
 

 

Relating soil organic matter composition to soil water repellency for soil 
biopore surfaces different in history from two Bt horizons of a Haplic Luvisol  

Haas, C.1*, Gerke, H.H. 2, Ellerbrock, R.H. 2, Hallett, P.D. 3, Horn, R. 1 

*corresponding author: c.haas@soils.uni-kiel.de  

1Institute for Plant Nutrition and Soil Science, CAU Kiel, Hermann-Rodewald-
Str. 2, 24118 Kiel, Germany 

2Institute of Soil Landscape Research, Leibnitz Centre for Agricultural 
Landscape Research, Eberswalder Str. 84, 15374 Müncheberg, Germany 

3 School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, 
UK 

 

Key words: DRIFT spectroscopy, organo-mineral coatings, biopores, root channel, 

earthworm burrow, undisturbed soil samples 

 

Relating soil organic matter composition to soil water repellency 

 

Abstract 

The deposition of organic matter (OM), which is known for its high potential water 

repellency, on biopore walls can enhance preferential flow through these pores. In 

this study OM composition determined with DRIFT spectroscopy was related to soil 

water repellency (SWR) determined with Sessile Drop method (SDM), Wilhelmy-plate 

method (WPM), and sorptivity tests. We hypothesized that the chemical composition 

(in terms of PWI) is (i) related to the physical properties (i.e., contact angle) of 

biopore walls, (ii) depends on the history of the biopore and (iii) differs from the bulk 

soil matrix. Thus, the main objective was to identify the relation between OM 

composition determined with DRIFT spectroscopy and SWR in structured soils. The 

experiments were carried out on biopores and their surrounding soil matrices, 

excavated from two depths of a haplic Luvisol, with three different biopore histories 

(i.e., root channels, earthworm burrows, and root channels which were short-term 

colonized by an earthworm). All measurements at intact biopore surfaces indicated a 



 

 

larger SWR at the surface of biopore walls as compared to the surrounding matrices, 

and showed a higher proportion of hydrophobic functional groups. The OM 

composition determined with DRIFT spectroscopy correlated (R2 > 0.7) with contact 

angles (SDM-method) which is in line with results of both water sorptivity and WPM 

for soils with reduced wettability. The surfaces of short-term colonized earthworm 

burrows had the most varying hydrophobic to hydrophilic components (A/B)-ratio of 

all investigated biopore surfaces depending on soil depth. For biopore surfaces at 

this depth contact angles >90° were frequently observed. The results also indicate 

that earthworms can lower SWR by aggregate disruption. 

 
1. Introduction 

Preferential flow paths like earthworm burrows and root channels (Jarvis, 2007) play 

a major role for gas, water, and heat fluxes in soils. Beside these indirect influences 

of macropores on the fertility of structured soils, biopores may act as pathways for 

roots to propagate into deeper soil layers where water and nutrient uptake can be 

enhanced (Kautz et al., 2012). Organic matter (OM) is known for coating the 

outermost layer of mineral particles (Doerr et al., 2000; Ellerbrock and Gerke, 2004).  

Elluvial processes, which (especially) occur in Luvisols (Ap/E/Bt/C horizon 

sequence), are characterized by leaching dissolved organic substances (DOC) and 

clay particles from the A-and E-horizon to the B horizon, respectively, resulting in clay 

(-organo-)coatings at the surfaces of soil aggregates. On the other hand, earthworms 

and roots exude numerous mostly organic compounds like sugars, amino acids and 

terpenes but also carbon dioxide (Scheu, 1991; Jones et al., 2009). The total amount 

and composition of the exudates varies with organism age, species, feeding, health 

status and soil environmental conditions (Carvalhais et al., 2010; Christiansen-

Weniger et al., 1992; Jones 2009). There is also scope to modify organic compounds 

released to biopore surfaces through plant breeding, as large differences between 

crop cultivars have been observed (Christiansen-Weniger et al., 1992). Furthermore, 

decayed plant roots (debris, fine root hairs) increase the carbon content in the 

rhizosphere (for a review see Six et al., 2004). All these processes result in altered 

soil properties compared to the bulk soil (Nunan et al., 2003). In consequence 

bioturbation by earthworms or roots can cause biopores with concentrated OM along 

their walls (Kautz et al., 2012). Both, the outermost layer of soil aggregates, as well 



 

 

as the surface of biopores are hot-spots in terms of microbial activity (Kuzyakov & 

Blagodatskaya, 2015; Hoang et al., 2016), and interaction between percolating water, 

reactive solutes and the soil matrix.  

Aggregation next to biopores is influenced by two factors, both enhancing soil 

aggregation: (i) organic compounds, sometimes coupled with the presence of 

decaying roots may stick together mineral particles (Six et al., 2006) and (ii) plants 

may enhance wetting and drying (Vetterlein and Marschner, 1993) and coincide 

shrinkage and swelling (Horn et al., 1994; Peng and Horn, 2005). Beside other 

influences, aggregate development is also affected by the pH, since protons can act 

as a monovalent cation. While the soil around roots can become more acidic (Uteau 

et al., 2015) due to the roots’ release of CO2 and H+, the soil around earthworm 

burrows can be more neutral/alkaline caused by the earthworms’ release of CaCO3 

from specialized oesophageal glands which were discovered by Lankester (1865). 

Some earthworms are also able to affect the pH in their environment (Sizmur et al., 

2011). However, bioturbation can also homogenize soil aggregates, e.g. at high 

water contents (Horn et al., 1994), forming an unstructured mixture that release 

stabilized organic matter (Six et al., 2006) and an intermixture of aggregate surfaces 

with their interiors (Bossuyt et al., 2005). Such processes often result in 

heterogeneous distributions and compositions of organic matter at a small scale that 

in turn may influence soil properties like contact angle.  

The wettability of intact biopore surfaces created by either earthworms or plant 

roots has been intensively studied (e.g., Leue et al., 2010b, 2013, 2016; Urbanek et 

al., 2014). It is often related to the soil organic carbon content (Urbanek et al., 2014; 

Zheng et al., 2016). But organic matter in soil (SOM) is a heterogeneous mixture of 

organic components containing hydrophilic (C=O) and hydrophobic (C-H) functional 

groups that can be determined with infrared spectroscopy (e.g., Ellerbrock and 

Gerke, 2004). The ratio between the C-H absorption band intensities (i.e., a measure 

for hydrophobic groups) and the C=O absorption band intensities (i.e., a measure for 

hydrophilic groups), the C-H/C=O-ratio, was found to be related to the wettability of 

soil samples (e.g., Ellerbrock et al., 2005) and was defined as a potential wettability 

index (PWI; Leue et al., 2013). However, there is a lack in information about 

alteration in surface properties of both, earthworm burrows and plant root channels 

induced by earthworm activity. 



 

 

Beside the PWI, a couple of methods for the assessment of the wettability of soils are 

available (Bachmann et al., 2003). While contact angles can be measured directly 

with the sessile drop method, indirect measurements such as sorptivity tests or 

capillary rise method (contact angle derived by comparing for example flow-rates of 

ethanol with that of water) or the time that droplet of an ethanol-water mixture of a 

certain molality need to penetrate (Bachmann et al., 2003; Moody and Schlossberg, 

2010) represent the methods used in general. But there is a lack in relating spectral 

information on the PWI of SOM composition at intact surfaces with their wettability 

properties. 

Our aim was to investigate the influence of earthworms, plant roots, and their effects 

on the potential wettability index (PWI). Two experimental setups were used to 

measure the PWI on different scales. And we linked the PWI with a physical property: 

contact angles determined from sessile drop method, sorptivity tests and the 

Wilhelmy plate method. 

We hypothesized that the chemical composition (in terms of PWI) is (i) related to the 

physical properties (i.e., contact angle) of biopore walls, (ii) depends on the history of 

the biopore and (iii) differs from the bulk soil matrix. Furthermore, we expected that 

the chemical composition of organic compartments is distributed more 

heterogeneously if measured on a smaller scale. We expected an increasing degree 

of scattering with increasing spatial resolution, reflecting the small-scaled 

heterogeneity of intact biopore walls or, more generally, of soils. With a view to soil 

ecology and e.g., hydraulic processes, a smaller-scaled analysis seemed useful, 

because biopore walls may contain large numbers of pinholes that can act as a 

preferential flow path from the biopore surface into the surrounding matrix. The 

quality of the organic matter of these pinholes can differ from those of biopore walls 

(Leue et al., 2016). Since these very small pinholes can have a huge hydraulic 

impact (described by the Hagen-Poiseuille law) a small-scaled analysis of the 

wettability of soils (or of related parameters, i.e., the PWI) is useful for characterizing 

hydraulic properties of pore walls. To the best of our knowledge, this is the first work 

that supplies results for PWI on two different scales (spatial resolution ranging from 

0.018 to 0.79 mm2). 

 

2. Material and Methods 



 

 

2.1 Soil material and sampling 

In total 72 soil cores were excavated in September 2014 from a Haplic Luvisol 

(IUSS Working Group WRB, 2006) at the experimental area of Campus Klein-

Altendorf (50°37’9’’ N 6°59’29’’ E, University of Bonn, Germany. The site is 

characterized by a maritime climate with temperate humid conditions (9.6°C mean 

annual temperature, 625 mm annual rainfall). Some main soil properties are listed in 

Table 1. The Bt horizon is characterized by accumulated clay, leached from the A-

horizon (0-0.27 m) and the E horizon (0.27-0.41 m).  

The soil samples were excavated from four pits (see Table 1) of a totally 

randomized trial (Kautz et al., 2014). Chicory (Cichorium intybus L. ‘Puna’, 5 kg ha-1 

seeding rate) had been grown in these trials for the last three years. With its 

herringbone or monopodial branching root systems Cichorium intybus L. is known for 

its ability to penetrate deeply into the subsoil exploring for water and nutrient supply 

(Kautz et al., 2012). After the roots decay, large (diameter ≥ 5 mm), continuous 

biopores remain that can potentially be colonised by earthworms. Soil samples from 

two layers within the Bt-horizon (0.41-1.15 m) were investigated: Bt-1 from 0.45-0.55 

m and Bt-2 from 0.55-0.65 m depth. 

From both horizons soil cores of 3 cm in diameter, and 10 cm in height were 

excavated such that each core contained a macroscopic biopore (≥ 5 mm in 

diameter). The type of the biopore was classified endoscopically (Kautz et al. 2015) 

according to its “History” as either: 

- Colonized and/or created by a plant root (Cichorium intybus L., (R)) 

- Colonized and/or created by an earthworm (Lumbricus terrestris, (EW)) 

- Colonized and/or created by a plant root followed by short-term colonisation of 

L. terrestris, (REW).  

The latter one had been colonized by earthworms for a period of approximately 

six months. Earthworms were fed with ryegrass residues placed at the soil surface in 

this period. Before sampling, the epi-earthworms were removed with the octet 

method (Thielemann, 1986). 

Since L. terrestris was the only deep-burrowing earthworm present at the studied 

site all earthworm burrows were formed by this species. The sample cores were first 

equilibrated to a defined matric potential of (ᴪ" = -30 kPa, equals field capacity), and 



 

 

scanned with a micro X-ray computed tomograph (μCT Nanotom© 180; GE Sensing 

& Inspection Technologies GmbH, Wunstorf, Germany). Afterwards, sub-samples 

were saturated again, and drained  to defined matric potentials (i.e., ᴪ# = -1kPa; -3 

kPa; -6 kPa - using sand beds - or -30 kPa – with the help of ceramic plates. See 

Haas et al 2016 for more information) for sorptivity measurements described later.. 

Sub-samples were cut off vertically (Fig. 1) using a scalpel for all measurements. 

Sub-samples were stored at 4°C prior to the initial equilibration and before diffuse 

reflectance infrared Fourier transform spectroscopy. 

 

2.2 Some soil properties 

Disturbed, air-dried, and sieved soil (< 2 mm) was used for standard soil 

parameters. pH values were determined in 25 ml 0.01 M CaCl2 (1:2.5 m/v, Blume et 

al., 2010). Inorganic carbon was determined by Scheibler analysis (Blume et al., 

2010). Soil organic carbon (SOC) content was calculated by subtracting the inorganic 

carbon concentration from total carbon concentration determined via dry combustion 

at 1200 °C (Coulomat 702, Ströhlein instruments, Kaarst, Germany; Schlichting et al. 

1995). Soil texture was determined according to Schlichting et al. (1995) by 

combined sieving and sedimentation processes (pipette method) after removal of 

cementing substances (HCl to remove CaCO3; H2O2 for organic carbon oxidation; 

Na-pyrophosphate for dispersion).  

 

2.3 Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy 

The preparation of the equilibrated sub-samples for DRIFT spectroscopy required a 

thickness reduction of the sub-samples by scraping off material from the external side 

of the soil column such that the samples thickness was about 0.01 m. The obtained 

thin intact soil samples were wrapped in tin foil (Ellerbrock et al., 2009) and fixed on 

aluminium plates - with the external side located towards the aluminium plate. These 

thin intact soil samples were air-dried and stored in a desiccator over dried silica gel 

for 16 hours, before DRIFT spectroscopy was performed. Measurements were 

performed at two scales: 

(i) The DRIFT mapping technique (macro-DRIFT) performed with a Bio-Rad FTS 135 

(BioRad Corp, Hercules, CA, USA) combined with an XY-positioning table (Pike, 



 

 

Madison, USA, adapted by Resultec, Illerkirchberg, Germany). The DRIFT mapping 

was carried out along transects across the biopores in 1 mm steps (Fig. 2; transect 

length is the whole sample width). Here, two transects of each of four samples, were 

investigated per history and depth. The IR beam was separately focused at each 

measurement point with respect to surface elevation (Leue et al., 2013) to avoid 

micro-topography effects on the spectra (Leue et al., 2011). Each macro-DRIFT 

spectrum was recorded by 16 co-added scans. 

(ii) DRIFT microscopy (micro-DRIFT) used a Cary 660 combined with a Cary 610 

microscope (both from Agilent Technologies, Santa Clara, CA, USA). Transects that 

cover the first 2.5mm next to the biopore wall were measured in 0.15 mm steps (see 

scheme in Fig. 2). Two transects of each of two samples, were investigated per 

history and depth. For the micro DRIFT measurements, no separate focussing of 

each measurement point was done to ensure that the IR beam meets its designated 

position. Each spectrum obtained by micro DRIFT was recorded by 32 co-added 

scans. 

All DRIFT spectra, micro and macro, were recorded in a range of 400–4000 

cm-1, with a resolution of 1 cm-1 (FTIR) (Ellerbrock et al., 1999), and corrected 

against ambient air as background (Haberhauer and Gerzabek, 1999) by using a 

gold target (99% Infragold©, Labsphere, North Sutton, NH, USA) that was fixed onto 

the positioning table at the average sample surface elevation. Note, for macro DRIFT 

the diameter of the IR beam is about 1 mm (i.e, an area of 0.8 mm2) while for micro 

DRIFT it is about 0.15 mm (i.e., an area of about 0.02 mm2) (Table 2). Therefore, the 

area of a single measurement point investigated by macro DRIFT was about 40 times 

larger than that observed with micro DRIFT. 

All spectra were transformed into Kubelka-Munk (KM, Kubelka 1948, Kubelka 

and Munk 1931) units using the software WIN-IR Pro 3.4 (Digilab, MA, USA), 

baseline corrected, smoothed (boxcar, factor 15), and zapped for absorptions bands 

associated with carbon dioxide (WN regions 2386-2297 cm-1). Spectra from 

equidistant measurement-points along transects were pooled, resulting in a much 

higher number of replicates for the surface of the biopore samples. The C-H band 

intensities of the DRIFT spectra – characteristic for hydrophobic alkyl groups in OM - 

were measured as a vertical distance (i.e., as height) from a local baseline plotted 

between tangential points in the spectral regions between WN 2948 - 2920 cm-1 and 



 

 

2864 - 2849 cm-1 (Table 2). The C=O band intensities (i.e., characteristic for 

hydrophilic alkyl groups in OM) were measured as height from the total baseline of 

the spectra in the regions of WN 1720 - 1700 cm-1 and 1625 - 1600 cm-1). The 

potential wettability index (PWI; Leue et al., 2013) used to characterize the organic 

matter was calculated as the ratio between the summed C-H signal intensities and 

the summed C=O signal intensities (C-H/C=O ratio; Ellerbrock et al., 2005). Larger 

PWI values indicate a smaller potential wettability of the OM.  

 

2.4 Soil water repellency 

Soil wettability was measured using a range of approaches (summarized in Table 3). 

(I.) An optical method provided the direct contact angle of intact soil samples by 

measuring the angle of a water droplet deposited on the soil surface by a syringe 

positioned above the sample. A high-speed camera (OCA20, DataPhysics, 

Filderstadt, Germany) with a frame rate of 250 s-1 was used to record droplet 

dynamics. SCA20 software (DataPhysics, Filderstadt, Germany) was used for 

analysing and calculating contact angles. The soil samples’ surface is not flat, which 

is especially true for the surface of biopores. To determine the contact angle correctly 

we cut the samples into much smaller sub-samples (≤ 5 mm thick x 10 mm x 10 mm), 

aiming to achieve plain sections. Air-dried sub-samples were fixed to an aluminium 

plate. The left- and right-handed side contact angles of each droplet were averaged. 

Measurements were replicated 3 times for each sample and each zone (bulk or 

biopore). Each droplet had a volume of around 8 µl. Under the assumption of a ball-

shaped droplet its extension in area is ≥4 mm2. Thus, this method showed the lowest 

spatial resolution applied on structured soils in this study. The used water was stored 

in vacuum to reduce the amount of dissolved gases in the liquid. 

(II.) Wettability was also quantified from sorptivity tests at a hydraulic gradient 

of +0.02 m, as described in Hallett et al. (2003). Instead of a sponge filled tube, we 

used a smaller capillary (Minicaps, 5 µL, Hirschmann Laborgeraete, Germany, ISO 

7550) to gather infiltration rates of both, water and ethanol successively with a spatial 

resolution of around 0.1 mm2. Liquid uptake by the soil from a reservoir was recorded 

for 90 seconds every 1 second from a 0.1 mg balance. Sorptivity S (m s-0.5) was 

calculated according to Eq. 1 (Hallett et al. 2003): 

𝑆 = 	 (𝑄	 ∙ 𝑓	 ∙ (4	 ∙ 𝑏	 ∙ 𝑟)/0)1.3       (Eq. 1) 



 

 

where Q is the liquid flow rate (m3 s-1), f is the fillable air-porosity (-) f (Leeds-Harrison 

et al., 1994), b accounts for the wetting front and was assumed to be 0.55, and r is 

the diameter of the used capillary (m). The contact angle, CA from sorptivity tests 

was calculated by:    

	CA = arccos	;1.95	 ∙ 	 𝑆?@ABCDE ∙ 	 𝑆FG@?H/0I
/0   (Eq. 2) 

(III.) Measurements with the Wilhelmy plate method were performed on 

homogenized soils that were passed through either a 2 mm (Fig. 6a) or 0.63µm (Fig. 

6b) sieve. The measurements were conducted as described in Goebel et al. (2008) 

and transformed to CA using calculations from Bachmann et al. (2003). We used a 

microtensiometer (Kruess, Hamburg, Germany) fitted with a Peltier element to 

maintain the temperature of the deionised water as wetting fluid at 20°C. The 

Wilhelmy plate method provides both advancing and receding CAs, whereas most 

other methods only provide the advancing CA. Three replicates were measured for 

the bulk soil. As the method needs relatively large amounts of soil for a single 

measurement, we were not able to investigate biopore wall-borne soil. The CA (q) 

was calculated according to Bachmann et al. (2003) from the force F (N) acting on 

the plate using Eq. (3): 

cos q = F ∙ (ρ ∙ σLV)-1        (Eq. 3) 

with density ρ (Mg m-3) and surface tension of the wetting liquid σLV (N m-1). The latter 

was determined using a microtensiometer and a platinum plate. The calculation 

according to Eq. 3 is based on an assumed complete wettability of the platinum plate 

(cos q = 1). For more details see Holthusen et al. (2012).  

 

2.5 Statistical analyses 

The statistical software R (R Development Core Team, 2017) was used for 

plotting and evaluating the results. Contact angles as derived from sessile drop 

method, from the Wilhelmy plate method, or from sorptivity tests, as well as, water 

and ethanol sorptivity data, and the log-transformed PWI values were analysed with 

R software analogously. 

The data evaluation started with the definition of an appropriate statistical 

mixed model (Laird and Ware, 1982; Verbeke and Molenberghs, 2000). Data were 

tested for normality and for homoscedasticity. These assumptions are based on a 



 

 

graphical residual analysis. The statistical model included (i) the history of the 

biopore (as shown in section 2), (ii) the sampling depths (0.45-0.55 m and 0.55-0.65 

m), (iii) the distance from the biopore surface and the (iv) pit (1-4), as fixed factors. 

The considered covariates (shown in Table 1 and their potential interaction effects) 

are based on a model selection, resulting in equations as follows: 

𝑃𝑊𝐼MN = 𝑒GPQ∗	STPQ ∗ 	𝑒UPQ∗	VMW@ ∗ 	𝑒XPQ  (Eq. 4) 

with a,b, and c as fitting parameter, i and j define the histories of the biopores and the 

depths, and dist the distance from the biopore surface (10-3 m). e is Euler’s number. 

  The random effects were defined by the plots and suitable interaction effects 

with history, depth and cylinder, assuming a split-plot design (pit + pit:history + 

pit:history:depth + pit:history:depth:cylinder + residual error). Based on this model, a 

Pseudo R2 was calculated (Nakagawa and Schielzeth, 2013) and an analysis of 

covariance (ANCOVA) was conducted (Cochran, 1957).  

 

3. Results 

For texture and soil organic carbon-content, no depth-dependent trends were 

found (Table 1), while pH increased slightly with depth. 

 

3.1. Organic matter composition and water repellency  

Absorption bands of hydrophobic C-H groups (wavenumber (WN) 2948–2920 

cm-1 and WN 2864–2849 cm-1) were easily detectable in the spectrum of the 

biopores’ surface and, especially, in the spectrum of POM (Fig. 2: blue line), but 

almost undetectable in the spectrum of the soil matrix (Fig. 2: grey line). Furthermore, 

the DRIFT spectra of POM were mostly not affected by so called “bulk mode bands” 

(2000 – 1700 cm-1, Ellerbrock et al. 2016), caused by lattice vibrations in soil minerals 

(i.e., quartz) if those particles have diameters above 70 µm (Leue et al., 2010a).  

Since equidistant measurement-points (i.e., with same distance from the 

surface of the biopore wall) were pooled at the macro scale (Fig. 3a) a much larger 

number of measurement points were considered for characterizing the biopore 

surface. The PWI values obtained from macro DRIFT analysis showed highest 



 

 

means for the biopore surfaces (distance = 0 mm) and decreased with increasing 

distance from the biopore wall. The relatively high standard deviations for PWI 

(macro DRIFT) indicate a large heterogeneity in quality and quantity of SOM 

distributed at the biopore surfaces. The PWI was found to scatter within 5 and 8 mm 

distance for the R-samples from Bt2, within 1-3 mm distance for the EW-samples 

from Bt-1 or within the 0-9 mm distance for the R-samples from Bt-1 and for both 

depths for the REW samples.  

On the micro scale (Fig. 3b) the largest means of PWI were documented within some 

distance from the biopores surface: for the R-samples from Bt-1 two peaks in PWI 

were exhibited in 0.5 and 1.5 mm distance from the surface and smaller means for 

PWI from Bt-2. Pores colonized by earthworm showed larger values within 0 to 1.5 

mm (Bt-1) or 0 to 0.6 mm (Bt-2) in distance from the biopores’ surface. Values for 

REW from Bt-1 showed the most pronounced scattering with its maximum in 0.15 

mm distance from the biopores’ surface or an almost absence of larger PWI values 

within 1.5 mm in distance from the biopores surface and a peak in 1.75 mm (Bt-2). 

On the micro scale, REW showed the smallest depth-dependent means for the PWI 

of all biopore histories.  

The statistical analysis of covariance (see section 2.5) showed significant interactions 

for the logarithmic PWI between the history, the distance and the depth on the micro 

scale. At the macro scale, the influence of the pH value improved the statistical 

model, additionally. Table 4 shows the regression coefficients for macro scale which 

can be used with Eq. 4. . Since the statistical analysis for results of the sessile drop 

method showed that the sampling zone (matrix or biopore) was the only significant 

influence on contact angles, we pooled the biopores’ histories (Fig. 4). This resulted 

in 8 points for each zone (biopore and bulk), each representing a single depth of 

each pit. In Figure 4 the PWI is plotted against the contact angle as derived from the 

sessile drop method (Fig. 4a) or sorptivity tests (Fig. 4b). The sessile drop method 

delivered promising results with highly significant differences between biopores and 

bulk soil. Here, the means of the bulk soil contact angles are close to 30° and could 

be determined with good repeatability as indicated by the small standard deviations. 

The biopores' heterogeneity is reflected by means of contact angles between 55° and 

85°.  



 

 

CA derived from sorptivity tests (Fig. 4b) differed from those of the sessile drop and 

no clear statistical influence of the type of surface (matrix or biopore) was found. 

There were only weak (0.05 ≤ p ≤ 0.1) significant interactions between the CA and 

matric potential, the measurement zone and the pit the soil cores were from. The CA 

values derived from sorptivity tests ranging from 46.9° ± 29.1° to 70.3° ± 6.4° (Table 

5) of matrix surfaces are not significantly different from those of biopore surfaces 

(ranging from 48.8° ± 17.1° to 75.2° ± 4.6°). The same is found for the water 

sorptivity (Fig. 5), which ranged from 0.002 to 0.07 mm ∙ s-0.5. However, general 

trends could be observed: With decreasing water content (decreasing matric 

potential) scattering and water sorptivity increases while differences in median 

between matrix and biopore surfaces disappear. Note, pores colonized by 

earthworms (i.e., EW; ᴪm = -1 kPa, and REW; ᴪm = -3 kPa), show a good 

repeatability for sorptivity data. 

The CA values as derived from the Wilhelmy plate method ranged from 38.4° to 

66.6°, if the soil is sieved to ≤ 2 mm (Fig. 6a) or from 30.4° to 52.9° if the soil is 

sieved to ≤ 0.63 mm (Fig. 6b). Although the latter one showed a good repeatability 

indicated by lower standard deviations the values were not different for biopore as 

compared to matrix surface samples. 

 

4. Discussion 

The presented water sorptivity rates are more than ten times lower than those shown 

by Hallett et al. (2003) who investigated soil from both, the rhizosphere and bulk soil 

at different water contents. However, in contrast to Hallett et al. 2003, who used an 

infiltrometer device with 0.4 mm in diameter, the infiltrometer tip used here show a 

diameter of about 0.22 mm. Note, as stated by Hallett et al. 2003, the sorptivity rates 

should decrease with decreasing diameter of the infiltrometer tip which is in 

accordance to the ten times lower sorptivity rates found here. The larger repeatability 

of the water sorptivity rates (Fig. 5) for the surface samples from EW and REW could 

be explained by homogenization caused by the earthworms’ activity. However, 

differences in water transport were not statistically significant. These differences 

could be caused by two processes: (i) the colonizers’ influence on aggregation and 

(ii) exudates and secondary metabolites (Hallett et al., 2003) because they may coat 

soil particles and induce slightly higher water repellency in the outermost layer of 



 

 

biopore samples (Czarnes et al., 2000). The influence of such outermost layers could 

be shown by comparing samples ≤ 2 mm (Fig. 6a) with those ≤ 0.63 mm (Fig. 6b). By 

sieving the soil to 0.63 mm aggregates > 0.63 mm were destroyed and therewith their 

organic coatings, leading to a more homogenous soil. This homogenization  resulted 

in lower means and standard deviations (effect of dilution of hydrophobic 

substances). It could be assumed that the hydrophobicity of the aggregate coatings 

is mostly caused by two processes: (i) the accumulation of amphiphilic organic 

substances which are not able to diffuse into the aggregates’ interior due to their size 

and (ii) due to differences in the spatial orientation of SOM functional groups caused 

by the dual porosities of soils (aggregates’ in- and exterior pore space): If a water 

saturated soil dries its drainage starts with its largest pores. In this case the 

hydrophobic functional groups of SOM are orientated towards air-filled pores, while 

the hydrophilic functional groups are orientated towards the soil water (Bachmann et 

al., 2003). The largest pores are mostly biopores, while coarse pores are found at the 

interaggregates’ pore space, which is located next to the aggregates’ exterior. The 

smallest pores were found at the aggregates’ interior. Since some of these pores 

never dried, this change in the spatial orientation of the hydrophilic groups in SOM 

towards the mineral particles is not forced as it is for the larger pores, resulting in 

lower CA. However, the results for the homogenous soil fit well to those gathered 

from the sessile drop method.  

As in Leue et al. (2010b; 2013) and Fér et al. (2016), we found larger PWI 

values for the surfaces of root channels and earthworm burrows, as compared to the 

matrix (i.e., surrounding soil). Such higher PWI values are also related to a lowered 

wettability of these regions, described by increased contact angles (Leue et al., 2015) 

resulting in decreased infiltration rates (Hallett et al., 2003). The lower wettability of 

the biopore surfaces may be caused by the accumulation of organic components (like 

plant waxes or terpenes) which originate from earthworms or roots by release and / 

or illuvial processes and perfectly follows the enlarged transportability of these 

organic compounds, caused by increased diffusion coefficients in biopore walls 

compared to soil matrices as found by Koebernick et al. (2017) and Haas et al. 

(unpublished).  

The PWI values determined from macro DRIFT spectra of earthworm (EW) burrow 

walls are similar to those of the root channels (R) (Fig. 3a) but larger than those of 

root channel surfaces recolonized by L. terrestris (REW), while PWI values 



 

 

determined from micro DRIFT spectra indicate a strong decrease in PWI for the REW 

from Bt-2 as compared to R and EW samples (Fig 3b). Two processes may be 

responsible: an enhanced mechanical redistribution of organic particles caused by a 

total loss of soil aggregation, which may be the result from shearing forces exerted by 

earthworm movements through thickening and following sliding through the cracking 

soil volume at high water contents. Because of homogenisation caused by the 

earthworm´s activity, regions with higher means in PWI (surface of biopores and/or 

exterior of aggregates) are mixed with regions of low PWI (soil matrix and/or interior 

of aggregates) resulting for REW samples in PWI values lower than for EW and R 

samples. We expect the homogenization potential of a moving earthworm to be 

larger at biopores that had been colonized by plant roots prior to earthworm 

colonization, because plant roots alter the soil surface chemically and physically 

(Ruiz et al., 2015). Exudates increase the water content at given matric potential, 

nutrient uptake affects the surface charge and pH apart from a physical pore-size 

shift, and altered pore geometry (Whalley et al., 2005). Consequently, the decay of 

organic particles should be enhanced in biopores colonized by both, EW and R, 

since such biopores show pH values more favourable for microorganisms than 

biopores colonized by R or EW alone (Whalley et al. 2005). Biopores colonized only 

by roots will be more acidic due to CO2 and H+ release while those colonized solely 

by EW will result in a more alkaline soil due to calcite release from 

specialized oesophageal glands (Lankester, 1865).According to DRIFT data the zone 

of the biopore walls influenced either by EW, R or REW is limited to a thickness of 

about 0-2 mm which is in accordance with Koebernick et al. (2017), Uteau et al. 

(2015) and Leue et al. (2010). For biopores created by EW and REW the PWI values 

became relatively constant (i.e., small standard variations) for zones that are in 

distances above 2 mm from the biopore wall (Fig. 3), whereas the PWI for <2 mm in 

distance from the pore wall surface indicated the formation of a kind of lining. Such 

trend was especially detectable with micro-DRIFT technique (micro scale, Fig. 3b) for 

EW biopores. However, for the R-biopores at distances above 2 mm strong variations 

in PWI values were found at both, macro and micro, scale. Such stronger variation in 

PWI for the R-biopores may be explained by effects of lateral roots growing into the 

soil matrix surrounding the root channel. Differences in the width of the earthworm 

linings (0 to 1.5 mm for Bt-1 and 0 to 0.6 mm for Bt-2), can be explained by a higher 



 

 

energy needed for the mechanical work to extent the cavity with increasing soil 

depths (as described by Mohr-Coulomb theory, Horn et al., 1994; Ruiz et al., 2015).  

The results of sorptivity test and sessile drop procedure (Fig. 4) confirmed the PWI 

determined from DRIFT spectra, indicating a reduced wettability for biopore walls. 

This is in accordance with findings of Hallett et al. (2003) using sorptivity tests, and 

with those of Leue et al. (2015) using sorptivity tests and sessile drop method.  

Differences between the results of the three different CA measurement methods and 

the PWI are caused by (i) the different spatial resolutions and (ii) methodological 

limitations of the used techniques, as well as by (iii) differences in sample preparation 

(intact, and sieved samples). Using the identical technique, the obtained results are 

albeit different because of the spatial distribution of organic components such as 

SOM at surfaces of intact soil samples. It is distributed mostly heterogeneous (i.e., 

patchy layers Kaiser and Guggenberger, 2000) and has especially with a highly 

sensitive method a large impact on the measured parameters (e.g., PWI values of 

micro vs macro DRIFT) .If different methods are used and the results compared (ii), 

also different results will be obtained for sorptivity tests since these procedures are 

mostly limited to samples that show CA smaller than 90° because the samples need 

to be wettable to a certain extent (Bachmann et al., 2003). In contrast the sessile 

drop and the Wilhelmy plate method both allow to analyse samples with CA from 0 to 

180°. Cosentino et al. (2010) compared different methods for assessing the 

wettability of soils (namely sorptivity tests, capillary rise method and water droplet 

penetration time test), and stated that these methods measure different related soil 

properties. In soils with small levels of water repellency, water droplet penetration 

time test (WDPT) determines the rate of wetting by water, whereas the R index 

(calculated from sorptivity tests) and CRM measure hydrophobicity. Furthermore, the 

sorptivity test uses two wetting liquids, with ethanol potentially mobilising organic 

compounds, changing pore surface roughness and causing differences in swelling at 

the wetting front compared to water. Furthermore (iv), as Leue et al., 2010b stated, 

the CA is characterized by the first contact of a droplet at a sample surface, thus, the 

OM properties of the outermost surface molecules are of essential importance 

(Bachmann et al., 2003). Fungal hyphae are e.g. known for their hydrophobicity. In 

this study the maximum CA of about 132° was measured (sessile drop method) 

directly at a fungal mycelium. Such data shows extreme hydrophobic behaviour while 

fungal hyphae can be also partly hydrophilic as well which was observed by 



 

 

goniometer measurements in this study. Such hyphae were roped into a water 

droplet, followed by a release of spores. The processes result in smaller CA values. 

Additionally inconsistences between CA and PWI data are probably caused by the 

penetration depth of the IR radiation of about 6 to 8 µm that strongly exceeds the 

thickness of the outermost molecular OM layer (Diehl, 2013). The results show, that 

the extent of water repellency of a biopore wall finally depends on their colonization 

history (root and/or earthworm) and on the soil depths and is much more pronounced 

in biopore walls than it is in the soil matrix. Therewith, the capillary rise or the water-

content at a given matric potential is lowered (described by Jurin’s law) and so is the 

flow of water through the biopore wall at a given matric potential. However, small-

scaled (micro) DRIFT measurements showed, that even if macro DRIFT 

measurements indicate pronounced water repellency, biopore walls can have a 

certain surface percentage with less pronounced water repellency. These regions act 

as preferential flow paths from the biopore wall into the soil matrix. Finally, we also 

need to consider the time-dependency or reversibility of the water repellency which 

affects the water flow during an event of precipitation. However, until now, these 

dynamic processes are neither completely understood nor have interactions between 

the composition of mineral surface layers and time dependent alterations of water 

repellence been quantified.  Further research should therefore focus on the dynamics 

of OM quality and water repellency in biopore walls and their surrounding soil 

matrixes. The repeated analyzation of defined loci of artificial pores which could be 

colonized by an earthworm and/or root at defined time points during the 

recolonization would eliminate the influence of soil heterogeneity.  

  

5. Conclusion 

1) The contact angle, the PWI, and with that the chemical composition of 

biopore walls differed from the soil matrix. Furthermore, the spatial extent of the 

alteration of the soil depends on the biopores’ colonizer (root, earthworm or both) and 

on further soil factors like soil depth.  

2) Results showed that SWR is heterogeneous distributed at transects across 

biopores. Thus, water flow is expected to occur preferentially through regions with a 

less pronounced SWR. 



 

 

3) The linkage of PWI values to contact angles gathered from other methods 

(especially from the sessile drop method / optical measurements) delivered promising 

results despite of methodologically given differences in spatial resolution.  

4) The DRIFT spectroscopy is an easy, fast, and reliable method that allows 

feedbacks on the chemical composition of the organic coatings of surfaces. Its 

potentially high spatial resolution and its broad field of application make the DRIFT 

spectroscopy a highly appropriate approach in small-scaled soil analysis. However, 

the PWI a dimensionless parameter indicates only a potential for water driven 

transport but did not reflect real transport functions. 

5) Further research is needed to derive transfer functions that link PWI values 

with wettability properties like CA. 

6) Earthworm activity was found to reverse the reduced wettability (in terms of 

high means in PWI) of biopore walls, resulting in lower CA and therewith higher 

infiltration rates into the surrounding soil which in turn leads to a larger amount of 

water available for plant production. Consequently, we suggest an increase of both, 

the number of deep rooting plants in crop rotation, and the number of individuals of 

earthworms to optimize water transport or even capillary rise through agricultural 

soils with respect to sustainable agricultural productivity. This can be justified using 

Good Agricultural Practices (GAP). 
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Fig. 1: Sample preparation and exemplary transect (yellow, dotted line). Samples 

were cut off vertically, air-dried and stored in a desiccator overnight, before Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) was performed along 

the transects. Results of measurements at the biopores’ surface were pooled (=0 mm 

distance to biopore surface, Fig. 3 and Fig. 4). The same was done for equidistant 

measurement points.   



 

 

 

Fig. 2: Exemplary spectra as derived from macro diffuse reflectance infrared Fourier 
transform (macro DRIFT) spectroscopy for particulate organic matter (POM (i.e., 
straw residues; blue line), for soil matrix close to biopore surface (yellow line) as well 
as for the soil matrix more distant (grey line) to biopore surface. The right-hand side 
shows transects at biopore samples studied by macro- and micro-DRIFT 
spectroscopy. 

 

Fig. 3: Means and standard deviation for potential wettability index (PWI), derived 
from a) macro and b) micro diffuse reflectance infrared Fourier transform (DRIFT) 
spectra of biopores colonized and/or created by Lumbricus terrestris (EW), colonized 
and/or created by chicory (Cichorium intybus L.) roots (R), and biopores colonized 
and/or created by a plant root followed by colonisation of L. terrestris (REW). The 
upper row shows data for Bt-1 (0.45-0.55 m) while the lower row those for Bt-2 (0.55-
0.65 m). PWI is defined as the ratio of the intensities of summed C-H signals to 
summed C=O signals. Results of measurements at the biopores’ surface were 
pooled (=0 mm distance from biopore surface). The same was done for equidistant 
measurement points. For a) nR,Bt-1 = 29,8,8,8,8,8,7,7,5,3; nEW,Bt-1 = 
37,8,8,8,8,8,8,8,6,4; nREW,Bt-1 = 34,8,8,8,8,8,8,8,5,3; nR,Bt-2 = 28,8,8,8,8,8,7,7,4,3; 
nEW,Bt-2 = 33,8,8,8,8,8,8,8,5,6; nREW,Bt-2 = 35,8,8,8,8,8,8,8,4,8. For b) n=4.  

 

Fig. 4: Relation between potential wettability index (PWI) derived from macro diffuse 
reflectance infrared Fourier transform spectroscopy (Y-axis) and contact angles 
derived from a) optical measurements (sessile drop) on bulk soil (distance from 
biopore surface ≥ 5 mm, filled symbols) and biopore surface (blank symbols) or b) 
sorptivity tests. The biopores’ histories were presented by differing symbols (R = 
triangle, EW = dots, REW = squares). Shown are arithmetic means with one standard 
deviation (solid line for Bt-1, dashed line for Bt-2). Results of measurements at the 
biopores’ surface were pooled (=0 mm distance from biopore surface). Shown 
sorptivity data are for ᴪm = -30 kPa, determined at a hydraulic gradient of +2 cm with 
an infiltrometer device, 0.22 mm in diameter. nsorptivity = 3.   
 

Fig. 5: Influence of matric potential and zone (bulk soil or biopore with defined history 
(colonized and/or created by Lumbricus terrestris (EW), colonized and/or created by 
chicory (Cichorium intybus L.) root (R), as well as for biopores colonized and/or 
created by a plant root followed by colonisation of L. terrestris (REW)) on water 
sorptivity, determined at a hydraulic gradient of +2 cm with an infiltrometer device, 
0.22 mm in diameter. nsorptivity = 3.   

 

Fig. 6: Relation between potential wettability indexes (PWI) as derived from macro 
DRIFT spectroscopy and contact angles derived from Wilhelmy plate method for soil 
sieved to ≤ 2 mm (a) or ≤ 0.63 mm (b). Means with standard deviation for each depth 
and plot of the bulk soil (distance to biopore surface ≥ 5 mm). nWPM = 3. 



 

 

 



Table 1. Sand, silt, clay, as well as, soil organic carbon (SOC) contents in g kg-1 soil, 
as well as, pH, and electrical conductivity (eC) in µS cm-1 of the four pits where soil 
cores were excavated from a loess-derived Luvisol, Klein-Altendorf near Bonn, 
Germany.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pit Depth Sand Silt Clay SOC pH eC 

 m g kg-1  - µS cm-1 
24 0.45-0.55 71.4 780 149 4.0 7.0 83 
24 0.55-0.65 66.1 730 204 5.8 7.03 74 
40 0.45-0.55 54.7 650 295 4.5 6.99 100 
40 0.55-0.65 44.8 710 245 3.4 7.11 83 
57 0.45-0.55 59.8 770 170 3.9 7.02 81 
57 0.55-0.65 44.6 740 215 4.1 7.0 71 
74 0.45-0.55 58.9 660 281 4.0 6.98 104 
74 0.55-0.65 40.0 700 260 3.8 7.02 77 



Table 2. Details about diffusive reflectance Fourier transform infrared spectroscopy 
(DRIFTS) for measurements at microscale and macroscale. Macro-DRIFTS was 
performed with Bio-Rad FTS 135 (Bio-Rad, Munich, Germany), micro-DRIFTS with 
Cary 660 FTIR, connected to microscope model Cary 610 (microscope, Agilent 
Technologies, Santa Clara, CA, USA). 
Parameter / Method Macro-

DRIFTS 
Micro-
DRIFTS 

Investigated area (mm2) 0.79 0.018 
radii of IR beam (mm) 1 0.15 
Max. distance to biopore (mm-1) 15 2.25 
Smoothing factor (-) 15 
Wave number of functional 
groups (cm-1) 

  

C-H (asymmetric) “A”-band 2948–2920 
C-H (symmetric) “A”-band 2864–2849 
C=O “B”-band 1720–1700 
C=O “B”-band 1625–1600 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Overview of the used methods and their spatial resolution. 

 Sessile drop 
method 
(Goniometer) 

Infiltration 
tests 

Wilhelmy 
plate 
method 
 

diffuse reflectance 
infrared fourier 
transform 
spectroscopy 
(DRIFTS) 

Principle Deposition of 
a water 
droplet, 
filmed by 
high-speed 
camera 

Comparison 
of intrinsic 
infiltration 
rates of 
ethanol and 
water 

Immersion of 
a defined 
plate into a 
liquid with 
known 
surface 
tension  

Measures the 
diffusive reflection 
of defined 
wavenumbers 

Results contact 
angles 

contact 
angles 

contact 
angles 

Potential Wettability 
index 
 

Material intact soil 
cores 

intact soil 
cores 

sieved soil intact soil cores 

Spatial 
Resolution 

>4.8 mm² 0.1 mm² >26 mm² 
 

0.8 mm² (macro) or 
0.0018 mm² (micro) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Correlation coefficients (a, b and c) as derived from ANCOVA for results 
derived from macro DRIFTS. Coefficients according to Eq. 4 for biopores colonized 
and/or created by chicory (Cichorium intybus L.) root (R), colonized and/or created by 
Lumbricus terrestris (EW), as well as for biopores colonized and/or created by a plant 
root followed by colonisation of L. terrestris (REW) for 0.45-0.55 m (T1) and 0.55-
0.65m (T2). Degree of freedom (dF) for a and c dF=6 or dF=546 for b. R2 = 0.38. 

 R EW REW 
 T1 T2 T1 T2 T1 T2 
a 3.284 
b -28.441 -28.567 -28.129 -28.795 -28.645 -28.530 
c -0.114 -0.142 -0.196 -0.115 -0.102 -0.119 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 5. Means and standard deviation for contact angles derived from sorptivity 
tests for biopores colonized and/or created by chicory (Cichorium intybus L.) root (R), 
colonized and/or created by Lumbricus terrestris (EW), as well as for biopores 
colonized and/or created by a plant root followed by colonisation of L. terrestris 
(REW). 

 Contact angle [°] 
 -1 kPa -3 kPa -6 kPa -30 kPa 
R 48.8 ± 17.1 65.7 ± 14.3 69.4 ± 8.6 56.0 ± 27.7 
EW 67.0 ± 16.3 56.3 ± 16.7 75.2 ± 4.6 66.8 ± 13.6 
REW 70.0 ± 4.1 72.3 ± 7.7 65.3 ± 12.9 73.0 ± 4.8 
Soil matrix 46.9 ± 29.1 65.3 ± 14.4  66.0 ± 10.9 70.3 ± 6.4 
 



 
Fig. 1: Sample preparation and exemplary transect (yellow, dotted line). Samples 

were cut off vertically, air-dried and stored in a desiccator overnight, before Diffuse 

Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) was performed along 

the transects. Results of measurements at the biopores’ surface were pooled (=0 mm 

distance to biopore surface, Fig. 3 and Fig. 4). The same was done for equidistant 

measurement points.         

 

 

 

 

 

 

 

  

 

 

 

 

 



 

 
Fig. 2: Exemplary spectra as derived from macro diffuse reflectance infrared Fourier 
transform (macro DRIFT) spectroscopy for particulate organic matter (POM (i.e., 
straw residues; blue line), for soil matrix close to biopore surface (yellow line) as well 
as for the soil matrix more distant (grey line) to biopore surface. The right-hand side 
shows transects at biopore samples studied by macro- and micro-DRIFT 
spectroscopy. 

 

 

 

 

 

 

 

 

  

 

 



 

Fig. 3: Means and standard deviation for potential wettability index (PWI), derived 
from a) macro and b) micro diffuse reflectance infrared Fourier transform (DRIFT) 
spectra of biopores colonized and/or created by Lumbricus terrestris (EW), colonized 
and/or created by chicory (Cichorium intybus L.) roots (R), and biopores colonized 
and/or created by a plant root followed by colonisation of L. terrestris (REW). The 
upper row shows data for Bt-1 (0.45-0.55 m) while the lower row those for Bt-2 (0.55-
0.65 m). PWI is defined as the ratio of the intensities of summed C-H signals to 
summed C=O signals. Results of measurements at the biopores’ surface were 
pooled (=0 mm distance from biopore surface). The same was done for equidistant 
measurement points. For a) nR,Bt-1 = 29,8,8,8,8,8,7,7,5,3; nEW,Bt-1 = 
37,8,8,8,8,8,8,8,6,4; nREW,Bt-1 = 34,8,8,8,8,8,8,8,5,3; nR,Bt-2 = 28,8,8,8,8,8,7,7,4,3; 
nEW,Bt-2 = 33,8,8,8,8,8,8,8,5,6; nREW,Bt-2 = 35,8,8,8,8,8,8,8,4,8. For b) n=4. 

 

 

 



  
Fig. 4: Means and standard deviation of Potential wettability index (PWI) derived 
from macro diffuse reflectance infrared Fourier transform spectroscopy (Y-axis) 
plotted against contact angles derived from a) optical measurements (sessile drop) of 
bulk soil (distance from biopore surface ≥ 5 mm, dots) and biopore surface (triangles) 
or b) sorptivity tests. The biopores’ histories were pooled. Results of measurements 
at the biopores’ surface were pooled (=0 mm distance from biopore surface). The 
same was done for equidistant measurement points. Shown sorptivity data are for ᴪm 
= -30 kPa, determined at a hydraulic gradient of +2 cm with an infiltrometer device, 
0.22 mm in diameter. nsorptivity = 3.        

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

 
Fig. 5: Influence of matric potential and zone (bulk soil or biopore with defined history 
(colonized and/or created by Lumbricus terrestris (EW), colonized and/or created by 
chicory (Cichorium intybus L.) root (R), as well as for biopores colonized and/or 
created by a plant root followed by colonisation of L. terrestris (REW)) on water 
sorptivity. nsorptivity = 3.         

 
 



  
Fig. 6: Means and standard deviation for potential wettability index (PWI) as derived 
from macro DRIFT spectroscopy plotted against contact angles derived from 
Wilhelmy plate method for soil sieved to ≤ 2 mm (a) or ≤ 0.63 mm (b). Means with 
standard deviation for each depth and plot of the bulk soil (distance to biopore 
surface ≥ 5 mm). nWPM = 3. 
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