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ABSTRACT. A commercial arsenic field kit designed to measure inorganic arsenic (iAs) in water 11 

was modified into a field deployable method (FDM) to measure iAs in rice. While the method has 12 

been validated to give precise and accurate results in the laboratory, its on-site field performance 13 

has not been evaluated. This study was designed to test the method on-site in Malawi in order to 14 

evaluate its accuracy and precision in determination of iAs on-site by comparing with a validated 15 

reference method and giving original data on inorganic arsenic in Malawian rice and rice-based 16 

products. The method was validated by using the established laboratory-based HPLC-ICPMS. 17 

Statistical tests indicated there were no significant differences between on-site and laboratory iAs 18 

measurements determined using the FDM (p=0.263, ά=0.05) and between on-site measurements 19 

and measurements determined using HPLC-ICP-MS (p=0.299, ά=0.05). This method allows quick 20 

(within 1 hour) and efficient screening of rice containing iAs concentrations on-site.. 21 

KEYWORDS. Rice, arsenic; field deployable method; inorganic arsenic; laboratory; onsite; maximum 22 

contaminant limit. 23 

 24 

LIST OF COMPOUNDS: Arsenic, (Arsenic-75) (PubChem CID:  5359596); Arsenic(III) (PubChem CID: 25 

104734), Arsenic(V) (PubChem CID: 104737); arsines (PubChem CID: 68978); Dimethylarsinous acid 26 

(PubChem CID: 185792); Monomethylarsonous acid (PubChem CID: 161491); Mercury bromide (HgBr2), 27 

Mercuric dibromide (PubChem CID: 24612); sodium borohydride (NaBH4) (PubChem CID: 4311764); 28 

sulfamic acid (PubChem CID: 5987); and Nitric acid (HNO3) (PubChem CID: 944). 29 

 30 
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  32 

A field deployable technique was tested in Malawi for screening of inorganic arsenic in different rice 33 

cultivars cultivated in different areas. Results indicate that there is no bias to results achieved by HPLC-34 

ICP-MS/MS and less than 10% false positives and false negatives to the reference method iAs values at 35 

EU maximum contaminable limit for baby food (100 µg/kg) were obtained. 36 

 37 

1. INTRODUCTION 38 

Arsenic (As) is a toxic trace element widely present in the natural environment. Elevated concentrations of 39 

As have been found in crops such as rice (Mandal & Suzuki, 2002; Meharg et al., 2009; Rosas-Castor, 40 

Guzmán-Mar, Hernández-Ramírez, Garza-González, & Hinojosa-Reyes, 2014). Rice is cultivated on 159 41 

million ha and it is estimated that, for 3 billion people, 35-60% of their dietary calorie intake is through rice 42 
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consumption (Fageria, 2007; GRISP, 2012; Vasudevan, Mathad, Doddagoudar, & Shakuntala, 2014). The 43 

toxicity of As is dependent on the chemical form present (Gong, Lu, Ma, Watt, & Le, 2002; Juskelis, Li, 44 

Nelson, & Cappozzo, 2013; Syu, Huang, Jiang, Lee, & Lee, 2015; Zwicker, Zwicker, Laoharojanaphand, 45 

& Chatt, 2011). Inorganic arsenic species (iAs) are classified as a class I carcinogen (IARC, 2004; Munera-46 

Picazo et al., 2014; Weinber, 2004), and are more toxic and carcinogenic than organic species (Ammann, 47 

2011; Henke, 2009). Ingestion of rice and rice products is reported to be a major dietary uptake of iAs for 48 

humans, especially among infants and young children who are at high risk of ingesting elevated levels of 49 

iAs due to high consumption of rice products per kg body weight (Munera-Picazo et al., 2014). In January 50 

2016, The European Union (EU) legislated a maximum contaminant limit (MCL) of 0.250 mg/kg iAs for 51 

husked rice, 0.200 mg/kg iAs in rice and 0.100 mg/kg iAs in rice destined to produce baby food (Signes-52 

Pastor et al., 2017; The Commission of the European Communities, 2015) (Table S1) in order to protect 53 

infants, young children and the general population from ingesting elevated iAs levels through rice 54 

consumption. 55 

The EU legislation restricts importation of rice and rice products violating the legislated limits into 56 

European Union member countries (The Commission of the European Communities, 2015). Thus, it 57 

became a requirement that rice and rice products imported into EU be certified to meeting the legislated 58 

limits. Not only has the EU set iAs MCL for rice, but other regulatory bodies have also set regional or 59 

country based MCL that range from 0.100 mg/kg (EU) to 0.300 mg/kg for iAs and up to 0.700 mg/kg for 60 

total arsenic (tAs) (Table S1). A market survey on rice products destined for babies and infants, bought 61 

after the introduction of the MCL in the EU, found that almost 50% of the products did not comply with 62 

the legislation (Signes-Pastor et al., 2017).  63 

 64 

To date, a number of robust analytical methods for detecting and quantifying tAs and iAs in rice have been 65 

developed and reported (Feldmann, Raab, & Krupp, 2017; Hung, Nekrassova, & Compton, 2004; 66 

Kinniburgh & Kosmus, 2002). The established methods all use HPLC coupled to Inductively Coupled 67 
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Plasma Mass Spectrometry (ICP-MS) and give reliable results but suffer from high costs and lack of 68 

availability in many routine analytical laboratories, therefore other cheaper methods have been developed 69 

for the detection of iAs in rice such as hydride generation (HG) coupled to AFS (Chen, Ma, & Chen, 2014) 70 

or ICP-MS (Chen et al., 2014; Petursdottir et al., 2014). Although these robust analytical instruments are 71 

valid and reliable, they are laboratory based and too bulky to transport to field for on-site analyses (Bralatei, 72 

Lacan, Krupp, & Feldmann, 2015; Sankararamakrishnan, Chauhan, Nickson, Tripathi, & Iyengar, 2008). 73 

Therefore, there is a need to develop less expensive, portable and robust field methods to use for screening 74 

it’s the iAs content in rice on-site in low income rice producing countries that are challenged in accessing 75 

robust laboratory based analytical instruments. In view of this challenge, Bralatei et al. (2015) modified a 76 

commercial arsenic field kit designed to measure iAs in water into a field deployable method (FDM) to 77 

allow determination of iAs in rice on-site. The method developed by Bralatei et al. (2015) employs the 78 

Gutzeit reaction in which the sample containing As(III) and/or As(V) reacts with sodium borohydride under 79 

acidic conditions and converts both species of iAs to arsine gas (AsH3) (Equation 1) (Bralatei et al., 2017, 80 

2015; Hung et al., 2004).  81 

2H3AsO4 + 2H3O+ + 2NaBH4   2AsH3 + 2B(OH)3 + 4H2O + 2Na+.   Equation 1 82 

During the reaction, arsine gas formed evolves and reacts with a mercuric bromide impregnated filter lid to 83 

form a colored Lewis acid/base arsenic mercury product (H2As−HgBr), while methylated arsines do not 84 

form any complex with the mercury bromide (Equation 2) (Bralatei et al., 2015; Fransisca et al., 2015; 85 

Kinniburgh & Kosmus, 2002). The intensity of the orange/yellow color is proportional to the concentration 86 

of iAs in the sample solution.(Bralatei et al., 2015; Sankararamakrishnan et al., 2008). 87 

AsH3 + HgBr2  H2As−HgBr + HBr.                Equation 2 88 

The FDM method was previously evaluated to give a quick, accurate and precise determination of iAs in 89 

rice samples when used in controlled conditions within a laboratory (Bralatei et al., 2015). High recoveries 90 

within the acceptable range of the reference method (HPLC-ICP-MS) and detection limits for iAs sufficient 91 
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to detect the EU MCL for baby rice were reported (Bralatei et al., 2015). Although the FDM was designed 92 

for field determination of iAs in rice, on-site field performance of the method has not been tested and 93 

evaluated to date. In this study, the FDM method was used on-site in Malawi, a country which does not 94 

have any lab based facilities for detecting iAs in rice, in order to evaluate whether the FDM can deliver fast 95 

screening data of high quality and without bias in the field. The iAs contents of field collected rice samples 96 

from Malawi were compared to international guideline values. 97 

Hypothesis 1: Accuracy and precision of the on-site FDM iAs results are not different from laboratory 98 

FDM and reference method iAs results.  99 

Hypothesis 2: In reference to international guideline values, the number of false-positives and false-100 

negatives results is low for both FDM and laboratory based analytical instruments results  Thus, iAs values 101 

obtained on-site using the FDM are reproducible with laboratory based analytical instruments. 102 

 103 

2. EXPERIMENTS AND METHODS   104 

2.1. Samples and sampling. The rationale for the sampling design was to cover all rice producing districts 105 

of Malawi, the most abundant cultivars and all rice products used in the country. Thirty-three rice samples 106 

(whole grain, rice bran, rice husks, unpolished rice and polished rice) of different rice cultivars that included 107 

Kilombero, Faya, TCG-10, Nunkile and Nerica were analysed on-site at various rice farms, rice irrigation 108 

schemes and research stations located in 10 rice growing districts in Malawi (Figure 1). The sampling sites 109 

were mainly along the lake shores of Lake Malawi, Lake Chilwa and Lake Malombe and along the Shire 110 

River Valley (Figure 1). Two rice fields per rice scheme or research station were randomly selected for on-111 

site analyses. Composite rice samples (50 to 150 g) were collected from 5 different randomly selected points 112 

in each field. Replicate samples, collected for laboratory analyses, were labelled and packed in zipp-log 113 

bags with details of site location, rice material, rice cultivar and date of sampling.  114 

 115 
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 116 

Figure 1. Map of Malawi showing sampling locations where on-site iAs determination was conducted. 117 

Sites are Lufiriya rice scheme (1), Baka research station (2), Hara rice irrigation scheme (3), Chiweta (North 118 

Rumphi) (4), Limphasa irrigation scheme (5), Nkondezi research station (6), Liwaradzi (7), Dwangwa (8), 119 

Nkhunga and Mtupi (9), Chimphangwi (10), Lifuwu research station (11), Maganga/Sengedzi river (12), 120 

Ndindi (13), Chipoka (14), Bwanje irrigation scheme (15), Bwanje scheme (research) (16), Balaka– 121 
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Liwawadzi river (17), Domasi irrigation scheme (18), Khanda irrigation scheme (19), Likangala rice 122 

scheme (19b), Kasinthula research station (20), Nazolo irrigation scheme (21) and Nkhate irrigation scheme 123 

(22).  124 

2.2 External calibration of FDM and quality assurance. Accuracy of FDM in both laboratory and on-125 

site analyses was checked using As(V) standards. Calibration standards of As(V) solutions were prepared 126 

by diluting 1000 mg/L of As(V) in 1% (v/v) HNO3 solutions. Recoveries of As(V) standards were computed 127 

as percentage of determined value to theoretical value of the standard. Limit of detection was calculated as 128 

LOD= X+3*SD (where X is the mean blank value in mg/kg of As(V) solutions and SD is the standard 129 

deviation of blanks iAs concentration). Recoveries were evaluated daily to check accuracy of the method. 130 

Computed recoveries are reported in Table S2.  131 

 132 

2.3 On-site and Laboratory sample extraction and determination of iAs using the FDM. In the field, 133 

air dried rice materials were ground using a coffee grinder. Rice husk and rice bran were mainly collected 134 

from rice mills in rice irrigation schemes or research stations. Approximately 5.0 g of homogenized ground 135 

and air dried rice material (whole rice grain (WGR), rice husk (RHU), rice bran (RBR), polished rice (POR) 136 

and unpolished (brown) rice (UPR)), scooped using a graduated spoon (on-site) and accurately measured 137 

using an analytical balance (in the laboratory), were mixed with 50 ml of 1% nitric acid (HNO3) in a 250 138 

ml beaker and extracted by boiling the mixture at around 90-100 °C temperature for 20 min using a gas 139 

stove (on-site) and electric stove with adjustable control knob (in the laboratory); thereafter extracts were 140 

cooled for 3-5 min at ambient room temperature and a further 5-10 min in a water bath (tap water). Loss of 141 

heat by convection may have occurred during on-site analytes extraction since boiling was done in an open 142 

space which may have an effect on the uniform analyte extraction. The entire sample extract was then 143 

transferred into an Erlenmeyer volumetric reaction flask which was tightly closed with a tri-filter bung 144 

device fitted with detector slips, immediately after adding 0.050 to 0.100 ml (2-3 drops) of antifoam, 0.150 145 

g (one sachet) of sulfamic acid (Palintest, U.K.), and 0.500 g (one tablet) of sodium borohydride (NaBH4) 146 
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(Palintest, U.K.). After 20 minutes the iAs concentration in the sample extract was determined using the 147 

colour change of the detector strip (Palintest, U.K.) by comparing it to a calibrated chart. Alternatively, the 148 

concentration of sample solution was determined using the arsenator photometer (Palintest, U.K.) as 149 

described by Bralatei et al. (2017, 2015). One analyses was complete within around one hour. 150 

 151 

2.4. Sample extraction and determination of iAs using HPLC-ICP-MS/MS. Exactly 0.200 g of each 152 

rice material sample (air dried: 7.5±4.8 % mean moisture content) was mixed with 10 ml of extracting 153 

reagent (1% (v/v) HNO3 and 2% (v/v) H2O2) and then extracted using an open vessel MARS5 microwave 154 

digestion system. Then, the samples were cooled at room temperature, and centrifuged two times before 155 

analyses. Inorganic arsenic (sum of As(III) and As(V)) and DMA in rice and DMA standards were 156 

determined using high performance liquid chromatography (HPLC)-ICP-MS/MS. To ensure accuracy of 157 

the generated data, a standard reference material (SRM) NIST 1568a Rice Flour and blanks were analysed 158 

alongside the samples. Arsenic speciation analysis of rice samples was conducted using a HPLC (1290 159 

series, Agilent Technologies) coupled to a ICP-MS/MS (8800 series, Agilent Technologies). A Hamilton 160 

PRP-X100 (10 µm, 250 x 4.1mm) anion exchange column was used for the separation of the As species. 161 

Ammonium carbonate buffer (3 g/L, pH=9.2) was used as eluent (flow rate: 1 ml/min). The sample injection 162 

volume was 80 µl. For the ICP-MS/MS, reaction cell gas flow rate was 0.24 ml oxygen/min, rhodium (Rh) 163 

was used as the internal standard (ISTD), and mass to charge (m/z) ratio of m/z =91 for analyte (As) and 164 

m/z =103 for ISTD (Rh) were selected for detection. Upon obtaining chromatograms of DMA standards 165 

(0.1, 0.5, 1.0, 5.0, 20, 50 µg/kg), peaks were integrated using Origin 6.1 software and quantified using 166 

external calibration. 167 

 168 

3.0 RESULTS AND DISCUSSIONS 169 

3.1. Analytes recovery analysis of Field Deployable Method (FDM) iAs values. The limit of detection 170 

(LOD) of 47 µg/kg was comparable to the LOD value of 50 µg/kg reported by Bralatei et al., (2015). The 171 
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accuracy of the method in both laboratory and onsite analyses was determined using As(V) standards (5, 172 

10, 20, 25, 50, 75 and 100 µg/kg) with theoretical concentrations of 5.0 ± 1.2, 10.2 ± 1.0, 20.1 ± 0.5, 25.8± 173 

1.5, 50.4 ± 1.6, 75.8± 0.2 and 100.2 ± 2.4 µg/kg. Percentage recoveries for each As(V) standard ranged 174 

from 79.8 to 127% for on-site measurements; and 82.0 to 117.1% for laboratory analyses (Table 1) which 175 

are comparable to recoveries of 72–120% reported by Williams, West, Koch, Reimer, & Snow (2009) and  176 

81–150% reported by (Safarzadeh-Amiri et al., (2011) and Sankararamakrishnan et al. (2008). Average 177 

variability of the determined concentration for As(V) standards was low (11.5% for on-site analyses and 178 

7.8% for laboratory analyses) and indicating excellent agreement with theoretical values. T-test p-values 179 

(Table 2) showed that laboratory analyses of As(V) standards were not significantly different from on-site 180 

analyses (p=0.984; significant at α=0.05). Mean theoretical As(V) concentrations were correlated with 181 

mean measured laboratory As(V) values of standards. Slope and R² values were very close to 1 (Figure 182 

S1) indicating minimal biasness and strong correlation of the data sets respectively.  183 

Calculated concentrations of iAs in rice were corrected in the field by assuming 10 % moisture content 184 

since MCL is given in dry matter. Mean moisture content of rice materials were determined later in 185 

laboratory to be 7.5 ± 4.8% (Table S3), hence the expected error is minimal. 186 

Reference material (NIST 1568a Rice Flour) was analysed for tAs and a concentration of 285±50 µg/kg As 187 

was obtained. The tAs was in excellent agreement with certified tAs value (290±30 µg/kg As). Furthermore, 188 

iAs (sum of As(V) and As(III)), DMA and MMA were also determined and 104±15 µg/kg iAs, 165±17 189 

µg/kg DMA and <15±2.5 µg/kg MMA were obtained. The obtained amounts of As species were within the 190 

previously reported ranges (Heitkemper, Vela, Stewart, & Westphal, 2001; Narukawa & Chiba, 2010). 191 

Narukawa & Chiba (2010) reported iAs, DMA and MMA values of 98±2, 175±2 and 13±1 µg/kg 192 

respectively whereas Juskelis, Banaszewski, & Cappozzo, n.d.; Juskelis et al. (2013) reported 100±20, 193 

171±34 and 11±2 µg/kg which are both comparable to values obtained in this study, hence acceptable. 194 
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Table 1. Comparison of theoretical concentrations versus mean experimental concentrations of As(V) 195 

standards determined using FDM on-site and laboratory. Mean concentrations are reported as µg/kg ± SD 196 

(n=6).  197 

 

Mean theoretical of 

As(V) concentration 

µg/kg 

Experimental values (µg/kg) 

On-site iAs(V) 

µg/kg 
Recovery % 

Lab iAs(V)) 

µg/kg 
Recovery % 

5.0±1.2 5.7±1.0 114.0% 4.1±2.2 82.0% 

10.2±1.0 9.9±0.6 106.9% 10.6±0.5 103.9% 

20.4±0.5 16.2±2.8 79.8% 24.2 ±1.8 116.2% 

25.8±1.5 - - 26.7±2.1 103.5% 

50.4±1.6 64.1±4.6 127.4% 50.5±2.2 102.2% 

75.8±0.2 - - 69.5±1.3 91.7% 

100.2± 2.4 99.0±4.4 98.8% 102.6±14 102.4% 

Average variability 10.5%  13.4%  

  198 

3.2. Comparison of iAs values determined 199 

 using FDM on-site and in the laboratory and using HPLC-ICP-MS/MS (laboratory). Linear 200 

regression analysis and paired sample t-tests were computed in order to evaluate whether on-site iAs values 201 

correlate to and/or are statistically different from iAs values determined under controlled conditions in the 202 

laboratory using the same method (FDM) and/or HPLC-ICP-MS/MS. Results showed no statistical 203 

difference between FDM field measured and FDM laboratory measured iAs values in the same sample 204 

(Table 2). There was also no significant statistical difference between the field measured and HPLC-ICP-205 

MS/MS laboratory measured iAs in the same samples (Table 2). As shown in Table 2 and Figure 2, the 206 

slopes of linear regression equations were close to 1 and the correlation coefficients of each pair of 207 

comparison was very close to the 1:1 line and p-values>0.05, results do not only indicate a strong correlation 208 

but also congruence of the data set. 209 
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 210 

Table 2. Comparison of iAs values 33 rice material samples tested by FDM on-site and laboratory by 211 

HPLC-ICP-MS/MS (laboratory) indicating p-values, slope, and y-intercept and Pearson correlation 212 

coefficient 213 

 Parameter  T-test p-valued rhoc Linear regression 

equation  

R² 

HPLC-ICP-MS/MS vs 

LAB FDM 

0.966 0.935 y = 0.99x - 0.0045 0.88 

HPLC-ICP-MS/MS vs 

on-site FDM 

0.299 0.935 y = 1.04x + 0.0003 0.89 

LAB FDM vs on-site 

FDM 

0.263 0.957 y = 0.98x + 0.0095 0.89 

c Pearson correlation coefficient; d significant at 0.001 

 214 
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 215 

Figure 2: Linear regression analyses of HPLC-ICP-MS/MS iAs values versus FDM on-site and lab iAs 216 

values in rice samples; (A) Comparison of FDM on-site iAs values vs and FDM lab iAs values; (B) 217 

Comparison of HPLC-ICP-MS/MS iAs values vs and FDM on-site iAs values; Red vertical and horizontal 218 

lines X, Y and Z indicate maximum contaminable limits at 100, 200 and 250 µg   /kg for rice intended for 219 
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baby rice products, for rice and husked rice respectively. Solid black lines indicate 1:1 ratio lines whereas 220 

the dotted ones indicate linear regression lines. Error bars are standard deviation (SD). 221 

Recovery efficiency tests indicated that 27 out of 33 on-site iAs values (82%) were within ±22% of the 222 

HPLC-ICP-MS/MS results which is acceptable and within the range of recoveries for rice (89.5% to 223 

116.3%)  reported by Bralatei et al. (2015) and 29 out of 33 (88%) on-site iAs values were within ±17% of 224 

Lab iAs values which is also acceptable. The overall on-site relative standard deviation (RSD) of both on-225 

site vs HPLC-ICP-MS/MS and on-site vs LAB FDM iAs values was found to be ±14% (Table S2) slightly 226 

higher than the RSD reported by Bralatei et al. (Bralatei et al., 2015) for  LAB FDM vs HPLC-ICP-MS/MS 227 

(±12 %). Nevertheless, on-site iAs values above or below HPLC-ICP-MS values (18%); and above or below 228 

Lab iAs values (12%) were not significantly different, indicating good precision. Higher on-site variability 229 

could be attributed to variable estimation of sample masses due to variable densities of rice grain, rice bran 230 

and rice husks (though not significant), non-uniform on-site analyte extraction (boiling may not be uniform 231 

in open space), and variable sample moisture content for samples analysed on-site (Table S3). However, 232 

sample moisture content in laboratory analyses was checked and determined to range from 2.0% to 20.7% 233 

which may have negligible effect on final iAs concentration in rice when a nominal +/- 10% moisture 234 

content was used for correction. As shown in table S3, iAs concentration values corrected with real 235 

moisture content were not significant different from those corrected with nominal 10% moisture content 236 

(p>0.877 significant at 0.001 ). 237 

 238 

The impact of variable density and accuracy of scooping spoon in determining 5 g of bran and husks was 239 

also checked conducting verification tests of the scooping spoon (Figure S3). As shown, scooped masses 240 

were not significantly different from analytical weights (p>0.93, significant at 0.05). However, an 241 

exceptionally low value of mass was obtained in sample 15, though it did not significantly impair scooping 242 

the intended average mass of 5 g (Figure S3). 243 
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 244 

3.3. Variation of iAs values determined by on-site FDM.  The field deployable method was successfully 245 

used in determination of iAs in rice materials on-site in Malawi. Inorganic As values obtained by both FDM 246 

and HPLC-ICP-MS/MS in the laboratory were comparable to FDM on-site iAs values; hence a comparison 247 

of on-site iAs measurements of various analysed rice materials was made (Figure 3). One-way analyses of 248 

variance (ANOVA) statistical test was conducted to evaluate significant differences in the concentration of 249 

iAs in the different rice samples. Bran and husk had the highest concentrations and were not significantly 250 

different from each other, while the lowest concentrations were observed in POR and UPR, which had 251 

significantly lower iAs concentrations than WRG, bran and husk at the 95% confidence level (Figure 3). 252 

Similar trends were observed by Seyfferth, Webb, Andrews, & Fendorf (2011) and Rahman & Hasegawa 253 

(2011). Mean iAs value determined in UPR using FDM (mean: 52±18 µg/kg compared well to mean iAs 254 

of 60 µg/kg reported by Joy et al. (2016) for unpolished (brown) Malawian rice. The mean iAs concentration 255 

in polished Malawian rice (mean: 31±12 µg/kg; range 9 – 54 µg/kg) is amongst the lowest ever reported 256 

concentrations for iAs in rice worldwide (Meharg et al., 2009; P. N. Williams et al., 2005). 257 

 258 
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   259 

Figure 3. Inorganic As content of various rice materials as determined by field deployable method on-site. 260 

Rice material that share common letters (A, B and C) are not significantly different from each other. The 261 

boxes represent first and third quartile range iAs values; the solid line across a box represents the median 262 

value; the dotted line across a box represents the mean values and whiskers represent minimum and 263 

maximum values. 264 

 265 

3.4. Screening of rice samples in the field using EU MCL as a yard stick. The accuracy and precision 266 

of FDM on-site screening was evaluated with reference values to check compliance of iAs content to EU 267 

legislated limits. Evaluation was done based on both wet weight (w/w) basis with the corrected 10 % 268 

moisture and dry weight (d/w) basis upon determination of moisture content of each sample (Table S1 and 269 

Figure S5). FDM on-site analysis identified 2 (6.1%) samples (for both w/w and d/w) and 11 (33.3%) 270 

samples (for w/w) and 10 (30.3%) samples (d/w) with iAs concentration values exceeding the legislated 271 

limits of  MCL of 200 µg/kg and 100 µg/kg respectively which compared well to those obtained in the 272 
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laboratory using FDM (6.1%)  at MCL of 200 µg/kg and 24.2 % at MCL of 100 µg/kg) and the reference 273 

method (6.1% at MCL of 200 µg/kg and 27.3% at MCL of 100 µg/kg) (Figure S5) suggesting high accuracy 274 

and precision. Interestingly, neither polished (white) rice nor brown (unpolished) rice contained iAs 275 

exceeding the limit of 200 µg/kg while 1 sample of brown (unpolished) rice exceeded the limit of 100 276 

µg/kg. As observed in these results, iAs concentration values determined using FDM in rice materials on a 277 

w/w basis did not significantly change after determination and factoring in the effect the of low moisture 278 

content (which ranged from 2.0% to 20.7%) (Table S3). 279 

 280 
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Table 3. False positive and negative iAs values obtained by FDM on-site and Laboratory compared to 281 

reference method (HPLC-ICP-MS/MS) values. 282 

 FDM On-site iAs value (w/w) FDM Lab iAs value (w/w) 

Deciding 

MCL value 

False 

Positive 

False 

Negative  

True Positive 

and True 

Negative 

False 

Positive 

False 

Negative 

True Positive  

and True 

Negative 

At MCL 100 

µg/kg 

2 out of 33 

(6.1%) 

1 out of 33 

(3.0%) 

90.9% 1 out of 33 

(3.0%) 

1 out of 33 

(3.0%) 

94.0% 

At MCL 200 

µg/kg 

0 0 100% 0 0 100% 

FDM On-site iAs value (d/w)ð 

Deciding 

MCL value 

False 

Positive 

False 

Negative  

True Positive 

and True 

Negative 

At MCL 100 

µg/kg 

3 out of 33 

(9.1%) 

1 out of 33  

(3.0%) 

87.9% 

At MCL 200 

µg/kg 

0 0 100% 

ð = iAs concentration corrected with 10% sample moisture content (i.e. d/w). 283 

 284 

In these analyses, values obtained using the reference method were regarded as the true values and were 285 

compared to FDM values (Figure S2). At legislated MCL of 100 µg/kg, 6.1% of FDM on-site iAs values 286 

(w/w) were false positive and 3.0% false negative values; whereas 3.0% of FDM Laboratory iAs values 287 

were false positive and 3.0% were false negative (Table 3 and Figure S5). However, 9.1% on-site iAs 288 

values for d/w analyses (corrected with 10% sample moisture content) were false positive and none were 289 

false negative values at that limit. Similarly, at legislated 0.200 mg/kg, both on-site and lab analyses 290 

indicated a low false positive and low false negative rate (Table 3). The observations imply that FDM on-291 

site and laboratory analyses erroneously identified only 6.1% (w/w) and 3.0% (w/w) samples respectively 292 

as possessing iAs above MCL 100 µg/kg of rice destined for baby food (false positive) despite possessing 293 

safe levels of iAs for baby; and both analyses erroneously identified 3.0% as below that limit (false 294 

negative) despite being higher. Both on-site (w/w and d/w) and laboratory false positive and false negative 295 

iAs values obtained in this study were low and not significant. However, since the most important and 296 

desirable characteristic of a field deployable method is that it should have high probability of giving low 297 
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false-positive and false- negative results (Safarzadeh-Amiri et al., 2011), low false positive and false 298 

negative values obtained for both samples with low (<100 µg/kg) (9.1% and 3.0%) and high (>100 µg/kg) 299 

iAs values (0% and 0%) respectively suggests that accuracy and precision of our the method (FDM) is high. 300 

However, despite obtaining low false-positive and false- negative values for rice samples with both low 301 

and high iAs values, samples with lower iAs (<100 µg/kg) values exhibited relatively higher false positive 302 

and false negative values than those samples with high iAs (>100 µg/kg) values implying that precision 303 

could be influenced by the low iAs values (<100 µg/kg) supporting findings reported by Kinniburgh & 304 

Kosmus (2002) and Safarzadeh-Amiri et al. (2011). Nevertheless number of false positive and false 305 

negative values obtained in this on-site study were not significantly different from laboratory analyses 306 

reported by Bralatei et al. (2015) (10% and 7% respectively) for polished rice samples and those reported 307 

by Safarzadeh-Amiri et al. (2011) (11% and 2%) for tube-well water. The observation also demonstrates 308 

that effect of moisture content, the use of a scoop rather than a balance in the collected samples was low 309 

and insignificant to negatively influence accurate and precise screening. Furthermore, cconsidering that the 310 

two different methods use different analytical procedures (iAs is chemically mobilized to form AsH3 in the field kit 311 

but arsenic species behave differently in anion exchange chromatography), the strong reproducibility of iAs content 312 

in these methods (low false-positive and low false- negative values) indicates that the interferences of redox 313 

active elements (Cu, Mn, Fe, and Zn) were minimal and/or not significant. 314 

CONCLUSION 315 

While the present study was designed to validate the use of FDM in screening polished (white) and 316 

unpolished (brown) rice to the legislated iAs levels on-site, the study further evaluated the suitability of the 317 

method for the determination of iAs in rice bran, whole rice grain and rice husks. It has been shown that 318 

the FDM accurately and precisely identified not only white and brown rice but also rice bran, whole rice 319 

grain and rice husks with iAs levels above and below the legislated limits of 0.100 mg/kg and 0.200 mg/kg 320 

with insignificant false positives (<7%) and false negatives (<3%). The finding indicates the method is 321 

capable of producing on-site measurements that are reproducible in laboratory. Thus it can be potentially 322 
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used for field screening for compliance of legislated iAs levels in rice in low income countries. However, 323 

the main drawback of on-site screening could be greater variability of moisture content of samples (if 324 

analyses are done during season of high humidity). Nevertheless, samples could be air dried to uniform 325 

moisture prior to analyses which could be used to correct data before comparison with the legislated iAs 326 

levels. The method is merited for being simple and quick to use such that one analysis can be completed 327 

within one hour. Additionally, the field kit is relatively cheap and easily transported to the sites for field 328 

analyses without requiring special equipment.  329 
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