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Finding the correct encoding for a generic dynamical system’s trajectory is a complicated task:

the symbolic sequence needs to preserve the invariant properties from the system’s trajectory. In

theory, the solution to this problem is found when a Generating Markov Partition (GMP) is

obtained, which is only defined once the unstable and stable manifolds are known with infinite

precision and for all times. However, these manifolds usually form highly convoluted Euclidean

sets, are a priori unknown, and, as it happens in any real-world experiment, measurements are

made with finite resolution and over a finite time-span. The task gets even more complicated if

the system is a network composed of interacting dynamical units, namely, a high-dimensional

complex system. Here, we tackle this task and solve it by defining a method to approximately

construct GMPs for any complex system’s finite-resolution and finite-time trajectory. We

critically test our method on networks of coupled maps, encoding their trajectories into sym-

bolic sequences. We show that these sequences are optimal because they minimise the informa-

tion loss and also any spurious information added. Consequently, our method allows us to

approximately calculate the invariant probability measures of complex systems from the

observed data. Thus, we can efficiently define complexity measures that are applicable to a wide

range of complex phenomena, such as the characterisation of brain activity from electroenceph-

alogram signals measured at different brain regions or the characterisation of climate variability

from temperature anomalies measured at different Earth regions. Published by AIP Publishing.
https://doi.org/10.1063/1.5002097

The use of measures from the Information Theory for

complex systems’ analysis requires the estimation of

probabilities. In practice, these probabilities need to be

derived from finite data-sets, namely, electroencephalo-

gram (EEG) signals coming from different brain regions,

electrocardiogram (EKG) signals coming from the heart,

or temperature anomalies coming from different Earth

regions. Respectively, the complex systems in these cases

are the brain, the heart, and the Earth climate—all being

systems composed of many dynamically interacting com-

ponents. The main reason behind using measures from

the Information Theory to analyse complex systems is

that these measures help to better understand and predict

their behaviour and functioning. However, calculating

probabilities from observed data is never straightfor-

ward; in particular, up-to-now, we lack practical ways to

define them without losing useful (or adding meaningless)

information in the process. In order to minimise these

spurious additions or losses, we propose here a method to

derive these probabilities optimally. Our method makes

an entropy-based encoding of the measured signals, thus,

transforming them into easy-to-handle symbolic sequences

containing most of the relevant information about the sys-

tem dynamics. Consequently, we can find the Information

Theory measures, or any other spatio-temporal average,

when we seek analysing a complex system.

I. INTRODUCTION

Complex systems are gaining attention breathtakingly. The

reason is simple, nature and man-made systems are filled with

such examples, where many units interact dynamically and are

able to collectively self-organise—as our brains, composed of

billions of neurons inter-connected in complex synaptic net-

works, or our power-grids, composed of steady power-plants,

fluctuating renewable power-sources, and (somewhat) ran-

domly demanding consumers, all inter-connected by a complex

network of transmission lines. In general, it is important to

understand and foresee the emerging collective behaviours that

complex systems can exhibit, since this can help us to control

them; for example, to prevent epileptic seizures or power black-

outs. An important way to characterise these complex systems

and their emerging behaviours is by using measures from the

Information Theory, which require the calculation of invariant

probabilities from the observed data, a process that is never

trivial.

The invariant probability measure (IPM),1–4 lðCÞ, of a

complex system or a dynamical system, is the probability

measure, l, that is preserved under the system’s equations

of motion, and gives the probability density of finding the

system at a given point in state space, C. Different statisti-

cal quantities can be defined in terms of IPMs, such as the

average position of the system in state space (hxi ¼
Ð
Cx dl),

the differential Entropy5 (H ¼ �
Ð
C log ðlÞ dl) or the

Kolmogorov-Sinai entropy,6 which are measures of the
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system’s average unpredictability/information content, or

the Lyapunov exponents (k ¼
Ð
C log jDFðxÞj dl, where

DF(x), x 2 C, is the system’s Jacobian), which measure the

system’s chaoticity. Nonetheless, we can rarely derive or

guess the exact IPM for higher dimensional systems

(D> 1), since it requires infinite precision for all times,

which is completely impractical. On the contrary, and from

a practical point-of-view, it is advantageous to derive a

coarse-grained discrete IPM by making some finite-

resolution observations, only during a finite time-interval,

and on a projected lower-dimensional space, but from

where all relevant statistical quantities can be well esti-

mated. Thus, instead of dealing with a continuous IPM, we

need to transform the system’s trajectories into finite

symbolic-sequences conforming to a finite alphabet1–4 and

then find a discrete IPM for the symbols’ probabilities.

Encoding a trajectory into a symbolic sequence without

adding meaningless (or loosing important) information is

only achieved once a Generating Markov Partition (GMP) is

defined.2–4 The reason is that a GMP preserves the flow’s

invariant properties and divides the state space into a com-

plete set of disjoint regions, namely, it covers all state space.

Specifically, a GMP encoding has a one-to-one relationship

with the system’s trajectory (i.e., each symbolic sequence is

specific to each initial condition), contains the maximum

amount of information that any trajectory-encoding can have

(i.e., maximises the sequence’s entropy), has a minimum

number of symbols (i.e., any larger number of symbols that

could be used are already contained in the encoding, which

is the partition’s generating character, and defines a finite

alphabet), and results in a symbolic sequence that is memo-

ryless, namely, it is Markovian.7 Consequently, a GMP enco-

des a deterministic trajectory into a symbolic sequence that

behaves as if it was generated by independent random sour-

ces and contains all the relevant information.

This important memoryless character of the symbolic

sequence is the one allowing us to use measures from the

Information Theory, such as the Shannon Entropy (SE),

since these measures are typically only defined in terms of

random sources5–7 (for a non-random source, the SE is an

upper-bound for its information content). Therefore, if a

non-Markovian encoding is used, the random character is

lost, and not only are these measures deficient, but infinitely

long trajectories are needed. However, a GMP is correctly

defined only after the system’s invariant manifolds are

known, and the invariant manifolds of non-linear complex

systems generally conform to highly convoluted sets,8–13

thus, requiring infinitely precise measurements for all times.

In order to avoid calculating the unstable and stable mani-

folds, previous methods have obtained approximate Markov

partitions for dynamical systems by searching alternative

approaches.14 For example, Ref. 15 shows how to calculate

partitions by the primary homoclinic tangencies of dissipa-

tive systems, later extended to conservative systems.16 In

Ref. 17, the authors show how to find partitions by locating

the Unstable Periodic Orbits of chaotic systems.18 There are

also methods that approximate Markov partitions by finding

a partition that generates a symbolic sequence that is unique

and it is one-to-one with the trajectory.19

Here, we show how to find an approximate GMP for a

complex system using finite resolution and finite time inter-

vals. Our method uses optimally encoded data sequences

that behave, from an informational point-of-view, in the

same way that encoded sequences obtained from true GMPs

do. Namely, we provide an entropy-based methodology to

obtain an optimal symbolic encoding that contains most of

the relevant information about the system dynamics. From

this encoding, spatio-temporal invariant averages can be

estimated.

Our approach follows the lines behind the method pro-

posed in Ref. 20. There, a Markov memoryless representa-

tion of a system is constructed based on the assumption that

the more accurate the partition is, the more predictive infor-

mation it provides. Hence, finer partitions could lower the

uncertainty in future estimates. On the contrary, our main

idea here is to consider informational manifestations of a

GMP, namely, a partition that leads the Shannon Information

Rate (SIR) value [see Eq. (1)] to be constant and positive for

any length of the symbolic sequence. Another entropy-based

manifestation that reflects an encoding from a GMP is that

the SIR for partitions of different orders (resolution) for an

appropriate range of the symbolic sequence length remains

invariant. Moreover, an optimal partition must extract as

much information from the complex system as possible, that

is, it must generate a Markov-like process. This is achieved

by satisfying Eq. (2). In practice, to make our methodology

accessible, we seek for maximisation and invariance of SIR

values for a range of word lengths (L values). Another condi-

tion, seen as a manifestation of a memoryless system

observed over a lower-order partition, is that Shannon

Entropy (SE) is equal to the value at which SIR is maximal

and invariant. This implies that SIR is invariant for any word

length for that partition. We, however, did not satisfy this lat-

ter condition. Instead, we seek a partition that remains invari-

ant while the SIR tends to an asymptotic value for increasing

L values. Hence, our method constructs the approximate

GMP from these entropy-based conditions, rather than based

on the topology of the system’s manifolds. In order to vali-

date our method, we use networks of coupled maps and

encode their trajectories into symbolic sequences, showing

that our results are optimal as they minimise the information

loss and also any spurious additions.

II. METHODS AND MODEL

A. Generating Markov partitions and symbolic
encodings

We define a partition as the parting of a smooth dynami-

cal system’s domain into disjoint open regions (i.e., state-

space regions). An encoding process uses these regions to

define a shift-invariant constraint that acts on a finite dictio-

nary, namely, each state-space region is associated to a par-

ticular symbol, thus, creating a finite symbolic-space from

the dynamical system’s state-space. In other words, for each

state-space region, the encoding defines a symbol that is

assigned to all trajectory points that fall within that region.

Hence, any trajectory can be encoded into a symbolic

sequence given a partition.
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For example, let an invertible dynamical system, which

is a set X and an invertible mapping F : X ! X , define an

orbit through a given point (initial condition) x 2 X , namely,

…; F�2ðxÞ; F�1ðxÞ; x; FðxÞ; F2ðxÞ; …
� �

. Thus, point x is

represented by a bi-infinite sequence. Using a partition

encoding means that a symbolic sequence is generated from

this orbit. The symbolic sequence is formed by the successive

disjoint regions visited by the orbit, regions which are defined

by the partition. Consequently, after the encoding, the orbit

passing through point x is represented by a bi-infinite sym-

bolic sequence aðxÞ ¼…a�2 a�1: a0 a1 a2…, where an 2 S is

the symbol (also known as letter) associated to the partition

region where the n-th iterate falls, FnðxÞ; S is the dictionary

(i.e., the finite alphabet resulting from all the disjoint regions

that the partition defines), and the “.” indicates where the

sequence starts. For non-invertible mappings, the orbit and the

symbolic sequence are infinite sequences instead, namely,

x; FðxÞ; F2ðxÞ; …
� �

and aðxÞ ¼ a0 a1 a2…, respectively.

By encoding a deterministic trajectory into symbols, we

gain that, instead of having real-valued iterates or trajectory

points (with possibly infinite precision observations—contin-

uum formalism) to analyse its statistic and find the invariant

probability measure, we have a symbolic sequence of ele-

ments coming from a finite number of letters in an alphabet,

i.e., an 2 S, which is significantly simpler to analyse. We can

draw an analogy between this encoding approach with the

Statistical Mechanics view-point of ideal particles inside a

box. Instead of looking at each particle’s trajectory, or that of

the whole system, Statistical Mechanics is interested in look-

ing at the probability of having the particle (or the whole sys-

tem) with a particular value of position and momentum.

Hence, the particle’s trajectory time-dependence is lost, and

only the trajectory’s visits to the different state-space regions

matter; namely, it goes from a time view-point, which is deter-

ministic, to a space view-point, which for the case of Markov

partitions, is memoryless. In particular, for the ideal particles,

if the exact values of all positions and momenta are consid-

ered to be discrete (because, for example, the measurement

device has low resolution) instead of possibly taking any con-

tinuum value that can satisfy the systems Hamiltonian, we

should have a finite set of probabilities for each region of the

state space corresponding to the given discretization. This is

analogous to the partitioning of the state space and symbolic

encoding we propose and that GMPs do.

After the trajectory is encoded into a symbolic sequence,

we can find word-statistics, namely, the statistics coming

from a string of L letters, i.e., a word, given by anþL�1
n

� an anþ1 … anþL�1. For example, if pðaL�1Þ is the probabil-

ity of having word aL�1, the Shannon Information Rate

(SIR), h, is found by5,7

hL � � lim
L!1

1

L

X
p aL�1ð Þlog p aL�1ð Þ

� �
; (1)

where the summation is over all possible string lengths L,

i.e., jSjL, and the logarithm is taken in base 2 if the unit is

the bits per symbol.7 In other words, hL in Eq. (1) quantifies

the average information per symbol that words of length L
carry in the symbolic sequence, which is an approximation

to the Kolmogorov-Sinai entropy, namely

hL ¼ � lim
L!1

1

L
h log p aL�1ð Þ

� �
i:

In other words, either using a spatial encoding (e.g., as the

method we propose) or a time encoding (e.g., as the ordinal

patterns in Ref. 23 propose), after the encoding is carried

over a trajectory, a symbolic sequence is obtained. However,

once the symbolic sequence is obtained, we study the words

that can be formed within that symbolic sequence. For exam-

ple, one can have a sequence containing only 2 symbols,

such as aðxÞ ¼…0101010101010101…. The analysis of

L¼ 1 words is finding the probability of having a 0 or a 1.

The analysis of L¼ 2 words is finding the probabilities of

having 00, 01, 10, or 11. Analogously, for any generic,

L> 0.

We note that, when a symbol generator is close to a ran-

dom generator, for every L, the inter-symbol dependence is

negligible and the information source is said to be memory-

less. The inter-symbol independence is verified when the

symbolic sequence is mixing. Specifically, when after a finite

time-lap, s, the joint probability of finding a symbol, an, of a

sequence at iteration n and another symbol, anþs, at iteration

nþ s, i.e., pðan; anþsÞ, is (approximately) identical to the

product between the probabilities of finding each symbol

independently. In other words, the symbols are uncorrelated

after s and

p an; anþsð Þ ’ p anð Þ p anþsð Þ: (2)

For memoryless sequences, the SIR [Eq. (1)] is constant for

any finite L and identical to the Shannon Entropy5 (SE),

H(Y). The SE is defined for a random variable Y, which could

be the symbolic sequence obtained by a GMP encoding, with

outcomes y 2 S, which could be letters from an alphabet,

and probability p(y) by

HðYÞ � �
X
y2S

pðyÞ log pðyÞ½ � ¼ �h log pð Þi: (3)

So, the SE is hL¼1, i.e., it is equal to the SIR for L¼ 1 [Eq.

(1)]. Consequently, it is necessary for the partition of a

dynamical system’s state-space to encode any trajectory and

initial condition such that the resultant symbolic sequences

are all memoryless, that is, if one wants to apply Eqs. (1) and

(3) under the same hypothesis as those used by Shannon in

Ref. 5 (namely, for random sources).

In order to encode any deterministic trajectory by

means of a state-space parting and obtain a memoryless

symbolic sequence that maximises the SE and SIR, we need

a Generating Markov Partition (GMP). The reason is two-

fold. First, that a generating partition is unique and an

order-q partition can be used to generate one of order-

ðqþ 1Þ.21 This means that the dictionary (i.e., the different

letters corresponding to the disjoint regions) derived from

an order-p partition, Sq, is contained in the dictionary from

an order-ðqþ 1Þ partition, Sqþ1. Hence, the smallest dictio-

nary/partition order can be used. Similarly, this also implies

that we can use the coarsest parting of the system’s domain

into disjoint regions. Second, a Markov partition maps

the expanding (contracting) directions of the system’s
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dynamics into expanding (contracting) directions of the

symbolic space.2–4 Hence, using a GMP to encode trajecto-

ries result in bijective (each symbolic sequence maps one-

to-one with the observed trajectory, particularly, different

initial conditions result in different symbolic sequences)

and uncorrelated (memoryless) symbolic sequences with

constant SIR (i.e., the SE production rate that a symbolic-

sequence has with respect to the partition order is constant)

as we increase the word length, L, and partition order, q.

We would like to stress that, if an order-q partition

obtained after proper maximisation of SIR over all possible

partitions locations satisfies the Markovian property, given

by Eq. (2), for a given word length L, the SIR obtained for

the same partition but for word length Lþ 1 will be the

same. This can also be used to verify the Markovian prop-

erty, not by fulfilling Eq. (2), but by seeking a plateau of the

SIR values as a function of L. Namely, by seeking the

domain parting locations that make the SIR maximal and

invariant for different L.

B. Our encoding methodology

For a GMP encoding, the dynamical properties of the

system are preserved and the memory between consecutive

symbols is lost. Of course, almost any encoding will recover

the full information of the dynamical system’s trajectories

when the partitions have infinite order, since this would

define an infinite dictionary/alphabet. This is still an

improvement, since infinite dictionaries are still countable

sets, while trajectory points in state space are uncountable.

However, for practical matters, this is still useless. Thus, our

aim is to recover the maximum (possible) amount of infor-

mation with the least number of partitions, i.e., finite and

small order-q partitions, and a memoryless finite sequence,

i.e., sequences of length L to deal with the practical con-

straints that words of infinite length, as in Eq. (1), are infeasi-

ble. Moreover, our partitions are marginal since we divide

the domain by means of planes, which implies that our

encoding always defines a dictionary that has a multiple of 2

possible symbols.

Specifically, our marginal partitions constitute orthogo-

nally intersecting straight lines for two-dimensional systems,

planes for three-dimensional systems, and hyper-planes for

higher-dimensional systems. The reasons are that, by using

straight lines or planes to divide the state-space into disjoint

regions, we are discarding, unequivocally, all other state-

space regions. As a result, the computation of the probability

of having a trajectory lying within any particular region is

independent of the rest of the regions, hence, the term mar-

ginal. On the other hand, GMPs define complex partitions,

generally involving borders between regions that are highly

convoluted. Thus, despite GMPs being always the correct

way to observe any dynamical system extracting all relevant

information and without losing information, their construc-

tion from data is usually impossible to obtain, especially

when dealing with experimental systems.

Recently, different methods have been proposed to

achieve this goal without relying on GMPs. For example, in

Ref. 23, the authors introduce a measure based on sequential

ordering of the elements in the data series, namely, ordinal

patterns, which have proven useful in various fields.24–26

The symbolic sequence is then found in a natural way with-

out any assumptions about the model. This avoids the diffi-

cult problem of finding the right GMP;21 however, the

generating and bijective properties of the GMPs are lost.

This loss is also seen in different threshold-crossing analysis,

as is pointed out in Ref. 22. Other methods have been pro-

posed that preserve the bijective and generating character,

such as using higher order partitions,26–28 the computation of

unstable periodic orbits,17,18 defining a symbolic shadow-

ing,19 or finding symbolic nearest neighbours.29

In our case, we find approximate GMPs using marginal

partitions, as exemplified in Fig. 1 for a two-dimensional

state-space. There, we start by arbitrarily dividing the sys-

tem’s domain into 4 regions (shaded quadrants in Fig. 1).

This division corresponds to an order-1 marginal partition

that defines 4 symbols, i.e., a dictionary S1 � fað1Þ1 ¼ a;
að1Þ2 ¼ b; að1Þ3 ¼ v; að1Þ4 ¼ dg (shown in the lower left corner

of Fig. 1). The border between these regions (thick dashed

lines), namely, the division placement, is shifted until the

mixing and information properties of the resulting symbolic

sequence are optimal (continuous lines), as we explain in

what follows. In particular, the shift is done first on the hori-

zontal dashed line, yð1Þ (across the interval), and later on the

vertical dashed line, xð1Þ. For each division placement, the

particular trajectory being encoded is transformed into a

symbolic sequence, where its SE, Hðxð1Þ; yð1ÞÞ, and SIR val-

ues, hLðxð1Þ; yð1ÞÞ, for different L are found. Then, the optimal

partition is set from all these sequences by taking the

sequence yielding a maximum SIR value [Eq. (1)] with

invariant L characteristics and a valid SE [Eq. (3)], namely,

the optimal memoryless and Markovian sequence.

Once we fix the order-1 partition location approximately

(continuous vertical and horizontal lines in Fig. 1 located at

x
ð1Þ
opt and y

ð1Þ
opt), we attempt to increase the partition order by

making sub-divisions, namely, generating disjoint sub-

domains from the former 4 quadrants. We repeat the former

analysis with the resulting sequences of this new partition,

which attempts to approximate an order-2 partition.

Particularly, this order-2 partition expands the alphabet from

jS1j ¼ 41 to jS2j ¼ 42 possible symbols, which are shown in

the lower left corner in Fig. 1 and represent the 16 disjoint

regions. We note that the SIR value for the order-1 marginal

partition and words of length L¼ 2, hq¼1
L¼2, have to be approxi-

mately equal to the SE value for the order-2 marginal parti-

tion, Hq¼2, which is simply the SIR value for words of

length L¼ 1, i.e., hq¼2
L¼1. In other words, the generating char-

acter of our approximate Markov partition is revealed if

hq¼1
L¼2 ’ hq¼2

L¼1 or when L is a multiple of q. Otherwise, the

sub-division process is continued until this condition is met.

We highlight that the attractiveness of using symbolic

analysis is that, using words of length L in Eq. (1), for a one-

dimensional system and a partition with spatial resolution 1/2

(namely, a trajectory that is encoded into a binary sequence

using an order-1 partition), provides the same results as

doing the analysis considering trajectories with resolution

proportional to 2�L. Moreover, if the partition is a GMP,

then the analysis can be done with words of length as small
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as L¼ 1, i.e., with the SE. Hence, our method is aimed at

finding a suitable L such that the partition behaves as close

as possible to a GMP.

Although we detailed our method for a square-like

two-dimensional state-space as in Fig. 1, its generalisation

to non-square domains and higher dimensional state-spaces

is straightforward. This is possible as long as our previous

considerations are met, namely, memoryless symbolic

sequences with high SIR values and approximate generat-

ing characteristics. In particular, it is worth noting that our

marginal partitions increase the number of symbols in the

alphabet as jSqj ¼ ð2DÞq every time we increase the order-q
of the partition. Namely, our marginal order-q partitions

divide a D-dimensional state-space domain into 2qD disjoint

regions. Moreover, for each order-q, we have to test differ-

ent locations for the marginalization (as depicted by the

dashed lines in Fig. 1), which correspond to the partition’s

location resolution. Let then R define the number of differ-

ent locations we try per domain dimension in order to find

an optimal order-q partition, i.e., the partition location is

then defined with a 1=R precision. This implies that our

brute-force computations scales as OðRDÞ � OðjSqjLÞ,
where RD is the total number of different symbolic sequen-

ces resulting from each partition’s location being explored

and jSqjL is the number of different words of length L that

the order-q partition generates and have to be analysed to

find the SIR and SE values. Clearly, we acknowledge that

our methodology can be improved by using optimization

schemes and/or graphics processing unit (GPU) parallel

computations, but standard central processing units (CPUs)

can be used for our current results’ analysis.

In a general situation, where one wishes to analyse a

large dimensional complex system, our method would need

an optimization scheme. However, for complex systems with

D< 10, our marginal partitions method is applicable without

the need of an optimization scheme, as we explain in what

follows. The first-order marginal Markov partition of any

complex system divides the state space into 2D different

regions, which corresponds to placing D planes dividing

each dimension marginally into 2 domain intervals. As a

result, 2D different symbols are associated to each region,

hence, a D-dimensional trajectory that goes through every

region contains all these symbols but one that avoids certain

regions of the state space then has “forbidden” symbols.

After a trajectory is encoded using this space parting, then

we analyse the statistics of appearing symbols and how these

symbols group into words. However, we note that the place-

ment of the planes that define this first-order marginal-parti-

tion is a priori arbitrary; hence, we propose to move the

planes systematically and repeat the analysis. For example,

if we set a first-order marginal-partition location with a

1=10 ¼ 1=R precision for each domain dimension, we need

to move each plane separately into 10 different placings

across each dimension independently. Thus, we need to ana-

lyse the statistics of RD different symbolic sequences corre-

sponding to the same D-dimensional trajectory, each

containing (at the most) 2D different symbols for L¼ 1, 22D

different symbols for L ¼ 2, and 2LD different symbols in

general. If D¼ 6, then, for the first-order marginal partition

and for a single trajectory, we would have RD ¼ 106 differ-

ent sequences (using the previous precision, R¼ 10) that can

contain up to 26 ¼ 64 different symbols. Consequently, any

FIG. 1. Approximate Generating

Markov Partition (GMP) method depic-

tion for a two-dimensional state-space

(filled square). The vertical and horizon-

tal thick dashed lines show the order-1

marginal partition of the domain intervals

as they shift positions, where the sym-

bolic sequence (lower left corner) is

found from the resulting quadrants (filled

areas). The continuous lines represent the

optimal position, which is the one with a

higher Shannon Information Rate (SIR)

[Eq. (1)]. Fixing the optimal order-1 par-

tition, an order-2 partition approximation

is sought in a similar way (fine dashed

lines).
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6-dimensional trajectory with T > 6400 iterations should

contain a rather good symbolic statistic for L¼ 1 words and

the 106 different sequences are manageable in any personal

CPU. Furthermore, since the word statistics (analysing dif-

ferent word lengths, L, for any given symbolic sequence) and

the placement of the planes are independent processes, the

computational complexity is independent and can be imple-

mented in parallel.

We summarise in the following the main steps, con-

cepts, and ideas behind our methodology. (i) Find a lower-

order partition (order-1 in this work) that maximizes the SIR

for large L values. If there is a range of L values that the

maximal value of SIR (over many possible marginal parti-

tions) remains invariant, the partition generates in the time

sense and for that range. This is also a manifestation of a par-

tition with a Markovian characteristic [i.e., fulfilling Eq. (2)].

(ii) Calculate the SE for the partition obtained in (i) for

which SIR is maximal (over marginal partition locations)

and invariant (over a range of L values). If SE is equal to the

invariant value of SIR for a range of L values, the partition

has Markovian properties. Instead of doing this, we seek a

partition whose location remains invariant as the maximum

value of SIR (over all possible marginal partitions) tends

asymptotically to a constant value as L is increased. This is

done because the Markovian property only emerges for

larger values of L, likely a consequence of using marginal

partitions instead of respecting the invariant manifolds. (iii)

After finding a lower-order partition that generates in the

time sense and has a Markovian property, find a higher-order

partition (order-2 in this work) by splitting the lower-order

partition into sub-intervals. The generating (in the time

sense) and Markovian properties of this new division can be

tested using the conditions (i) and (ii), respectively. If the

maximal value of SIR for large L values remains invariant,

with respect to the values obtained for the lower-order parti-

tion, the partition is generating in the space sense. From the

perspective of the Information theory, a generating partition

is one whose encoding does not either generate or destroy

information.

C. Our complex system model

In order to test our method, we analyse a particular

complex system: a set of one-dimensional coupled maps fol-

lowing the Kaneko coupling type.30 Hence, our system is

N-dimensional (because it has N one-dimensional maps) and

evolves according to the recursive relationship

x
ðtþ1Þ
i ¼ ð1� �Þ fi x

ðtÞ
i

� �
þ �
XN

j¼1

Aij

ki
fj x

ðtÞ
j

� �
; (4)

where x
ðtÞ
i [x

ðtÞ
j ] is the i-th [j-th] map’s state at a discrete time

t, fiðxðtÞi Þ [fjðxðtÞj Þ] is the i-th [j-th] map’s function, � is the

coupling strength, and Aij is the adjacency matrix of the net-

work. Specifically, Aij is the ij-th entry of a binary matrix,

which is 1 [0] if a link connecting nodes i and j is present

(absent). In particular, the edge density of the network, q, is

q �
P

i;jAij=N ðN � 1Þ and the node degree is ki �
P

jAij

(i.e., node’s i neighbour number). To commence with a

working example, we set N¼ 2 and let the map’s be logistic,

i.e., fiðxðtÞÞ ¼ ri xðtÞ ð1� xðtÞÞ, ri being the control parameter

for the isolated dynamic of map i, with i ¼ 1; 2, and let the

adjacency matrix be A12 ¼ A21 ¼ 1; A11 ¼ A22 ¼ 0. This

sets a symmetric coupling between maps, although, it can be

an heterogeneous configuration if r1 6¼ r2.

Our goal is to find an approximate GMP from informa-

tional measures to obtain a finite-resolution discrete

Invariant Probability Measure (IPM), which provides an

optimal encoding of the system and from which invariant

spatio-temporal invariant quantities can be estimated. This

discrete IPM enables the estimation of the relevant statistical

quantities, such as the Lyapunov exponents or Kolmogorov-

Sinai entropy. In order to do that, in what follows, we take

1:1� 105 iterations of Eq. (4) and remove the first 0:1� 105

iterations, which we consider as a transient. Also, our initial

conditions are randomly set.

III. RESULTS AND DISCUSSION

A. Identical logistic maps order-1 partition
approximation

The IPM of an isolated logistic map in its chaotic

regime, i.e., r¼ 4, is known, and it is given by l ¼ 1=
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x ð1� xÞ

p
.3 This IPM implies that most of the time the

system is found close to the interval extremes. Similarly, the

exact GMP is also known, which for the order-1 GMP, is

dividing the unit interval ½0; 1� in half. However, when two

logistic maps are coupled, an expression for the IPM or the

GMP is unknown. The reason is that, even in the case where

both maps are identical and in their chaotic regime, the cou-

pling deforms their isolated attractors changing the IPM and

GMP.

For example, we see from Fig. 2 that there are state-

space regions where there is a larger probability of finding

the trajectory of the coupled system, namely, the signalled

rectangle areas that appear in the right panels in Fig. 2.

These areas show a higher complexity than the rest of the

attractor, hence, we notice that the order-1 GMP for an iso-

lated map (i.e., the interval splitting into two halves) could

be unhelpful. Namely, the order-1 GMP might have to be

moved to a different place in each map’s interval, depending

on the coupling strength value, �. Nevertheless, in order to

know where the best marginal partition should be placed, we

need to maximise the SIR value for increasing word-length

L, as in Eq. (1).

The importance of using higher L values is seen when

looking at the case with L¼ 1. For L¼ 1, the SIR values are

identical to the SE, as seen from Eqs. (1) and (3). Hence, the

order-1 partition location that maximises the SIR of words

with L¼ 1 is the same as the one that maximises the SE. As

Fig. 3 shows in colour code for � ¼ 0:10, instead of locating

the order-1 partition at 0.5 (vertical and horizontal dashed

lines in the left panel of Fig. 2) to achieve maximum SE, the

maximum is achieved when splitting the interval at a higher

position, namely, at 0.70 6 0.02, as signalled by the vertical

and horizontal continuous lines. The dashed lines are the res-

olution we use to define the partition placement, which in
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this case, is 1=R ¼ 1=50 ¼ 0:02. In general, the highest pos-

sible SE is 1 when using log4 in Eq. (3) and a 4-symbol

alphabet; instead of using bits and a 2-symbol alphabet. We

are unable to attain 1 (i.e., for a completely random source)

for any of our order-1 marginal partition locations, although

our value is close to 1, i.e., maxfHp¼1g ¼ 0:98 when the

split is done in both intervals at 0.70 6 0.02.

The more we increase �, the more the system’s attractor

extension is reduced, hence, the less entropic the system is.

Furthermore, it is known31 that there is a critical coupling

strength, �c, also valid for other chaotic regimes (i.e., r< 4),

where for � > �c the collective dynamics of the two maps is

coherent and collapses to the diagonal of the state-space.

Thus, the position of the order-1 partition that maximises

the SE clearly depends on �. Specifically, when the maps

are identical, �c changes as a function of the map’s parame-

ter as31

�c �
1

2
1� e�kisoðrÞð Þ; (5)

where kisoðrÞ > 0 is the Lyapunov exponent of an isolated

logistic map in a chaotic state, which depends on r. In partic-

ular, for r¼ 4, kisoð4Þ ¼ lnð2Þ, hence, �c ¼ 1=4. For � > �c

¼ 1=4, the system synchronises and the state-space dynamic

is restricted to the diagonal line. It is worth noting that this

condition [Eq. (5)] holds for any number N of all-to-all cou-

pled maps if one changes the multiplying factor of 1/2 by

ðN � 1Þ=N.

However, maximising the SE is insufficient to guarantee

a Markovian memoryless symbolic sequence with a generat-

ing character. This is possible only after maximising the SIR

values and also contrasting successive orders of the partition

such that they are generating. Otherwise, we are only finding

the partition’s location that splits the state-space into disjoint

regions where the system spends the same time. In that case,

and for our working example, having a 4 symbol alphabet

with equally distributed appearance probability, pðaÞ ¼ 1=4,

leads to have a maximum SE given by [Eq. (3)]

Hðp¼1ÞðS4Þ ¼ �
X4

a¼1

1

4
log4

1

4

	 

¼ �log4

1

4

	 

¼ 1:

Consequently, the order-1 partition location is only defined

after the SIR is maximised for increasing L.

B. Non-identical logistic maps order-1 partition
approximation

The problem of finding the optimal order-1 partition’s

placement is further enhanced if heterogeneity is introduced

into the system, as it breaks the symmetry between the maps.

An example of this heterogeneous condition is shown in Fig.

4, where the same coupling strength, � ¼ 0:10, and panel dis-

tribution as in Fig. 2, are used, but slightly different map

parameters are set, i.e., r1 ¼ 3:9 and r2 ¼ 4. In this case, as

Fig. 5 shows, the order-1 partition placement that maximises

the SE (colour code) value changes. The order-1 partition

that results in the highest SE value, i.e., Hðp¼1Þ ¼ 0:92, is

now obtained when dividing map 1’s interval at 0.84 6 0.02

FIG. 2. The left panel shows the attrac-

tor for N¼ 2 identical logistic-maps

symmetrically coupled [Eq. (4)]. The

coupling strength (map parameter) is

set to � ¼ 0:10 [r¼ 4 (chaotic

regime)]. The initial condition is set

randomly and 105 iterations are shown.

The rectangles indicate particular sym-

metric areas of the attractor, which are

shown on the respective right panels.

The dashed vertical and horizontal

lines show the order-1 generating

Markov partition of the uncoupled

maps.

FIG. 3. Shannon Entropy (SE) values [Eq. (3)] (colour code) for the coupled

maps shown in Fig. 2. The values are found from the symbolic sequence that

results after dividing the state-space into 4 regions, i.e., 4 different symbols

encode the coupled-system’s trajectory. The division sets an order-1 mar-

ginal partition and the symbolic sequence changes according to the parti-

tion’s location. The maximum SE is found for the partition that is signalled

by the vertical and horizontal continuous lines, where the dashed lines show

a 61=50 ¼ 60:02 resolution for its placement.
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and map 2’s interval at 0.58 6 0.02. Comparing Figs. 3 and 5,

we see that the 4 state-space regions, which were encoding

the system’s trajectory into 4 symbols, have now changed.

Before, the divisions (vertical and horizontal lines in Fig. 3)

cross themselves at the state-space diagonal. Now, the region

for the left quadrants in Fig. 5 is larger than the respective

regions in Fig. 3, thus the crossing is below the state-space

diagonal.

The reason behind the order-1 partition shift in position

is seen from the attractor in Fig. 4, where because the sym-

metry is broken by the heterogeneous parameters, the system

spends more time on the upper-diagonal portion of the attrac-

tor (see the top right panel in Fig. 4) than on the lower-

diagonal portion (see the bottom right panel in Fig. 4).

Hence, the partition that maximises the SE is now the one

that balances off this effect in the encoded trajectory. Given

that one of the maps is set to r1 ¼ 3:9, the system is unable

to reach the entire state space (½0; 1� � ½0; 1�) for any � > 0.

Consequently, a unit SE (in base 4) is unattained for this sce-

nario, contrary to the former scenario where both maps were

identical and in their chaotic regime, r1 ¼ r2 ¼ 4 (then, the

SE can be nearly set to 1). However, the SE maximisation is

an insufficient condition to fix the location of the order-1

marginal partition, as we show in what follows.

C. Shannon information rate (SIR) and the generating
Markov partition (GMP) approximations

Defining an approximate GMP in terms of the maximi-

sation of SE does not guarantee the generating character of

the partition. Hence, our order-1 partition placement is set

only after the resulting symbolic sequence maximises the

SIR with respect to the location of the partition and the SIR

value behaves asymptotically as L is increased. Once an

order-1 approximate GMP is found, we seek to determine an

order-2 partition that is also an approximation to a GMP. If

the maximal value of SIR is the same for both partition

orders, we say, that the partition is generating also in the spa-

tial sense.

For the dynamical scenario of Fig. 2, as Fig. 6 shows,

the maximum SIR value (filled circles) for a given L

FIG. 4. The left panel shows the attrac-

tor for two heterogeneous logistic

maps symmetrically coupled. As in

Fig. 2, the coupling strength is set to

0.10 and both maps are set in their cha-

otic regime, but with slightly different

parameters, namely, r1 ¼ 3:9 and

r2 ¼ 4. The remaining parameters,

panel distribution, and symbols, are

identical to Fig. 2.

FIG. 5. Shannon Entropy (SE, colour code) as a function of the order-1 par-

tition location for the coupled-map dynamics shown in Fig. 4. SE values and

lines are found as in Fig. 3.

FIG. 6. Shannon Entropy (SE) and maximum Shannon Information Rate

(SIR) as a function of the word length, L, for an order-1 marginal partition

of the coupled dynamical system shown in Fig. 2. The maximum SIR

(circles) depends on the partition location, similar to the SE value (squares),

and it is found from Eq. (1) without the limit and using a base 4 logarithm.

As L increases, the location converges to the division that splits both map’s

intervals at 0.50 6 0.02.
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decreases as L increases. This value is expected to eventually

converge to the Kolmogorov-Sinai entropy of the system for

large Ls, which is upper bounded by the sum of positive

Lyapunov exponents and equals 0.59. On the other hand, we

note that the placement for the order-1 partition location

changes for increasing L with respect to the maximisation of

the SE, but its convergence is faster than the maximum SIR

value. After L¼ 2, we find that the location is nearly

unchanged, and points to an optimal order-1 partition located

at 0.50 6 0.02 for both map intervals. Hence, despite the fact

that the maximum SIR value still decreases for increasing L,

the order-1 partition location stops changing after small L
increments. This is also corroborated by the SE non-

changing values (filled squares), which are found in this case

for the corresponding partition locations that maximise the

SIR.

Similarly, for the dynamical scenario of Fig. 4, Fig. 7

shows the maximum SIR values (filled circles) decrease as

the word-length L increases. The sum of the positive

Lyapunov exponents for this case is 0.24, hence, the maxi-

mum SIR is expected to decrease even further than the previ-

ous dynamical scenario. However, the location for the

optimal order-1 partition converges faster than before, where

now, it splits the intervals at 0.48 6 0.02 for map 1

(r1 ¼ 3:9) and 0.50 6 0.02 for map 2 (r2 ¼ 4).

After the order-1 partition location is set by maximising

the SIR values for increasing L, we sub-divide the state-

space into an order-2 partition—maintaining the previous

partition location. For the 2 coupled logistic maps, this

means that each interval is further divided into 2 more

regions. Thus, we go from a 2ðp¼1ÞðD¼2Þ ¼ 4 letter alphabet,

S1, to a 2ðp¼2ÞðD¼2Þ ¼ 16 letter alphabet, S2. We need to

have h
ðp¼1Þ
L¼2 ’ h

ðp¼2Þ
L¼1 ¼ Hðp¼1Þ, in order to asymptotically

preserve the generating character of the partition. We must

note that, since the time-series length is fixed (T ¼ 105 itera-

tions), higher order partitions and longer word lengths start

to be ill-defined. For example, for an order-1 partition, the

SIR probabilities in Eq. (1) for words of length L¼ 2 have

an average of T=jS1jðL¼2Þ ¼ 105=42 ¼ 6250 possibilities, but

for words of length L¼ 5, the statistic becomes T=jS1jðL¼5Þ

¼ 105=45 ’ 100. For the order-2 partition, the statistic

behind the definition of the SIR probabilities for words of

length L¼ 2 results in T=jS2jðL¼2Þ ¼ 105=162 ’ 400 possi-

bilities, which is still statistically significant. But the proba-

bility of appearance for L¼ 3 words is already ill-defined,

unless the time-series length T is extended.

For the order-2 marginal partition of the homogeneous

coupled system (r1 ¼ r2 ¼ 4:0), our results show that the

maximum SIR value for L¼ 2 is achieved when splitting the

map intervals at 0.40 6 0.05 and 0.80 6 0.05 (maintaining

the former order-1 partition at 0.50 6 0.02). This result holds

after we increase the word length to L¼ 3, where we need to

increase the time-series to T ¼ 5� 105 so that word-

statistics are well-defined. Contrary, for the heterogeneous

coupled system (r1 ¼ 3:9 and r2 ¼ 4:0), the maximum SIR

for L¼ 2 is achieved when splitting map 1’s interval at

0.393 6 0.048 and 0.811 6 0.052 (maintaining the former

order-1 partition at 0.48 6 0.02), and map 2’s interval at

0.40 6 0.05 and 0.80 6 0.05 (maintaining the former order-1

partition at 0.50 6 0.02). Again, results hold when L¼ 3 and

T 7! 5� 105.

The resolution changes are the consequence that we use

10 different subdivision locations within the resultant order-1

split, namely, to each sub-interval we make a split changing

its location 10 times. Thus, for the order-2 partition, we

explore 10� 10 locations per map, namely, 102 � 102 loca-

tions for the whole state-space. On the contrary, for the order-

1 partition, we explored 50 locations for the split per map,

namely, 50� 50 possible division placements in the whole

state-space. This means that we achieve a better resolution for

the order-1 location than for the order-2. Specifically, the dif-

ferent locations for the order-1 are separated by 1:0=50 (1.0 is

the map’s interval length), while the different locations for the

order-2 are separated by, e.g., 0:5=10, when 0.5 is the sub-

divided interval length, or 0:48=10, when the length is 0.48.

D. Heterogeneous scenario

Here, we show that other results support our previous

analysis, where we set significantly different map parameters

for the two logistic maps. Specifically, we set r1 ¼ 3 and

r2 ¼ 4, corresponding to an isolated periodic and chaotic

map’s dynamic, respectively. Figures 8 and 9 show the cor-

responding SE analysis, as presented in Sec. III. For this

case, the optimal order-1 GMP approximation, namely, the

one that maximises the SIR values for L¼ 5, is found when

the split divides map 1’s interval at 0.72 6 0.02 and map 2’s

interval at 0.86 6 0.02, which is higher than the split that

maximises the SE (horizontal and vertical continuous lines

in Fig. 9). We note that the interval division for map 2 is dif-

ferent than the previous 2 dynamical scenarios, which held

the same location for the order-1 partition as the location of

the exact GMP for the isolated dynamic of a chaotic logistic

map. However, in this case, the convergence to the location

is slower than the previous cases, as is shown in Fig. 10 by

the decreasing SE values.

FIG. 7. Shannon Entropy (SE) and maximum Shannon Information Rate

(SIR) as a function of the word length, L, found for an order-1 marginal par-

tition of the coupled dynamical system shown in Fig. 4. Contrary to Fig. 6,

the partition location converges to 0.48 6 0.02 for map 1 (r1 ¼ 3:9) and

0.50 6 0.02 for map 2 (r2 ¼ 4) after L¼ 2.
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E. Discussion: Extension to systems near tipping-
points

Statistical dynamical-invariants that can be estimated

from approximate GMPs as described in this paper can be

essential to understand the properties of dynamical systems

near a tipping point, contributing to predicting the tendency

for the system to drift toward it, to issuing early warnings,

and finally, to applying control to reverse or slow down the

trend.

Here, the proposed method, which is based on informa-

tional quantities, is appropriate to deal with events that con-

tain a positive entropy, as with chaotic systems. However, in

several situations, the dynamics of a system undergoing a

tipping point is periodic, namely, a zero-entropy event.

Nonetheless, in nature,32 tipping points also happen in sys-

tems that present noise. Then, the noise reveals a transient

dynamics with a positive entropy (due to the noisy trajecto-

ries), hence, the present methodology could also be applied

successfully.

An important requirement in the study of tipping points

is the determination of whether the system’s parameter is

before, at, or after the tipping point. For systems with noise,

Ref. 32 has shown that important dynamical characteristics

do not fully reveal the status of the system. Another well-

studied case where the tipping point happens is the existence

of multi-stability, i.e., the destruction of one attractor or the

complete destruction of the oscillatory behaviour (oscillation

death). This tipping results in a merging of manifolds for co-

existing sets, causing drastic changes in the partitions.

Consequently, our proposed method could be successful in

determining the status of the system that can potentially tip.

IV. CONCLUSIONS

In this work, we present a procedure that uses an

Information theoretical perspective to approximate a

Generating Markov Partition (GMP) for a complex system

from finite resolution and finite time interval trajectories.

Our method divides the state-space, or a projection of it,

using marginal partitions, namely, straight divisions, that

define disjoint regions. These regions encode the system’s

trajectory into discrete symbols coming from a finite alpha-

bet (i.e., finite number of regions). The encoded data

sequence is then used to find its Shannon Information Rate

(SIR) for different word-lengths (i.e., different symbol

strings). The partition placement is shifted across the state-

space in order to find the one that maximises the SIR for

increasing word-lengths. Moreover, in order to have a gener-

ating partition in the spatial sense, a sub-division of the

state-space (a higher-order partition) needs to have a similar

SIR than the previous division (a lower-order partition).

When these conditions are met, the resultant symbolic

sequence and partition location define an approximate GMP,

FIG. 9. Shannon Entropy (SE) values [Eq. (3)] (colour code) for the coupled

maps shown in Fig. 8. The values are found from the symbolic sequence that

results after dividing the state-space into 4 regions, i.e., 4 different symbols

encode the coupled-system’s trajectory. The division sets an order-1 mar-

ginal partition and the symbolic sequence changes according to the parti-

tion’s location. The maximum SE is found for the partition that is signalled

by the vertical and horizontal continuous lines, where the dashed lines show

a 61=50 ¼ 60:02 resolution for its placement.

FIG. 10. Shannon Entropy (SE, filled squares) and maximum Shannon

Information Rate (SIR, filled circles) as a function of the word length, L,

for an order-1 marginal partition of the coupled dynamical system shown in

Fig. 8 and determined as in Figs. 6 and 7.

FIG. 8. Attractor for N¼ 2 different logistic-maps symmetrically coupled

[Eq. (4)]. The coupling strength is set to � ¼ 0:10 and the map parameters

are r1 ¼ 3 (periodic regime) and r2 ¼ 4 (chaotic regime). The initial condi-

tion is set randomly and 105 iterations are shown. The rectangles indicate

the areas shown in Figs. 2 and 4.
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which allows to find a discrete approximation for the

Invariant Probability Measure (IPM) of the complex system,

providing most of the relevant information content of the

system’s dynamics. If the partition is generating, it will pro-

vide an encoding that preserves the system characteristics

without adding (removing) meaningless (important) informa-

tion. Furthermore, having the approximate GMP allows one

to estimate other spatio-temporal invariants; important for

the characterisation of complex systems from the time-

series.

It is often believed that an optimal partition containing

most of the relevant information about a system is obtained

by maximising the Shannon Entropy. This work shows that

this is not the case. Such a case is only true if the system is

random and the probabilistic events triggered by the system

dynamics are uncorrelated. For correlated systems, the

appropriate informational-theoretical quantity to determine

an approximate GMP is the SIR.

Although our results are focused on analysing a particu-

lar complex system, namely, two coupled logistic maps in

their chaotic regime, our method applicability is unbounded

to this particular case. In fact, the main restriction to its

applicability is the computational power and data availabil-

ity, i.e., partition order-q resolution R and time-series length

T. The reason is that our state-space split creates 2qD disjoint

regions from an order-q split and a D-dimensional state-

space (which can be a projection of the full state-space).

Consequently, our method is efficient up until the statistics

for the SIR values for large word-lengths L are ill-defined,

which happens if T=ð2qDÞL � 100.
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