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Abstract 

The aim of this paper is to calculate how much energy or chemicals can be potentially produced 

using anaerobic digestion (AD). Five feedstocks were considered: the organic fraction of 

municipal solid waste (OFMSW), cattle, pig and poultry manure, energy crops, agricultural 

residues and sewage sludge. Carbohydrates, proteins and lipids were assumed to be the 

biodegradable components of the feedstocks. COD (Chemical Oxygen Demand) was assumed 

as a basis for the calculations of methane and chemicals production. Methane production was 

calculated assuming that AD converts the biodegradable COD to methane with a yield of 80 % 

COD/COD. The potential production of chemicals, i.e. acetic, propionic, butyric and lactic acids, 

ethanol and hydrogen, was calculated assuming conversion yields of carbohydrates, proteins and 

lipids from the literature. Globally, with the assumptions done in this study, AD of the considered 

feedstocks can potentially satisfy 17–20 % of the total energy consumption and 33-39 % of the 

electrical energy requirements. Potentially, AD can generate organic acids at rates which are 

hundreds or thousands of times their current production rates. Ethanol and hydrogen can be 

produced by AD at rates which are up to 2-3 times their current production rate. The paper also 

discusses the main challenges to overcome in order to achieve the large potential of AD. 
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1. Introduction   

Currently most of the energy and chemicals produced and consumed by mankind are 

generated from fossil fuels. In 2014 81 % of the world’s energy supply was provided by 

coal, oil and natural gas.1 Important chemicals such as organic acids (e.g. acetic, butyric 

and lactic acid) and hydrogen are also mainly produced from fossil fuels.2 However, 

sooner or later fossil fuels will be depleted and all the required energy and chemicals will 

need to be generated from renewable resources. In this context, anaerobic digestion (AD) 

can convert biomass, a renewable resource, into methane and/or chemicals such as 

volatile fatty acids (VFAs), ethanol and hydrogen.2,3  Production of these chemicals using 

AD would have the advantages of using biomass (often an organic waste), which is a 

renewable feedstock, and of using much milder reaction conditions (in terms of 

temperature and pressure) than traditional processes based on fossil fuels.2 However, 

the use of AD for the production of chemicals such as VFAs, ethanol and hydrogen is still 

at the research stage or pilot scale and it has been so far hampered by the separation 

required to purify mixtures of diluted chemicals in water, by the need of optimising the 

digestion conditions to maximise the yields and by the pre-treatment requirements of 

lignocellulosic feedstocks.2 

Although AD has been recognised to have a large potential in the production of energy,4 

so far very limited quantitative analysis has been reported on how much energy or 

chemicals could potentially be produced using this technology. In one of these studies,5 

it was estimated that over 40 billion m3/year of biogas could be potentially produced from 

the AD of various sources of organic waste in India. A quantitative analysis of the amount 

of energy or chemicals that could be produced by AD is important because biomass, 



 

 

although is a renewable feedstock, is generated at a finite rate and therefore production 

of renewable energy or renewable chemicals using AD is only possible if the biomass is 

consumed at the same rate at which it is generated.  

The aim of this paper is to calculate how much energy, or as an alternative, chemicals 

could be potentially produced from the AD of biomass, at the current generation rates of 

selected feedstocks. Throughout this study, COD (Chemical Oxygen Demand) was used 

as a basis to calculate the potential production rates of methane or chemicals. COD is 

proportional to the maximum number of electrons that can be removed from an organic 

substance and the total COD of any given feedstock corresponds to the maximum 

theoretical COD of the methane or chemicals that can be produced from this feedstock.6 

Therefore, the COD is a useful tool to estimate the maximum theoretical production of 

methane or chemicals from organic substances. 

Ultimately, this paper tries to address the question of the potential role of AD for energy 

or chemicals production in a fossil fuel-free world. 

  



 

 

2. Methodology 

The methodology used for the calculation of the potential methane or chemicals 

production is shown in Figure 1 and reported below. This methodology was applied to the 

global scale and to the following countries: UK, Brazil, Nigeria, India. These countries 

were chosen, as an example of the application of this methodology, because they were 

among the funders of this research (UK and Brazil) and because they represent 

developing countries (Nigeria and India) in different continents, however the described 

methodology can be applied to any countries if the required data are available. 

2.1 Initial steps 

The initial steps are the same for both the methane and chemicals production and involve 

the calculation of the feedstock generation rate, feedstock composition and conversion of 

the feedstock components into COD. 

2.1.1 Feedstock generation rate 

The feedstocks considered for AD in this study include: the organic fraction of municipal 

solid waste (OFMSW), animal manure, agricultural residues, sewage sludge and energy 

crops. These feedstocks are among the most commonly used in AD and among the most 

interesting for the production of chemicals in a biorefinery context.2,4,7 MSW is the solid 

waste generated by cities, towns and communities. In this study, the fraction of MSW 

which is made of metals, glass and plastics was excluded and the remaining fraction 

(organics and paper) was referred to as OFMSW. The manure considered was from 

cattle, pig and poultry. Agricultural residues are the residues left on field after the harvest 

and include husks, stalks, chaff, etc. Sewage sludge are the solids produced in the 

biological treatment of municipal wastewaters. Energy crops are plants grown with the 



 

 

specific purpose of generating energy via AD or combustion. All the considered 

feedstocks, except energy crops, are waste or by-products from industrial or agricultural 

processes or human activities. In this study, the total production of these wastes, including 

the volumes which are currently used for other aims (e.g. burning of agricultural residues 

to obtain energy, spreading manure on land as fertilizer, etc.), was considered. For each 

feedstock two methods (Method 1 and Method 2) for the calculation of the generation rate 

were used and, based on these two methods, a range for the generation rate was 

calculated.  

For the OFMSW, in both methods the generation rate of OFMSW was calculated from 

equation (1): 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) =

� 𝑀𝑀𝑀𝑀𝑀𝑀, 𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� ∙

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑔𝑔𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) ∙ (0.46 ∙ 0.31 + 0.17 ∙ 1)  (1) 

The population in each country and globally was taken in all cases from The World Bank 

website.8 The coefficient 0.46·0.31 is for the organic fraction of the MSW, which was 

assumed to be 46% of the MSW9 and have a dry matter content of 31 %.10 The coefficient 

0.17·1 is for the paper waste, which was assumed to be 17 % of the MSW9 and be entirely 

dry. The two methods differ for the estimation of the wet MSW generated per capita per 

year. Method 1 used the data from Hoornweg et al., 2012,9 while the Method 2 used data 

from individual studies for the different countries: UK;11 Brazil;12 India;13 Nigeria;14 

global.15  



 

 

For cattle, pig and poultry manure, the Method 1 used equation (2) where the manure 

generation rate per head of livestock per year16 and the number of livestock per country 

or globally17 were assumed from the literature: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) = (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑔𝑔𝑔𝑔𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,

𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) ∙ (𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) (2) 

Method 2 used equation (3) to estimate the manure generation rate: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) =

(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑎𝑎𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) ∙ 0.226 (3) 

In Method 2, total manure generation rate in wet basis were obtained from individual 

studies for the different countries: UK;18 Brazil;19 India;5 Nigeria;20 global.21 In this method, 

dry matter of manure was assumed to be 22.6 % of the wet weight (average value for 

dairy manure) .21 

For energy crops, in both methods the generation rate was calculated according to 

equation (4):  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) =

 (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) ∙ 0.024 ∙ (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) (4) 

The available arable land per country and globally was assumed from the literature17 and 

the factor 0.024 accounts for the assumption that 2.4 % of the arable land area can be 

used for energy crop production.22 The crop yield was assumed to be 10 t dry 

matter/ha/year and 20 t dry matter/ha/year in Method 1 and Method 2 respectively, which 

are the upper and lower ranges reported in the literature.23 

For agricultural residues, Method 1 used equation (5):  



 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) =

(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) ∙ (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) (5) 

The average of residue to production ratio24 and the total crops production rate 

(considering thirteen major crops) were assumed from the literature.17  Method 2 used the 

residues generation rate from individual researches: UK;25 Brazil;26 India;27 Nigeria;28 

global.29 For the global production, the value from Bentsen et al.29 was divided by 0.79 to 

take into account that the six major crops considered in that study represent 79 % of the 

total production of agricultural residues.30 For Brazil, India and Nigeria, where the values 

were reported as wet matter, an average moisture content of 10 % was assumed. 

For the generation rate of sewage sludge, the two methods used equation (6), the only 

difference being the reference used for the estimation of the sewage sludge generation 

per capita per year. In Method 1 this variable was assumed to be 14.6 kg dry matter per 

capita per year,31 while in Method 2 it was assumed to be 17.9 kg dry matter per capita 

per year.32 In both cases, the population was estimated from the same reference cited 

above.8 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) =

(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦) ∙

(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔) (6) 

2.1.2 Feedstock composition 

It was assumed that the only components of the feedstocks that can be converted to 

methane or chemicals using AD are carbohydrates (including cellulose, hemicellulose, 

starch and sugars), proteins and lipids. The composition of each feedstock in terms of 

carbohydrates, proteins and lipids was assumed according to the following references: 



 

 

OFMSW;10 Manure;33 Energy crops;34 Agricultural residues;35,36 Sewage sludge.37 

Although the chemical composition of the various types of biomass may differ between 

countries, for the purpose of this study the same composition for each type of biomass 

was assumed. 

2.1.3. COD of the feedstock components 

In AD, in the absence of any external electron acceptor such as oxygen or nitrate, the 

COD in the feedstock can end up in the following products: methane, chemicals, 

microorganisms and undigested feedstock.6 Therefore the yield of methane or chemical 

production can be easily expressed on a COD basis (i.e. as COD of the produced 

methane or of the produced chemicals divided by the COD of the feedstock), being 100% 

the maximum theoretical yield of methane or chemicals from any given feedstock when 

the feedstock is totally digested and in the absence of microorganisms’ production. For 

methane production, a yield of 100 % on a COD basis corresponds to the theoretical 

amount of methane which can be calculated using the Buswell equation.38 

Individual components (carbohydrates, proteins and lipids) were converted to COD basis 

using their theoretical COD conversion factors, which were calculated from the 

stoichiometry of the oxidation reactions. The general form of the oxidation reaction and 

the corresponding conversion factors are reported in equations (7) and (8) below: 

𝐶𝐶𝑛𝑛𝐻𝐻𝑎𝑎𝑂𝑂𝑏𝑏𝑁𝑁𝑑𝑑 + (4𝑛𝑛 + 𝑎𝑎 − 2𝑏𝑏 − 3𝑑𝑑) 𝑂𝑂2 → 𝑛𝑛 𝐶𝐶𝑂𝑂2 + (𝑏𝑏 − 2𝑛𝑛) 𝐻𝐻2𝑂𝑂 + 𝑑𝑑 𝑁𝑁𝐻𝐻3  (7) 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑔𝑔 𝐶𝐶𝐶𝐶𝐶𝐶/𝑔𝑔) = 8 (4𝑛𝑛+𝑎𝑎−2𝑏𝑏−3𝑑𝑑)
(12𝑛𝑛+𝑎𝑎+15𝑏𝑏+14𝑏𝑏)

     (8) 

The chemical composition of the organic matter considered in this study is of course 

dependent on many factors such as, e.g., its nature and location. In this study we 

assumed the following empirical formulas for COD calculations: C6H10O5 for 



 

 

carbohydrates, C5H7O3N for proteins and C57H104O6 for lipids. Consequently, the 

calculated COD conversion factors were: 1.185 g COD/g carbohydrates, 1.116 g COD/g 

protein, 2.896 g COD/g lipids. These empirical formulas assume that carbohydrates are 

polymers of glucose, proteins are polymers of glutamic acid and lipids are triglycerides of 

oleic acid. Glucose units are the building blocks for abundant carbohydrates such as 

cellulose and starch, while glutamic acid and oleic acid are common amino acids39 and 

fatty acids.40 Clearly, more accurate calculations can be done by considering the empirical 

formulas for the particular types of carbohydrates, proteins and lipids in the various 

feedstocks, however this would require a more detailed chemical analysis and was not 

considered in this study.   

2.2. Calculation of the potential methane production 

2.2.1. Calculation of the total COD of the feedstocks 

For the calculation of the methane production, the total COD generation rate was 

calculated for each feedstock by adding up the contributions of its components 

(carbohydrates, proteins and lipids). This is shown in Equation (9), where i = 1, 2 and 3 

corresponds to carbohydrates, proteins and lipids respectively: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶/𝑦𝑦) =

∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡 𝑑𝑑𝑑𝑑𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦)  × (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑖𝑖 × (𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑖𝑖𝑛𝑛
𝑖𝑖=3 (9) 

The potential methane production rate from each feedstock was calculated assuming a 

methane yield of 80% COD/COD, i.e. 0.8 kg of methane as COD is obtained per kg of 

COD of the feedstock (the remaining 20 % being converted to microorganisms, or 

remaining undigested). The total potential methane production rate was calculated by 

adding up the contributions of the various feedstocks. The fraction of the total produced 



 

 

methane which was originated from carbohydrates, proteins and lipids was calculated by 

dividing the total generation rate on a COD basis of carbohydrates, proteins and lipids, 

respectively, by the total feedstock COD production (given by equation (9)). 

From the assumed methane yield of 0.8 COD/COD and from the assumed empirical 

formulas for carbohydrates, proteins and lipids, the mass fraction of each of these 

biomass components that is converted to methane can be calculated easily. On a mass 

basis, 0.24 g methane are obtained per g of carbohydrates, 0.22 g methane/g proteins 

and 0.58 g methane/g lipids. The higher conversion of lipids to methane on a mass basis 

is understandable if we consider that lipids are less oxidised than carbohydrates and 

proteins and therefore more energy can be obtained from their combustion than from the 

combustion of proteins and carbohydrates.   

2.2.2 Conversion of the produced methane into energy and electricity 

For the calculation of the total energy content of methane, the enthalpy of combustion of 

methane was assumed to be 8.90·105 J/mol (or 5.56·107 J/kg). For the calculation of the 

electrical energy obtainable from methane, we assumed that the total energy content of 

methane is converted to electricity with an efficiency of 35 %. This is the typical efficiency 

of energy conversion into electricity using combined heat and power (CHP) units, the 

most frequent devices used to convert methane energy into electricity in AD plants. 

2.3. Calculation of the potential chemicals production 

The potential production of chemicals was calculated starting from the calculated COD of 

each of the feedstock components, i.e. carbohydrates, proteins and lipids (2.1.3). The 

conversion yield of carbohydrates, proteins and lipids (as COD) into VFAs, ethanol and 

hydrogen were assumed from the following literature studies: carbohydrates,41 



 

 

(experimental data with glucose as substrate at pH 5.5); proteins,42 (experimental data 

with peptone as substrate); lipids,43 (stoichiometry of oleate conversion). The pathways 

for the AD of biomass components into the chemicals considered here are reported in the 

literature.2,44 

The production rate of each chemical was calculated from the generation rate of 

carbohydrates, proteins and lipids, converted into COD units, and multiplied by the 

respective conversion yield. This is shown by Equation (10), where i corresponds to 

carbohydrates, proteins or lipids and j to a specific chemical (such as ethanol, acetate, 

propionate, etc.): 

(𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 (𝑡𝑡 𝐶𝐶𝐶𝐶𝐶𝐶/𝑦𝑦))𝑗𝑗 = ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (𝑡𝑡 𝐷𝐷𝐷𝐷/𝑦𝑦)  ×𝑛𝑛
𝑖𝑖=3

(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)𝑖𝑖 × (𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)𝑖𝑖 × (𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌𝑌)𝑖𝑖,𝑗𝑗 (10) 

The obtained production rates of the various chemicals were converted from tonnes 

COD/year to tonnes of chemical/year, using the COD conversion factors for each 

chemical. For each chemical, the fraction which was originated from carbohydrates, 

proteins and lipids was calculated by multiplying the total production of carbohydrates, 

proteins and lipids by the yield of the chemical and by dividing this product by the total 

production rate of the chemical given by equation (10).  



 

 

3. Results 

Table 1 shows the generation rate and composition of the considered feedstocks. For 

each feedstock, a range for the generation rate is reported, obtained with the two methods 

described in section 2.1.1. The chemical composition of the considered feedstocks is 

reported in terms of the biodegradable components (carbohydrates, proteins and lipids) 

assumed in this study. The unaccounted fraction to reach 100 % is due to other 

components, e.g. organic matter which was assumed to be non-biodegradable, such as 

lignin, and inorganic solids. The total generation rate of the considered feedstocks is in 

the range 8.2-9.4 Gt dry matter/year and, for most of the considered feedstocks, 

carbohydrates are the main components.  

The data on the generation rate and composition of the various feedstocks were used to 

calculate the potential methane production in the considered countries and globally (Table 

2). Based on the two estimates for the generation rate of each feedstock reported in Table 

1, a lower and upper range for the potential methane production rate was calculated. The 

lower range was calculated by adding up all the lower estimations and the higher range 

by considering all the higher estimations. In this way the potential production of methane 

by AD was calculated to be in the range 1.2-1.4 Gt/year. Carbohydrates are the main 

methane precursor, representing 76-80 % of the biodegradable COD in the feedstocks, 

while 14-16% and 6-8% of the potential methane is estimated to originate from proteins 

and lipids, respectively. Table 2 also reports the corresponding production rate of total 

energy, which is in the range 68 - 79 EJ/year (assuming complete combustion of the 

produced methane) and the potential production rate of electrical energy, in the range 24 

- 28 EJ/year. 



 

 

As far as the conversion to chemicals is concerned, the conversion yields of 

carbohydrates into chemicals reported in Table 3 were assumed in this study. Table 4 

reports the calculated potential chemicals production in the considered countries and 

globally. As for the methane production rate in Table 2, the chemicals production rate in 

Table 4 are reported as a range, calculated adding up all the lowest and all the highest 

estimations of the feedstock generation rates in Table 1. On a global scale, the potential 

production rates of acetic and butyric acids are the highest, and much higher than for the 

other chemicals. Carbohydrates are the main precursors for all the considered chemicals 

except for propionic acid. Lipids are estimated to be the origin for 21-28 % of the produced 

acetic acid and for 12-18 % of the produced hydrogen. This is because AD of lipids is 

assumed to generate only these two chemicals as intermediates (Table 3). Conversion 

of proteins to chemicals gives a fraction of the acetic acid (22-24 %), all the propionic acid 

and a small fraction of the butyric acid (5-6 %).  

  



 

 

4. Discussion 

4.1. Generation rate of the various feedstocks 

Clearly the estimation of the generation rate of the feedstocks has the largest effect on 

the calculated potential for methane and chemicals production. Among the considered 

feedstocks, agricultural residues give the largest generation rates, in the region of 4.5-4.7 

Gt dry matter per year on a global scale, accounting for at least half of the total generation 

of dry matter. The two methods considered here give very similar results for the 

generation of agricultural residues on a global scale. Other literature studies on the 

generation of agricultural residues are in general in reasonable agreement with these 

estimates.30,45 A higher estimate of agricultural residues, 5.4 Gt/year, was also reported,46 

however, this study used harvest indices rather than residue to product ratios and this 

tends to give higher estimates.29  

After agricultural residues, the second largest contributor to the dry matter available for 

AD is cow, pig and poultry manure, which is estimated to be in the range 2.7-2.9 Gt dry 

matter per year on a global scale. Although the two methods considered here use different 

approaches for the estimation of the manure generation rate, the results are in very good 

agreement. This indicates that the total manure generation rate can be estimated quite 

reliably.   

As far as the global production of the OFMSW is concerned, the two estimates give 

significantly different values, 0.6 and 1.0 Gt/year (as dry matter). In this study the same 

composition and dry matter content were used, therefore the difference between the two 

values is due to the difference in the estimation of the total MSW according to the methods 

used. This difference is probably due to the difference sources used in these two 



 

 

methods, however this difference has a relatively low impact on the total feedstock 

generation rate, since the contribution of the OFMSW to the total feedstock is lower than 

the contribution of manure and agricultural residues.  

Energy crops, at least with the assumption that they can make up to 2.4 % of the arable 

land, and sewage sludge give minor, although not insignificant, contributions to the overall 

feedstock generation rate.  

It is important to observe that the potential methane and chemicals production from AD 

calculated in this study only refers to the considered feedstocks and not to all the possible 

organic feedstocks which could be available for AD. Examples of other feedstocks for AD 

are other types of manure (e.g. goat and sheep manure),47 concentrated wastewaters 

such as industrial wastewaters from distilleries, dairy plants, pulp and paper plants, etc., 

seaweed biomass,48 forestry residues, waste oils and animal fat, olive oil waste.49 It is 

also important to observe that the values reported in Table 1 refer to the total amounts of 

generated feedstocks, while not all these feedstocks may be collectable. The issue of 

collection, which is particularly important for manure, is discussed in section 4.4. 

 

4.2 Conversion efficiency to methane and to chemicals 

The values obtained for the potential methane and chemicals production depend on the 

assumptions about the efficiency of COD conversion to methane or to chemicals. 

The maximum theoretical conversion yield of the biodegradable COD to methane is 100 

% on a COD basis, however this is in practice not possible as inevitably a fraction of the 

feedstock COD will be converted to microorganisms.6 The assumed 80 % COD/COD 

conversion of the feedstock to methane is a high yield, which was used here because the 



 

 

aim of this paper is to calculate the potential methane production, i.e. the maximum 

possible methane production under realistic conditions. There are many references where 

efficiencies close to or higher than 80 % in total COD removal and in the conversion of 

COD to methane have been reported.33,50-52 Very high or almost complete degradation of 

cellulose or of cellulosic materials under anaerobic conditions was reported by several 

studies, e.g.53,54, and the topic was summarised in a recent review by this research 

group.55 Even for highly lignified woody biomass without pre-treatments (apart from 

comminution), methane yields higher than 65 % of the theoretical value were reported.56 

High conversion of the influent COD to methane has also been reported for industrial 

wastewaters, e.g. model Fischer-Tropsch wastewaters (>90 % conversion of the influent 

COD to methane).57 Note that these reported literature yields are based on the total COD 

of the feed and therefore include lignin, where present, while in our analysis we excluded 

lignin from the influent COD. If in these literature studies the lignin was excluded from the 

feed COD, their methane yield would have been higher, therefore the assumption of 80 

% conversion of the feed COD (excluding lignin) to methane made in this paper is even 

more justifiable. 

As far as the conversion of organic waste to chemicals is concerned, the yields and the 

distribution of the various chemicals are highly dependent on the digestion conditions 

e.g., temperature, pH, residence time.2,58 Therefore, it is clear that the production rate of 

the various chemicals calculated in this study can be considered just as an example of 

the potential production of chemicals from biomass. More research is needed to 

completely understand the effect of the fermentation conditions on the chemicals 

production for the various feedstocks. Once our understanding on this matter is 



 

 

developed enough, the fact that the fermentation of the same feedstock gives different 

chemicals depending on the operating conditions can open up interesting perspectives in 

terms of adjusting the fermentation conditions to produce the chemicals which are more 

needed by the market.  

 

4.3 Potential and current role of AD as energy and chemicals production technology 

Energy is used as electricity, heat or transportation fuel and the methane produced from 

AD can be used for any of these purposes. Therefore, it makes sense to compare the 

total energy obtainable from the anaerobically produced methane with the current total 

energy production in the selected countries and globally (Table 5). Globally, between 17 

and 20 % of the current total energy consumption could be satisfied by the combustion of 

methane produced by AD. As far as the electricity generation is concerned, globally AD 

could potentially provide 33-39 % of the current electricity consumption. The potential 

contribution of AD to electricity generation is higher than its contribution to the total energy 

generation because electricity accounts for just approximately 18% of the total energy 

consumption, while it was assumed that the combustion energy of methane is converted 

to electricity with 35 % efficiency. 

In general, these figures indicate that the potential impact and role of AD in the global 

energy production is very large. However, which fraction of the potential methane 

obtainable from AD is currently produced using this technology? While there are no 

reliable figures on the global methane production from AD, data from the UK, Brazil and 

India indicate that the current generation of methane accounts for very little fraction of the 

potential methane from AD. In the UK, currently AD generates approximately 0.7 Mt of 



 

 

methane per year,59 which corresponds to about 5-7 % of the maximum methane that 

could be potentially generated using AD in this country. In Brazil and India currently AD 

generates approximately 0.14 and 1.19 Mt of methane per year, respectively,60,61 which 

corresponds to just 0.1% (for Brazil) and 0.6 – 1.0 % (for India) of the potential methane 

production calculated in this study. These figures indicate that the full potential of AD is 

very far from being reached, and it is farther from being reached in Brazil and India 

(developing countries) than in a developed country like the UK. The fact that the full 

potential of AD is very far from being achieved is also confirmed from the observation that 

the current global electrical energy generation from biogas is approximately 0.334 EJ/year 

(based on figures from REN21),62 i.e. just 0.4–0.5 % of the potential electrical energy 

obtainable from AD according to this study (68-79 EJ/year, Table 2). 

As far as the use of AD in the production of chemicals is concerned, Table 6 compares 

the current production of the considered chemicals on a global scale with their potential 

production using AD. Table 6 shows that AD can produce organic acids such as acetic, 

propionic, butyric and lactic acids in much larger quantities than the current global 

production of these substances. The potential production of acetic, propionic, butyric and 

lactic acids by AD is hundreds or thousands of times larger than the current production of 

these chemicals, which could stimulate a larger use of these chemicals and therefore a 

larger use of renewable feedstocks in the chemical industry. On the other hand, for 

ethanol and hydrogen the potential production by AD is comparable to, even though still 

larger than, their current production. Indeed, this study shows that AD can produce up to 

2-3 times more ethanol and hydrogen than the current global production rates of these 

chemicals. 



 

 

The use of AD to produce methane for energy purposes is alternative to its use to produce 

chemicals, therefore the ultimate question is whether AD should be directed towards 

methane or to chemicals production. The answer to this question depends on many 

factors, such as the availability of other technologies to produce renewable energy, e.g. 

wind and solar energy, the availability of other sources of methane, e.g. natural gas, the 

development of suitable separation technologies for the chemicals produced by AD, the 

environmental impact of methane and chemicals production, economics, etc. It is not the 

aim of this paper to provide an answer to this question, however the data in Tables 4 and 

6 indicate that less than 1 % of the total feedstock available for AD would be enough to 

satisfy the current market requirements for many short-chain organic acids. All the 

remaining feedstock could be used to produce methane and still make a very large impact 

on the renewable energy production. An interesting third option, proposed by several 

researchers,63 is a two-stage AD process, whereby the first stage is aimed at hydrogen 

production and the second stage at the conversion of the organic acids and the other 

intermediates produced in the first stage into methane. In this process, the end products 

of AD are hydrogen and methane. Using our calculated potential hydrogen production in 

Table 4, and assuming that in the two-stage process 80 % of the biodegradable COD is 

converted into methane and hydrogen, the COD balance indicates that the two-stage 

process would produce 0.11-0.13 Gt/year of hydrogen and 1.0–1.2 Gt/year of methane. 

In this way, we would be still be able to generate more than 2 times the amount of 

hydrogen currently produced and we would still generate over 80 % of the maximum 

methane that could be produced if AD was only aimed at methane production. These 

calculations show that the combined production of hydrogen and methane is a very 



 

 

interesting option as it would be able to supply large amounts of hydrogen and methane 

without the need for the separation of the organic acids and alcohols. 

 

4.4 Challenges and research needs 

Use of AD to produce methane is an established technology, while its use to produce 

chemicals is still at the research stage, even though pilot scale installations for hydrogen 

production from MSW have been reported.63 The research challenges that still prevent 

the development of AD for the production of chemicals at large scale can be summarised 

as follows: control of the spectrum of product distribution, achieving high product 

concentration in the liquid phase in order to reduce the separation costs, developing new 

separation processes, achieving fast digestion rates for lignocellulosic substrates. These 

topics have been discussed and reviewed recently and the reader is directed to these 

recent papers,2,7 for an in depth analysis. It is however important to add that separation 

of the chemicals from the water in the liquid phase may not be needed if they are used 

as a mixture, e.g. for the production of biodegradable plastics such as 

polyhydroxyalkanoates (PHAs).64    

In this section we will focus our discussion on the use of AD for methane production, 

trying to answer the following question: why is the methane production from AD so much 

lower than what it could be? In other words, why the full potential of AD in terms of 

methane and hence renewable energy generation is still so far from being reached? 

There are multiple factors that contribute to the answer of this question. While, as 

discussed in section 4.2, there are many literature evidences indicating that the yield 

assumed in this study of 80% conversion to methane on a COD basis is achievable, this 



 

 

yield is not necessarily easy to obtain. For a given feedstock, many factors affect the 

performance of anaerobic digesters, e.g. residence time, temperature, mixing, 

acclimation of the inoculum, and the methane yield can be significantly lower than the 

maximum potential yield if the digestion parameters are not optimised.65,66  The effect of 

the nature of the feedstock on the methane yield is also important. Readily biodegradable 

waste such as food waste are typically converted to methane with higher yields than 

slowly biodegradable substrates such as manure or straw. For manure, the type of 

manure seems to have an effect of the methane yield.33 For slowly biodegradable 

substrates, the contact time between the microorganisms and the substrate needs to be 

very long in order to measure the full methane potential. Inhibition can also be another 

important factor that limits the methane yield in anaerobic digesters.67 Therefore, the 

operating conditions of the digesters need to be optimised depending on the nature of the 

feedstock to obtain the highest possible yields. 

Linked to the previous point, another aspect worth considering is that there is often 

scarcity of data about the efficiency of feedstock conversion to methane in full scale 

digesters. Indeed, literature studies reporting high methane production from various types 

of waste are usually carried out at lab-scale4 under optimised conditions, while the 

conditions at full scale might be not optimised with consequently lower methane yields. 

Often full-scale plants are designed without pilot- or lab-scale tests or, when lab-scale 

tests are carried out, they are often limited to measuring the biomethane potential (BMP) 

of the feedstock. BMP tests are however carried out in batch and do not necessary give 

indication on the residence time required at full scale to achieve the maximum methane 

potential. Consequently, some or many full-scale plants might not be designed with an 



 

 

adequate residence time. Similarly, mixing of solid or semi-solid digesters might not be 

easy at full scale and this also might lead to inadequate performance. The publicly 

available data on the performance of full scale digesters usually reports the methane 

production rate and/or the electricity production and the feed demand rate. It is not 

possible to calculate how efficiently the digester works, i.e. which percent of the COD of 

the feed is converted to methane, from this data alone. It is also worth noting that in many 

cases, the efficiency of anaerobic digesters is reported in the literature as volume of 

methane per unit of organic (usually volatile) solids, e.g. as Nm3/kg VS, rather than as 

percentage on a COD basis as in this study. Reporting the efficiency of digesters in units 

such as Nm3/kg VS is valuable, however the use, in addition or in alternative, of 

percentages on a COD basis would facilitate the assessment and comparison of the 

efficiency of digesters among different studies and different feedstocks. Indeed, having a 

value for the digestion efficiency in Nm3/kg VS does not tell how close the digester is to 

converting all the organic matter in the feed because the theoretical maximum (which 

depends on the empirical formula for the organic solids) is not known. On the other hand, 

an efficiency expressed as percentage on a COD basis does give this information, 

because the theoretical maximum is 100%. 

Another issue is the collection and transportation of the waste. The generation of organic 

waste is often very spatially widespread with many small producers. This is the case, e.g. 

for MSW, especially for small communities, and for manure and agricultural residues 

generation by small farms. In these cases, the waste should be collected and transported 

to a central location where the anaerobic digester is located, and the collection and 

transportation costs can be significant. This has historically hindered the development of 



 

 

AD. Large differences in the collection of animal manure depending on the nature of the 

farm have also been reported,21 e.g.  manure from beef cows was assumed not to be 

collected at all, while 85% of poultry manure was collected. However, despite these 

limitations, the role of AD in the treatment of MSW is increasing rapidly in Europe and is 

predicted to increase further in the coming years. The role of AD is also increasing rapidly 

in the treatment of farm waste, both for large and small-medium farms. As an example, 

an AD plant treating manure from a farm with 80,000 dairy cows is in operation in Punjab, 

India.68 An important help towards the increasing diffusion of AD is the development of 

small-scale digesters which will be specifically valuable to isolated communities or small 

farms.69 

The need to separate the biodegradable organics from other non-biodegradable solids, 

which is especially important for MSW, is also a problem that is limiting the diffusion of 

AD. For example, Satchatippavarn et al.70 reported that the municipality of Bangkok, 

Thailand, generates over 2.7 Mt of MSW per year of which 59 % is biodegradable. 

However, the vast majority (over 85 %) of this waste is dumped into landfills and open 

dumps and only 0.4 % of it is treated by AD or composting. In this case, one of the 

problems is the separation of the biodegradable organic matter from other materials such 

as plastics. Separation at the source of biodegradable from non-biodegradable waste, 

widely practised in some countries, is the possible solution to this problem. 

Another important problem that is limiting the use of AD is the high capital cost of the 

plants. To this regard, one of the challenges is how to achieve the long SRT which is often 

needed in anaerobic digesters with a relatively small (and therefore with a low capital 

cost) reactor volume. Fixed-bed or UASB reactors can provide the solution to this 



 

 

challenge, since in these systems the hydraulic and solids residence times are not 

coupled and therefore long SRTs can be maintained with a relatively small reactor 

volume.71 It is also worth observing that there has been an increase in recent years in the 

development and commercialisation of small scale digesters and this is likely to have a 

positive impact towards the reduction of capital costs. 

Finally, it is important to observe that many of the types of organic waste considered in 

this study have other uses, which compete with their potential use for AD. E.g., the organic 

fraction of MSW can be converted to compost, manure can be spread on land providing 

large amounts of nitrogen, phosphorus and potassium, agricultural residues can be 

combusted to generate energy, and sewage sludge can be spread on land. All these 

alternative uses of organic waste have their own advantages and disadvantages, and the 

selection of the best possible use of the waste will be dependent on local circumstances. 

It is not the aim of this paper to compare AD with other technologies for waste valorisation, 

and studies which use economic return66 or other methodologies for this analysis have 

been reported. However, it is worth observing that AD can be often used in conjunction 

with, rather than in alternative to, other valorisation technologies. For example, the 

digestate from AD processes contains most or all the mineral elements (e.g. N, P and K) 

in the feedstock, therefore the combination of AD and spreading the digestate on land 

can be seen as a way to convert the organics into energy, while still recovering and 

reusing the inorganic minerals in the feedstock. 

In summary, the main research needs in order to achieve the full potential of AD for 

methane production can be deducted from the analysis of the challenges reported above 

and can be summarised as follows: 



 

 

-    Identification of the operating conditions that maximise the methane yield for the various 

feedstocks; 

-    Progress on the AD of lignocellulosic biomass; 

-    Optimisation and maximisation of the methane yield for full scale digesters.  



 

 

5. Conclusions 

Based on the estimated composition and generation rate of five biomass feedstocks, and 

based on the assumption of a methane yield of 80% COD/COD, AD can produce an 

amount of methane with an energy content equivalent to 17–20 % of the current global 

energy consumption. As an alternative, AD can be directed towards the production of 

organic acids, namely acetate, butyrate, lactate and propionate, at rates equivalent to 

hundreds or thousands of times their current production rates. Ethanol and hydrogen can 

also potentially be produced at rates up to 2-3 times higher than their current production 

rates. In summary, this study indicates that AD has a very high potential for the generation 

of energy and/or chemicals in a fossil-fuel free world. 
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Figure 1. Scheme of the procedure used to calculate the potential methane generation rate (a) 
and the potential chemicals production rate (b) 



 

 

Table 1. Generation rates and composition of the various feedstocks. The generation rates are given in Mt of dry matter/year. The 
composition is given as fraction of the total day matter. (a - Method 1; b - Method 2) 

  Generation rates Composition 

Feedstock UK Brazil India Nigeria Global Carbohydrates Proteins Lipids 

OFMSW 10.0b-13.4a 24.1b-24.8a 52.1a-56.7b 12.2a-12.7b 594.0b-1,021a 0.57 0.16 0.19 

Manure 18.9b-19.0a 82.9b-329.0a 150.0b-270.0a 18.8b-32.0a 2,683b-2,853a 0.56 0.14 0.062 

Energy crops 1.5a-3.0b 17.4a-34.9b 37.5a-75.0b 8.4a-17.0b 335a-670b 0.66 0.081 0.019 

Agricultural 
residues 

25.0a-35.7b 315.8a-
365.0b 

422.4a-617.4b 42.7a-118b 4,502.8a-4,684.0b 0.70 0.038 0.020 

Sewage 
sludge 

1.0a-1.2b 3.0 a-3.8 b 19.1a-24.0 b 2.7 a-3.4 b 107.3a-135.0 b 0.27 0.42 0.13 

Total 56.4-72.2 443.2-757.4 680.7-1,043.0 84.8-182.9 8,222.0-9,362.1    



 

 

 
Table 2. Calculated potential methane production rates. Values in brackets in the Global column 
represent the fraction of the total methane which comes from, left to right, carbohydrates, proteins 
and lipids. 
 

 UK Brazil India Nigeria Global 

Potential methane 
production rate 

(Mt/year)  
10.2-13.3 77.1 – 121.7 119.4 – 178.0 15.4 – 32.0 

1,222.1–
1,417.4 

(76-80/14-16/6-
8) 

Potential total 
energy production 

rate (EJ/year) 
0.6 - 0.7 4.3 – 6.8 6.6 – 9.9 0.9 – 1.8 67.8 – 78.7 

Potential total 
electricity 

production rate 
(EJ/year) 

0.2 - 0.3 1.5 – 2.4 2.3 – 3.5 0.3 – 0.6 23.7 – 27.5 

  
 
  
  



 

 

Table 3. Assumed yields of the various chemicals obtainable from AD. All values are in 
COD/COD. 

Chemical Carbohydrates Proteins Lipids 

Acetic acid 0.13 0.30 0.67 

Propionic acid - 0.09 - 

Butyric acid 0.46 0.15 - 

Ethanol 0.07 - - 

Lactic acid 0.03 - - 

Hydrogen 0.14 - 0.28 

 
  
  



 

 

Table 4. Calculated potential chemicals production rates in Mt/year. Values in brackets in the 
Global column represent the fraction of each chemical which comes from, left to right, 
carbohydrates, proteins and lipids. 

Chemical UK Brazil India Nigeria Global 

Acetic acid 10.4 – 13.5 60.8 – 97.5 103.4 – 149.0 15.2 – 27.0 

1,194.6 – 

1,498.4 

(50-56/22-24/21-

28) 

Propionic acid 0.5 - 0.5 2.5 - 5.8 4.5 – 7.1 0.6 – 1.1 
58.8 – 69.0 

(0/100/0) 

Butyric acid 10.1 – 13.2 
86.0 – 

132.3 
127.7 – 192.3 15.4 – 34.7 

1,494.0 – 

1,685.6 

(94-95/5-6/0) 

Ethanol 1.3 – 1.8 11.8 – 17.7 17.3 – 26.0 2.1 – 4.7 
201.4 – 226.7 

(100/0/0) 

Lactic acid 1.1 - 1.4 9.2 – 13.9 13.6 – 20.4 1.6 – 3.7 
157.7 – 177.5 

(100/0/0) 

Hydrogen 0.9 - 1.1 6.2 – 9.1 9.6 – 14.1 1.3 – 2.6 
110.1 – 131.7 

(82-88/0/12-18) 

  
 
  

  



 

 

Table 5. Potential role of AD in the total energy production and in electrical energy production 

 UK Brazil India Nigeria Global 

Current total energy 
consumption rate (EJ/year)72 5.15 9.72 23.26 4.88 394.56 

Fraction of the total energy that 
can be potentially provided by 

AD (%) 
11 - 14 44 - 70 29 - 43 18 - 36 17 - 20 

Current total electricity 
production rate (EJ/year)1 1.09 1.80 3.41 N/A 71.42 

Fraction of the total electricity 
that can be potentially provided 

by AD (%) 
18 - 24 83 - 131 68 - 101 N/A 33 - 39 

 
  
  



 

 

Table 6. Comparison of the potential production rate of the chemicals considered in this 
study with their current production rate 

 
Acetic 
acid 

Propionic 
acid 

Butyric 
acid Ethanol Lactic 

acid Hydrogen 

Current 
production rate 

(Mt/year)2,73 
7 0.4 0.08 70 0.15 50 

       

Potential 
production rate by 

AD/current 
production rate 

171 – 
214 147 – 172 18675 – 

21070 2.9 – 3.2 1051 – 
1184 2.2 – 2.6 

 


