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Abstract
We have applied a basis set of distributed Gaussian functions within the S-matrix version of the
Kohn variational method to scattering problems involving deep potential energy wells. The
Gaussian positions and widths are tailored to the potential using the procedure of Bačić and
Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state
problems. The placement procedure is shown to be very efficient and gives scattering
wavefunctions and observables in agreement with direct numerical solutions. We demonstrate
the basis function placement method with applications to hydrogen atom–hydrogen atom
scattering and antihydrogen atom–hydrogen atom scattering.

Keywords: low energy scattering, matter–antimatter interactions, Kohn variational

1. Introduction

Variational approaches to quantum scattering have a long
history and many versions have been devised. Examples
include those of Kohn [1], Newton [2] and Schwinger [3].
Variational methods have been used for a diverse range of
scattering problems including ones with deep potential energy
wells and/or high collision energies, for example H+H2

reactive scattering [4], electron–molecule elastic and inelastic
scattering [5–7], positron-H2 scattering [8], antihydrogen–H2

scattering [9] and nuclear scattering [10]. The main idea of
these methods is to expand the scattering wavefunction using
a linear combination of basis functions. By varying the
parameters of the basis the correct form of the scattering
wavefunction can be obtained. The successful application of a
variational method to a given quantum scattering problem
thus requires the choice of a suitable basis set.

A particularly simple variational method was developed
by Miller et al: the S-matrix Kohn variational principle
(SKVP) [11, 12]. This makes use of complex boundary
conditions of the scattering wavefunction and has been shown
to be essentially free of so called ‘Kohn anomalies’ which can

arise for real boundary conditions [13, 14]. The SKVP has
been widely applied both to model systems [15, 16] and
reactions such as H+H2 [4], H+HD [17], F+H2 [18] and
He+H2

+ [19].
One-dimensional scattering problems can of course be

solved numerically using a suitable propagation method for
the wavefunction and extracting the phase shift or another
equivalent parameter to calculate the scattering cross section
[20]. In higher dimensions however such as reactive atom–

molecule collisions, other approaches are required such as
coupled-channel methods which typically use hyperspherical
coordinates [21, 22]. A great advantage of the SKVP is the
simplicity by which it can be generalised to inelastic and
reactive collisions, the only difference being the dimensions
and complexity of the integrals which are required compared
with one-dimensional scattering. The method also makes no
assumptions about the form of the scattering wavefunction
and thus is suitable for antimatter–matter collisions for which
the potential energy surfaces (PES) typically have no classi-
cally forbidden regions.

Scattering problems involving deep potential wells result
in highly oscillatory wavefunctions. Applying variational
methods to these problems can lead to difficulties if con-
ventional translational basis sets such as Slater or equally
spaced Gaussians are used. If the potential also changes
character quickly over a small range (such as going from
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attractive to repulsive) this further complicates the choice of
basis set and can lead to inefficiencies.

In this work we apply a distributed Gaussian basis set
within the SKVP to problems involving highly oscillatory
scattering wavefunctions. The Gaussian basis set is tailored to
the potential using a modified version of the methods of Light
et al [23, 24]. This will be shown to give very efficient and
general basis sets for scattering problems which are even
suitable for potentials where conventional basis sets fail.
In the next section a brief description of the SKVP will be
given and the distributed Gaussian placement method
described. In section 3 this method is applied to H–H scat-
tering and compared to direct numerical solutions. In
section 4 the method is applied to antihydrogen (H̄)–H scat-
tering. We discuss the method and present our conclusions in
section 5.

2. SKVP and distributed Gaussian functions

We illustrate the Gaussian basis function placement method
with application to one-dimensional elastic scattering. The
Schrödinger equation for a particle of mass μ scattered by a
central potential V(R) (or equivalently two particles in the
centre of mass frame) is


m

-  + Y = Y
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )V R ER R

2
, 2.1

2
2

where E is the energy of the scattered particle, conserved for
an elastic collision. In order to find (axially symmetric)
solutions it is convenient to expand the scattering wave-
function as
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where the Al are expansion coefficients and the Pl are
Legendre polynomials. This is the partial wave expansion of
the total scattering wavefunction [21]. Substituting this
expansion into equation (2.1) gives a radial Schrödinger
equation for each value of the orbital angular momentum
quantum number l

 
m m

y y- +
+

+ =
⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( ) ( )
R

l l

R
V R R E R

2

d

d

1

2
. 2.3l l

2 2

2

2

2

Since terms in the full scattering wavefunction Y µ y( ) ( )
Rl

R

R
l , it

follows that ψl(0)=0 so that the total scattering wavefunction
remains finite. If the potential energy, V(R), decays faster than 1/
R then the asymptotic solution of equation (2.3) is

y d= - +p
¥ ( )( ) ( )R kRsin , 2.4l R

l
l2

where the wavevector m=k E2 2 and δl is the phase shift
[21]. The asymptotic solution for ψl can also be taken to have
the complex form

y = - +p p
¥

- - -( ) [ ] ( )( ) ( )R C Se e , 2.5l R l
kR l

l
kR li 2 i 2

where = - d-C el
i

2
i l and = dS el

2i l is the scattering or S-matrix,

for elastic scattering a 1×1 matrix. This form of boundary
condition is used in the S-matrix Kohn variational method.

The SKVP was derived by Zhang et al including dis-
cussions of inelastic and reactive collisions [12]. Zhang and
Miller also give a detailed discussion of applying the SKVP
to atom–diatom inelastic and reactive scattering [17]. We
direct the reader to these papers for full details of the SKVP.
Here we give only the working equations for one-dimen-
sional, s-wave (l= 0) elastic scattering.

The trial scattering wavefunction is expanded as

åy = - + +
=

˜ ( ) ( ) ˜ ( ) ( ) ( )R u R Su R c u R , 2.6
n

N

n n0 1
2

where the cn are variational parameters. In this expansion
u0(R) is the incoming wave

= - -( ) ( )u v f R e . 2.7kR
0

i1
2

The function f (R) is a cut-off function for which f (0)=0 and
=¥( )f R 1R . It is included so that u0(0)=0 as required

from equation (2.2). In applications we have used

= -( ) ( )( )f R e , 2.8r R p
0

where r0 controls where the function cuts off and p deter-
mines how quickly this occurs. In the applications described
in the next sections we have used r0=8.0 a0 and p=8.0.
The factor -v

1
2 , where =

m
v k , normalises the flux to unity

which is necessary in order for the S-matrix to be unitary. S̃ is
the trial S-matrix and *=u u1 0 is the outgoing wave. The
N−1 basis functions un(R), for n�2, are required to be
square integrable and have un(0)=0 (or at least be of a form
so that y =˜ ( )0 0).

The variational expression for the S-matrix is given in the
SKVP by

*


= -( ) ( )S B C B
i

, 2.92

where

= - -· · ( )B M M M M 2.10T
0,0 0

1
0

*= - -· · ( )C M M M M . 2.11T
1,0 0

1
0

B, C, M0,0 and M1,0 are all 1×1 matrices here, whilst M0

and M have dimensions (N−1)×1 and (N−1)×
(N−1) respectively. Each ‘M’ matrix involves elements of
the Hamiltonian between the basis functions of the expansion
in equation (2.6) of the form

ò - = á - ñ
¥

( )( ) ( ) ∣ ∣ ( )R u R H E u R u H E ud , 2.12i j i j
0

where, following the convention of Zhang et al, the bra is not
complex conjugated [12]. The ‘M’ matrices are given as
follows. M0,0 is the matrix element between incoming waves

= á - ñ∣ ∣ ( )u H E uM . 2.130,0 0 0

Similarly M1,0 is the matrix element between incoming and
outgoing waves

= á - ñ∣ ∣ ( )u H E uM . 2.141,0 1 0

2
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M0 is a vector with elements between the N−1 basis
functions with n�2 and u0(R) with each element given by

= á - ñ( ) ∣ ∣ ( )u H E uM . 2.15n n0 0

M is a square matrix with elements between each of the
N−1 basis functions given by

= á - ñ¢ ¢( ) ∣ ∣ ( )u H E uM 2.16n n n n,

for ¢n n, 2. For all of these matrix elements H is given by
the terms in square brackets in equation (2.3) with l=0 for
s-wave scattering and E is the scattering energy of interest.

Unlike bound-state problems, where an upper bound to
the energy can be obtained and systematically lowered by
varying the basis set, variational approaches to scattering
determine a certain quantity, here the S-matrix, such that it is
stationary with respect to variations in the trial wavefunction
[25]. Convergence of the S-matrix is checked by adding basis
functions and making small changes to nonlinear parameters
[12, 13] and by checking that the S-matrix is unitary [17].

In applications of the SKVP to reactive scattering,
equally spaced distributed Gaussian functions [23] have fre-
quently been used for the translation coordinate [4, 17–19].
For the atom–diatomic reactions considered, the PES contain
only mildly attractive regions and repulsive regions where
atoms are close together. The scattering wavefunctions at low
energies are thus smoothly oscillatory, decaying when the
potential becomes repulsive. To converge the calculations
with respect to the translational basis, the number of Gaus-
sians within a given range is increased and the Gaussians are
made narrower.

A problem with equally spaced distributed Gaussian
basis sets occurs if the potential has deep wells in a certain
region while being repulsive or mildly attractive in other
regions. In this case the Gaussian basis must be able to
reproduce the most oscillatory part of the scattering wave-
function in the potential well. However, this will be inefficient
as the Gaussians will not need to be as narrow in other
regions. As will be shown in section 4, for very attractive
potentials (such as ¯ –H H) equally spaced Gaussian functions
are completely unsuitable.

Instead of using equally spaced Gaussian functions as a
basis set we tailor the positions and widths to the potential.
This approach was used by Hamilton and Light in their ori-
ginal distributed Gaussian paper [23]. In applications we have
used a placement procedure based on that of Bačić and Light
[24]. To the best of our knowledge this approach has not yet
been applied to scattering problems.

The placement method is as follows. An initial Gaussian
function,

= a- -( ) ( )( )G R e , 2.17i
R Ri i

2

is placed at Rmin. The choice of Rmin depends on the potential.
For fully attractive or mildly repulsive potentials it is set at a
small value close to the origin. For highly repulsive potentials
it should be set sufficiently far into the classically forbidden
region so that the scattering wavefunction is negligible. The
exponent, αi, of the Gaussian is related to the de Broglie

wavelength at that point via

a m a a
a

= - >⎧⎨⎩
( ( ( )) ) ( )E V R C2 if

otherwise,
2.18i

i R i
2

min

min

where CR is a parameter to be chosen and E is the scattering
energy. This Gaussian is then normalised to unity. The next
Gaussian, Gj(R), is placed at some distance Rj with its
exponent calculated in the same way and normalised. The
overlap of these two Gaussians is then calculated by the usual
integral

ò=
¥

( ) ( ) ( )S R G R G Rd . 2.19i j
0

If the value of S is equal to SR (a chosen parameter) to within
a set tolerance, Stol, then the Gaussian at Rj is accepted and
placed. If the overlap is too low or high then the Gaussian at
Rj is moved toward or away from Ri respectively, until an
acceptable overlap is obtained. This procedure is continued
until a Gaussian is placed above Rmax. The value of Rmax is
chosen to be effectively out of the range of the potential. This
method of placing the functions is thus tailored to the
potential. In regions where the potential is very attractive,
narrow Gaussians are placed whereas for repulsive or mildly
attractive regions, wide functions are used. This is an efficient
placement scheme since more basis functions are placed
where they are needed. The placement procedure also ensures
nearly equally overlapping basis functions within the entire
range. Thus six parameters are used to generate the basis:
Rmin, Rmax, CR, αmin, SR, Stol. Rmin should be small enough so
that the scattering wavefunction is negligible there whilst
Rmax should be large enough that the potential is essentially
negligible. Rmin/Rmax should not be decreased/increased so
much that the number of basis functions is increased unne-
cessarily. CR and SR should both be increased to increase the
basis set size until convergence is achieved: increasing CR

gives narrower Gaussians whilst increasing SR puts the
Gaussians closer together. Stol is chosen to be small enough
that overlaps close to the desired SR are achieved but not so
small that the placement process takes a significant time.
Convergence is not sensitive to the value of αmin provided it
is large enough to ensure the least oscillatory part of the
wavefunction (within the range of the potential) can be
reproduced. This value can be estimated using equation
(2.18). For low total scattering energies the value of αmin

determined in this way might give rise to Gaussians which are
very wide relative to most of the others (and the range of the
potential) and so increase the range of quadratures required.
In this case αmin can be arbitrarily increased, keeping in mind
that this would again increase the number of basis functions.
An advantage of a bigger αmin is that it may not need
adjusting for each of a series of different scattering energies.
For ¹l 0 scattering calculations, the angular momentum
gives rise to an effective repulsive potential which should be
included in V(R) before the basis is generated.

An important modification of simple Gaussian functions
is required for scattering problems. At R=0, ψ(R)=0 to
ensure that the full wavefunction, Ψ=ψ(R)/R, is finite
(equation (2.2)). For repulsive potentials ψ(R) is 0 before the

3
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origin and so simple Gaussians can be used. For attractive
potentials however, ψ(R) is only 0 at the origin with finite
amplitude even at close range. To ensure that the condition ψ

(0)=0 can be met, the Gaussians are multiplied by a smooth
cut-off function which goes to 0 as R goes to 0. In applica-
tions we have used basis functions of the form

= - -( ) ( ) ( ) ( )u R G R1 e 2.20n
AR

n

for n�2, where A determines how quickly the cut-off
function (1−e−AR) goes to 0 and Gn(R) is given by
equation (2.17). The cut-off function goes to 1 for sufficiently
large R and so normal Gaussian functions are recovered. The
value of A is not crucial and in the applications here we set
A=1 -a0

1. For brevity these basis functions will all be
referred to simply as ‘Gaussians’ henceforth. The overlap
integrals using this form of basis function are still analytical.

To apply these basis functions within the SKVP we have
used a combination of analytical and numerical integration:
Laguerre quadrature was used for integrals for the M0,0 and
M1,0 matrices while Legendre quadrature was used for M0

and M.
Atomic units will be used from this point onwards unless

stated otherwise.

3. Hydrogen atom–hydrogen atom scattering

The first system we apply the distributed Gaussian placement
method to is ground state, l=0 H+H elastic scattering
treated within the Born–Oppenheimer (BO) approximation
using the SKVP. For the Hamiltonian in equation (2.3) we
set the reduced mass, μ, to half the proton mass (μ=
mp/2=918.0736). The ab initio energies of Kołos et al [26]
were used to fit the 1Σ+

g potential energy curve (PEC).
The PEC was fit to an analytical form as follows. The

ab initio electronic energies of Kołos et al were fit using an
analytical form consisting of a sum of sigmoid functions that
is, a one-dimensional neural network [27]

å= + +
=

+ -( ) ( ) ( )V R d d 1 e , 3.1
p

p
w R b

elec 0
1

9
1p p

where d0, dp, wp and bp were determined by least-squares
fitting. A nine-node network with 28 free parameters was
used to fit all 55 ab initio energies between R=0.2−12 a0.
At long range the interaction energy was described using the
dispersion energy formula

= - - - ( )V
C

R

C

R

C

R
3.2disp

6
6

8
8

10
10

with C6=6.499 0267 =E a C E a, 124.399 08h 0
6

8 h 0
8 and

C10=3285.8284 E ah 0
10 [28]. The two ranges are smoothly

joined using a switching function. Following Cvitaš et al [29]
the switching function is

= + -( ) ( ( ( )) ( )F R a R s1 tanh 3.31

2

with a=3.0 -a0
1 and s=11.0 a0. For the combined analy-

tical form a root mean square deviation (rms) of 0.26 mEh was
achieved with respect to the ab initio data. For R<0.2 a0 we

set V(R)=V(0.2) as for low energies the scattering wave-
function is negligible here. Thus the total potential is given by

=
- +

+ + -
<

⎧
⎨⎪

⎩⎪
( )

( )
( ( )) ( )

( )( )
( )

( )

V R
F R V R

F R V E E R a

V R a

1.0

2 2 if 0.2

0.2 if 0.2 ,

3.4

Relec
1

disp H H 0

0

where = -E E0.5H h is the energy of a hydrogen atom. The
H–H PEC is shown in figure 1.

The following parameters were required to generate a
Gaussian basis set for a converged scattering calculation. Rmin

was set to 0.1 a0 and Rmax to 15.0 a0. A value of 1.0 -a0
2 was

used for αmin. CR was set to 0.2 and SR to 0.9 with Stol at 0.05.
This large value of SR is required due to the H–H PEC
becoming steeply repulsive below 1 a0 and so if a smaller
value is used the Gaussians are placed too far apart. For
efficiency the value of SR can be changed within different
ranges but for simplicity it is kept constant here. Using these
parameters generates 73 Gaussians. The narrowest function is
placed at R=1.398 a0 with a » -a64n 0

2. The positions of
the Gaussians in the range 0–7 a0 are shown superimposed on
the PEC in figure 1.

Using equally spaced Gaussians (still of the form of
equation (2.20)) requires many more functions to converge
the calculation. Equally spaced Gaussians were placed in the
same range with the exponent of each given by [23]

a =
-+( )

( )C

R R
3.5n

n n

2

1
2

with C=0.75. The scattering calculation is converged by
increasing the number of functions. To converge the calcul-
ation, 150 equally spaced Gaussians were required with
αn≈57 -a0

2. This is similar to the value of the exponent of
the narrowest Gaussian placed using equation (2.18). The
inefficiency of equally spaced Gaussians is thus highlighted:
sufficiently many functions must be added until the exponents
of each are large enough to be able to reproduce the most
oscillatory part of the scattering wavefunction.

As an independent check on the accuracy of the SKVP
calculations we also solved the radial Schrödinger equation,
equation (2.3), numerically by directly integrating the

Figure 1. H–H potential energy curve (solid line) and Gaussian
placement positions (crosses).

4
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scattering wavefunction using the Numerov method [30]. The
wavefunction was propagated from R=0.1 a0 (where ψ(R)
was set to 0) outward using a step size of 1×10−3 a0. The
scattering phase shift, δ0, is found by matching the propagated
solution to the asymptotic form, equation (2.4) [20].

The H–H radial scattering wavefunctions, ψ0, generated
using both the Numerov method and the SKVP with the
tailored Gaussian basis set are shown in figure 2 for
E=1×10−10 Eh. For the SKVP the complex function is
multiplied by d-e1

2i
i in order to get the real form of the

scattering wavefunction. It can be seen that the Numerov and
SKVP wavefunctions agree very well. A quantitative com-
parison is given in table 1 where the scattering lengths,
defined as [20]

d
= -



( ) ( )a
k

lim
tan

, 3.6e
k 0

are given along with those of Jamieson et al [31]. The SKVP
results using the tailored and equally spaced Gaussian basis
sets and the Numerov method which all used the same PEC
are in good agreement. The scattering calculation of Jamieson
et al also used the electronic energy data of Kołos et al but
fitted a different functional form and extrapolated to large
distances in a slightly different way. Their scattering length is
within 4% of the values calculated here. The H–H scattering
length is known to be very sensitive to the details of the
calculation with both the value of the reduced mass [32–34]
and potential [35] used greatly affecting its value. Since the
emphasis here is on the basis set we did not attempt to
improve our potential fit any further.

4. Antihydrogen atom–hydrogen atom scattering

The ¯ –H H system provides a demanding test for variational
approaches to scattering due to the strongly attractive nature
of the PEC. The potential is attractive at all distances and as

R 0 it becomes Coulombic when the antiproton and proton
are close together. This results in highly oscillatory scattering
wavefunctions. Previous work using Kohn methods for this
system did not converge the calculation of the elastic cross

section using a basis set for the radial coordinate [36]. For this
reason a numerically propagated BO radial scattering wave-
function was incorporated in a subsequent reactive calculation
[37]. Finding suitable scattering basis functions for this and
related systems is thus an important problem.

Elastic ¯ –H H scattering will be treated here within the BO
approximation. For this system the approximation is unreli-
able at internuclear distances below around 0.744 a0 [28]. At
and below this critical distance, Rc, the leptons (electron and
positron) can dissociate from the nuclei as positronium (Ps, a
bound state of an electron and positron), rendering the BO
approximation invalid. This makes carrying out physically
meaningful scattering calculations challenging. Despite this
the ¯ –H H system treated within the BO approximation is an
ideal model potential for developing methods since different
groups using different approaches have reported similar
results [36, 38]. The reduced mass of the system, μ, was again
set to mp/2 here (and also to be consistent with the literature
cited).

An analytical PEC of the ¯ –H H system was fit in a similar
way to that described above for H–H. Ab initio leptonic
energies computed by Strasburger [28] were fit using a one-
dimensional neural network. A six node network with 19 free
parameters was used to fit all 45 ab initio energies between
R=0.744 and 20 a0 to give Vlep(R). At longer range the same
dispersion energy formula, equation (3.2), was used with the
same coefficients as those for H–H. The neural network fit
and dispersion energy functions were smoothly combined
using equation (3.3) with = -a a3.0 0

1 and s=7.0 a0. Using
this form a rms error of 2.90 mEh was achieved with respect to
the ab initio data. For R�Rc the leptonic energy was set
equal to that of the ground state of positronium, −0.25 Eh and
V(R) obtained by adding this to the Coulomb interaction of
the nuclei, −1/R. Thus the total potential is given by


=

- -

+ + - >

- -

⎧
⎨
⎪⎪

⎩
⎪⎪

( )
( )

( ( )) ( )

( )( )

( )

V R

F R V R

F R V E E R a

E R a

1.0

2 2 0.744

0.25 2 0.744 .

4.1

R

R

lep
1

disp H H 0

1
H 0

The ¯ –H H PEC is shown in figure 3.
Despite the very attractive PEC for ¯ –H H, generating a

basis set for converged scattering calculations using the
SKVP was still possible with the placement procedure
described above. The following parameters were used. Rmin

was set to 1×10−5 a0 and Rmax to 12 a0. Such a small value
of Rmin is required as the scattering wavefunction, ψ0(R) is
finite at all ranges with only ψ0(0)=0 (as required from

Figure 2. H–H scattering wavefunctions for l=0 generated using
the Numerov method (solid line) and SKVP (dashed line) at
E=1×10−10 Eh. The two wavefunctions are indistinguishable on
the scale of the plot.

Table 1. H–H scattering lengths.

Method ae / a0

Numerov 0.5617
SKVP, equally spaced Gaussian basis 0.5613
SKVP, tailored Gaussian basis 0.5611
Jamieson et al [31] 0.5425
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equation (2.2)). CR was set to 0.3 with SR=0.7 and Stol=
0.05. αmin was again set to 1.0 -a0

2. Using these parameters
generates 80 Gaussians. The narrowest function is placed at
R=Rmin with a » ´ -a5.5 10n

7
0

2. The positions of the
Gaussians are shown superimposed on the PEC in figure 3.

We also attempted the SKVP calculation using a basis set
of equally spaced Gaussians but convergence was not reached
despite using hundreds of functions—see table 2. This is not
surprising since, as discussed in the previous section, the
exponent of the equally spaced Gaussians must be around the
same value as the narrowest function generated using the pla-
cement method. Using this exponent (a » ´ -a5.5 10n

7
0

2)
would required the Gaussians to be spaced by around 10−4 a0.
For the range 0−12 a0 required this would mean using about
105 functions. Clearly equally spaced Gaussians are totally
inadequate for this system.

We again numerically solved the radial Schrödinger
equation using the Numerov method to check our SKVP
results. The wavefunction was propagated from R=1×10−7

a0 outward using a step size of 1×10−4 a0.
The ¯ –H H radial scattering wavefunctions, ψ0, generated

using the Numerov method and the SKVP using the tailored
Gaussian basis set are shown in figure 4 for E=1×10−8 Eh.
The tailored Gaussian basis is capable of reproducing the
scattering wavefunction accurately despite its highly oscillatory
nature. The scattering lengths given by the Numerov and SKVP
methods are shown in table 2 along with those of Jonsell et al
[38] and Armour and Chamberlain [36]. The Numerov and
Kohn values calculated here are in good agreement with each

other and with the literature values which were calculated using
different leptonic ab initio data.

For ¯ –H H scattering a further check on the accuracy of the
SKVP elastic scattering wavefunction can be carried out by
using it to compute annihilation cross sections. For this sys-
tem both hadronic (antiproton–proton) and leptonic (posi-
tron–electron) annihilation can occur. Both annihilation cross
sections were computed using the ‘delta’ potential method
following Jonsell et al [38, 39]. This approach uses the elastic
scattering wavefunction to compute annihilation cross
sections and is classed as a first order perturbation type
method, ignoring any changes in the elastic scattering
wavefunction caused by the strong force.

For the hadrons the annihilation cross section is com-
puted using the value of the scattering wavefunction
(Ψ(R)=ψ0(R)/R) at R=0 where the antiproton and pro-
ton’s location coincides. Details of this calculation are given
by Jonsell et al [38], but briefly, the antiproton–proton
annhilation cross section is

s =
Y∣ ( )∣ ( )¯

¯A

k

0
, 4.2a

pp
pp 2

2

where ¯App is the rate constant for the annihilation. The value of
¯App is taken to be 1.7×10−7 Eh a0

3 [38]. At low energies the
annihilation cross section is related to the scattering energy by

s = ( )¯ C

E
, 4.3a

app

where Ca is a constant. Using the elastic scattering wavefunc-
tion generated from the SKVP we compute a value of 0.11
a E0

2
h
1 2 for Ca. This is in reasonable agreement with Jonsell

et alʼs value of 0.14 [38] given that the latter authors used a
different potential.

Leptonic annihilation is calculated in a similar way but
must take into account the finite probability of annihilation
over the whole range of R. Froelich et al have given a detailed
discussion of this calculation [39], but briefly the positron–
electron annhilation cross section is given by

ò
s

p
=

Y
¥

+ -

+ - ( ) ( )
( )

A R R R P R

k

4 d
, 4.4a

e e
e e

0
2 2

2

Figure 3. ¯ –H H potential energy curve (solid line) and Gaussian
placement positions (crosses). The insert shows the placement of the
Gaussians at small R on a logarithmic scale.

Table 2. ¯ –H H scattering lengths.

Method ae / a0

Numerov 7.98
SKVP, tailored Gaussian basis 7.94
SKVP, 500 equally spaced Gaussians 36.9
SKVP, 750 equally spaced Gaussians 7.96
SKVP, 1000 equally spaced Gaussians 21.6
Jonsell et al [38] 8.09
Armour and Chamberlain [36] 7.92

Figure 4. ¯ –H H scattering wavefunctions for l=0 generated using the
Numerov method (solid line) and SKVP (dashed line) at E=1×10−8

Eh. In the range 0–5.5 a0 the two wavefunctions are indistinguishable on
the scale of the plot.
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where
+ -

Ae e is the rate constant for the annihilation and P(R) is
the positron–electron coalescence probability at separation R.
The value of

+ -
Ae e is taken to be 4.86×10−6 Eh a0

3 for singlet,
two-photon, annihilation collisions and 4.28×10−9 Eh a0

3 for
triplet, three-photon, annihilation collisions [39]. We used
Strasburger’s positron–electron coalescence probabilities for
R Rc [40]. Below the critical distance we use Strasburger’s

suggestion of simply setting the coalescence probability to
p
1

8
,

the value for positronium. Using the elastic scattering SKVP
wavefunction, and equation (4.3) with s

+ -

a
e e , we compute a

value of ´ - a E4.06 10 5
0
2

h
1 2 for Ca for singlet, two-photon,

annihilation collisions and 3.58×10−8 a E0
2

h
1 2 for triplet,

three- photon, annihilation collisions. This is in good agreement
with the values calculated by Froelich et al of 4.0×10−5 and
3.5×10−8 a E0

2
h
1 2 respectively.

From the annihilation cross sections calculated we can
conclude that the Gaussian basis set implemented within the
SKVP gives accurate scattering wavefunctions which can be
used to compute scattering observables. The calculation of the
hadronic annihilation cross section shows that the basis set
gives an accurate representation of the wavefunction close to
and at R=0 while the leptonic annihilation cross section
requires accurate values of the wavefunction over a wide
range of R values.

5. Discussion and conclusions

We have applied a modified version of the Gaussian place-
ment procedure of Bačić and Light to generate basis sets for
use in variational scattering calculations, specifically using
the SKVP. We have shown that the basis sets generated using
this method are especially suitable for potentials with deep
wells resulting in highly oscillatory wavefunctions. Another
application could be to high-energy collisions where the
quantity [E−V(R)] is also large and so the scattering
wavefunction is again highly oscillatory. The basis sets are
also efficient, placing many narrow functions in regions of
low potential energy while placing significantly fewer, wider
functions in repulsive or mildly attractive regions. Such
potentials are difficult or impossible to treat using equally
spaced Gaussian basis sets which have commonly been
applied to variational approaches to atom–diatom reactive
collisions. The wavefunctions generated using the placement
method are accurate and can be used to calculate scattering
observables.

There are other approaches which can be used to deal
with highly oscillatory one-dimensional wavefunctions. Basis
functions such as high-energy harmonic oscillator functions
or hydrogen atom-like radial wavefunctions with large N
quantum number are intrinsically oscillatory. Such basis sets
would be able to cope with the oscillatory nature of scattering
wavefunctions in attractive potentials but are awkward to use
and difficult to generalise to multidimensional systems. The
use of such basis sets would also require tests to assess which
functions were suitable for a given problem. Another
approach would be to use the Gaussian expansion method

(GEM) of Hiyama et al [41]. This method uses a basis set
consisting of Gaussians centred at R=0 with different decay
rates. A modification for oscillatory wavefunctions involves
multiplying these functions by sine or cosine terms The GEM
has been widely applied to multidimensional atomic and
nuclear problems [41] and is clearly a useful method. A
deficiency of the method however is the requirement of
choosing parameters of the basis. The authors recommend
using a geometric series which fixes the exponents of the
Gaussians and frequency of the sine and cosine functions. The
series still requires a choice of three parameters which need to
be optimised for each system apparently in a non-systema-
tic way.

The discussion in the previous paragraph should be
contrasted with the Gaussian basis set placement method used
here. The method of placing the Gaussians is straightforward.
The range and character of the potential determines the range
of where the Gaussians are placed. The basis set can be
systematically improved by increasing CR and SR until scat-
tering calculation convergence is obtained. Gaussian func-
tions are also simple to manipulate in order to find derivatives
or integrals [23].

We stress that one-dimensional systems have been used
here to demonstrate the use of the placement method and
ideas but that higher-dimensional problems are of course the
main interest. Multidimensional Gaussian basis sets have
been successfully applied for bound-state problems [23,
42–44]. For bound-state problems the basis set is only
required over a small range for a given energy. In a future
publication we will expand the Gaussian basis placement
procedure to rigid-rotor scattering using a multidimensional
Gaussian basis set.
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