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Abstract. We propose a novel support vector regression approach called
e-Distance Weighted Support Vector Regression (e-DWSVR). e-DWSVR
specifically addresses a challenging issue in support vector regression:
how to deal with the situation when the distribution of the internal data
in the e-tube is different from that of the boundary data containing sup-
port vectors. The proposed e-DWSVR optimizes the minimum margin
and the mean of functional margin simultaneously to tackle this issue. To
solve the new optimization problem arising from e-DWSVR, we adopt
dual coordinate descent (DCD) with kernel functions for medium-scale
problems and also employ averaged stochastic gradient descent (ASGD)
to make e-DWSVR scalable to larger problems. We report promising re-
sults obtained by e-DWSVR in comparison with five popular regression
methods on sixteen UCI benchmark datasets.
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1 Introduction

Support Vector Regression (SVR) has recently received a significant amount of
attention due to its competitive performance [1] compared with other regression
approaches, including the method of least squares [2], Neural Networks (NN)
[3], logistic regression [4], and ridge regression [5]. However, the performance
of existing SVR systems tends to be sensitive to parameter values and easily
affected by the distribution of data on the boundary. In this research, the internal
data indicates the data which are densely distributed together in the e-tube, and
the boundary data indicates the data which are distributed on the boundary of
the e-tube, which generally contain many support vectors.

In this paper, we present a novel SVR approach by considering recent progress
in support vector (SV) theory and addressing the above limitations.

In general, SVR constructs decision functions in high-dimensional space for
linear regression while the training data are mapped to a kernel Hilbert feature
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space. e-SVR [6] was the first popular SVR strategy. It aims to find a function
whose deviation from the actually observed values for all the training data is
not more than e, thus forming the so-called e-tube, to fit training data. To
find the best fitting hyperplane, e-SVR tries to maximize the minimum margin
containing data in the e-tube as much as possible, which is similar to Support
Vector Machines (SVMs) [7]. However, e-SVR is susceptible to the distribution
of those boundary data. In fact, the optimization objective greatly depends on
the margin between support vectors, and this makes the final fitting function
heavily reliant on the distribution of the boundary data: if the distribution of
the internal data is very different from that of the boundary data, the final fitting
function may not be reliable.

Recent progress in SV theory [8,9] suggests that maximizing the minimum
margin, that is, the shortest distance from the instances to the separating hy-
perplane, is not the only optimization goal in order to achieve better learning
performance. Unlike traditional SVMs, Distance-weighted Discrimination (D-
WD) [8] maximize the mean of the functional margin (i.e. the harmonic mean of
the distances of all data to the separating hyperplane), thus greatly improving
the classification performance. Inspired by the idea of DWD, we can also improve
the original optimization objective for our regression problems by introducing
the concept of the mean of the functional margin in regression.

Considering the above limitations of existing SVR systems and recent progress
in SV theory, we propose a novel SVR, approach called e-Distance Weighted Sup-
port Vector Regression (e-DWSVR), which optimizes the minimum margin and
the mean of functional margin simultaneously. To solve the optimization prob-
lem, e-DWSVR adopts the dual coordinate descent (DCD) [10] strategy with
kernel functions on medium-scale problems, and it also employs the averaged
stochastic gradient descent (ASGD) [11] strategy to improve its scalability. A
comparison of e-DWSVR with five popular regression methods (i.e. e-SVR, linear
regression, NN, logistic regression, and ridge regression) on sixteen UCI bench-
mark datasets indicates e-DWSVR outperforms these algorithms: e-DWSVR fits
better the distribution of the internal data in most cases, especially for those
datasets with strong interference noise.

2 Background

Let S = (X,Y) be a training set of n instances. X = [z1,...,x,] are the input
instances where xz; € R™, and Y = [y1, ..., yn] are the output instances where
y; € R. For classification problems, Y = {+1, —1} is the label set. For regression
problems, Y is the corresponding target values, where y; € {—o00,+00}. The
objective function is f(x) = w - ¢(x;) + b, where x € R™, w € R™, and ¢(-) is
the mapping function induced by a kernel K, i.e., K(x;, x;) = ¢(x;) - d(x;).

2.1 Recent Progress in SV Theory

Recently, SV theory has made great progress. SVM aims to maximize the mini-
mum margin, which denotes the smallest distances of all instances to the sepa-



rating hyperplane [7]. The optimization problem is represented as follows:

min 3w +C Y &
w,§ i=1

where C' is the regularization parameter and £ measures the losses of instances.
DWD is proposed to solve data pilling problems [8], which uses a new criterion,
that is, maximizing the mean of the functional margin, to replace the criterion of
maximizing the minimum margin in SVM for solving the optimization problem
[12]. DWD denotes the functional margin as u; = y;(w - ¢(z;) + b) and let
r; = u;+&; be the adjusted distance of the i-th data to the separating hyperplane,
and the optimization problem is then given below:

min Y (% + C§i>
w,b,§ ;=1 \'*
story =y (w-o(x;) +b)+&, r, >0, & >0, ||w||2 <1, i=1,2,...,n,

Since SVR is the application of SV theory to regression problems, the fitting
hyperplane is also affected by the distribution of the boundary data. When the
distribution of the internal data is different from that of the boundary data,
the fitting hyperplane produced by SVR may not be consistent with the actual
data distribution, which is similar to the data piling problems. Therefore, we
introduce recent progress in SV theory into the original optimization objective
of SVR and hope that it will lead to better regression performance.

3 The Proposed e-DWSVR

In this section, we propose the novel e-DWSVR method, which applies the idea
of the mean of the functional margin, and we adopt the DCD method to handle
general conditions and employ the ASGD method to deal with larger problems.

3.1 The Formulation of e-DWSVR

To simplify the complexity, we enlarge the dimension of the vectors w and ¢(x;)
to handle the bias term b as in [13], i.e.,w + [w,b]", ¢(z;) < [¢(x;),1]. Thus the
regression function becomes f(x) = w - ¢(x). Then the margin in regression will
be the distance of the data to the fitting hyperplane, i.e., |w - é(z;) — vi| / ||w|.
Based on the concept of margin, we define the functional margin in regression.

Definition 1. The functional margin in regression is defined as follows: v =
(- ¢(zi) —wi)?, i=1,2,...,n.

The functional margin in regression can describe the difference between the
real values and the estimated ones. It also has a significant connection with the
geometrical distance. If the value of w is determined, the ranking of all data to the
fitting hyperplane with respect to the margin can be decided by the functional
margin. Next, we define the mean of the functional margin in regression.



Definition 2. The mean of the functional margin in regression is as follows:

n

T=1 % (@) - 5)” = £ (0T o(X)$(X) w — 2A6(X)V) w+YYT),

where §(X) = [¢(x1), ... p(zn)] and ¢(X)$(X)" = é P(xi) ().

Based on Definitions 1 and 2, we add the mean of the functional margin to
original e-SVR, objective problems. As in the soft-margin of e-SVR [6] we also
consider the soft-margin in our problem. So the final optimal function is as
follows:

wném *HwH +/\17+Cz (§l+§z )

sty —w - gb(;zcl)<€—|-&7 (1)
w - ¢(xz) y1§€+€17 57,761*207 7;:1727"'7{”‘

where \; is the parameter for achieving the trade-off between the mean of func-
tional margin and the model complexity.

In our e-DWSVR, we maximize the minimum margin and minimize the mean
of the functional margin at the same time, to obtain a better tradeoff between
the distribution of the internal data and that of the boundary data. e-DWSVR
considers the influence of all data to the fitting hyperplane, as this is closer to
the actual distribution of the internal data, and it is more robust to noise.

To illustrate the robustness of e-DWSVR to noise and the differences between
e-SVR and that of e-DWSVR, we use an example for comparison among linear
regression, e-SVR, and e-DWSVR on an artificial dataset. In Fig. 1, the green
points represent the data in which the distribution of the internal data is different
from that of the boundary data, and the purple points represent noise. The cyan
dashed curve, the grey dashed curve, and the red solid curve are produced by
linear regression, e-SVR, and e-DWSVR, respectively.

Obviously, the curve produced by linear regression largely deviates from the
actual distribution of the dataset, which indicates the linear regression is more
sensitive to noise. e-SVR and e-DWSVR are more robust with the presence of
noise, so the grey dashed curve and the red solid curve are within the area of
non-noisy data. However, e-SVR is controlled by boundary data containing many
support vectors. Once the distribution of the internal data is different from that
of the boundary data (which is the case in Fig. 1), e-SVR may not achieve good
performance. The grey dashed curve produced by e-SVR is different from the
curve produced by e-DWSVR. Because e-DWSVR considers the influence of all
data to the fitting hyperplane, it is obvious that the red solid curve produced
by e-DWSVR is closer to the actual distribution of the internal data.

It is obvious that the optimization problem of (1) is more complicated than
that of the original SVR. Thus, as mentioned before, to solve (1) and improve
the scalability, we implement different methods for e-DWSVR, that is, we adopt
the DCD method with kernel functions for small and medium problems and
the ASGD method for larger problems. These will be presented in the following
sections.
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Fig. 1. The fitting curves produced by linear regression, e-SVR, and e-DWSVR in the
original space. The data (green points) are composed of (1) 86.3% of all data which are
evenly distributed across the line with a slope being -2 and y € [0,+00),z € [0, 10],
and (2) 12.5% of all data which are evenly distributed on the line with a slope of 0 and
y € [0,+00),z € [0,40]. This means the distribution of the internal data is different
from that of the boundary data (those 12.5% of data). The rest 1.2% of data are noise
(purple points). Due to noise, the cyan dashed curve produced by linear regression
is very different from the rational one. The grey dashed curve produced by e-SVR is
adversely influenced by the distribution of the boundary data, while the red solid curve
produced by e-DWSVR better reflects the distribution of the internal data.

3.2 The Regression of Medium Problems with Kernel Functions

Considering the mean of the functional margin ¥ in (1) and Definition 2, we can
obtain the following form:

min 3w+ 3 (wT6(X)0(X)Tw — Ao(X)V)Tw) + O 2 (6 + &)
sty —w- o) <e+ &, B (2)
w-p(x;) —yi <e+ &, &85>0, i=1,2,..,n.

Here we omit the term YY7 in 4 (Definition 2) because it is regarded as
a constant in an optimization problem. Obviously, the high dimensionality of
¢(+) and its complicated form makes (2) intractable. To simplify (2), we take the
suggestion from [14] and the optimal solution w in [9]. We first give the following
theorem which can be proved.

Theorem 1. The optimal solution w for (2) can be represented as follows:

w = zn: (a; —a?) - d(x;) = ¢(X) (0 — a*), where o = [ay, ..., )" and a* =

%
i=1

[ar™, ...,an*]T are the parameters of e-DWSVR.

According to Theorem 1, (2) can be cast as

min 3 (o — a'Qa— o) +pT (a— )+ C i &+&")

a,a* ,£,6* i=1 (3)
sty — (a— a*)TGZ- <e+¢,
(aia*)TGiiyi <€+§i*7 51761* 207 i:1727"'an5

where G = ¢(X)T¢(X), G; denotes the i-th column of G, Q = 2\ GTG/n + G,
and p = —2A1GY/n. Thus (3) can be transformed into a dual formulation with



Lagrange multipliers, so the Lagrange function of (3) leads to

(§1+£1) i(n2§2+nz z)

= =1
=S A (et vt (o —a)) @) 26&+a+w—m—%F®,
(4)
where 7, n*, 8, 8* are Lagrange multipliers. To satisfy the KKT conditions [15],
we set the partial derivatives of (o — a*) and &) to zero and thus obtain the
following equations:

\M:

L=j(a-a)'Qa-a") +p" (a—a") +

oL "
W =Q(a—a")+p— ; =0, (5)
af) — B9 =0, i=1,2..n (6)
By substituting (5) and (6) into (4), and inspired by the work of [16], (4) can

be written as follows to compute the values of g*} separately:

min (6.6 = [57.00"] | 1 1] |5
[T+ (BrHY — ) e — (ZeHY — V)] [g] 7
s.t. 0 < ﬁl,ﬁl* < C, 1= 1,2, N

where H = GQ~'G, and e means the all-one vector.

We adopt the DCD method as in [10] to solve (7). This method continuous-
ly selects one variable for minimization and keeps others as constants at each
iteration. In our situation, we minimize the variation of f (Bl) by adjusting the
value of B,; with a step size of ¢ while fixing other 5;7%7 where 8 = (8,897,
and the following equation needs to be solved: mtin f(ﬁl +tbg) s.t.0< B,; +t <

C, k=1,2,..,2n, where by means the vector with 1 in the k-th element and
0’s elsewhere. Then, we have the form of this sub-problem as follows:

PB4 the) = Shust? + V5 )t + £(5), (3

H
—HH
pendent of ¢, so we omit this term in (8).

Hence f (B/ +tby,) is transformed into a simple quadratic function of ¢t. Assume
that ﬁ,;”e’“ is the value of 6,; at the iter-th iteration, then the value of B,; at the

(iter +1)-th iteration is B];(iterﬂ) = B,i*" 4 tby,. According to (8), the minimiza-

where hgy is the diagonal entry of n H} . It can be seen that f(Bl) is inde-

tion of ¢ which satisfies (8) is t = —w. Considering the box constraint



iter+1)

0< B,; < C, the minimization for ﬁ;c( has the following form:,@,;(iterJrl) —

min(max(ﬂ,;“er — %:e)k, 0),C). After 8 converges, we can obtain (a — a*)

according to (5) as follows: (o —a*) = Q71G (%Y + (8- ﬁ*)) .
n
Therefore, the final fitting function becomes: f(z) = > (a; — af ) K(z;, x).

i=1

Algorithm 1 presents the steps of the DCD method for updating 3.

Algorithm 1 e-DWSVR with Kernel Functions
Input: Dataset X, Y, A1, C, ¢, K; Output: a—«*; Initialization: ,B, =0,(a—a") =
%QilGY, A=Q'G by = bZGQflek;

1: while /6’/ not converges do

2: for k=1,2,...,2n do

3: VIB e e+ (Gla—a)be—yr); if k=1,2..n

4: ViBIk+e—(Gla—a" )by —yr—n); if k=n+1n+2,.,2n

i B+ B By + min(max(g, — Tk 0), 0);

6: for i=1,2,...n do

T (ai - OCT) — (ai - OCT) + (ﬂl:: - /61/367”?) Abka Zf k= 1727 e Y

8: (i —af) «+ (i —af) — (ﬂ,;—,@;femp) Abg; if k=n+1n+2,..,2n
9: end for

10:  end for

11: end while

3.3 The Regression of Larger Problems

In regression analysis, processing larger datasets may increase the time com-
plexity. Although the DCD method can solve e-DWSVR efficiently for small
and medium problems, it is not the best strategy for larger problems. To im-
prove the scalability of e-DWSVR, we adjust the ASGD method to e-DWSVR,
which can effectively deal with larger regression problems. ASGD solves the op-
timization problem by computing a noisy unbiased estimate of the gradient, and
it randomly samples a subset of the training instances rather than using all data.
Considering the constraints in (2), we reformulate (2) as follows:

min g(w) = %Hw”2 + % (wTXTXw — Q(XY)Tw)
w n (9)
+CY max{0,y; —w-x; —e,w-x; —y; — €}
i=1
Computing the gradient of w in (9) is time consuming because we need all
the training instances for computation, especially when the size of datasets is
large. Considering this issue, we use Stochastic Gradient Descent (SGD) [17] to
reduce the computational time for larger problems. The SGD method is a drastic



simplification [17]: instead of calculating the gradient exactly, it computes a noisy
unbiased estimation of the gradient at each iteration, which is done by randomly
sampling part of the training instances. According to [17], the SGD method is
expected to converge to the global optimal solution when the objective is convex.

Therefore, we give an unbiased estimation of the gradient Vg(w) in our case.
For representing the last term of (9) formally, we define a function s(w) that has
different values under different constraint conditions, as shown below:

—Ti, 1€l
s(w) = ¢ @i, el , i=1,2,..,n,
0, otherwise

where Iy = {i|y; —w-2; < e}, and Iy = {i|w - x; — y; < e}. In order to obtain
an unbiased estimation of the gradient Vg(w), we first present the following
theorem which can be proved for computing Vg(w).

Theorem 2. An unbiased estimate of the gradient Vg(w) in (9) has the follow-
ing form: Vg(w,z;) = 2 izl w +w — 2X\1y;2; + nC - s(w), where (x;,y;) is an
randomly sampled instance from the training set.

Based on Theorem 2, the stochastic gradient can be updated iteratively as
follows:

W1 = Wt — @tv.gt (wt7 xi) ) (10)
where ¢y is the learning rate at the t¢-th iteration.

To make the solution to (9) more robust, we can adopt the ASGD method
to solve the optimization problem in (9), which outperforms the SGD method
[11]. In ASGD [11], a good choice for ¢; can be obtained by the form ¢; =
wo(1 4+ apet) ¢ to compute (10), where a, g, and ¢ are set by constant values
as in [9]. In addition to updating the ordinary stochastic gradient in (10), we

¢

also compute w; at each iteration as follows: mt:ﬁ > wj, where tg is used

i=to+1
to decide when we apply the averaging process. This average value can also be

calculated in a recursive manner as follows: W1 = diwipq + (1 — 0p)Ws.
Finally, Algorithm 2 presents the detailed steps of the ASGD method for
larger problems, where T * n’ determines the number of iterations. T is a co-
efficient for adjusting the number of iterations with a default value of 5; n’ is
the sampling number from n instances with a value between 1000 and 1% of the
training instances. The settings of these two variable values follow those in [9].

Algorithm 2 e-DWSVR for Larger Problems
Input: Dataset X, Y, A1, C, ¢; Output: w
Initialization: wo =0,Vgo =0,t =1

1: whilet < T xn’ do

2:  Randomly select one instance (x;,y;) from the training set;

3:  Compute Vg (we, T );wis1 < we — eV ge (Wi, ;);Wep1 < Orwegr + (1 — 0¢)Wy;
4: t—t+1;

5: end while




4 Experiments

In this section, we compare the fitting performance between e-DWSVR and other
regression methods on several real datasets to assess whether our method has
better fitting performance.

4.1 Experimental Setup

We select sixteen datasets from UCI [18] to perform the evaluations on e-
DWSVR, e-SVR, linear regression, NN, logistic regression, and ridge regression.
This includes eight medium-scale datasets and eight larger datasets. The char-
acteristics of all datasets are in Table 1. All the features of the datasets and
target set are normalized into [0,1] to balance the influence of each feature. Af-
ter normalization, for preprocessing the data, we use PCA with 95% for feature
extraction to reduce the interference of irrelevant attributes. During the con-
struction of the model, we divide the datasets into training sets and test sets by
5-fold cross validation. Parameters selections are processed on the test sets to

obtain better experimental results.
Table 1. The characteristics of benchmark datasets.

Scale Datasets Instances Features Datasets Instances Features

Slump 103 7 Housing 506 14
medium Automobile 205 26 Stock 536 9
Yacht 308 7 Concrete 1030 8
Auto MPG 398 8 Music 1059 68
Crime 1994 128 Bike 17389 16
Jarger SkillCraft 3338 18 ONP 39797 61
CCPP 9568 4 CASP 45730 9
Drift 13910 129 Buzz 140000 77

Finally, we use mean square error (MSE) [19] as the evaluation metric, and
evaluations are also processed on the test sets. The experiments are repeated 30
times, and the average values of the evaluation metric are recorded. For medium-
scale datasets, we evaluate both the linear and RBF kernels [7]. In addition, we
record the computational time for larger datasets.

4.2 Results and Discussion

For medium-scale datasets, Table 2 summarizes the results of MSE on all meth-
ods, including linear kernel function and RBF kernel function for e-DWSVR and
e-SVR. As one can see from Table 2, the fitting performance of e-DWSVR is
much better than e-SVR, which indicates that e-DWSVR is more competitive
than e-SVR. Besides, the Housing dataset is ideal with less noise and a consistent
distribution of overall data; thus linear regression works better on this dataset.
The average MSE values on all datasets are shown in Table 2 and the best ones
are indicated in bold.



Table 2. The evaluation of average MSE on medium-scale datasets.

e-DWSVR e-SVR

e-DWSVR e-SVR

Datasets (RBF) (RBF) (Linear) (Linear) LINEAR NN Logistic Ridge
Slump 0.0036  0.0037 0.0047 0.0050 0.0063  0.0055 0.0054 0.0215
Automobile 0.0057  0.0063 0.0092 0.0102 0.0094 0.0129 0.0136 0.0232
Yacht 0.0101  0.0166 0.0154 0.0171 0.0180 0.0175 0.0171 0.0434
Auto MPG 0.0133  0.0137 0.0135 0.0136 0.0140 0.0148 0.0152 0.0380
Housing  0.0142 0.0170 0.0169 0.0176 0.0117 0.0199 0.0182 0.0178
Stock 0.0080  0.0083 0.0087 0.0088 0.0101  0.0111 0.0093 0.0148
Concrete  0.0227  0.0251 0.0256 0.0257 0.0262  0.0267 0.0261 0.0362
Music 0.0306  0.0348 0.0359 0.0360 0.0368  0.0388 0.0408 0.0594

For larger datasets, Fig. 2 shows the results of MSE on all methods. We
can see that e-DWSVR performs better than other methods on most datasets.
In addition, the Drift dataset contains less noise, and there exists a consistent
distribution of all data. So linear regression works better on this dataset. Besides,
linear regression did not return the results on some datasets after 48 hours.

[— 1:=DWSVR ——2:=SWR 3: LINEAR —— 4: NN —— 5: Logistic 6: Ridge |
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Comparison methods

Fig. 2. The evaluation of MSE on larger datasets.

4.3 Parameter Effects

e-DWSVR has three main parameters: A1, C, and . To further investigate the
influence of these three parameters, we evaluate the MSE value by changing one
of them on the medium-scale datasets and larger datasets, while fixing other
parameters. Fig. 3 and Fig. 4 show that the MSE on the medium-scale and
larger datasets does not change significantly with the change of the parameters.
This indicates that the performance of e-DWSVR is not sensitive to parameter

values, which demonstrates the robustness of e-DWSVR.
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Fig. 4. Parameter influence on larger datasets.

4.4 Time Cost

We present a comparison of CPU time taken between e-SVR and e-DWSVR
on each larger dataset in Fig. 5. For e-SVR, C is set to 1; € is set to 0.1.
For e-DWSVR, A; is set to 1; C is set to 10; ¢ is set to 0.1. e-SVR for larger
problems was implemented by the LIBLINEAR [13] package and e-DWSVR, was
implemented by ASGD. Fig. 5 shows that e-DWSVR, cost less time than e-SVR
on most datasets, and it is only slightly slower than e-SVR on two datasets.

100 —— : . . . . . .
2 - D\WsvYR
8 10L|[Jeswr
k3
o 1
£
- 0
o
O 001 I|_| I\H IIH II IH Il Il
Crime Insurance CCP Dift Bike ONP CASP Buzz
Datasets
Fig. 5. The CPU time on larger datasets.
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