impact on the failure 

of the kick detection system alone.   
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The other variables that significantly contribute to the sensitivity of the model, i.e. for the blowout risk, are: 

the BOP, the root causes of lower mud weight, and the availability of adequate G&G conditions for a 

blowout. Therefore, in accordance with the analysis, loss of mud volume appears to be a less relevant 

contributing factor to a blowout while drilling, when compared with lower mud weight. This result is in-

line with the findings of a review of major blowout causes applied to workover (which is similar to drilling 

into the reservoir modeled in this paper) performed by Holand (1997) who presents an overview of the 

causes of the blowouts from the SINTEF database.  

 

5. DISCUSSION OF APPM LIMITATIONS AND FUTURE WORK 

The following remarks discuss the major APPM characteristics with a focus on the limitations that were 

identified by this research paper, and support the suggestions for future work presented afterwards. 

 The method still has structural disadvantages and limitations when compared to other modern DRA 

methods, mostly those that were designed for application in process industries. However, some of 

these characteristics are exactly what makes the proposed method superior for oil drilling, and also: 

o The method is not free of subjectivity. However, its subjectivity is anchored to one 

Conditional Probability Table (CPT), which is testable and transparent in relation to its 

objectives, since it is directly correlated with a clear and easily observable axiom. This 

move from a traditional elucidation process to a axiomatic approach makes the method 

more transparent, less subjective and less time-consuming to apply in real-life projects; 

o Risk updates are dependent on the implementation of a risk-based plan (risk updates are 

not automated). This characteristic can be considered a mathematical disadvantage, but this 

same disadvantage makes it possible to cover all the elements and RIF applicable to a 

drilling blowout, which are highly dependent on G&G factors and HOF (both quite 

uncertain, but measurable using observation techniques). This is also precisely what 

enables the continuous improvement of the Safety Management System (SMS), improve 

situational awareness of operational managers and, consequently, the safety culture related 

to this singular major accident hazard. These combination leads to improved decision-

making processes which are, as demonstrated by Kongsvik et al. (2015), a central 

component of the management of safety-critical operations;   

 The test process was not sufficient to assess the model’s precision and sensitivity due to limitations 

inherent to the micro-scale model, as discussed in the last section. 

From the discussion, the following future work is suggested: 

 To develop a comprehensive blowout risk model in accordance with the APPM. The model must 

integrate all relevant blowout safety barrier systems and RIF, mapping potential conditional 

dependencies between the system’s variables. The comprehensive Bayesian Network blowout risk 

model can be derived from existing models, such as the ones developed by (Abimbola et al., 2014; 

Khakzad et al., 2013). It is expected that a comprehensive model will be more precise, since its 

sensitivity requires all relevant RIF and conditional dependencies between variables to be identified, 

and their relationship with risk to be known and mapped in the BN. This was not accomplished in 

this current research; 

 To detail the three-level modeling guidelines and the framework for implementing a risk-based 

plan aligned with the APPM specifications. Both improvements will facilitate the design and 

implementation of a testing process similar to the one presented by this research paper, but on a 

more realistic scale. This standardization will facilitate other researchers and scientists to apply and 

test the method, and consequently strengthen its scientific basis.  
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6. CONCLUSION 

The APPM for modeling and assessing the risk of deep drilling blowouts was designed to overcome the 

limitations of currently employed QRA methods in the oil and gas industry. The technique has the 

capabilities of: incorporating RIF into QRA, addressing dependability between variables, and allowing risk 

updates using new evidence, considering the specificities inherent to a drilling operation. 

The advantages and disadvantages of the technique, when compared to other similar methods discussed in 

this research work were identified. Most of its characteristics, discussed in the last section, have both 

positive and negative aspects. From this comparison, it was concluded that the APPM is appropriate for 

application to modeling and assessing the risk of blowouts in offshore hydrocarbon drilling projects. 

It shall be highlighted that the axiom of the method, supported by a Bayesian approach, allows the 

incorporation of RIF and risk-updates without the necessity of performing probability elucidation sessions. 

Also, its metrics based on regulatory compliance are transparent, readily available and measurable and, for 

this reason, minimize subjectivity. Its integration with a ‘life’ safety management system SMS using a risk-

based plan should improve risk-based decisions and, consequently, enhance operational decision making. 

The implementation of the method was tested by a theoretical micro-scale blowout risk model, which 

focused on the performance assessment of the ‘kick detection’ barrier function and on the ‘human operator 

detecting kick’ barrier element. The test was considered satisfactory, as it was sufficient to validate the 

behavior of the method and identify opportunities for future work in this scientific field.  
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