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We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active
semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we
map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly
flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of
local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations.
Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to
aphase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism
where the system responds to activity by changing the shape of active agents, an effect with no analog in systems

of active particles without internal degrees of freedom.
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I. INTRODUCTION

Processes that involve active motion and remodeling of
protein filaments are particularly important for the functioning
of a cell [1]. In particular, the dynamics of cytoskeletal actin
filaments are characterized by a constant supply of mechanical
energy by myosin motor proteins, which hydrolyze ATP to
slide along actin filaments [2,3]. This directed motion is
integral to cell migration [4,5]. Motility assays [6,7] have
served as simple yet elegant model systems for in vitro studies
of many active cellular processes. In motility assays, filaments
are driven by molecular motors that are typically grafted
to a flat substrate, with the energy required for their active
motion supplied by ATP. The basic design of motility assays
enables a reasonably accurate control of the key parameters,
which would be very hard to achieve in vivo. Despite their
simplicity compared to actual cells, actively driven in vitro
filaments exhibit fascinating self-organized motion patterns
[8-12]. Understanding and characterizing these patterns has
been a focus of active research [13-16].

Only several studies to date have investigated the collective
motion and pattern formation in the high density regime. For
example, Sumino et al. [17] reported the existence of an in-
triguing vortex state in a motility assay of microtubules driven
by dynein motor proteins. Large vortices with an average
diameter exceeding the mean length of individual filaments
by more than an order of magnitude form a lattice structure on
sufficiently long time scales. Furthermore, working with actin
filaments propelled by heavy meromyosin motors attached to
a coverslip, Schaller et al. [18] identified several interesting
collective motion patterns as a function of the actin density.
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Interesting collective behavior of actively driven filamen-
tous systems is not restricted to motility assays [19]. Equally
fascinating motion patterns arise in low-density mixtures of
microtubules suspended at the oil-water interface and pro-
pelled by ATP driven kinesin motors [20-22], where flow
is accompanied by spontaneous generation [20] of motile
topological defects (so-called active turbulence [23,24]) and
the development of orientational order of those defects [22].
Many of the qualitative features observed in these experiments
have been reproduced using continuum models for active
nematics [23-26]. Finally, in an experiment by Keber et al.
[21], the microtubule-kinesin mixture was suspended onto
the surface of a nearly spherical lipid vesicle. The presence
of nonzero curvature leads to an even richer set of collective
motion patterns that are only partly understood [27,28].

Finally, bacterial colonies provide another example of elon-
gated active agents with rich collective behavior. Myxobacte-
ria, for example, form a striking variety of collective motion
patterns [29] without any long-range chemical signals, but
solely due to short-range steric effect and rodlike cell shape
[30].

Many of the nonequilibrium patterns observed in motility
assays, such as asters and vortices, can be described by the
active gel theory [13,31-33]. Continuum description of the ac-
tive gel theory have been augmented by studies of a number of
numerical models with different levels of microscopic details
[34-39]. Many of those models are, however, rather simplified
and assume stiff, rodlike filaments and/or ignore steric effects.
In addition, the effects of hydrodynamics interactions mediated
by the flow of the fluid surrounding filaments are also often
omitted.

In the dilute regime, steric interactions play a limited role
and insights can be gained by studying individual filaments
[40—44] or hydrodynamic equations derived from microscopic
models [45-47]. Studies of individual active filaments either
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pivoting or freely swimming showed that activity can drive
conformational transformations [48], such as spiralling and
spontaneous beating [42,49,50], both in the presence and
absence of hydrodynamic interactions. Balancing the bending
moment with the torque produced by the active force shows
[49,50] that activity increases the tendency of the filament to
buckle, thus reducing its persistence length. Similar effects
have also been observed in models that treat activity as time-
correlated random forces [51-53].

It is important to note that most microscopic derivations
of continuum equations assume the dilute limit and only con-
sider binary collisions between filaments. For dense systems,
considering only binary collisions is not justifiable and it is
no longer possible to relate parameters of the microscopic
model to the parameters in the effective continuum theory.
Numerical simulations are, therefore, crucial to understanding
the collective behavior of dense active systems.

In this paper, we explore the collective motion patterns of
a dense planar layer of active semiflexible filaments. We use
Langevin dynamics simulations to study out of equilibrium
behavior of a bead-spring filament model in the presence
of steric repulsion. Inspired by the activity mechanism of
motility assays, the driving force acts along the contour of
the filament. Our model includes frictional coupling to the
environment, but ignores the effects of flow. While the impor-
tance of hydrodynamic effects in motility assay experiments
is still under debate, the experiments of Sumino e al. [17]
suggest that omitting long-range hydrodynamic interactions in
these systems is justifiable. This also significantly reduces the
high computational cost associated with simulating significant
system sizes with this model.

We map a nonequilibrium phase diagram as a function of
activity and stiffness of filaments and identify five distinct
phases. A polymer melt phase is followed by a flowing melt
region with signatures of both polar and nematic symmetries
as activity increases. For stiffer filaments, further increase in
activity leads to a phase segregated state akin to the motility
induced phase segregation observed for isotropic active par-
ticles [54] (MIPS). For flexible filaments, increase in activity
leads to a swirling state. Finally, for high activities we observe a
rotating spiral phase where filaments adjust their conformation
to accommodate the activity. This is contrary to the behavior
observed in models of structureless active particles where
MIPS becomes more prominent with increasing activity [55].

The paper is organized as follows. In Sec. II we discuss a
coarse-grained model for semiflexible filaments subject to an
active force acting along the contour of each filament. In Sec.
IIT we present and discuss results of detailed Langevin dynam-
ics simulations and map the nonequilibrium phase diagram.
Finally, in Sec. IV we summarize our main findings, comment
on potential experimental realizations, and discuss how the
model could be extended to describe specific experiments. In
Appendix A we compare Langevin dynamics simulations with
the more commonly used Brownian dynamics studies.

II. MODEL

We adapt the model recently used by Isele-Holder et al.
[42] to study conformations of a single semiflexible filament
under the influence of an active force of constant magnitude

FIG. 1. Schematic representation of the model for self-propelled
semiflexible filaments. Spherical beads of diameter o are connected
through harmonic springs of spring constant k. The filament flexibil-
ity is modeled as a bending penalty for angle 6 with stiffness constant
k. Beads belonging to different chains, as well as beads on the same
chain that are more than two beads apart, interact via a short-range,
repulsive interaction, modeled with the Weeks-Chandler-Andersen
potential. Finally, each bead is subject to an active force f{* pointing
along the tangent to the filament contour at i. Note that, for clarity,
distances between beads along the filament have been exaggerated.

acting along its contour (Fig. 1). Our system consists of M such
filaments confined to a periodic square region of length Lyx.
Each filament is modeled as a chain of N beads of diameter o,
so that all filaments have the same degree of polymerization. In
most simulations, the packing fraction ¢ = (M No*m)/4L3,
was set to ¢ ~ 0.65. This particular choice of the packing
fraction ensures that the system is dense on one hand, but,
on the other hand, it remains below both the packing fraction
of the triangular lattice and random close packing In other
words, there is nothing special about ¢ & .65, except that it
is high enough that steric effects cannot be ignored but also low
enough for the system to be sufficiently far away from being
jammed.

Interactions between beads are modeled with bonded and
short-range nonbonded pair potentials, i.e., U = Ug + Uyp.
Bonded interactions, Ug = U, + U,, account for both chain
stretching, modeled with the FENE bond potential [56],

Uy(rij) = —1/2kp RS In(1 — (r;;/ Ro)™), (1

and bending, modeled with the standard harmonic angle
potential [57],

U, = k(0 — 7)°. (2)

Here, « is the bending stiffness, 6 is the angle between three
consecutive beads, Ry = 1.3¢ is the maximum bond length,
k, = 3300kzT /o? is the bond stiffness (making the chain
effectively nonstretchable), and 7;; = |r;;| = |r; — r;] is the
distance between beads at positions r; and r;. For a stiff
filament, the bending stiffness « in the discrete model is
related to the continuum bending stiffness, &, as k =~ £ /2b,
where b is the average bond length. Nonbonded interactions,
Un g, account for steric repulsions and are modeled with the
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Weeks-Chandler-Anderson potential [58],

o\ a\® 1
Uwcalrij) = 4¢ (-) - (-) + - 3)
r,-j r,'j 4

where & measures the strength of steric repulsion. These
parameters lead to b ~ 0.860, which ensures that filaments
do not intersect. Finally, L = (N — 1)b is the mean filament
length and T is set to 0.1¢/kp in all simulations.

The active force on bead i is modeled as

£ = fpo(tizii +tiic), 4)

which mimics active driving produced by a homogeneous
distribution of molecular motors on the substrate underneath
the filaments. Here, f, is the strength of the force and
tii+1 = Yiiy1/rii+1 is the unit-length tangent vector along
the bond connecting beads i and i + 1; end beads have only
contributions from one neighboring bond. We note that the
active force in Eq. (4) is slightly different than the active
force used in Ref. [42], where the tangent vectors t;; were not
normalized. Given that filaments are effectively unstretchable,
the difference between the two expressions for active force is
justascaling factor of order one. We point out that an important,
but unsolved question is how important the precise microscopic
driving mechanism is for long-range collective behavior. Here
we simply note that the extensile nematic system, such as in the
experiments of Sancez et al. [20], is driven by pair forcing of
filaments opposite to each other [47]. Unidirectional forcing,
as implemented here, has been shown by two of us to lead to
a mix of polar and nematic properties [28], a result that we
recover here.

In experiments, filaments are surrounded by a fluid that
mediates long-range hydrodynamic interactions. Here we con-
sider the dry limit, where the damping from the medium
dominates over hydrodynamic interactions and the surround-
ing fluid only provides single-particle friction. In this regime,
the filament dynamics is described by Langevin equations of
motion:

mit; = £ — y¥; — Vi, U(rij) + Ri(1), (5)

where m; =1 is the mass of bead i. Time is mea-
sured in units of T = /mo?/e. Ri(t) is a delta-correlated
random force with zero mean and, as required by the
fluctuation-dissipation theorem, variance (R;(7)-R;(")) =
(RI(DHR(1) + (th"(t)Rj(t/)) =4ykpT3§;;6(t —t'), where y
is the friction coefficient, and the prefactor 4 reflects the fact
that the system is confined to two dimensions. Equations (5)
were integrated with time step At = 10731 using LAMMPS
[59], with an in-house modification to include the active
propulsion force. A typical configuration contained ~5 x 10*
beads and was generated by placing chains at random into the
simulation box (Lpox = 2500), making sure that there were
no intersections. This configuration was then relaxed for 10*z,
followed by a production run of 10°t.

We briefly comment on the use of Langevin dynamics.
Mesoscopic active systems are typically at very low Reynolds
numbers and inertial effects are negligible. Therefore, most
models from the outset assume the overdamped limit and
use first order equations of motion, where the mass term is
omitted. However, there is no a priori reason that prohibits

the inertial term from being retained. In dense systems with
steep short-range repulsive interactions, retaining it turns out
to be computationally beneficial as it allows the use of a
significantly larger simulation time step [60] compared to
what is possible with the Brownian dynamics approach. We
exploit the fact that there is a separation of time scales between
individual bead collisions and the mesoscopic dynamics. As we
show in Appendix A, the behavior of the system at the time
scales associated with collective flow is identical regardless of
whether Langevin or Brownian dynamics is used.

Our key parameters are the degree of polymerization,
N € {5,10,25,50}, the filament stiffness, k = 1-20kgT, and
the magnitude of the active force, f, =2 x 10741k T /0.
We identify two dimensionless numbers: the relative filament
stiffness or scaled persistence length,

£, k& 2b
L~ LkgT =~ LkgT’

where &, = 2bi /kpT is the thermal (i.e., passive) persistence
length, and the active Péclet number,

_ L
- O'kBT.

As previously shown [48,50], the flexure number, § =
f»L3/k = a*Pe/(&,/L), controls the buckling instabilities of
asingle active filament. Meanwhile, the Péclet number controls
the onset of the MIPS state in systems of isotropic active
Brownian particles [55].

(6)

Pe (7)

III. RESULTS AND DISCUSSION

We start by constructing a detailed nonequilibrium phase
diagram for this system and proceed to describe and char-
acterize several different motion patterns. While there are
similarities with the behavior of a single active filament [42],
the combination of self-avoidance and flexibility in dense
suspensions leads to interesting collective behavior even in the
absence of any explicit aligning interactions. In Fig. 2 we show
the phase diagram in the &, /L vs Pe plane with snapshots of
the simulations in the four main nonequilibrium phases shown
in Fig. 3 (see also movies in the Supplemental Material [61]). It
is also important to note that the phase behavior of the system
can be fully described by the two dimensionless numbers, Pe
and &,/L.

In order to characterize the nature of the flow in the
system we computed the mean squared displacement (MSD)
of the center of mass of filaments, averaged over all fila-
ments [Fig. 4(a)]. Without activity (i.e., for Pe = 0), after the
usual short time ballistic relaxation, the MSD curve shows
subtly subdiffusive dynamics with exponent ~0.8 indicating
slow dynamics resembling supercooled liquids. As expected,
activity introduces flow, leading to the melt phase. For low
activity, steric effects dominate and the system resembles a
conventional polymer melt where activity acts only as a weak
perturbation. It is interesting to note that for flexible filaments
(¢6,/L < 0.1) at Pe 2 1 the diffusion coefficient increases
linearly with Péclet number [inset, Fig. 4(b)]. While it is not
surprising that the diffusion coefficient increases with activity
(see also Ref. [53]), the origin of the linear dependence on the
Pe is at present not clear.
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FIG. 2. Nonequilibrium phase diagram for &, /L vs Pe at packing
fraction ¢ = 0.64905. Results for different filament lengths are
plotted on the same graph since they show the same scaling. Symbols
mark individual simulations for different filament lengths: N = 5 (W),

=10 (O), N =25 (x), and N = 50 (A), with phases coded by
color. Different phases were identified by visually inspecting each
individual run. Crossovers between phases are indicated by shading.
Dashed lines indicate rough boundaries between phases and serve as
a guide to the eye. The gray-shaded bar indicates the threshold to
spiralling, set by the flexure number § &~ 10° [42].

Stiffer filaments, on the other hand, exhibit a transition
from subdiffusive to superdiffuisive flow at Pe & 1. For longer
filaments, in this flowing melt regime, one observes +1/2
topological defects [Fig. 3(a)] reminiscent of those seen in the
experiments of Sanchez et al. [20]. However, it is important
to note that there are two important differences between the
structure of the defects observed in our simulations and those
seen in the experiments of Sanchez et al. First, experiments
are performed at much lower densities than studied here
and, second, in the experiments individual microtubules only
slightly bend, nowhere near the fully bent hairpin configuration
observed in this study. It is also still not completely clear
if long-ranged hydrodynamics interactions have an important
effect on the dynamics in the experimental system.

In our simulations, defect motion is very slow and is driven
by filaments sliding along their contour. It is straightforward
to properly identify and track the defects, e.g., by using a
version of the algorithm proposed by Zapotocky et al. [28,62],
as outlined in Appendix B. However, at the time scales
accessible to our simulations, defects move over very short
distances, insufficient to extract meaningful information about
their dynamics. Therefore, we did not attempt to study the
defect dynamics in detail, but instead we applied the defect
finding algorithm only to several selected snapshots of the
simulation to showcase their existence. We note that defect
motion in self-propelled systems appears to generally be much
slower than individual particle motion [28,63].

As the filament stiffness increases (£,/L 2 0.2), large
bends become costly and at sufficiently high Péclet numbers,
Pe 2> 10, similar to the Péclet threshold in MIPS of self-
propelled particles [55], the system crosses over into a phase-
segregated state [Fig. 3(c)] characterized by filaments aligning
and flowing as a coherent bundle. The mechanism that leads
to this behavior can be explained as follows. When multiple
filaments collide with each other in a head-to-front manner,
steric interactions align them into bundles that propagate
coherently [41]. This, however, happens only if filaments are
sufficiently stiff since, for soft filaments, fluctuations in the
direction of motion prevent them from bundling (see Sup-
plemental Material [61]). Bundles break up due to collisions
with filaments in surrounding bundles and thermal noise.
Typically, we observe several large clusters moving in different
directions. The cluster size depends on the density of filaments
(in the dilute regime this aggregation is absent; see also movies
in Supplemental Material [61]). The motion of the bundles is
accompanied by substantial density fluctuations [white regions
in Fig. 3(c)], akin to those seen in the MIPS phase of self-
propelled disks and rods. Once formed, the entire bundle
retains its direction over an extended period of time, in some
cases comparable to the length of the entire simulation. This
can be seen in the MSD curves [Fig. 4(a)], which show wide
regions of persistent, ~t2, behavior. At long times, however,
the direction of motion of bundles decoheres and diffusive
behavior is recovered. It is interesting that the transition time,
7., of the onset of diffusive behavior reduces with activity as
7. ~ (Pe)~%,with ¢ ~ 0.9-1.5, where the exponent ¢ increases
with filament stiffness (Fig. 5). A similar activity-dependent

FIG. 3. Snapshots of simulations for N = 50 in four nonequilibrium phases: (a) flowing melt (§,/L = 0.2, Pe = 35.5), (b) swirl (§,/L =
0.04, Pe = 177.58), (c) segregated phase (§,/L = 0.82, Pe = 355.16), and (d) spirals (§,/L = 0.04, Pe = 17757.8). Individual filaments are
marked by a different shade. Arrows in (a) point to examples of +1/2 (red) and —1/2 (yellow) topological defects. White areas in (c) are
regions devoid of filaments, indicating substantial density fluctuations. Inset in panel (d) is a zoom-in on several spirals.
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FIG. 4. (a) Mean-square displacement (MSD) as a
function of time for &,/L ~0.83 for six values of Pe =
0,0.852,8.52,85.2,852,4260. (b) Log-log plot of the diffusion
coefficient as a function of Pe in the regime where the system is
diffusive. Inset: linear scaling at low activity for a soft (§,/L = 0.08)
filament. (c) Ratio of active (§;) to passive (§, =2«b/kpT)
persistence length for a range of values of bare bending stiffnesses.
Note that due to steric effects the measured persistence length at low
activity is always larger than &, Inset: ratio of active, Ry, to passive,
R,, radius of gyration as a function of Pe. (d) Average angular
velocity of rotation w defined in Eq. (9) around centers of mass of
filaments as a function of Pe. Legend in (d) also applies to panels (b)
and (c). N = 25 in all plots.

decrease of 7. has been observed in single-filament studies
[42].

The phase-segregated state is not stable for large Péclet
numbers. For Pe ~ 10°~10* and & »/L < 0.2 the system enters

]
10% 103 Pe

FIG. 5. Transition time from superdiffusive to diffusive behavior
in the segregated phase as a function of Péclet number for §,/L =
0.08, 0.83, and 1.67.

the swirling state [Fig. 3(b)], in which the dynamics is domi-
nated by large fluctuations of filament shapes with individual
filaments forming shot-lived spirals that quickly uncoil. In this
regime, semiflexible filaments are actively pushed against each
other enhancing shape fluctuations which prevents formation
of large-scale flow patterns.

The onset of the instability is controlled by the flexure
number, §. We find a similar threshold, § ~ 10%, as in the
single-filament case [42] (gray-shaded region in Fig. 2). For
Pe > 10°, the coherently moving bundles dissolve and the
system regains a nearly uniform density. The structure of this
state is markedly different from the low activity case. Most
filaments curl into long-lived spirals [Fig. 3(d)]. While the
head bead of the filament is always in the center, there is
no preferred direction of the rotation, i.e., there is no global
chirality. Centers of spirals move diffusively [Fig. 4(a)]. If
the system density is reduced, the state resembles a weakly
interacting gas of rotating spirals (see Supplemental Material
[61]). Itis interesting to ask why the system prefers this unusual
spiralling state, as opposed to, e.g., a configuration where
perfectly aligned fully stretched filaments flow parallel to each
other, which would be preferential energetically. We argue that
it is ultimately connected to the conformational entropy of
the chains: straight filament configurations are entropically
costly and spontaneous shape fluctuations would affect the
entire flow. On the other hand, the entropically favorable coiled
conformations are not compatible with the self-propulsion
which prefers coherent motion with a constant speed ~f),/y.
Therefore, the system balances these two competing effects by
selecting filament conformations that trap most activity into
circular motion. This mechanism has no analog in systems of
simple structureless active agents and owes its existence solely
to the extended nature of the filaments, as can also be seen by
reducing N, which leads to the disappearance of the spiralling
state.

In order to characterize the spiralling state, we compute the
average angular velocity of filaments around their centers of
mass. The instantaneous angular velocity of filament j is
1 XN: [ri (1) = ¥ em(DIVi(1) = Vj ()]

wj(t)z N |I‘i(l‘)—rj,cm(t)|2

. (&

i=I

where r;(¢) and v;(¢) are, respectively, the position and velocity
of the bead i at time ¢. Similarly, r; ., () and v; ., () are the
instantaneous position and velocity of the center of mass of
filament j, respectively. The average magnitude of the angular
velocity per filament is then

w:ii iZw,-(t)
Mj:l T <

where 7, is the measurement time. We note that the order
in which averages are taken is important to properly capture
rotations of individual filaments and also that w retains a small
but finite plateau at low Pe. In Fig. 4(d) we show that w
increases sharply from its plateau value as a function of Péclet
number as the buckling threshold is crossed, confirming that
individual spirals rotate. The rate of the increase of w with Pe
grows with filament stiffness, which is not surprising as softer
filaments are easier to bend.

) 9
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FIG. 6. Local polar (a) and nematic (b) order parameter defined in
Eq. (10) as a function of activity for arange of bare filament stiffnesses
for N = 25. Spatial correlation function g,, »(r) defined in Eq. (11)
for the polar (c) and nematic (d) order parameter. Note that the upturn
in (d) is an artifact of averaging for large r.

One of the identifying features of self-propelled filaments
is the reduction of the effective bending stiffness manifested
as the decrease of the effective persistence length, &,. The
persistence length, &, is determined by fitting the tangent-
tangent correlation function (t(s) - £(0)) to exp (—s/&,), where
s measures the position along the contour. In Fig. 4(c) we show
the ratio of the persistence length in the presence of activity and
its passive, thermal value, § /&, as a function of Pe for a range
of bare bending stiffnesses, «. For low values of Pe, §7/§),
remains close to 1, indicating that the filament stiffness is
not affected by activity. However, as the activity increases,
one observes a rapid decrease of the persistence length. This
activity-driven reduction of £ is accompanied by a drop in the
radius of gyration [Fig. 4(c), inset], indicating that the system
transitions into a coiled state.

Finally, we explore how orientational order of semiflexible
filaments emerges from self-propulsion. Steric repulsion leads
to local alignment which does not depend on the filament
direction and, therefore, has nematic symmetry. On the other
hand, self-propulsion introduces directionality, i.e., filament
polarity. Therefore, we compute both polar and nematic local
order parameter of the filament tangent vector t; = (r; —
r;_1)/|r; —r;_1|: let §;; be the angle between tangent vectors
t; and t;, belonging to the same or different filaments. Then
the order parameter is

Sm = {cos(mb;;)), (10)

with m =1 for polar, m = 2 for nematic, and where the
average (-) is over all pairs within a cutoff distance, 5o

In Fig. 6(a) we show the local polar order parameter S; as
a function of Pe. For low Pe, the effects of activity are very
weak and there is essentially no polar ordering. As the activity
increases, filaments align their propulsion directions and start
to flow as a bundle, leading to a boost in S for the intermediate
values of Pe. At large activities, the system collapses into the

spiralling phase and the order disappears. We observe similar
behavior for the local nematic order S, [Fig. 6(b)]; however,
at low activity the system exhibits substantial local nematic
order, consistent with passive polymer melts [64].

In order to probe the extent of the local order in Figs. 6(c)
and 6(d) we show the spatial pair correlations of both polar and
nematic order parameters of tangent vectors t; and t; separated
by a distance r:

(Y. 8(r — |r; —x;]) cos(mb;))
(328G —Iri — ;D)

In all regimes, we observed an exponential decay of g, ..
There is, however, a clear difference between flexible and
stiff filaments in terms of the extent of spatial correlations.
For flexible filaments the order is indeed local and g, »
rapidly drops to zero at distances ~10c. However, for stiff
filaments, both polar and nematic order persist over much
longer distances, reaching a fifth of the system size. In the
high activity regime, coiling into spirals, however, completely
destroys the order even for the stiffest filaments.

gma(r) = (1)

IV. SUMMARY AND CONCLUSIONS

In this paper we used Langevin dynamics simulations
of an agent-based model to study collective behavior of a
dense suspension of semiflexible filaments subject to an active
force acting in the direction of the filaments’ contours. We
took steric effects into account, preventing any intersections
between filaments. Furthermore, we assumed the dry limit, i.e.,
solvent-mediated hydrodynamic interactions were ignored, an
assumption that is justifiable when modeling motility assay
experiments. We mapped a detailed nonequilibrium phase
diagram as a function of activity, measured in terms of the
Péclet number Pe, and filament stiffness, measured as the ratio
of the passive persistence length to the filament length, &, /L,
for several filament lengths.

The intricate interplay between activity and conformational
changes leads to rich collective behavior in this system. In
particular, at low activity, we found a slowly flowing meltlike
state, with prominent half-integer topological defects. Those
defects, however, are moving very slowly, consistent with other
studies of self-propelled nematics.

At intermediate values of activity we observed phase seg-
regation into a state of aligned bundles akin to a MIPS phase.
Finally, at very high activity, this state disappears and we
observed a peculiar spiralling state characterized by filaments
predominantly curling themselves into rotating spirals. In this
state, the density is again uniform with no global flow. This
suggests a mechanism by which the system expels activity in
part by changing the conformation of the filaments. To the best
of our knowledge, this effect has no analog in systems of active
agents with no internal structure.

It would be interesting to fully characterize the nature of the
flowing melt phase, where one observes spontaneous formation
of half-integer topological defects. Preliminary results for a
related model where activity acts on pairs of polymers show
extensile active dynamics at the time scale of polymer motion
and no polar components to the flow, hinting at a fundamental
role of the local symmetry of active driving.
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The model studied in this paper is too simplified to quanti-
tatively describe a specific experiment. However, it captures
several generic collective active patterns and we hope that
results presented here will motivate further research in the
effects of activity on collective behavior of dense filamentous
systems. In particular, experiments on motility assays could
provide realizations of some of the phases reported here,
especially in the region of phase space where filaments are
sufficiently stiff.

Another interesting system for which our results could
be of value are experiments on clustering of myxobacteria
during the vegetative phase [65]. Myxobacteria are known to
form a rich variety of collective patterns despite the absence
of any long range interactions, such as chemotaxis [29]. A
direct application of our model to swimming bacteria might,
however, be affected by long-range hydrodynamic effects.
While hydrodynamic effects seem to play a limited role in
the collective motion of E. Coli [66], the importance of fluid-
mediated interaction in, e.g., the longer B. subtilis is less clear
[67,68] and such effects may play a non-negligible role for the
even longer Myxobacteria.
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APPENDIX A: LANGEVIN VS BROWNIAN DYNAMICS

In this appendix we show a comparison of the MSD curves
for center of mass of filaments in several different regimes
produced using both Langevin and Brownian dynamics sim-
ulations. Brownian dynamics simulations were performed
using LAMMPS extended by a publicly available Brownian
dynamics “fix” [69]. In Fig. 7 we show plots of the MSD
curves for two different values of the Péclet number, Pe. From
these plots it is evident that, for sufficiently long times, MSD
curves obtained by those two different methods coincide in
the high-activity regime and are very close to each other for
low values of Pe. We attribute the discrepancy between the
two in the low Pe regime to very slow collective dynamics.
These results show that, at long time scales, there should
be no qualitative difference between the two methods. We
note, however, that Brownian dynamics simulations become
unstable when the simulation time step is increased beyond
10~*, which is 10 times smaller than the time step used in
the Langevin dynamics simulations. This means that using
Langevin dynamics simulations one can effectively reach 10
longer times compared to what is possible with Brownian
dynamics simulations using the same computational resources.
A detailed discussion of the numerical stability of different
methods for integrating equations of motion can be found, e.g.,
in Ref. [60].

4 Pg
10'F BD-8.52x10" wmsmsenee
LD - 8.52x10"
BD - 2.13x103 resessassase
LD -2.13x103 =
2
10°F

0
10°F

10-2 ~ | 1 1 1
10° 10 10 100 100 10°

FIG. 7. Comparison of the MSD curves for two values of the
Péclet number using Langevin (solid lines) and Brownian (dashed
lines) dynamics simulations. For large activity, at long times, the MSD
curves are indistinguishable. For smaller values of Pe, there is a small
difference between the two, but we attribute it to very slow dynamics
in this regime: it is likely that the steady state has not been reached
during the duration of the simulation.

APPENDIX B: IDENTIFYING TOPOLOGICAL DEFECTS

In this appendix we briefly outline the method used to
identify topological defects. We assign to each bead of each
filament a headless (nematic) unit-length vector t; pointing
along the local tangent to the contour. The direction of the

"‘
i(b)g

%'Wa

}
N %irr

FIG. 8. Identification of topological defects. (a) Headless unit-
length vectors pointing along the local tangent to the filament contour
are placed at the vertices of a Delaunay triangulation (white lines).
We then loop counterclockwise (red arrow) over the vertices of each
triangle (marked in red) and compute a signed sum of the angles the
headless vectors make with the x axis. If this sum exceeds £z a
defect of appropriate topological charge is placed inside that triangle.
Defects (yellow ball) are located at the vertices of the Voronoi diagram
(black lines) dual to the Delaunay triangulation. (b) Application of this
algorithm to a snapshot of the simulation. For visualization purposes,
we zoomed in on only a couple of defects.
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tangent is determined as an average of the directions along the
two bonds to which a bead belongs. We use the positions of
the beads as vertices of a Delaunay triangulation, taking into
account periodic boundary conditions. We then loop over the
vertices of each triangle in the counterclockwise direction and

sum signed angles between vectors t; and the x axis. Due to the
nematic symmetry these angles are between —m/2 and /2.
If the sum exceeds +nmw (where n is an integer), we assign
a defect of charge +n/2 to the center of that triangle. This
method and its application are illustrated in Fig. 8.
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