
For Review Only

 

 

 

 

 

 

Signatures of local adaptation along environmental 

gradients in a range-expanding damselfly (Ischnura 
elegans) 

 

 

Journal: Molecular Ecology 

Manuscript ID MEC-18-0031.R1 

Manuscript Type: Original Article 

Date Submitted by the Author: n/a 

Complete List of Authors: Dudaniec, Rachael; Macquarie University, Department of Biological 

Sciences 
Yong, Chuan Ji; Macquarie University Department of Biological Sciences 
Lancaster, Lesley; University of Aberdeen, School of Biological Sciences 
Svensson, Erik; Lund University, Department of Biology 
Hansson, Bengt; Lund University, Department of Biology 

Keywords: 
range expansion, landscape genomics, Ischnura, local adaptation, 
environmental association analysis, damselfly 

  

 

 

Molecular Ecology



For Review Only

 1

Signatures of local adaptation along environmental gradients in a range-expanding 1 

damselfly (Ischnura elegans) 2 

 3 

Rachael Y. Dudaniec1*, Chuan Ji Yong1, Lesley T. Lancaster2, Erik I. Svensson3, Bengt 4 

Hansson3 5 

 6 

1
Department of Biological Sciences, Macquarie University, North Ryde, Sydney, Australia, 7 

2109 8 

2
 School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom, AB24 9 

2TZ 10 

3 
Department of Biology, Lund University, Lund, Sweden, SE-223 62 11 

 12 

Short running title 13 

Selection signatures along a range expansion 14 

 15 

*Corresponding Author 16 

Rachael Y Dudaniec 17 

Department of Biological Sciences, Macquarie University, North Ryde, Sydney, Australia, 18 

2109; Fax: +61 2 9850 8245; Email: rachael.dudaniec@mq.edu.au; Phone +61 (2) 9850 8193. 19 

 20 

Keywords: range expansion, landscape genomics, Ischnura, local adaptation, environmental 21 

association analysis, insects.  22 

Page 1 of 57 Molecular Ecology



For Review Only

 2

Abstract  23 

Insect distributions are shifting rapidly in response to climate change and are undergoing 24 

rapid evolutionary change. We investigate the molecular signatures underlying local 25 

adaptation in the range-expanding damselfly, Ischnura elegans. Using a landscape genomic 26 

approach combined with generalized dissimilarity modelling (GDM), we detect selection 27 

signatures on loci via allelic frequency change along environmental gradients. We analyse 28 

13,612 Single Nucleotide Polymorphisms (SNPs), derived from Restriction site-Associated 29 

DNA sequencing (RADseq), in 426 individuals from 25 sites spanning the I. elegans 30 

distribution in Sweden, including its expanding northern range edge. Environmental 31 

association analysis (EAA) and the magnitude of allele frequency change along the range 32 

expansion gradient revealed significant signatures of selection in relation to high maximum 33 

summer temperature, high mean annual precipitation, and low wind speeds at the range edge. 34 

SNP annotations with significant signatures of selection revealed gene functions associated 35 

with ongoing range expansion, including heat shock proteins (HSP40 and HSP70), ion 36 

transport (V-ATPase) and visual processes (long wavelength-sensitive opsin), which have 37 

implications for thermal stress response, salinity tolerance and mate discrimination, 38 

respectively. We also identified environmental thresholds where climate-mediated selection is 39 

likely to be strong, and indicate that I. elegans is rapidly adapting to the climatic environment 40 

during its ongoing range expansion. Our findings empirically validate an integrative approach 41 

for detecting spatially explicit signatures of local adaptation along environmental gradients. 42 
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Introduction 43 

 Adaptation is driven by the interaction between heritable phenotypes and local selective 44 

environments, and the outcomes of this process vary along species’ ranges, and are shaped by 45 

spatial variation in selection pressures, standing genetic diversity, and demographic potential 46 

(Bridle & Vines, 2006). Theory and some empirical evidence suggest that directional 47 

selection may be particularly pronounced at species’ range limits where environments tend to 48 

be less optimal for growth and reproduction (Kirkpatrick & Barton, 1997; Lancaster, 2016; 49 

Warren et al., 2001). In addition to lower habitat suitability, range limits are typically 50 

characterised by stochastic genetic and population dynamics due to lower effective population 51 

sizes (Ne), which might increase genetic drift and thereby among-population genetic 52 

differentiation (Swaegers et al., 2013; Trumbo et al., 2016).  Due to gene flow from 53 

populations adapted to conditions in the range core, peripheral, range limit populations are 54 

expected to be maladapted relative to core populations (Bridle and Vines 2006; Kirkpatrick 55 

and Barton 1997). However, with adequate genetic variation, maladaptation in peripheral 56 

populations may be counteracted by rapid adaptive evolution to novel environmental 57 

pressures, which can facilitate species' range expansions and their future persistence (Colautti 58 

& Barrett, 2013).  59 

Evolutionary and landscape genomics approaches have recently enabled the 60 

characterisation of the role of environmental variables in explaining signatures of local 61 

adaptation at the molecular level (Ahrens et al., 2018; Hoban et al., 2016; Rellstab, Gugerli, 62 

Eckert, Hancock, & Holderegger, 2015). Searching for loci underpinning local adaptation is a 63 

formidable challenge that has become increasingly accessible via new analytical tools that 64 

identify loci with higher than expected genetic divergence among populations (Fst outlier 65 

tests: e.g. Foll & Gaggiotti, 2008; Whitlock & Lotterhos, 2015) or exhibit high correlation 66 
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with spatially-explicit environmental variables (Environmental Association Analysis; EAA: 67 

Rellstab et al., 2015), while accounting for neutral genetic structure. However, identifying a 68 

few specific loci that differ dramatically among populations in allele frequencies under 69 

putative locally-divergent selection regimes is but one part of the question, while we should 70 

also strive to understand how the strength of selection operates across many loci along 71 

environmental gradients, and the functional significance of such loci. For species undergoing 72 

range expansion in response to climate change functional loci that respond with shifts in 73 

allelic frequencies along environmental gradients will ultimately determine the capacity of a 74 

species to adapt and persist.  75 

Genes that are relevant for local adaptation are expected to predictably change their 76 

allele frequency along environmental gradients. Such adaptive molecular population 77 

differentiation can be quantified via changes in allele frequency among locations across 78 

environmental gradients (hereafter 'allelic turnover': Fitzpatrick & Keller, 2015). Signatures 79 

of local adaptation can then be teased apart across species distributions. Analytical tools to 80 

translate genomic information into signatures of local adaptation have only recently been 81 

developed and few empirical applications have been presented (Creech et al., 2017; 82 

Fitzpatrick & Keller, 2015; Landguth, Bearlin, Day, & Dunham, 2017). This may be partially 83 

due to a lack of datasets with appropriate sampling designs at both the genomic and the 84 

spatial scales that are needed to test for selection processes along environmental gradients 85 

(Ahrens et al., 2018; Hoban et al., 2016; Rellstab et al., 2015). However, characterizing 86 

variation in selection and local adaptation across environmental gradients is a necessary next 87 

step in evolutionary and landscape genomics, which will inform conservation management of 88 

biodiversity (Hoffmann et al., 2015; Hoffmann & Sgro, 2011). For example, selection on 89 

candidate genes may be monitored spatially and temporally as climate change proceeds, 90 
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revealing 'hot and cold spots' of local adaptation (Hansen, Olivieri, Waller, Nielsen, & Ge, 91 

2012). 92 

 93 

Insect distributions are currently experiencing pronounced shifts in response to 94 

climate change (Lancaster, 2016; Sánchez-Guillén, Muñoz, Rodríguez-Tapia, Arroyo, & 95 

Córdoba-Aguilar, 2013), and insects also exhibit altered physiological (Advani et al., 2016; 96 

Lancaster et al., 2016; Lancaster, Dudaniec, Hansson, & Svensson, 2015) and phenological 97 

trait changes (Arribas, Abellán, Velasco, Millán, & Sánchez-Fernández, 2017; Sánchez-98 

Guillén et al., 2013) associated with range shifts. Aquatic and semi-aquatic insects may be 99 

among the first organisms to suffer from ongoing climate change due to exposure to 100 

anthropogenic stressors (e.g. habitat degradation), and dependence on climate-mediated water 101 

temperatures (Woodward, Perkins, & Brown, 2010). This makes freshwater insects 102 

appropriate models to investigate microevolutionary responses to climate change (Bybee et 103 

al., 2016). Here, we use a landscape genomics approach to investigate genomic signatures of 104 

local adaptation along environmental gradients in the blue-tailed damselfly, Ischnura elegans 105 

(Odonata; Vander Linden 1820). We sample the distribution of I. elegans in southern Sweden 106 

- a gradient where mean annual temperature varies substantially and rapid range expansions in 107 

ectotherms are occurring (Jaenson, Jaenson, Eisen, Petersson, & Lindgren, 2012). Damselfly 108 

distributions are shifting globally (Swaegers et al., 2015; Takahashi et al., 2016; Watts, Keat, 109 

& Thompson, 2010), and for I. elegans in the United Kingdom, the northern range limit was 110 

extended by 143 km between two 10-year survey periods of 1960-70 and 1985-95 (Hickling, 111 

Roy, Hill, & Thomas, 2005). In Sweden, our recent discovery of populations beyond the 112 

known range limit, with shifts in thermal niche breadth (Lancaster et al., 2015, 2016) that 113 

interact with social feedback mechanisms (Lancaster, Dudaniec, Hansson, & Svensson, 114 
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2017), supports a recent and ongoing rapid range expansion in I. elegans. In particular, strong 115 

selection on cold tolerance was documented in range margin populations based on phenotypic 116 

and gene expression responses to thermal challenges, indicating an important role of the 117 

thermal stress response on adaptive processes during range expansion (Lancaster et al., 2015, 118 

2016).  119 

Using genome-wide data from Restriction site-Associated DNA sequencing (RADseq) 120 

and gene annotation, we identify candidate single nucleotide polymorphisms (SNPs) under 121 

selection in relation to environmental gradients from southern 'core' populations of I. elegans 122 

(Le Rouzic, Hansen, Gosden, & Svensson, 2015; Svensson & Abbott, 2005; Svensson, 123 

Abbott, & Härdling, 2005) up to populations at the expanding northern range margin (‘edge’ 124 

populations). Covering a five degree latitudinal gradient with high resolution genomic and 125 

spatial sampling, we test for: 1) signatures of selection on SNP loci (i.e. via Fst Outlier 126 

analysis, EAA and annotation) that associate with temperature, habitat and climate-related 127 

variables; and 2) significant allele frequency changes in candidate SNPs that track 128 

environmental gradients towards the range limit, and evidence for environmental thresholds 129 

of selection. We corroborate our findings with prior observations of latitudinal shifts in 130 

thermal tolerance phenotypes and gene expression profiles (Lancaster et al., 2015, 2016). We 131 

apply a novel, three-tiered analytical approach to identify environmental variables driving 132 

local selection on alleles that are putatively adaptive or neutral along a range expansion 133 

gradient, revealing highly resolved spatial variation in local adaptation. Our results reveal 134 

patterns of spatially explicit adaptive genetic variation during a climate change-induced range 135 

shift, which has significant implications for understanding the future distribution of this 136 

species and the structure of biodiversity more generally.  137 

 138 
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Materials and Methods 139 

Approach 140 

We implement a three-tiered analytical approach to identify genes under putative selection in 141 

response to environmental gradients along a range expansion zone in I. elegans (Figure 1). 142 

Firstly, (1) candidate SNPs being under putative selection are identified using two Fst outlier 143 

approaches (Foll & Gaggiotti, 2008; Whitlock & Lotterhos, 2015) and one Environmental 144 

Association Analysis (EAA) approach (Frichot, Schoville, Bouchard, & Francois, 2013). 145 

Secondly, (2) Generalized Dissimilarity Modelling (GDM) is applied to these identified 146 

candidate SNPs, to determine relationships of SNP allelic turnover magnitude in relation to 147 

environmental gradients and geographic distance (Fitzpatrick & Keller, 2015). Finally, (3) 148 

signatures of local adaptation are identified via SNP mapping to an annotated I. elegans 149 

transcriptome (Chauhan et al., 2014, 2016), and interpretations about adaptive variation are 150 

then based on gene function, experimental gene expression data (e.g. Lancaster et al., 2016), 151 

SNP x environment associations and the pattern of allelic turnover observed (Figure 1). Our 152 

analysis provides fine-scale characterization of SNP-specific genetic gradients of genome-153 

wide selection signatures. 154 

 155 

Sampling and study area 156 

Ischnura elegans is common across Europe and Asia, with its northern range extending to the 157 

southern coastal areas of Scandinavia and the northern United Kingdom (Dijkstra & 158 

Lewington, 2006). Our study area spans latitudinal gradient of five degrees of latitude in 159 

Sweden (latitudinal range: 55.64˚ to 60.57˚, Table S1), extending 583 km from the southern 160 

populations to the northern range edge (see Lancaster et al., 2015, 2016, 2017). Between the 161 

summer months of June and August 2013, we sampled 25 sites throughout the Swedish 162 
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distribution of I. elegans following a paired gradient sampling design, encapsulating both 163 

coastal and inland sites and the northern range edge (Figure 2). Adult I. elegans were caught 164 

near to reed beds and vegetation using sweep nets within 10m of water bodies including 165 

ponds, lakes and coastal inlets. We implemented a paired-gradient sampling design to the best 166 

of our ability (i.e. approximately two samples per latitudinal sampling interval), as this 167 

approach has improved power to detect local adaptation at weakly selected loci using EAA in 168 

range expansion models, as opposed to random or transect designs (Lotterhos & Whitlock, 169 

2015). We performed all procedures in accordance with the ethical guidelines of Lund 170 

University in Sweden, and obtained sampling permissions from local authorities and 171 

landholders. 172 

 173 

RAD sequencing, bioinformatics and SNP characterization 174 

We extracted DNA from 432 I. elegans from 25 sites (10-20 individuals per site, mean 17.04 175 

± 0.72; Table S1) using the head, thorax and legs from each individual using a DNeasy Blood 176 

and Tissue extraction kit (Qiagen). We quantified extracted genomic DNA using a Qubit 2.0 177 

Fluorometer (Life Technologies), which was then processed into paired-end RAD libraries 178 

according to the protocol implemented in Etter et al. (2011), and as described in the 179 

supplementary material 1.0. Each RAD library was sequenced on a separate lane of an 180 

Illumina HiSeq 2000 or 2500 at the Beijing Genomics Institute, Shenzhen, China yielding 20-181 

30GB of data per library. Adapter sequences and low-quality bases below a Phred score of 20 182 

were trimmed from raw reads according to standard quality control protocols (to 100bp read 183 

length).  184 

 Raw sequences from each RAD library were quality checked visually using FASTQC 185 

(Andrews, 2010) and each library was processed using pipelines within Stacks v.1.40 186 
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(Catchen, Hohenlohe, Bassham, Amores, & Cresko, 2013; Catchen, Amores, Hohenlohe, 187 

Cresko, & Postlethwait, 2011). Methods used in Stacks are described in more detail in the 188 

supplementary material 1.1. Samples were processed in Stacks using the process_radtags 189 

with a mean of 105 million reads (± 13.36 M) per library, followed by the clone_filter 190 

program to remove PCR duplicates, resulting in a mean of 36 million reads (± 6.4 M) per 191 

library (Table S1). The final sample size of individuals retained for analyses was 426 across 192 

the 25 populations, as six samples were excluded due to low coverage. De-duplicated reads 193 

were aligned to an Ischnura elegans draft genome assembly (version 12-2015 by P. Chauhan 194 

et al.; Supplementary Information) using Bowtie2 v.2.2.5 (Langmead & Salzberg, 2012). 195 

Aligned reads from Bowtie2 were analysed in the ref_map program in Stacks to build the 196 

initial consensus catalogue of SNPs, resulting in 3,452,911 loci. SNPs were further filtered 197 

using the rxstacks corrections model, which removes excess haplotypes and confounded loci 198 

(Catchen et al., 2013).  199 

The final set of SNP markers was determined within the populations program in 200 

Stacks, which was run twice: first, including all SNPs on each RAD-tag and secondly, 201 

including only the first SNP on each RAD-tag to create a dataset without closely linked loci 202 

(using the write_single_snp option in Stacks). We specified an initial minimum depth of 203 

coverage of 5x for each SNP-containing RAD locus with a minor allele frequency (MAF) of 204 

0.05. Additionally, a locus was only included if it occurred in 22/25 populations and in at 205 

least 80% of individuals within each population to ensure wide representation of data for each 206 

SNP across all samples and sampling locations (recommended by Paris, Stevens, & Catchen, 207 

2017). After filtering loci using the Stacks populations program, 13,612 SNPs (including 208 

linked SNPs, used for Fst outlier, EAA and GDM analyses) and 3809 SNPs (excluding 209 
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closely linked SNPs, used for genetic structure analysis) were retained for analysis. Depth of 210 

coverage per SNP varied between 8-23x (mean 15.3x; Figure S1). 211 

 212 

Environmental data 213 

Variables used in environmental association analysis (EAA) and general dissimilarity 214 

modelling (GDM) were chosen from those previously identified in species distribution 215 

modelling (SDM) for I. elegans within the same study area (Lancaster et al., 2015). Lancaster 216 

et al. (2015) identified 12 variables that predicted the distribution of I. elegans that all had a 217 

pairwise Pearson correlation coefficient (r) less than 0.8 in a prior habitat suitability model. 218 

Of these 12 variables, we chose five (described in Table 1) that varied widely over the 219 

sampling gradient (Figure S2): 1) Mean Annual Temperature (BIO1, "Annual Temp"; 62.1% 220 

contribution to SDM), 2) the Maximum Temperature of the Warmest Month (BIO5, "Max 221 

Temp"; 0.1% contribution to SDM), 3) Mean Annual Precipitation (BIO12, "Annual Rain" 222 

0.1% contribution to SDM), and 4) Percentage Tree Cover ("Tree Cover", 0.4% contribution 223 

to SDM). We also included a fifth variable that was not examined by Lancaster et al. (2015), 224 

5) Mean Summer Wind Speed ("Wind Speed", averaged for June-August; metres per second, 225 

measured at 80 m height) (Table S1, Figure S2).  These chosen variables were selected due to 226 

explicit biological predictions regarding their effects on adult fitness during the short adult 227 

reproductive and dispersal period, which is a critical period for selection processes in 228 

odonates (discussed in Wellenreuther, Larson, & Svensson, 2012; Supplementary 229 

Information). Although the larval period is longer than the adult period in many insects 230 

including I. elegans, it is proposed that genetic variation for fitness is primarily expressed in 231 

the adult phase of insects (e.g. in Drosophila: Chippindale, Gibson, & Rice, 2001). Therefore, 232 

we selected climate and landscape variables that are most likely to be relevant for 233 
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evolutionary processes during the adult period (e.g. Max Temp, Tree Cover, Wind Speed), 234 

but also those that may act as selection pressures over longer developmental periods (e.g. 235 

Annual Temp, Annual Rain). Further justification of the environmental variables is given in 236 

the Supplementary Information (1.3). 237 

 238 

The Pearson correlation coefficients (r) between the five environmental variables 239 

taken from each site were less than 0.4 except for Annual Temp and Wind Speed (r = 0.75), 240 

and Annual Temp and Max Temp (r = -0.48, Table S3). Therefore, our ability to separate 241 

Annual Temp from Wind Speed and Max Temp was limited (Table S3). We calculated 242 

geographic distance (km) between sites using the R package ecodist (Goslee & Urban, 2007). 243 

All environmental variables were extracted at a 1km cell resolution from BIOCLIM variables 244 

within the WorldClim Version 1.4 database (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) 245 

except wind speed data that were extracted from WorldClim Version 2.0 (Fick & Hijmans, 246 

2017), and percentage tree cover data that were obtained from the Global Land Cover Facility 247 

(Defries, Hansen, Townshend, Janetos, & Loveland, 2000).  248 

 249 

Outlier SNP detection and genetic structure 250 

Detection of outlier SNPs (i.e. loci putatively under divergent selection) was performed on the 251 

complete dataset (13 612 SNPs) using two contrasting Fst-based approaches implemented in 252 

BAYESCAN 2.1 (Foll & Gaggiotti, 2008) and OutFLANK (Whitlock & Lotterhos, 2015). Two 253 

approaches were used to maximise the identification of potential loci under selection for 254 

exclusion from genetic structure analysis, and to identify common significant SNPs across 255 

methods. The false discovery rate (FDR) was set at 0.05 and number of populations (K) was 256 

set to 25 in both programs. The Bayesian likelihood approach implemented in BAYESCAN 257 
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compares population allele frequencies with a common migrant gene pool, which allows for 258 

different migration rates and acts to account for effects of neutral genetic structure, reducing 259 

the proportion of false positives (Narum & Hess, 2011). OutFLANK (Whitlock & Lotterhos, 260 

2015) identifies outliers by first inferring the distribution of Fst for loci that are unlikely to be 261 

under selection, and only attempts to identify loci under positive selection. This method 262 

performs well under diverse demographic history scenarios, including range expansion 263 

(Whitlock & Lotterhos, 2015). Further details are in the Supplementary Material 1.3. 264 

 To minimize the inclusion of putative loci under selection and linked loci from 265 

analyses of neutral genetic structure, Fst outlier loci identified using BAYESCAN and 266 

OutFLANK analyses were removed from the 'unlinked' SNP dataset (i.e. single SNP per RAD-267 

tag), resulting in 3554 SNPs. Genetic structure was estimated with the program ADMIXTURE 268 

(Alexander, Novembre, & Lange, 2009), which uses a cross-validation procedure to determine 269 

genetic structure in large autosomal SNP data sets. ADMIXTURE was run for 1-25 potential 270 

ancestral populations (K) with a 5-fold cross validation (CV) error and K was chosen where 271 

the cross-validation error was minimized. The probability of individual assignment to each 272 

genetic cluster (Q) was graphically displayed and plotted in R (Figures 1, S4 & S5).  273 

 274 

Environmental association analysis 275 

Environmental association analysis (EAA) was performed using a Latent Factor Mixed 276 

Modeling (LFMM), implemented with the R package LEA (Frichot & François, 2015) using 277 

all 13,612 SNPs. LFMM uses a stochastic Monte Carlo Markov Chain algorithm and tests for 278 

associations between environmental or ecological variables and allele frequencies while 279 

estimating unobserved latent factors that model confounding effects of genetic structure, 280 

which may be due to shared demographic history or background genetic variation (Frichot et 281 
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al., 2013). LFMM was run with the number of latent factors set to the number of genetic 282 

clusters (K) obtained via ADMIXTURE (see below; K was equal to four) with five repetitions, 283 

and 10,000 iterations with a 5,000 burn-in. The z-scores over the five runs were combined and 284 

p-values adjusted as recommended by Frichot and François (2015). To include SNPs that 285 

were highly significantly correlated with the environmental variables, we applied a 286 

conservative Benjamini-Hochberg p-value cut-off < log10-6. We ran LFMM to find SNP by 287 

environment associations for all five environmental variables (e.g. Annual Temp, Max Temp, 288 

Annual Rain, Tree Cover, Wind Speed). Shared and unique SNP x environment associations 289 

were quantified across the five environmental variables and their overlap with Fst outlier 290 

results examined (Table 1). The genomic inflation factor (GIF) described by Devlin and 291 

Roeder (1999) was calculated for each environmental variable from the z-scores derived from 292 

LFMM and was assessed for its closeness to the recommended value of 1.0 (Frichot & 293 

François, 2015). The GIF across four of the variables ranged from 1.04 to 1.48, but Annual 294 

Temp had a GIF = 2.34. This indicates that FDRs are likely to be higher for Annual Temp 295 

than the other variables analysed due to poor statistical calibration. Given the high GIF, the 296 

high correlation of Annual Temp with both Max Temp and Wind Speed, and the relevance of 297 

Max Temp to the adult flying period, we chose to exclude Annual Temp from further 298 

analyses.  299 

 300 

General Dissimilarity Modelling of candidate SNPs 301 

We examine spatially explicit selection processes for each SNP found to be under putative 302 

selection using a modified Generalized Dissimilarity Modelling (GDM) approach described 303 

in (Fitzpatrick & Keller, 2015), implemented using the R package GDM (Ferrier, Manion, 304 

Elith, & Richardson, 2007; Manion et al., 2017). The approach is adapted from the use of 305 
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GDMs in biodiversity modelling to examine non-linear turnover in community-level 306 

composition (Ferrier et al., 2007), but uses large numbers of loci (instead of species) to find 307 

both linear or nonlinear responses of loci to environmental gradients (Fitzpatrick & Keller, 308 

2015). The approach takes the pairwise Fst of SNPs across sample sites and models the rate 309 

and magnitude of 'allelic turnover' (i.e. change in allele frequency represented as a genetic 310 

distance measure) in relation to the distribution of an environmental variable along a spatial 311 

sampling gradient, using a site-by-SNP matrix (Fitzpatrick & Keller, 2015). This is achieved 312 

by using permutation on distance matrices to perform model and variable significance testing 313 

and to estimate variable importance. By identifying functions of allelic turnover according to 314 

environmental gradients, the approach offers a means of scaling from population-level 315 

genomic variation to predictions of landscape scale adaptive variation, which are both subject 316 

to ongoing environmental change (Fitzpatrick & Keller, 2015). 317 

 318 

  Using the GDM approach, we identify thresholds on the landscape where signatures of 319 

local adaptation in I. elegans increase or decrease in relation to the five environmental 320 

gradients we examined using EAA. We conducted GDM for a candidate set of SNPs 321 

identified as being putatively under selection using either BAYESCAN, OUTFLANK or LFMM 322 

(total SNPs = 1758). SNPs identified in BAYESCAN with significantly negative Fst values (i.e. 323 

under potentially balancing selection) were excluded from the candidate set as these loci are 324 

likely to have a very high FDR (Whitlock & Lotterhos, 2015). The complete set of Fst 325 

outliers identified from both BAYESCAN and OUTFLANK were included in the GDM because 326 

each program implements a uniquely valid statistical approach to detect selection, and we 327 

observed little lack of overlap in significant SNPs between the approaches. We modified the 328 

approach of Fitzpatrick and Keller (2015) by taking a ‘single SNP’ approach with each 329 
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putatively selected SNP modelled independently, regardless of annotation, as opposed to 330 

selecting specific, annotated SNPs or grouping related SNPs for GDM modelling. 331 

 332 

 Additionally, as in Fitzpatrick and Keller (2015), we integrate a random sample of 200 333 

SNPs out of the 13,612 available SNPs, which act as a 'reference group' in the GDM to test 334 

whether allelic turnover at a given candidate SNP differs from that expected in a random 335 

sample of the genetic data. Further, geographic distance (Euclidean) was incorporated as a 336 

sixth variable in the GDM to test if allelic turnover across environmental gradients was better 337 

explained by distance, which effectively acts as a second screening (i.e. after Fst outlier and 338 

EAA tests) for loci that may respond predominantly to neutral genetic processes (i.e. those 339 

influenced by genetic structure, including isolation by distance), and may therefore have been 340 

falsely identified in outlier tests, or have lower confidence to be identified as candidate SNPs 341 

involved in adaptation. Although geographic distance alone does not incorporate other 342 

demographic effects associated with range expansion that can influence selection detection 343 

(e.g. founder effects, allele surfing), we attempt to control for false positives by, 1) comparing 344 

outcomes with relationships with geographic distance and, 2) by comparing allelic turnover 345 

responses of the random 'reference' SNP group with that of each locus to test if its response is 346 

more or just as likely in a random sample of genetic variation. 347 

 348 

  Genetic distance matrices between the 25 sample sites were calculated for each of the 349 

1758 candidate SNPs, and for the reference group based on Nei’s pairwise Fst (Nei, 1987) 350 

using the R package hierfstat (Goudet, 2005), and were rescaled between 0 and 1 within the 351 

GDM analysis. To assess the role of each SNP in selection processes in relation to each 352 

environmental variable examined, we ranked the allelic turnover functions of each SNP and 353 
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for each environmental variable using two different methods: (1) within each SNP: ranking 354 

was based on the magnitude of allelic turnover at a given SNP (i.e. change in Fst along a 355 

specific environmental gradient) relative to its turnover magnitude for other environmental 356 

variables in the model; (2) across all SNPs: ranking was based on the percentage deviance 357 

explained by each SNP relative to all SNPs in the GDM model (using the permutation 358 

procedure of the R function gdm.varImp), which gives an indication of selection strength for 359 

each SNP relative to the whole dataset. For (1), the top 250 SNPs with the highest magnitude 360 

of allelic turnover are plotted for each environmental variable (Figure 3). The second ranking 361 

(2) was used as a secondary assessment of the overall selection signature of the SNP within 362 

the entire GDM model. GDM results for all 1758 SNP responses and tests are in the 363 

supplementary material. 364 

 365 

Gene Annotation 366 

To identify functional genes, RAD tags containing one or more of the 1758 candidate SNPs 367 

were mapped against the annotated transcriptome for I. elegans (Chauhan et al., 2014, 2016) 368 

using BLASTN with an e-value cut-off of 1x10-5. All BLASTN results were imported into the 369 

BLAST2GO web version for further annotation (Conesa et al., 2005). InterProScan was 370 

used for identifying conserved protein domains in the assembly (Jones et al., 2014), and GO 371 

annotations were performed on the BLASTN and InterProScan annotated transcripts 372 

(Ashburner et al., 2000). Gene Ontology (GO) annotations and GO Slim reductions were 373 

applied to categorize transcripts into major GO categories, Biological Processes, Cellular 374 

Components and Molecular Functional annotations using second-level database functions 375 

(Ashburner et al., 2000). Finally, enzymes and their corresponding biological pathways were 376 

identified using the BLAST2GO integrated KEGG database (Conesa et al., 2005). All 377 
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analyses were performed using default settings. Gene functions were identified from those 378 

previously annotated in Chauhan et al. (2014, 2016), those with expression levels associated 379 

with thermal challenge treatments in I. elegans performed by Lancaster et al. (2016), or were 380 

identified directly from the NCBI database (Table 2). Gene functions were only considered 381 

for those with an annotation match of ≥70% (Supplementary Material). Transcripts with SNP 382 

annotations were mapped to an assembled genome (Supplementary Material) using BLAST 383 

and the positions where transcripts mapped were recorded (i.e. scaffold ID and base pair 384 

position on RAD tag). 385 

 386 

Mapping adaptive genetic variation over the temperature gradient 387 

To examine how adaptive variation changes in I. elegans along its current Swedish 388 

distribution, we mapped allelic turnover functions for selected candidate SNPs that, 1) were 389 

annotated to genes associated with thermal tolerance or other phenotypic traits previously 390 

identified (e.g. Chauhan et al., 2014, 2016; Lancaster et al., 2016) and 2) had a higher 391 

explanatory power in the GDM than the reference 'random' SNP group. In addition to the 392 

above, we focused on SNPs that 3) had the highest allelic turnover in relation to Max Temp in 393 

the GDM, or 4) showed a large change in Fst along the sampled gradient (Figure 1). This 394 

resulted in a list of 23 SNPs, and allele frequencies and turnover functions were mapped for 395 

four of these SNPs to reveal spatially explicit selection gradients. All maps were produced in 396 

R using the GDM, raster and ggplot packages (Ferrier et al., 2007; Hijmans & van Etten, 397 

2012; Wickham, 2009). 398 

 399 

Results 400 

Fst outlier detection and genetic structure 401 
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BAYESCAN identified 688 SNPs (5% of 13 612 SNPs) under putative selection across the 25 402 

sites. There was a distinct split among the outliers with divergent selection being represented 403 

in 57% (n =391) of SNPs and potentially balancing selection being represented in 43% (n 404 

=297) of SNPs.  Using OutFLANK, 188 outliers (1.4%) were detected, which were all under 405 

putative positive selection. Nine SNPs were commonly identified in BAYESCAN (diversifying 406 

only) and OutFLANK. All SNPs identified as an Fst outlier in either BAYESCAN or 407 

OutFLANK were removed for genetic structure analysis.  Notably, removing even the least 408 

conservatively estimated loci under putative selection can minimize false estimates of genetic 409 

structure, and therefore we attempt to address this risk of false positives by removing all 410 

candidates from both programs. ADMIXTURE analysis showed a cross validation (CV) error 411 

that was minimized at four genetic clusters (K = 4, using 3554 SNPs; Figure 2, Figure S3, 412 

Table S2). A high proportion (39%) of individuals showed ancestry to more than one cluster 413 

(Figure S3), though probabilities of ancestry were overall higher to a given cluster for 414 

populations in the southern region (Figure 2). There was greater variability in assignment 415 

probabilities towards the range limit, but a larger number of distinct genetic clusters 416 

represented (i.e. 3-4, Figures 1 & S6, Table S2) while all four sites in the southern region 417 

belonged to a single cluster (Figure 2).  418 

 419 

Environmental Association Analysis 420 

A total of 2327 significant SNP associations were identified across the five environmental 421 

variables analysed using LFMM (with a <log10-6 p-value significance cut-off), with a similar 422 

number of SNP associations for each variable (mean = 465 SNPs; range = 374-566; see 423 

Tables 1, Figure S4). However, these associations were attributed to 451 unique SNPs, and 424 

none of the SNPs were significantly associated across all five environmental variables. Very 425 
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few SNPs identified as Fst outliers were also found in the EAA associations using LFMM 426 

with 22 SNPs (5%) overlapping with Bayescan outliers, and 41 SNPs (9%) overlapping with 427 

OutFLANK outliers, yet none across all three approaches (Table 1).  Of the EAA 428 

associations, between 18.3 and 58.4% (mean = 35%) of the associations were shared across 429 

more than one environmental variable (Table 1). Annual Temp shared 30.4% and 50.7% of its 430 

associations with Max Temp and Wind Speed, respectively (Table 1).  431 

 432 

Patterns of selection signatures along environmental gradients 433 

Including all significant associations across all tests, a total of 1758 unique SNPs were 434 

identified as being under putative selection (Table 1) and all were analysed using GDM. A 435 

large proportion of putatively adaptive SNPs (60%) were identified via at least one Fst outlier 436 

test (i.e. BAYESCAN, OutFLANK) or were associated with a single environmental variable 437 

using LFMM (n = 5 environmental variables tested). SNPs identified with two (n = 381; 438 

22%), three (n = 236; 13%), four (n = 73; 4%) or five (n = 19; 1%) tests were less common. 439 

 We present GDM results for the top 250 SNPs with the highest magnitude of allelic 440 

turnover in relation to each environmental variable (Figure 3). A wide Fst distribution was 441 

observed for these top ranking SNPs, which was similar to the shapes of the Fst distribution 442 

for all 1758 candidate SNPs (Figure S5). The allelic turnover for each of the top 250 SNPs 443 

according to each environmental variable (Figure 3) indicates differing gradients and 444 

strengths of selection across loci. Despite being associated with an environmental variable 445 

using LFMM, the SNPs with the highest allelic turnovers were associated with geographic 446 

distance (and noted as possible false positives), which was followed by (in decreasing order 447 

of allelic turnover magnitude) Max Temp, Annual Rain, Wind Speed and Tree Cover (Figure 448 

3). The shapes of the allelic turnovers across SNPs ranged from distinct 'plateaus' at a given 449 
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position on the gradient, to positive and almost exponential allelic turnover responses at 450 

particular gradient positions. For example, the top 50 SNPs for geographic distance appeared 451 

to mostly reach fixation at the largest distances (Figure 3a), while most SNPs associated with 452 

Wind Speed ceased allelic turnover beyond a wind speed threshold of 3.0 m/s (Figure 3d). 453 

Max Temp (Figure 3b) and Annual Temp (Figure 3c) drove the strongest and most variable 454 

allelic turnover magnitudes of the environmental variables, with distinct turnover thresholds 455 

identifiable for each associated SNP. 456 

 457 

Allelic turnover responses and annotation  458 

For 206 of 1758 SNPs (11.7%), there was no significant allelic turnover response associated 459 

with geographic distance or any of the environmental gradients analysed using GDM, and 460 

these SNPs were not interpreted further. Selective neutrality in relation to environmental 461 

gradients was assessed via SNP allelic turnover response to geographic distance versus 462 

environmental variables within our GDM (Fitzpatrick & Keller, 2015). Geographic distance 463 

had the highest magnitude in allelic turnover response for 372 of the 1758 SNPs analysed 464 

(21%), relative to the other environmental variables. The reference ('random') SNP group 465 

explained 11.8% of the GDM deviance for the entire model, and SNPs that did not exceed 466 

11.8% were also considered to be potential false positives. 467 

 Of the 1758 candidate SNPs (located on 640 different scaffolds), 1196 (68%) were 468 

annotated to the I. elegans transcriptome, and of these, 50 SNPs (located on 13 scaffolds) 469 

were located on transcripts previously identified in gene expression analyses by Chauhan et 470 

al. (2014, 2016) and Lancaster et al. (2016) (see Supplementary Material). After additional 471 

filtering of SNPs that had greater explanatory power in the GDM than the reference SNP 472 

group, 21 of 50 previously annotated SNPs (located on 7 scaffolds) were retained, with some 473 
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occurring on the same RAD tag (i.e. tightly linked SNPs), or having more than one matching 474 

transcript, isoform or annotation (Table 1). An additional two SNPs (on 2 scaffolds) with 475 

annotations of relevance to environmental adaptation (though not previously reported) were 476 

also retained. These two SNPs were in the top 10 SNPs with respect to the percentage of the 477 

GDM explained, allelic turnover magnitude with respect to Max Temp, and highest change in 478 

Fst along the sampled gradient.  479 

 We focus on these 23 annotated SNPs from here forward as they exhibited the most 480 

significant selection signatures in tandem with annotations that can be linked to processes 481 

during environmental adaptation. The 23 SNPs spanned five key functional groups relevant 482 

for thermal stress (i.e. 11 SNPs for HSP40 and one for HSP70, represented across six RAD 483 

tags), visual processes (5 SNPs spanning rhodopsin, pteropsin, and long wavelength-sensitive 484 

opsin across three RAD tags) epigenetic modification (4 SNPs for histone-lysine n-methyl 485 

transferase across three RAD tags), ion transport (1 SNP for vacuolar H+ proton pump) and 486 

varied cellular processes (1 SNP with multiple annotations) (Table 2, supplementary data). 487 

One isoform was found for each gene function except for one epigenetic modification gene 488 

that contained two isoforms (Table 2). Seven of the annotated SNPs were identified as 489 

significant outliers using BAYESCAN and one SNP using OUTFLANK (Table 2). All 490 

annotations are provided in supplementary material. 491 

 492 

Environmental associations and allelic turnover of annotated SNPs 493 

Of the 23 focal SNPs, five showed the greatest allelic turnover magnitude with respect to 494 

geographic distance, though one SNP was equal or within 0.02 magnitude to Annual Rain 495 

(SNP 39648_74; Table 1). These SNPs are considered to be less likely to be under selection 496 

by the environmental variables analysed per se, despite showing significant changes in allele 497 
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frequencies according to geographic distance. For the 23 SNPs, the magnitude of allelic 498 

turnover was highest for those that associated with Max Temp (mean = 0.42±0.08; 9 SNPs), 499 

followed by Annual Rain (mean = 0.30±0.05; 8 SNPs), Wind Speed (mean = 0.25±0.07; 4 500 

SNPs), and Tree Cover (mean = 0.185±0.05, 2 SNPs) (Table 1, Figure 3). Allelic turnovers of 501 

the 23 SNPs (Table 1) in response to each environmental gradient was highly variable, both 502 

within and across gene functions (Figure 3). Generally, the locations at which rates of allelic 503 

turnover changed the most (i.e. where one allele was selected for most strongly) were 504 

observed between sites with the greatest geographic distance apart (Figure 3a), at upper 505 

latitudes where summer temperature was high (Max Temp, Figure 3b), at lower latitudes 506 

where rainfall was lower (Annual Rain, Figure 3c) and wind speed was higher (Figure 3d). 507 

Though weak, locations with higher tree cover also showed some allelic turnover (Figure 3e). 508 

Max Temp and Annual Rain both increase with latitude (Figure S2) and their associated SNPs 509 

showed polarised patterns of selection, with some showing strong allelic turnover at lower 510 

values before stabilizing, and others becoming strong only at high gradient values (Figure 3).  511 

 512 

SNP-specific signatures of local adaptation  513 

We examined spatial genetic gradients over the study area by quantifying allele frequency 514 

changes in four selected SNPs that were selected based on: 1) the SNP’s functional 515 

annotation, 2) its statistical association with Max Temp (both magnitude of allelic turnover 516 

and ranking of turnover), 3) its change in Fst along the gradient, 4) the percentage of the 517 

GDM model the SNP explained. We firstly examined SNP 37543_9, which was annotated to 518 

vacuolar H+ ATPase, which is involved in proton pump activity to regulate pH in eukaryotic 519 

cellular compartments that affect important cellular processes (Nishi & Forgac, 2002). This 520 

SNP had the highest magnitude of allelic turnover in relation to Max Temp (0.63), a high 521 
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change in Fst along the gradient (∆Fst = 0.50), the highest ranking in the GDM model for 522 

Max Temp (10), and was also identified as an Fst outlier using OutFLANK (Table 2, Figure 523 

4). Secondly, we examined SNP 73426_72, which was annotated to a long wavelength-524 

sensitive opsin 3b, involved in visual processes. This SNP had the highest magnitude of 525 

allelic turnover in relation to Max Temp (0.24), a high change in Fst along the gradient (∆Fst 526 

= 0.21), and was ranked highly in the GDM model for Max Temp (266) (Table 2, Figure 5). 527 

The allelic turnover functions for the above two SNPs are shown in relation to Max Temp 528 

(Figures 4-5). 529 

 530 

 Thirdly, we examined SNP 53905_36, which was annotated to Heat Shock Protein 70 531 

(HSP70; Table 2, Figure S6), a gene that is involved in the thermal stress response (Lancaster 532 

et al., 2016; Sørensen, Kristensen, & Loeschcke, 2003). This SNP had the highest magnitude 533 

of allelic turnover in relation to geographic distance (0.33), but had a high change in Fst along 534 

the gradient (∆Fst = 0.40), and was identified as an Fst outlier in BAYESCAN.  Finally, we 535 

examined SNP 35404_9, which had the highest magnitude of allelic turnover in relation to 536 

Max Temp (0.83), a high change in Fst along the gradient (∆Fst = 0.38), and was identified as 537 

an Fst outlier in OutFLANK (Table 2, Figure S7). This SNP was annotated to 10 transcripts 538 

that annotated to various proteins and enzymes (see supplementary data), including pellino 539 

proteins, which are involved in the immune response via the Toll-like receptor pathway 540 

(Schauvliege, Janssens, & Beyaert, 2007), and PACS2 (phosphofurin acidic cluster sorting 541 

protein) which is involved in cell apoptosis (Simmen et al., 2005). The above four SNPs 542 

showed spatial patterns of allelic turnover along the core to range limit gradient that varied in 543 

magnitude and linearity, indicating differential selection on particular alleles along the I. 544 

elegans expansion axis in relation to latitude and Max Temp (Figures 4-5, S8-S9).  545 
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 546 

Discussion 547 

We characterise genetic signatures of local adaptation to environment along a climate-548 

mediated range expansion in a species exhibiting rapid response to shifting temperature 549 

regimes (Hickling et al., 2005; Watts et al., 2010; Jaeschke, Bittner, Reineking, & 550 

Beierkuhnlein, 2013; Lancaster et al., 2015, 2016; Swaegers et al., 2013, 2015). Among four 551 

environmental variables tested, the strongest driver of allelic turnover along the I. elegans 552 

expansion gradient was maximum summer temperature (Max Temp), followed by mean 553 

annual precipitation (Annual Rain), wind speed, and to a much lesser extent, % tree cover 554 

(Table 1, Figure 3). The greatest allele frequency changes in I. elegans were in localities 555 

spanning low to mid latitudes (i.e. from Scania to further north), where Max Temp shifts most 556 

dramatically (~1.2°C; Figures 4-5, S1, Table S2), rainfall is lower and more variable, and 557 

wind speeds are higher than in the northern range edge (Figure S2). Selected annotated SNPs 558 

exhibited allele-specific patterns of selection along the core to edge sampling gradient 559 

(Figures 4-5, S8-9), with wide variation in the magnitudes of allelic turnover across SNPs 560 

(Table 2). SNP annotations indicated that genes involved in the thermal stress response, visual 561 

processes, epigenetic modification and ion regulation may play significant roles in adaptation 562 

during this climate-mediated range expansion in I. elegans. Our multi-tiered approach (Figure 563 

1) validates a 'bottom up' approach for detecting signatures of local adaptation from reduced 564 

representation genomic data, in which a group of SNP candidates is first identified, followed 565 

by SNP-specific modelling of genetic gradients, supported by gene annotation and prior 566 

experimental knowledge of gene functional response (e.g. Chauhan et al., 2014, 2016; 567 

Lancaster et al., 2016).  568 

 569 
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Detection of putative SNPs under selection  570 

Fst outlier and EAA analyses are increasingly popular methods for identifying SNPs under 571 

putative selection (Hoban et al., 2016; Rellstab et al., 2015). One notable aspect of our Fst 572 

outlier and EAA results is their lack of overlap in terms of the number and identity of SNPs 573 

(Table 1). Not only did the SNPs identified by our two Fst outlier approaches overlap by just 574 

1.5%, but Fst outliers overlapped with just 0.6-4.0% of SNPs identified using EAA (Table 1). 575 

This does not necessarily indicate a lack of power in the analysis, and is consistent with 576 

findings that EAA performs better than Fst outlier tests in detecting weak or polygenic 577 

selection signatures (Frichot et al. 2015; Villemereuil et al. 2014). The minimal overlap and 578 

difference in numbers of SNPs identified between Fst outlier approaches identified may 579 

indicate different sensitivities of each approach to the effects of genetic drift and structure.  580 

Notably, studies comparing OutFlank and Bayescan have found little overlap between the 581 

approaches (e.g. Bernatchez,  Laporte, Perrier, Sirois & Bernatchez 2016; Chen, Farrell, 582 

Matala & Narum 2018; Michelleti, Matala, Matala & Narum 2018). The significant SNP 583 

associations using EAA were unique to each environmental variable in 41-79% of cases 584 

(Table 1). Concordantly, Fst distributions were negatively skewed and variable across all 585 

1758 candidate SNPs (Figure S5a), which was mirrored when examining SNPs according to 586 

the environmental variable they were associated with (Figure S5c-f). The dominance of low 587 

Fst values indicates that many SNPs show weak selection signatures along the sampling 588 

gradient.  589 

 Notably, the Fst changes observed in the 23 annotated and most highly supported 590 

SNPs from the GDM were not biased towards higher Fst values (Fst range = 0.09-0.5; Figure 591 

2, Table 2). Overall, the results indicate that an increased change in Fst along a sampling 592 

gradient of a SNP does not correlate with a greater likelihood of identifying that SNP as being 593 
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under selection using EAA. This lack of correlation has similarly been observed in a recent 594 

meta-analysis of studies using Fst outlier tests and EAA (Ahrens et al. in review). This 595 

observation indicates that adaptation to environmental conditions is polygenic and involves 596 

many interacting loci of both small and large effect (e.g. Lee & Mitchell-Olds, 2012).  597 

 598 

Accounting for neutral genetic structure  599 

Detecting genetic selection signatures is riddled with the issue of separating true adaptive 600 

genetic responses from neutral genetic structure (Hoban et al., 2016), which is particularly 601 

relevant when neutral structure mirrors sampled environmental gradients (Lotterhos & 602 

Whitlock, 2015). Range expansion processes can result in patterns of selection on loci that 603 

mirror neutral genetic structure, for example, via allele surfing mechanisms, whereby rare 604 

alleles become more frequent at range expansion fronts according to the process of genetic 605 

drift rather than selection. Allele surfing can therefore increase population genetic 606 

differentiation and confound signatures of local adaptation (Klopfstein, Currat, & Excoffier, 607 

2006) but might also affect adaptation when either beneficial or deleterious alleles are 608 

‘surfed’ on the wave of expansion (Gralka et al., 2016; Travis et al., 2007). Such processes 609 

make teasing apart adaptive and neutral processes in range expanding species a challenge. 610 

 Genetic admixture was greatest within sites at the low to mid latitudes and declined 611 

towards the range limit in I. elegans, where sites were comprised of individuals assigned to 612 

multiple or unique clusters (Figure 2). Given this tracking of genetic structure with latitude, it 613 

was particularly important to account for false positive SNPs in our data.  At each step of our 614 

analysis we applied approaches to avoid false positives. Firstly, we selected only putative 615 

SNPs under selection using Fst outlier tests (diversifying only) and EAA, and excluded SNPs 616 

associating with geographic distance in our EAA. In addition, we implemented two additional 617 
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approaches to avoid the inclusion of false positives using GDM by, 1) including a randomly 618 

selected ‘reference’ SNP group to compare with each SNP, and 2) including geographic 619 

distance as a predictor in the GDM to identify selection signatures correlating with 620 

geography. Finally, SNP annotations to gene functions involved in thermal stress response 621 

and other ecologically relevant genes indicated climate-mediated local selection on some 622 

candidate SNPs along the range expansion gradient (Table 2, Figures 4-5). Despite 623 

expectations that gene flow will have a constraining effect on adaptive divergence (discussed 624 

in Smadja & Butlin, 2011), the relationship between gene flow and local adaptation is 625 

increasingly found to be positive (Jacob et al., 2017; Moody et al., 2015), including at species' 626 

range edges (Halbritter, Billeter, Edwards, & Alexander, 2015). Further analysis of how 627 

neutral genetic connectivity and landscape features are related to the pattern of adaptive 628 

genetic variation in I. elegans is needed to address this. 629 

 630 

Broad allelic frequency changes across the range expansion 631 

The contrasting steepness of the environmental gradients we sampled (Figure S2) appeared to 632 

correspond with the magnitudes of allelic turnover observed across SNPs using GDM (Figure 633 

3), which is in contrast to the lack of an environmental 'steepness' effect on selection detection 634 

across studies using EAA (reviewed in Ahrens et al. 2018). For example, percentage tree 635 

cover was highly variable according to latitude (Figure S2) and attracted the lowest allelic 636 

turnovers (Figure 3). In contrast, Max Temp showed the steepest environmental gradient and 637 

correspondingly high allelic turnovers (Figure 3). Pronounced allele frequency changes in 638 

relation to Max Temp between low to mid latitudes, indicate a ‘transition area’ of local 639 

adaptation (Figure 1, S9) where the greatest shifts in environmental conditions are present. In 640 

this area, Max Temp increases by approximately 2°C, mean annual precipitation decreases by 641 
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170mm and wind speed decreases by 1.9 m/s within an approximate 3-degree shift in latitude 642 

(Table S2, Figure S2). At the range edge, sites are located further inland and conditions are 643 

less variable (e.g. only 0.57°C maximum difference in Max Temp between sites). A second 644 

area that exhibited high allelic turnover was at the northern range limit, where distinct 645 

changes in allele frequencies were evident that were often correlated with the warmer Max 646 

Temp at sites in this region (Figures 3-5, S8). 647 

  648 

Our 'bottom up' approach of screening RAD-derived SNPs for environmental selection 649 

signatures is an alternative to when dense genomic resources are available (e.g. using GWAS: 650 

Berg & Coop, 2014) or pre-identified candidate genes are targeted (e.g. Fitzpatrick & Keller, 651 

2015; Hoekstra, Hirschmann, Bundey, Insel, & Crossland, 2006; Sork et al., 2016), and is 652 

informed largely by the spatial heterogeneity of both environmental and adaptive variation 653 

within the dataset. One important caveat of the EAA approach is that some loci may only 654 

show a weak association with environmental variables when the locus is simultaneously 655 

advantageous across a diversity of environments (Frichot et al., 2013). Our GDM approach is 656 

complementary in this case, as it allows for relative allelic responses to be simultaneously 657 

characterised across predictor variables. Approaches that characterise gene interactions may 658 

further elucidate the polygenic basis of environmental adaptation (e.g. Herold et al., 2012; 659 

Lee & Mitchell-Olds, 2012). 660 

 661 

Signatures of environmental selection on annotated genes  662 

The response curves of the annotated candidate SNPs to the tested environmental variables 663 

(using GDM) indicate that allele frequencies are tracking environmental gradients along the I. 664 

elegans range expansion (e.g. Figures 4-5, S8-S9).  A variety of gene functions were 665 
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represented with a diversity of environmental associations (Table 2). Our annotations of 666 

candidate SNPs matched gene functions associated with thermal tolerance in a gene 667 

expression study by Lancaster et al. (2016) along the I. elegans range expansion. Three major 668 

gene functions were previously identified from gene expression experiments (Table 2) in both 669 

Lancaster et al. (2016) (thermal stress and epigenetic modification) and Chauhan et al. (2014, 670 

2016) (visual processing and thermal stress), while we found additional support for strong 671 

selection on genes involved in ion transport (V-ATPase) and other cellular processes.  672 

 673 

Eleven candidate SNPs annotated to the HSP40 gene. All of these SNPs were located 674 

on the same genome scaffold and showed significant environmental associations with Max 675 

Temp and other variables (Table 2). HSP40 was not differentially expressed in I. elegans in 676 

Lancaster et al. (2016) in response to thermal tolerance treatments, which may be indicative 677 

of the different mechanisms involved in gene expression. However, HSP70 that was included 678 

among our candidate genes, showed greater upregulation in gene expression in response to 679 

heat stress in the core compared with edge populations (Lancaster et al. 2016). Only a single 680 

SNP was annotated to HSP70 (Table 2) and showed a large change in Fst and allelic turnover 681 

along the sampled environmental gradient (Figure S6). HSP70 is a highly conserved, ATP-682 

dependent molecular chaperone that facilitates protein homeostasis under a variety of 683 

conditions including thermal stress (Beere 2004; King & MacRae 2015). The allelic turnover 684 

of the SNP annotated to HSP70 was strongest in relation to geographic distance (Table 2; 685 

Figure S6), which indicates a lack of power to detect environmental selection on this SNP 686 

using the GDM. Notably, the reduced differential gene expression in I. elegans in response to 687 

heat shock at the sampled range edge compared to the core indicates a possible loss of gene 688 
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function at the range edge (discussed in Lancaster et al. 2016), which is to be further 689 

examined. 690 

 691 

We detected a strong selection signature for the vacuolar H+ ATPase (V-ATPase) gene 692 

(Figure 4), which is noteworthy since the activity of this gene has pleiotropic effects on both 693 

cold tolerance and salinity. V-ATPase is an ion transporter and aids in sodium (Na+) 694 

modulation at the Malpighian tubules of insects by energizing fluid secretion while coupled to 695 

an H+/K+ exchanger, modulating pH and salinity (Beyenbach, Skaer, & Dow, 2010). V-696 

ATPases may also play a role in cold tolerance in insects, which is related to body-ion 697 

gradients regulated by water loss. The inability of insects to maintain ion gradients at low (i.e. 698 

≤ 0 ºC) temperatures may be an important cause of mortality from cold exposure and influence 699 

cold tolerance (e.g. in bugs: Koštál & Vambera, 2004; in Drosophila: MacMillan et al., 2015; 700 

in crickets: MacMillan & Sinclair, 2011). Lancaster et al. documented phenotypic (2015) and 701 

gene expression (2016) changes in relation to cold tolerance in I. elegans from Sweden, with 702 

faster cold acclimation rates and unique cold-response gene expression profiles at the range 703 

edge compared to the core. This evidence for selection on cold-tolerance and the decrease in 704 

minimum temperature along our sampled gradient suggests a cold tolerance benefit for 705 

selection on V-ATPase in I. elegans. Notably, changes in V-ATPase activity in the optic lobe 706 

during circadian cycles has also been found in flies, indicating a role in visual processes 707 

(Górska-Andrzejak, Damulewicz, & Pyza, 2015). Our sampled gradient also exhibits variation 708 

in water body salinity, with many sites within coastal areas and others within inland 709 

freshwater lakes and ponds, some closed, and others open to the Baltic Sea. This variation in 710 

salinity may impose further selection pressure on V-ATPase genes during the aquatic larval 711 

stage of I. elegans. Our findings suggest that vacuolar H+ ATPase contributes to local 712 
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adaptation in I. elegans during its poleward range expansion, which is observed as a shift in 713 

allele frequency towards colder, range limit sites sampled from non-coastal, low salinity sites 714 

(Figure 2).  715 

 716 

 Though weaker than for V-ATPase, we detected a strong selection signature for long 717 

wavelength sensitive (LWS) opsin (annotated to SNP 73426_72; Table 2, Figure 5), which is a 718 

phylogenetically diverse class of opsins in Odonata (Suvorov et al., 2017) that have previously 719 

been identified in transcriptomic analyses of I. elegans in Chauhan et al. (2014, 2016). 720 

Odonates have between 3-5 classes of photoreceptors (Futahashi et al., 2015) and are involved 721 

in visual processes that are thought to play roles in food acquisition, mate choice (e.g. in 722 

cichlids: Terai, Mayer, Klein, Tichy, & Okada, 2002) development (in odonates: Futahashi et 723 

al., 2015), and sex-specific behaviours (in I. elegans: Chauhan et al., 2016). The importance of 724 

colour discrimination in sexual selection and sexual conflict in Odonata is well known (e.g. in 725 

I. elegans: Gosden & Svensson, 2009; Le Rouzic et al., 2015; Svensson et al., 2005). Further, 726 

within our study area, the frequency of I. elegans gynochromes (female-specific female 727 

morphs) increases with latitude and shows a frequency-dependent fitness benefit with respect 728 

to cold tolerance that may facilitate range shifts (Lancaster et al., 2017). It is possible that 729 

selection on LWS opsins through its cascading effects in sexual interactions may contribute to 730 

climate adaptation during range expansion, via social feedback mechanisms, thermal 731 

conditions and their possible interactions. 732 

 733 

 As genomic resources improve for I. elegans (e.g. transcriptome: Chauhan et al. 2014, 734 

2016; genome: P. Chauhan et al. unpublished), candidate gene regions identified in this study 735 

may be more closely examined for soft selective sweeps and their emergence according to 736 
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climate change (Messer and Petrov 2014). Previous studies on other coenagrionid damselflies 737 

have identified putatively adaptive traits in range expanding populations, for example, 738 

increased flight ability and enhanced immune function in Coenagrion scitulum (Therry, 739 

Lefevre, Bonte, & Stoks, 2014; Therry, Nilsson-Örtman, Bonte, & Stoks, 2014) and 740 

identification of candidate genes associated with increased flight performance (Swaegers et 741 

al., 2015). Future studies may take advantage of both phenotypic measurements and high 742 

quality genomic resources to disentangle multiple functional genetic changes that occur 743 

during Odonata range expansions. 744 

 745 

Conclusion 746 

With maximum summer temperatures (Max Temp) in our study area projected to increase up 747 

to 4°C by 2050 (under RCP8.5 data from BioClim: Hijmans et al. 2005), and with similar 748 

trends occurring worldwide, the development of effective approaches for measuring and 749 

predicting species’ adaptive responses, and thus future biodiversity structure under 750 

environmental change is crucial. Our findings empirically validate a multi-tiered statistical 751 

approach for uncovering spatial heterogeneity in signatures of local adaptation along 752 

environmental gradients (Figure 1). Our results reveal environmental thresholds where 753 

climate-mediated selection indicate that I. elegans is currently in the process of evolving local 754 

adaptation along its range, with selection on genes that show functional relevance with respect 755 

to environmental variation and stressors. The effects of plasticity and ensuing genetic 756 

assimilation of adaptive traits in augmenting the persistence of I. elegans during range 757 

expansion requires further investigation (e.g. Lande, 2009), as well as how intra- and 758 

interspecific competition might also influence local adaptation (Price & Kirkpatrick 2009; 759 

Case & Taper, 2000). Further, the parallel environmental gradients where I. elegans is subject 760 
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to range limit processes in northern Europe offer future opportunities for a replicated 761 

investigation of parallel signatures of adaptation, which may reveal common adaptive 762 

processes that apply to ectotherms more generally.  763 
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Table 1. Numbers of loci under putative selection detected via Fst Outlier and EAA approaches. Overlapping and unique (i.e non-

overlapping) Fst outliers or SNP x Environment associations are shown across the 1758 candidate SNPs, identified using BAYESCAN 

(diversifying SNPs only), OutFLANK, and LFMM, broken down into the five tested environmental variables (Annual Temp: Mean annual 

temperature, BIO1; Max Temp: Mean maximum summer temperature, BIO5; Annual Rain: Mean annual precipitation, BIO12; Wind Speed, and 

Tree Cover). Shown are the total number of significant SNPs and the number of uniquely associated SNPs per method and environmental 

variable. The number of SNPs in common with the total number of SNPs (‘Total SNPs’) is shown in matrix form. Uniquely associating SNPs 

(‘Unique SNPs’) were those found to be specific to the method used or the environmental variable tested.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

†
Refers to all SNPs identified by LFMM with significant associations to environmental variables. ‡Unique SNPs  
 

 

 
 

 

 

 

Approach  Total 

SNPs 

Unique 

SNPs 

Bayescan OutFlank BIO1 BIO5 BIO12 Wind 

Speed 

Tree 

Cover 

Fst Outlier Bayescan 391 360  - - 5  7  11 13  3  

 OutFlank 188 138  9  - 11 19 14  13 19  

LFMM BIO1 374 75 5 11  - 172  116 211 97  

 BIO5 566 114  7  19  172  - 292 146 174  

 BIO12 500 65  11  14  116  292 - 117 182  

 WS 416 114  13  13  211  146  117 - 86  

 TC 471 183  3  19 97  174  182 86  - 

 ALL
†
 1251 1188 22‡ 41‡      
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Table 2. Gene annotations and associated environmental variables for SNPs under putative selection. Transcript IDs, gene function, genome scaffold 
ID (‘Scaff’), and SNP ID on the I. elegans draft genome are shown. The difference between the highest and lowest population Fst value is shown for each 
annotated SNP (∆Fst). SNPs presented had a: 1) ≥70% BLAST match rate, 2) higher % of the GDM explained than the reference SNP group (% GDM), and 
3) prior annotation in Lancaster et al. (2016), Chauhan et al. (2016, 2017). Environmental variables are BIO5: Maximum temperature of warmest month 
(‘Max Temp’); BIO12: Mean annual precipitation (‘Annual Rain’); TC: Tree Cover, and WS: Wind Speed. Allelic turnover is shown for each SNP relative to 
each environmental variable. SNP rank per environmental variable is the magnitude of allelic turnover ranked relative to the other environmental variables in 
the GDM. This provides a measure of the relative explanatory power of each environmental variable on allelic turnover. Bold SNPs are those for which 
spatial allelic turnover was mapped (53905_36 and 35404_9 in Figures S8 and S9). Transcripts for SNP 3504_9 are in supplementary data. †Fst outlier using 

BAYESCAN (diversifying), or ‡OutFLANK. §Annotation previously unpublished in I. elegans. 

 Partial allelic turnover by variable SNP rank in GDM by variable 

Transcript ID Gene Function Description Function Scaff SNP ID ∆Fst % GDM GEOG BIO5 BIO12 WS TC GEOG BIO5 BIO12 WS TC 

c9603_g1_i1 Heat shock protein 70 HSP70 4300 53905_36
†

 0.40 19.26 0.33 0.12 0.10 0.00 0.14 171 551 451 223 1175 

c48098_g1_i1 Heat shock cognate protein70 HSP70 4300 53905_36
†

 0.40 19.26 0.33 0.12 0.10 0.00 0.14 171 551 451 223 1175 

c42128_g1_i1 Heat shock cognate protein70 HSP70 4300 53905_36
†

 0.40 19.26 0.33 0.12 0.10 0.00 0.14 171 551 451 223 1175 

c42128_g2_i1 Heat shock cognate protein70 HSP70 4300 53905_36
†

 0.40 19.26 0.33 0.12 0.10 0.00 0.14 171 551 451 223 1175 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39733_28
†

 0.14 20.02 0.00 0.41 0.00 0.08 0.07 1065 75 1196 641 503 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39594_49
†

 0.23 33.21 0.43 0.00 0.09 0.41 0.03 114 1251 489 953 15 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39519_58 0.20 16.12 0.09 0.12 0.17 0.08 0.12 540 566 242 302 481 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39594_63
†

 0.16 18.83 0.00 0.06 0.52 0.00 0.05 1064 798 9 770 1124 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39519_36
†

 0.19 22.80 0.03 0.01 0.15 0.31 0.03 788 1126 299 962 35 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39692_78 0.16 23.16 0.04 0.00 0.34 0.00 0.12 708 1639 43 310 997 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39648_74 0.32 21.82 0.18 0.07 0.14 0.05 0.12 331 745 334 313 636 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39594_35
†

 0.21 16.00 0.06 0.24 0.07 0.00 0.14 643 260 632 201 1123 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39648_33 0.24 14.25 0.13 0.10 0.01 0.13 0.08 430 646 1036 545 284 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39648_19 0.24 14.54 0.13 0.10 0.01 0.14 0.08 442 645 1037 546 274 

c36939_g1_i1 Heat shock protein 40 HSP40 2 39692_51 0.19 21.25 0.00 0.05 0.28 0.00 0.12 1611 858 78 289 979 

c43579_g4_i1 long wavelength-sensitive opsin3b Visual 6 73426_72 0.21 14.00 0.05 0.24 0.08 0.15 0.00 703 266 531 1509 231 

c43579_g4_i1 long wavelength-sensitive opsin3b Visual 6 73426_69 0.19 18.48 0.62 0.21 0.08 0.15 0.03 53 317 568 987 237 

c43579_g4_i1 long wavelength-sensitive opsin3b Visual 6 73426_85 0.19 21.31 0.74 0.21 0.07 0.14 0.03 34 329 600 997 271 
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c22378_g1_i1 tpa_exp: pteropsin Visual 47 57982_91 0.15 34.07 0.11 0.71 0.00 0.02 0.07 497 8 1063 621 875 

c39329_g1_i1 rhodopsin-specific isozyme-like Visual 38855 50006_70 0.18 25.26 0.00 0.12 0.31 0.00 0.13 1577 553 58 264 1578 

c4570_g1_i1 histone-lysine n-methyltransferase Epigenetics 102 1735_72 0.18 12.79 0.01 0.00 0.16 0.14 0.12 887 1443 252 285 273 

c26924_g1_i2 histone-lysine n-methyltransferase Epigenetics 102 1735_72 0.18 12.79 0.01 0.00 0.16 0.14 0.12 887 1443 252 285 273 

c4570_g1_i1 histone-lysine n-methyltransferase Epigenetics 102 1803_8
†

 0.17 17.18 0.12 0.02 0.03 0.11 0.23 460 1043 855 34 369 

c26924_g1_i2 histone-lysine n-methyltransferase Epigenetics 102 1803_8
†

 0.17 17.18 0.12 0.02 0.03 0.11 0.23 460 1043 855 34 369 

c4570_g1_i1 histone-lysine n-methyltransferase Epigenetics 102 1735_84 0.13 27.06 0.00 0.01 0.49 0.02 0.14 1365 1088 18 208 861 

c26924_g1_i2 histone-lysine n-methyltransferase Epigenetics 102 1735_84 0.13 27.06 0.00 0.01 0.49 0.02 0.14 1365 1088 18 208 861 

c28633_g2_i1 histone-lysine n-methyltransferase Epigenetics 383 49386_86 0.09 15.91 0.22 0.36 0.00 0.01 0.03 260 106 1247 982 918 

c28633_g1_i2 histone-lysine n-methyltransferase Epigenetics 383 49386_86 0.09 15.91 0.22 0.36 0.00 0.01 0.03 260 106 1247 982 918 

c33122_g1_i1 vacuolar H+ ATPase
§
 Proton pump  28 37543_9

‡
 0.50 47.31 0.00 0.63 0.06 0.06 0.22 987 10 643 575 44 

10 matches Intra-cellular processes
§
 various 26 35404_9

‡
 0.38 42.05 0.031 0.83 0.16 0 0.01 781 3 254 1049 1179 

Page 37 of 57 Molecular Ecology



For Review Only

 38 

 
 

 

 

Figure 1. Flowchart of analytical approach. (1) Candidate SNPs under putative 
selection are identified using two Fst outlier approaches (BAYESCAN, OutFLANK) 
and one Environmental Association Analysis approach (LFMM). LFMM incorporates 
a prior estimate of neutral genetic structure and environmental variables from each 
sampling location. (2) Generalized Dissimilarity Modelling (GDM) is applied to each 
candidate SNP to determine relationships between SNP allelic turnover magnitude 
and environmental gradients, and geographic distance. SNP response is assessed via 
the maximum change in Fst between sampling locations (∆Fst), and the explanatory 
power of the SNP in the GDM via percentage deviance explained (% GDM 
explained). SNPs with a % GDM explained ≤ that of the reference SNP group were 
exlcluded as potential false positives (3) Signatures of environmental adaptation are 
characterised via annotation of SNPs to a transcriptome and interpreted based on gene 
function, prior knowledge, experimental data, SNP x environment associations and 
the allelic turnover relationships observed.  
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Figure 2. Genetic structure of I. elegans across the environmental gradient. 
Probability of I. elegans genetic cluster assignment (K=4) is shown at the population 
level (with population names from Table 1) on a habitat suitability map in Sweden 
(from Lancaster et al., 2015). The proportion of each color within each pie chart 
indicates the mean assignment probability of individuals to a genetic cluster in that 
population, displayed for 426 individuals across 25 populations. 
 

 

 

12 14 16 18

5
6

5
7

5
8

5
9

6
0

6
1

Longitude

L
a
ti
tu
d
e

0.0

0.2

0.4

0.6

0.8

1.0

H
a
b
it
a
t 
S
u
it
a
b
ili
ty

1

2

34

5 6
7

8
9

10

11
12

13

14

15
16

17

18
19

20

21

22

23
24

25

Page 39 of 57 Molecular Ecology



For Review Only

 40 

 
 
 
Figure 3. Allelic turnover relationships for each environmental variable. Allelic 
turnover functions for the top 250 SNPs (grey) and top 50 SNPs (black) that showed 
the highest General Dissimilarity Modelling (GDM) partial allelic turnover in relation 
to each environmental variable and geographic distance: a) Geographic distance (km) 
b) Max Temperature (oC; BIO5), c) Annual Rain (mm; BIO12), d) Tree Cover (%), e) 
Wind Speed (m/s).  
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Figure 4. Allelic turnover of SNP ID 37543_9, a) shown as the allelic turnover 
response curve in relation to BIO5 and Partial Fst change, and b) allele frequency for 
each sampling location (black = high frequency allele 1, white = low frequency allele 
2) mapped on BIO5 (Maximum Mean Summer Temperature). Allele 2 undergoes 
substantial change in frequency from south to north, increasing in warmer inland sites, 
before becoming less frequent at the cooler extreme range edge. This SNP was 
annotated to a gene for vacuolar H+ ATPase, involved in proton pump activity, and 
was associated most strongly with BIO5, with a maximum Fst change of 0.50 across 
the sampling gradient.  
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Figure 5. Allelic turnover of SNP ID 73426_72, a) shown as the allelic turnover 
response curve in relation to BIO5 and Partial Fst change, and b) allele frequency for 
each sampling location (black = high frequency allele 1, white = low frequency allele 
2) mapped on BIO5 (Maximum Mean Summer Temperature). Alleles 1 and 2 have 
comparable frequencies up to the mid-north latitudes, beyond which allele 1 increases 
in frequency towards the inland and coastal range limit. This SNP was annotated to a 
long wavelength sensitive opsin gene 3b, involved in visual processing, and was 
associated most strongly with BIO5, with a maximum Fst change of 0.21 across the 
sampling gradient. 
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Approach Total 

SNPs

Unique 

SNPs

Bayescan OutFlank BIO1 BIO5 BIO12 Wind 

Speed

Tree 

Cover

Fst Outlier Bayescan 391 360 - - 5 7 11 13 3 

OutFlank 188 138 9 - 11 19 14 13 19 

LFMM BIO1 374 75 5 11 - 172 116 211 97 

BIO5 566 114 7 19 172 - 292 146 174 

BIO12 500 65 11 14 116 292 - 117 182 

WS 416 114 13 13 211 146 117 - 86 

TC 471 183 3 19 97 174 182 86 -

ALL† 1251 1188 22‡ 41‡
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Partial	 allelic	turnover	by	variable SNP	rank	in	GDM	by	variable
Transcript	 ID Gene	Function	Description Function Scaff SNP	ID DFst %	GDM GEOG BIO5 BIO12 WS TC GEOG BIO5 BIO12 WS TC

c9603_g1_i1 Heat	 shock	protein	70 HSP70 4300 53905_36† 0.40 19.26 0.33 0.12 0.10 0.00 0.14 171 551 451 223 1175

c48098_g1_i1 Heat	 shock	cognate	protein70 HSP70 4300 53905_36† 0.40 19.26 0.33 0.12 0.10 0.00 0.14 171 551 451 223 1175

c42128_g1_i1 Heat	 shock	cognate	protein70 HSP70 4300 53905_36† 0.40 19.26 0.33 0.12 0.10 0.00 0.14 171 551 451 223 1175

c42128_g2_i1 Heat	 shock	cognate	protein70 HSP70 4300 53905_36† 0.40 19.26 0.33 0.12 0.10 0.00 0.14 171 551 451 223 1175

c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39733_28† 0.14 20.02 0.00 0.41 0.00 0.08 0.07 1065 75 1196 641 503

c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39594_49† 0.23 33.21 0.43 0.00 0.09 0.41 0.03 114 1251 489 953 15
c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39519_58 0.20 16.12 0.09 0.12 0.17 0.08 0.12 540 566 242 302 481

c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39594_63† 0.16 18.83 0.00 0.06 0.52 0.00 0.05 1064 798 9 770 1124

c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39519_36† 0.19 22.80 0.03 0.01 0.15 0.31 0.03 788 1126 299 962 35
c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39692_78 0.16 23.16 0.04 0.00 0.34 0.00 0.12 708 1639 43 310 997
c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39648_74 0.32 21.82 0.18 0.07 0.14 0.05 0.12 331 745 334 313 636

c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39594_35† 0.21 16.00 0.06 0.24 0.07 0.00 0.14 643 260 632 201 1123
c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39648_33 0.24 14.25 0.13 0.10 0.01 0.13 0.08 430 646 1036 545 284
c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39648_19 0.24 14.54 0.13 0.10 0.01 0.14 0.08 442 645 1037 546 274
c36939_g1_i1 Heat	 shock	protein	40 HSP40 2 39692_51 0.19 21.25 0.00 0.05 0.28 0.00 0.12 1611 858 78 289 979
c43579_g4_i1 long	wavelength-sensitive	opsin3b Visual 6 73426_72 0.21 14.00 0.05 0.24 0.08 0.15 0.00 703 266 531 1509 231
c43579_g4_i1 long	wavelength-sensitive	opsin3b Visual 6 73426_69 0.19 18.48 0.62 0.21 0.08 0.15 0.03 53 317 568 987 237
c43579_g4_i1 long	wavelength-sensitive	opsin3b Visual 6 73426_85 0.19 21.31 0.74 0.21 0.07 0.14 0.03 34 329 600 997 271
c22378_g1_i1 tpa_exp:	 pteropsin Visual 47 57982_91 0.15 34.07 0.11 0.71 0.00 0.02 0.07 497 8 1063 621 875
c39329_g1_i1 rhodopsin-specific	isozyme-like Visual 38855 50006_70 0.18 25.26 0.00 0.12 0.31 0.00 0.13 1577 553 58 264 1578
c4570_g1_i1 histone-lysine	n-methyltransferase Epigenetics 102 1735_72 0.18 12.79 0.01 0.00 0.16 0.14 0.12 887 1443 252 285 273
c26924_g1_i2 histone-lysine	n-methyltransferase Epigenetics 102 1735_72 0.18 12.79 0.01 0.00 0.16 0.14 0.12 887 1443 252 285 273

c4570_g1_i1 histone-lysine	n-methyltransferase Epigenetics 102 1803_8† 0.17 17.18 0.12 0.02 0.03 0.11 0.23 460 1043 855 34 369

c26924_g1_i2 histone-lysine	n-methyltransferase Epigenetics 102 1803_8† 0.17 17.18 0.12 0.02 0.03 0.11 0.23 460 1043 855 34 369
c4570_g1_i1 histone-lysine	n-methyltransferase Epigenetics 102 1735_84 0.13 27.06 0.00 0.01 0.49 0.02 0.14 1365 1088 18 208 861
c26924_g1_i2 histone-lysine	n-methyltransferase Epigenetics 102 1735_84 0.13 27.06 0.00 0.01 0.49 0.02 0.14 1365 1088 18 208 861
c28633_g2_i1 histone-lysine	n-methyltransferase Epigenetics 383 49386_86 0.09 15.91 0.22 0.36 0.00 0.01 0.03 260 106 1247 982 918
c28633_g1_i2 histone-lysine	n-methyltransferase Epigenetics 383 49386_86 0.09 15.91 0.22 0.36 0.00 0.01 0.03 260 106 1247 982 918

c33122_g1_i1 vacuolar	H+	 ATPase§ Proton	pump	 28 37543_9‡ 0.50 47.31 0.00 0.63 0.06 0.06 0.22 987 10 643 575 44
10	matches Intra-cellular	processes§ various 26 35404_9‡ 0.38 42.05 0.031 0.83 0.16 0 0.01 781 3 254 1049 1179
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