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Microbes rarely exist in isolation, rather, they form intricate multi-species com-

munities that colonise our bodies and inserted medical devices. However, the

efficacy of antimicrobials is measured in clinical laboratories exclusively using

microbial monocultures. Here, to determine how multi-species interactions me-

diate selection for resistance during antibiotic treatment, particularly following

drug withdrawal, we study a laboratory community consisting of two microbial

pathogens. Single-species dose responses are a poor predictor of community

dynamics during treatment so, to better understand those dynamics, we in-

troduce the concept of a dose-response mosaic, a multi-dimensional map that

indicates how species’ abundance is affected by changes in abiotic conditions.

We study the dose response mosaic of a two-species community possessing

a ‘Gene×Gene×Environment×Environment’ ecological interaction whereby Can-

dida glabrata, which is resistant to the antifungal drug fluconazole, competes for

survival with Candida albicans, which is susceptible to fluconazole. The mosaic

comprises several zones that delineate abiotic conditions where each species dom-
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inates. Zones are separated by loci of bifurcations and tipping points that identify

what environmental changes can trigger the loss of either species. Observations

of the laboratory communities corroborated theory, showing that changes in both

antibiotic concentration and nutrient availability can push populations beyond tip-

ping points, thus creating irreversible shifts in community composition from drug

sensitive to drug resistant species. This has an important consequence: resis-

tant species can increase in frequency even if an antibiotic is withdrawn because,

unwittingly, a tipping point was passed during treatment.

Antimicrobial resistance poses a formidable challenge for medicine with resistance to all but the

most recently discovered antibiotics encountered in clinical and agricultural practice (1). Seeking

behavioural changes in antibiotic prescription to control resistance is a field of active theoretical,

laboratory and clinical research. Importantly, it has been mooted that resistance could be eliminated

using evolution-aware strategies that reverse the arrow of time (2). But is drug resistance reversible?

And if not, why not?

Antibiotic cycling, whereby different antibiotics are prioritised and restricted through time, can

lead to the reversal of resistance if resistant microbes pay the price for their abilities to resist by having

reduced fitness when drugs are not around (3, 4). This idea has been tested clinically, with mixed

outcomes. Restricting use can reduce resistance (5,6) though not always (7) and, perversely, increases

in resistance have been observed following drug restrictions (6, 8). Thus clinical strategies that

cycle antibiotics have unpredictable effects: they can work (9–13) but sometimes they fail (14, 15).

It is unclear why a self-evidently worthwhile strategy of antibiotic withdrawal would not reduce

resistance. An absence of fitness costs of resistance (16) is one potential explanation but, in microbial

communities, as we now explain, there is another.

Our explanation is this. For simplicity, imagine a microbial community dominated by two species,

S and R. Assume the former is sensitive to an antimicrobial and the latter is resistant. Suppose S

can invade, and displace, R in the absence of drug and R can invade and displace S in the presence

of drug; in this case the drug resistance phenotype of the community is reversible. However, if,

now in a different community, R invades and displaces S in the presence of drug but, in the drug’s

absence, the community exhibits a frequency dependent bistability (17) whereby either R or S can
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dominate, then this community need not have reversible resistance. Here, application of drug forces

R to become dominant and the inability of S to always re-invade following withdrawal could cause

resistance not to reverse. Now a tipping point is said to occur when S can no longer invade and we

provide theoretical mechanisms and microbial data demonstrating how the irreversibility of resistance

can arise through tipping.

Metagenomic analyses are rapidly improving our understanding of microbial communities. We

now know that antibiotics affect communities in load (18) and in diversity (19) and, intriguingly,

the removal of antibiotic sometimes (20, 21) but not always (22, 23) restores the community to its

original, pre-treated composition. However, selection for resistance within communities is poorly

understood because key pharmacological indicators, like the minimal inhibitory concentration (MIC),

dose-responses, between-antibiotic drug interactions and costs of resistance are measured in single-

species assays. These assays ignore the antibiotic’s true context: while microbes can exist as single-

species populations, in bloodstream infections, say, most real-world microbes thrive in communities.

Why, therefore, should a single-species understanding of microbial responses to antibiotics completely

explain resistance progression on the skin, in the gut or a hospital ward?

To support this view, here we show that single-species resistance measures can be poor predic-

tors of resistance in a synthetic microbial community both during treatment, and after antibiotic

withdrawal, because of a hitherto unobserved phenomenon: communities can have tipping points

when abiotic parameters like treatment duration, antibiotic dose and nutrient availability vary. For

example, clinicians vary dosing regimens (24–26) and treatment duration (27) of critically ill pa-

tients while nutrient availability, in the form of glucose concentration, can vary from 0.01 − 0.28%

in urine (28) to 0.1− 2.7% in blood with substantial daily variation (29, 30). The impact of this on

drug resistance is unknown.

We explore resistance and abiotic variation in the simplest possible community of two species,

Candida albicans and Candida glabrata. Both are commensal microbes found together in the micro-

biota of healthy individuals but they are also opportunistic pathogens causing mucosal infections (31)

and life-threatening disseminated infections among immunocompromised patients (32). Difficult to

diagnose, Candida infections are associated with high mortality rates, ranging from 46-75% for Can-

didiasis in the bloodstream (33–35). Strikingly, as many people die each year from the top ten

invasive fungal diseases, including candidiasis, as do from tuberculosis or malaria (33). Apart from
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its substantial impact on human health, our community treatment model is suited to studying drug

withdrawal dynamics because C. glabrata infections are relatively unresponsive to the most frequently

used antifungal drug fluconazole, while C. albicans is sensitive to fluconazole (36). Monoculture dose

response assays demonstrate this for our study strains at clinical doses (Supporting Fig. S2).

We determined temporal dynamics of the Candida species empirically by monitoring their rel-

ative frequencies. For this we co-cultured both in shaken, 96-well plates containing liquid growth

media supplemented with glucose and fluconazole. The plates were inoculated with a mixture of

fluorescently labelled C. albicans, at proportion f , and C. glabrata, at proportion 1 − f . After 24h

of growth (a.k.a. one season) densities and frequencies of each species were determined using flow

cytometry and a fixed volume sample (3.3%) of the community was transferred to a new 96-well

plate containing fresh media, marking the beginning of a new season (Supporting Materials and

Methods).

Applying single-species logic to this community, the resistant species, C. glabrata, should domi-

nate in the presence of enough drug. Indeed, there is evidence this is predictive of clinical outcomes:

the use of fluconazole prophylaxis was found to influence the proportion of C. albicans and C. glabrata

isolated from the blood of patients with candidemia (37), leading to an increase in C. glabrata fre-

quency. Fluconazole withdrawal should then shift the community towards the sensitive species, C.

albicans. Importantly, we can replicate both these observations using our community: under flu-

conazole treatment the drug resistant C. glabrata dominates and when the drug is removed, the

sensitive C. albicans subsequently recovers. This creates a repeatable, cyclical dynamic as the drug

is repeatedly applied and withdrawn (Figure 1(a)).

But is this the only dynamic possible following fluzonazole withdrawal? To answer this we

now systematically explore community dynamics under different abiotic conditions by applying ideas

from microbial population biology (38). Recalling C. albicans are inoculated into the microcosm at

proportion f , suppose F denotes the frequency of C. albicans after one season, so R(f) = F/f

denotes the change in C. albicans relative frequency. Now, F = f ·R(f) is a ‘single-season frequency

change map’ that gives the frequency of C. albicans after one season and we will write F as a

mathematical function, calling it Φ, thus Φ(f) = f ·R(f). Repeated applications of Φ to frequency

values can therefore be used to determine the C. albicans frequency after any number, n ≥ 1, of

seasons, provided a given initial (inoculum) frequency f0 is known. So, f1 = Φ(f0) is the frequency
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of C. albicans after one season, f2 = Φ(Φ(f0)) = Φ(f1) is the frequency of C. albicans after two

seasons, f3 = Φ(Φ(Φ(f0))) = Φ(f2), and so on. In population dynamics theory it is common

to write season number as a subscript n, so fn+1 = Φ(fn) is a shorthand representation of the

season-by-season dynamics at season n. It follows by definition that Φ(0) = 0 because with no C.

albicans in the inoculum, it cannot appear subsequently. Similarly, Φ(1) = 1 must hold as a closed

community containing only C. glabrata initially must always do so (see Supplementary Information

§2 for details).

What should a biologically reasonable Φ look like? Figure 1(b) shows four lab-derived exemplars

and we also use a bottom-up mathematical model that builds theoretical Φ functions (Figure 1(c),

Supplementary Information §3). The latter can incorporate many microbial life history traits and

environmental variables but here we focus on antimicrobials (at concentration a) and extracellular

nutrient concentrations, say g denoting the carbon source glucose. We restrict attention for now to

just a, ignoring g dependence, and write Φ(f, a) to emphasise this.

We now ask how the community responds to an antimicrobial by introducing a sequence of

antimicrobial dosages, an, so that fn+1 = Φ(fn, an) where the treatment can change with each

season. In the clinic, an might be one of two extremes, either a high dosage above the drug’s MIC

(minimal inhibitory concentration) or zero when treatment stops. Figure 1(c) shows two theoretically-

constructed Φ functions, Φon and Φoff, motivated by this clinical context:

fn+1 =

{
Φon(fn) : if antimicrobial is applied (so an ≥ MIC),
Φoff(fn) : if antimicrobial is not applied (so an = 0).

Empirical Φ functions (Figure 1(b)) strongly resemble their theoretical counterparts (Figure 1(c))

and, in these figures, both theory and data exhibit reversible resistance.

However, theory-derived Φon and Φoff provide information about when not to expect reversible

resistance (Figure 2(a-d)) and the shape of these two functions is all-important. If Φon satisfies

Φon(f) < f for all f between 0 and 1, then fn+1 = Φon(fn) < fn follows, meaning the frequency

of C. albicans decreases each season when drug is applied (Figure 2(a)). Conversely, if Φoff(f) > f

for all f then C. albicans increases each season after treatment withdrawal, whence resistance is

reversible (Figure 2(b)). Points of separation, or separatrixes, between these two cases arise when

there are frequencies, f , for which Φoff(f) = f (Figure 2(c,d)). As a consequence, for our purposes

a tipping point, fu, satisfies Φoff(fu) = fu and other technicalities (Supplementary Information §2
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and §4) . This condition allows either C. albicans or C. glabrata to dominate in the absence of drug

and, as a result, drug treatment can coerce the microcosm towards either possibility when treatment

stops (Supplementary Information §4).

Using a fixed-glucose stochastic model fn+1 = Φ(fn, an) + σn, where σn is small-variance noise

and the form of Φ is defined in Supplementary Information §3, we show that resistance need not

be reversible because a tipping point is encountered in a theoretical 4-day treatment (Figure 2(f-

g)) that is not encountered if treatment terminates at 3 days (Figure 2(e)). Figure 2(h,i) then

incorporates glucose dependence, g, and explores a model Φ(f, a, g) in different abiotic conditions

by systematically varying g and antibiotic dose, a (Supplementary Information §3.2 and §4). This is

impossible to do in empirical microbial ecologies but computational simulations (Figure 2(h)) show

the dominant Candida species, albicans or glabrata or neither, in the (a, g)-plane (this is the ‘dose-

response mosaic’). This computational analysis shows the dosage at which tipping occurs depends

on glucose availability and we will therefore now also manipulate glucose availability in our empirical

microcosm.

So does the laboratory treatment community also possess tipping points when antibiotic dose

or else glucose availability vary? This is difficult to assess directly for several reasons. First, our

modelling framework is general but simple and so is not able to accurately pinpoint tipping points in

an empirical context. Second, theoretical tipping mechanisms require an unstable fixed point (fu)

under drug-free conditions. These are hard to identify empirically because observations move away

from unstable fixed points and so these points, if present, cannot be detected directly in longitudinal

data, we can only infer their presence. Other warning signals of tipping exist (39, 40) for example

so-called ‘critical slowing down’ (41, 42), slow recovery from perturbations (43, 44), an increase in

autocorrelation (45), an increase in the variation of fluctuations (46,47) or timeseries skewness (48).

We therefore chose variance increases because modelling indicates between-replicate variance (BRV)

should increase sharply at a tipping point (Figure 3).

We sought antibiotic tipping experimentally for three treatments, α, β and γ that are designed

to explore the dose response mosaic as fully as possible. First, α) glucose is held constant but the

drug steadily withdrawn; β) glucose and drug are held constant and γ) glucose is reduced while the

drug is withdrawn (Figure 4(a)). For these treatments, glucose varied between 0.1 − 4% mirroring

prior in vitro Candida experiments (49, 50) and fluconazole varied between 0 − 3µg/ml, mirroring
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prior in vitro drug-adaptation studies (51).

Treatments α and β lead to reversible resistance (Figure 4(b)) whereby the C. albicans frequen-

cies on the last season have almost unimodally distributed between-replicate variation (BRV) (Figure

4(c)). However, treatment γ exhibits characteristics of tipping: BRV statistics of C. albicans fre-

quencies on the last observed season approximate a uniform distribution (Figure 4(c)) and mean BRV

spikes on season 6 (approximately 8× increase, Figure 4(d,e)). The rapid divergence of replicate

trajectories (Figures 4(b), S12) that forms a uniform distribution of treatment outcomes for γ (Figure

4(c)) in a manner consistent with theory (Figure S9) means that many community trajectories have

not returned to their inoculum positions, in contrast to reversible resistance (Figure 1(a)) where they

have.

Discussion

The reversibility of resistance is often conceptualised through resistance costs (16), a property which

ensures resistance genes are lost following drug withdrawal due to a fitness reduction of the mutants

that carry them. However the analogy of resistance costs between species is difficult to define.

For example, without the drug in our community the Candida species have different metabolism

(67) from which complex, density and frequency dependent ecological interactions like cheating and

cooperation can result (53). Indeed, the myriad ecological interactions present in natural communities

are necessarily perturbed by an antibiotic drug so a model of resistance progression in which resistant

and susceptible microbes differ by a single allele will have limited explanatory power here. Thus

we invoke tipping as a new mechanism for understanding the dynamics of drug resistance following

exposure to antibiotics.

The explanation behind the tipping-induced irreversibility of resistance is this: if a community

could persist in multiple configurations in the absence of drug (17), antibiotics, indeed, any abiotic

perturbation, might push the community into the ‘basin of attraction’ of the most resistant config-

uration from all those available. So even if treatment stops, resistance species’ frequencies could

increase. Our mathematical models illustrate just two basins of attraction, one above the tipping

point and one below (Figure 3(a)) but real-world communities may well have more.

Unfortunately, the key ingredient for tipping, multi-stability, is known to be difficult to demon-

strate in real communities (17) but if present, we then know the removal of drug can create an
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uncertain future for that community. Figure 3(b) and 4(b) show in theory and in data how some

of those divergent futures pan out; some return whence they came, others move towards a new

configuration of the community. This is the defining property of multistability (17) and if this new

configuration comprises more species that are less susceptible to the drug than were there prior to

treatment, resistance in the community will increase even though treatment has stopped.

Our microcosms highlight just one treatment consistent with this theory (Figure 4) but what

other treatments might do this? Indeed, data show that not all drug treatments induce tipping

(Figure 4). However, mathematics answers the question: any co-variation of abiotic environment

and drug, whether stochastic, cyclical, gradual or abrupt that guides the community into a region

of the dose-response mosaic that exhibits multi-stability (Figure 2(h) grey zone) creates the right

conditions for tipping. Our empirical data provides one example of this (treatment γ) from the

infinitely many treatments we could have tested and the mathematical model we present undergoes

tipping with this type of treatment (Figure S9) and for many more besides. The theoretical treatment

examples we provide (Figure 3 and S10) illustrate, perhaps, the simplest possible abiotic variation

that can exhibit tipping, namely the abrupt cessation of a constant-dose drug treatment (Figure 3)

of the kind given to patients in the community.

To conclude, we argue that single-species logic is insufficient to understand resistance in microbial

communities. Particularly lacking is a theory of how abiotic variation promotes resistance and yet

this is relevant to patients. For example, infections involving C. glabrata are more frequently found

in diabetic patients with high blood glucose levels than in patients with lower glucose levels (54,55),

indicating that nutrient availability may play a role in clinical resistance, just as it does in our

community. Our observations may also indicate potential for alternative therapeutic rationales for

polymicrobial infections. Diet is known to alter the host microbiota (56–58) and so fashioning

specific environments by manipulating nutrients might tip the balance of competition in favour of

drug-susceptible species and render an infection more amenable to treatment. There is a precedence

for this idea (59–61).
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Figure 1: a) Lab data: C. albicans and C. glabrata are inoculated at 50-50 proportions into growth
in SC media supplemented with 0.1% glucose and propagated in the presence of fluconazole for 2
seasons, the C. albicans frequency subsequently decreases. After 2 seasons, fluconazole is withdrawn
and C. albicans recovers. When fluconazole is later re-applied for 3 seasons C. albicans again decreases
in frequency, and so the cycle repeats. (Grey boxes mark seasons undergoing fluconazole treatment,
error bars are mean ± 95% CI, n = 3, raw data shown.) b) Lab data: the initial C. albicans frequency
(f) on the x-axis versus the final frequency each season obtained using the laboratory microcosm
on the y-axis, aka Φ(f) (four exemplars are shown; error bars are mean ± 95% CI, n = 3; glucose
and fluconazole given in the legend, SC denotes synthetic complete media). c) Theoretical example:
how to read Φ(f) to understand dynamics: starting at timepoint 0, the dynamics follow Φon while
treatment proceeds, it then follows Φoff when treatment stops. The sequence of treatments here
is (on,on,on,on,off,on,off,on,on,off). The right plot shows how C. albicans reversibly increases and
decreases in frequency according to whether drug is used (solid dot) or not (open circle).
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Figure 2: Population dynamics theory states that one can deduce multi-season frequency dynamics
from the ‘cobweb diagram’ determined from the initial C. albicans frequency plotted versus the final
frequency each season. a): Φon lies below the diagonal so C. glabrata outcompetes C. albicans. b)
Φoff lies above the diagonal line of equal frequencies, so C. albicans outcompetes C. glabrata. c) Φoff

is such that there exist a special frequency, fc, which lies on the diagonal line and Φoff(f) > f for
0 < f < fc while Φoff(f) < f for fc < f < 1, this is a stable coexistence state. d) Φoff is such that
there exist a special frequency, fu, which lies on the diagonal line and Φoff(f) < f for 0 < f < fu
while Φoff(f) > f for fu < f < 1. In this case either species can dominate depending on their initial
frequencies: if the initial frequency of C. albicans is smaller than fu then C. albicans loses out in
competition to C. glabrata, otherwise C. glabrata loses out; this is ‘bistable exclusion’. e) A theoretical
example of a 3-season treatment, which stops short of the tipping point (marked ’tip’) with seasons
4-9 continuing without the drug being applied. f) A theoretical example of a 4-season treatment
which goes beyond the tipping point, causing the divergence in trajectories following drug withdrawal
cause by the tipping point as shown in (g). h) This is a theoretical two-dimensional dose-response
mosaic, it describes the equilibrium outcome of competition in the Candida community as glucose
and fluconazole are varied. C. albicans wins the competition inside orange squares, C. glabrata wins
inside the blue squares and bistable exclusion occurs in the grey squares. Drug on-off treatments
that encounter the latter may exhibit tipping (e.g. ABAB, FEFE and CDCD treatment sequences),
treatments that stay inside the former will exhibit reversible resistance (e.g. an FBFB sequence). i)
theoretical Φ functions at points A-F in the dose response mosaic, with dots highlighting the location
of the special frequency fu for each Φ that crosses the diagonal.

17



a)

b) 1 3 5 7 9 11 13 15
0

20

40

60

80

100

season

 C
.a

lb
ic

a
n
s
 %

 

 

1 3 5 7 9 11 13 15
0

20

40

60

80

100

season

 

 

1 3 5 7 9 11 13 15
0

20

40

60

80

100

season

 

 

1 3 5 7 9 11 13 15
0

20

40

60

80

100

season

 

 

1 3 5 7 9 11 13 15
0

20

40

60

80

100

season

 

 

1 3 5 7 9 11 13 15
0

20

40

60

80

100

season

 

 

11 ug/ml 12 ug/ml 13 ug/ml 14 ug/ml 15 ug/ml 16 ug/ml

c)
1 3 5 7 9 11 13 15

0

5

10

15

20

25

time (days)

BR
V 

(C
.a

lb
ic

an
s 

m
ea

n±
 9

5%
 C

I, 
n 

= 
10

0)

 

 
11 ug/ml
12 ug/ml
13 ug/ml
14 ug/ml
15 ug/ml
16 ug/ml

d)
1 3 5 7 9 11 13 15

−5

−4

−3

−2

−1

0

1

2

3

4

5

time (days)

∆
 m

e
a

n
 B

R
V

 (
C

.a
lb

ic
a

n
s
 %

, 
n

 =
 1

0
0

)

 

 
11 ug/ml

12 ug/ml

13 ug/ml

14 ug/ml

15 ug/ml

16 ug/ml

18



Figure 3: The dose-response mosaic shows tipping points are encountered in many ways, for example
by varying glucose concentration (see Supporting Fig. S10 for details) or as fluconazole concentration
is varied (a). In (a) four, fixed-dose treatments start on season 5 and end on season 12 (grey box) at
a 0.95% (by volume) glucose dose. First, the community converges towards C. albicans domination
in the absence of drug (orange dots). C. glabrata starts to dominate as drug is applied, but it rescinds
when treatment ends (brown dots) and the community returns to its pre-treatment composition and
then continues towards C. albicans dominance with more seasons. However, a tipping point appears
at just high-enough fluconazole dose (dark blue dots) whereby the post-treatment trajectory diverges
from the previous outcome (at a slightly lower drug dose) and C. albicans is lost as the seasons pass.
Royal blue dots show trajectories at dosages well above the tipping point. (b) Introducing additive
stochastic noise to simulations from (a) shows that replicate trajectories diverge at the tipping point,
creating large variations between frequency trajectories that had identical drug dosage regimes and
initial Candida frequencies. A signature we can seek in empirical data: between replicate variation
(BRV) spikes at the tipping point (c), causing a large season-by-season change in BRV (∆BRV here
taken to be the mean change in standard deviation) that is significantly positive at the tipping point
(d).
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Figure 4: a) Three laboratory treatments with different dynamics: treatments α (red) and γ (black)
withdraw fluconazole but β (blue) keeps it at constant levels (dosages represented as circle sizes). The
laboratory experimental trajectories of treatments are shown in (b) and the corresponding between-
replicate variation (BRV) is shown in (c) as indicated by the kernel density estimate of the distribution
of final-season C. albicans frequency differences (48 replicates for α, 96 for β and 55 for γ). The
trajectories of treatments α and β have low BRV in species frequencies at all times whereas γ
has high BRV at the end of treatment. The trajectories show why: community dynamics for β
maintain steady-state and C.albicans sweeps through the community during treatment α following
drug withdrawal. However, in γ trajectories of different replicates vary markedly beyond season 6
whereby either species can dominate by season 14, despite all replicates having close to 50-50 initial
composition (Supporting Fig. S11 has additional data). d) Data from the Candida community shows
mean BRV increases significantly, approximately 8-fold for treatment γ on season 6. Treatments α
and β also have significant increases on occasion, but by no more than 3-fold. Taking a conservative
Bonferroni-corrected significance at the level p < 0.001 in an F-test using linear regression (see
Methods), significant changes in mean BRV are shown in (e) as circled dots. The largest increase
(approximately 8-fold) is significant and occurs in treatment γ on season 7 (error bars explained in
legend).
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Methods

Numerical simulations of a theoretical community model were obtained using Matlab’s differential

equation solvers to generate the season-by-season dynamical map Φ(f). Differential equations were

parameterised using data from C. albicans and C. glabrata, as detailed in the supplementary.

To determine tipping points, we sought significant increases in between-replicated variation (BRV)

defined as follows. If F = {fj}nj=1 is the set of observed C. albicans frequencies, expressed as values

between zero and one (although some figures express this as a percentage), the set of between-

replicate differences is then {|fj − fk|}nj,k=1,j>k and mean BRV is the mean of this set; note, this is

one form of set radius. As the frequency of C. glabrata is Gj = 1−fj and Gj−Gk = 1−fj−(1−fk) =

fk − fj , C. glabrata frequency data has the same between-replicate differences as C.albicans.

Kernel density estimates were obtained for distributions of BRV values (Figure 4(a)) using a

kernel estimation algorithm implemented in Matlab (62). To test for significant season-by-season

differences in BRV, BRVn and BRVn+1 observed at seasons n and n+1, we applied linear regression

to test (with p < 0.001) against the null hypothesis of a constant mean BRV between those seasons,

testing for a non-zero slope parameter from the regression. This is written ∆BRV and this change

was found to be largest for season 6 of treatment γ (Figure 4(b)).

Experimental methods

Full experimental methods are given in the supplementary text.

Data availability statement

Data files and computer codes will be provided prior to publication.
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1 Materials and Methods

1.1 Strains and assay medium

The strains Candida albicans ACT1-GFP and Candida glabrata ATCC2001 were used throughout

this paper in all Experimental designs 1 − 3. The strain C. albicans ACT1-GFP strain is SBC153

(64) with pACT1-FLAG-GFP integrated at the ACT1 locus by means of positive selections using a

nourseothricin resistance cassette. The strain C. glabrata ATCC2001 is the wild type reference strain

obtained from the American Type Culture Collection. The assay medium throughout was synthetic

complete (SC) (0.67% w/v yeast nitrogen base without amino acids, 0.079% w/v synthetic complete

supplement mixture (Formedium, Hunstanton, UK)).

1.2 Measuring growth of C. albicans and C. glabrata in isolation in the absence /
presence of drugs

Overnight cultures in YPD of C. albicans and C. glabrata were diluted, counted on hemocytometer,

and adjusted to 2 × 107 cells/mL in SC medium containing 2% (weight/volume) glucose. Sterile

plastic microdilution plates containing 96 flat-bottomed wells were utilized. Stock solution of flu-

conazole was diluted in SC medium and dispensed in 75 µL volumes into six replicate wells to yield

nine two-fold serial dilutions of fluconazole with final concentrations ranging between 0− 64 µg/mL.

For each drug concentration, three of the six replicate wells were filled with additional 75 µL from

the C. albicans strain suspension while the remaining three wells were filled with 75 µL from the C.

glabrata strain suspension. The plate was sealed with a transparent adhesive seal and two holes were

punctured over each well by means of a sterile needle. The plate was incubated at 30oC with shaking

over 24 hours and growth monitored by measuring the absorbance of the cell suspensions at 650 nm

(A650). Absorbance units were converted into number of cells per ml by means of calibration curves

prepared for each Candida species.

1.3 Drug susceptibility dose-response for C. albicans and C. glabrata

Standard micro-dilution susceptibility testing was performed in sterile 96-well flat-bottom microtiter

plates with the following modifications. Fluconazole was diluted from a 2mg/mL stock solu-

tion to a dilution series ranging from 512 to 0 µg/mL in SC media containing 1% or 4% glucose

(weight/volume), at a volume of 75 µL per well. Overnight cultures in YPD of C. glabrata and

C. albicans were counted by haemocytometer and diluted to 105 cells/mL in SC broth contain-

ing either 1% or 4% glucose. For each species, 75 µL of cell suspension was added per well, re-

sulting in a final volume of 150 µL which contained 5 × 104 cells, a final drug concentration of

256, 192, 128, 96, 64, 48, 32, 16, 8, 4, 2 or 0 µg/mL of fluconazole and either 1% or 4% glucose. The

plate was sealed with a transparent adhesive seal and two holes were punctured over each well, by

means of a sterile needle, for aeration. Plates were incubated for 48 hours at 30oC after which final

absorbance was measured at A595. All samples were assayed in technical triplicate.

1.4 Competition of C. albicans and C. glabrata in the absence/presence of drugs

Overnight cultures in YPD of C. albicans and C. glabrata were diluted, counted on hemocytometer,

and adjusted to 2×107 cells/mL in SC medium containing either 0.1, 2, or 4% (weight/volume) glu-

cose. The two Candida species were then mixed to achieve a range of starting ratios (0, 10, 30, 50, 70, 90
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and 100% C. albicans) The cell suspension was then diluted 1:1 in SC media containing two times

desired fluconazole concentration (0, 0.5, or 2 µg/mL) to a final volume of 150 µL in a 96 well flat

bottom microtiter plate. Plates were sealed using sterile adhesive films, two holes were punched in

seal above each well using a sterile needle, and incubated overnight in orbital shaker set at 30oC,

180 rpm. Each condition was repeated in triplicate. After 24 hour incubation period (one season)

plates were opened, the contents of the well were vigorously pipetted to achieve a homogenous cell

suspension, and relative frequency of C. albicans ACT1-GFP was determined by flow cytometry in

the following way (Supporting Fig. S1). Cellular fluorescence from GFP was determined quantita-

tively with a FACSAria flow cytometer (Becton Dickinson, CA, USA) equipped with a 20mW, 488

nm argon ion laser. All samples were suspended in phosphate buffered saline (PBS) and briefly

sonicated to disperse potential cell clumps prior to analysis. Typically, 10000 cells were analysed per

competition sample with the following settings: forward scatter (150 V, log mode) and side scatter

(200 V, log mode). GFP was detected on a 530/30 filter (600 V, log mode) and sample acquisition

was performed using BD FACSDiva software. Initially, a sample consisting of C. albicans ACT1-GFP

cells only was detected and gated to contain 99− 100% of all measured events as positive for GFP

fluorescence. All events occurring within the gate during subsequent analysis of competition samples

were considered to be C. albicans ACT1-GFP cells. For any given competition sample, the frequency

of gated events was calculated by means of FlowJo software and was taken to be the population

percentage of C. albicans ACT1-GFP within the sample.

99.41%	(9941	cells)	 0.3%	(30	cells)	 42.5%	(4250	cells)	

530/30-A(GFP)	

Supporting Fig. S1: Cells were analysed for green fluorescent protein (GFP) on a 530/30 filter and
side scatter by area. All plots show data for 10,000 detection events with the x-axis showing green
fluorescent (GFP) intensity. From left to right we see the cytogram displaying C. albicans only, a
GFP positive control; C. glabrata only, a non-fluorescent negative control, and a mixed culture of two
species illustrating the clustering of two populations in mixtures. Populations were gated (P1) based
on analysis of axenic cultures of C. albicans and C. glabrata so that the gated region successfully
discriminated C. albicans from C. glabrata with a false positive detection rate within the gated region
of < 1%, as shown in each figure.

1.5 Long-term competition of C. albicans and C. glabrata for different drug regimes

Overnight cultures in YPD of C. albicans and C. glabrata were diluted, counted on hemocytometer,

and adjusted a 1:1 ratio of each species, at a final concentrations of 2× 107 cells/mL in SC medium

containing either 0.1, or 4% (weight/volume) glucose. The cell suspension was then diluted 1:1 in SC

media containing two times desired fluconazole concentration (3 µg/mL) and the matching glucose

concentration, to a final volume of 150 µL in a 96 well flat bottom microtiter plate. Plates were

sealed using sterile adhesive films, two holes were punched in seal above each well using a sterile
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needle, and incubated overnight in orbital shaker set at 30oC, 180 rpm. Each treatment was repeated

in triplicate. After 24 hour incubation period (one season) plates were opened, the contents of the

well were vigorously pipetted to achieve a homogenous cell suspension, and five microliters of cell

suspension was added to a new well containing 145 µL of SC media which contained either the same,

or a reduced concentration of glucose and fluconazole. Specifically, for treatment α the cultures were

maintained in 0.1% glucose throughout, while the fluconazole concentration was adjusted each season

(3, 2, 1, 0.5, 0 µg/mL). For treatment β the glucose concentration remained at 0.1% and fluconazole

concentration at 0.5 µg/mL throughout the duration of the experiment. Lastly, for treatment γ

both glucose and fluconazole concentrations were reduced each season, glucose decreasing from 4

to 0.1% (4, 2, 1, 0.5, 0.1) and fluconazole decreasing from 3 to 0 µg/mL (3, 2, 1, 0.5, 0). Note that

5µL represents the smallest volume transfer that ensures the accuracy of pipetting is maintained.

The relative frequency of C. albicans was monitored either by flow cytometry or CFUs, as described

above. For daily monitoring 9−12 replicate biological samples were measured, while at the endpoint

all replicates were analysed (48 replicates for treatment α, 96 replicates for treatment β and 55

replicates for treatment γ).

1.5.1 Oscillatory (a repeated on-off) drug treatment

Overnight cultures in YPD of C. albicans and C. glabrata were diluted, counted on hemocytometer,

and adjusted a 1:1 ratio of each species, at a final concentrations of 2× 107 cells/mL in SC medium

containing 0.1% (weight/volume) glucose. The cell suspension was then diluted 1:1 in SC media

containing two times desired fluconazole concentration (0, 2, or 4 µg/mL) to a final volume of

150 µL in a 96 well flat bottom microtiter plate. Plates were sealed using sterile adhesive films,

two holes were punched in seal above each well using a sterile needle, and incubated overnight

in orbital shaker set at 30oC, 180 rpm. Each condition was repeated in triplicate. After 24 hour

incubation period (one season) plates were opened, the contents of the well were vigorously pipetted

to achieve a homogenous cell suspension, and five microliters of cell suspension was added to a new

well containing 145 µL of SC media which contained the same drug concentration as the day prior, for

three days. At day three through day 14, cells were cultured without drug. On day 14 all conditions

were treated with 2 µg/mL fluconazole for an additional three day (through day 17) at which point

drug was again omitted from culturing through end of experiment. All wells were passaged daily,

on days with data points shown in Figure 1a a volume of suspension was removed for sampling. To

monitor relative frequency of each Candida species, colony forming units (CFU) were enumerated by

plating on YPD agar either with or without the C. albicans strain selection nourseothricin (NAT) at

200 µg/mL. Briefly, cell suspension from overnight culture was diluted to roughly 200 CFU/ 100 µL

and plated on both YPD and YPD+NAT plates, each well was plated in duplicate. Plates were

incubated at 30oC for 48 hours and colonies counted, with the percent C. albicans being determined

by the ratio of NAT resistant cells to total cells on untreated YPD plates.

1.6 Intracellular fluconazole accumulation

The accumulation of fluconazole for both C. albicans and C. glabrata was analyzed in energized cells

in the presence of glucose using the protocol described in (65). Cells were incubated with [3H]-FLC

(specific activity 740 GBa/mmol, 20 Ci/mmol, 2× 104 CPM/pmol, 1 µCi/ µL; 50 µM FLC; custom

synthesis by Amersham Biosciences, UK). Cells were grown overnight in CSM complete medium at

30◦C to a density typically between OD600 6.0 to 8.0, unless otherwise noted. Cells were subsequently
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harvested by centrifugation (3000× g, 5 m) and washed three times with YNB complete (1.7 g yeast

nitrogen base without amino acids or ammonium sulfate, 5 g ammonium sulfate per liter, pH 5.0)

without glucose (for starvation) and without supplementation, unless otherwise noted. Cells were

resuspended at an OD600 of 75 in YNB for 2− 3h for glucose starvation. Reaction mixes consisted

of 250 µL of YNB, 200 µL of cells (75 OD) and 50 µL of [3H]-FLC (1/100 dilution of stock). The

resulting [3H]-FLC concentration is 50 nM (0.015 µg/mL), which is significantly below the MIC for

all strains. Samples (100 µL) were removed at various time points and placed into 5 ml stop solution

(YNB +20 mM [6 µg/mL] FLC), filtered on glass fibre filters (24 mm GF/C; Whatman; Kent, UK)

pre-wetted with stop solution and washed with 5 ml of stop solution. Filters were transferred to 20 ml

scintillation vials. Scintillation cocktail (Ecoscint XR, National Diagnostics, Atlanta GA) was added

(15 ml) and the radioactivity associated with the filter was measured with a liquid scintillation analyzer

(Tri-Carb 2800 TR; Perkin Elmer; Waltham, MA) and normalized to CPM/1 × 108 cells. Rate of

[3H]-FLC uptake was determined by incubating samples in the presence of increasing concentrations

of unlabeled FLC (unless otherwise noted) and samples were analyzed for [3H]-FLC accumulation at

designated time points.

1.7 Dose-responses of C. albicans and C. glabrata to fluconazole

C. albicans is always substantially more responsive to drugs that C. glabrata irrespective of the

glucose availability in the extracellular environment. This can be seen in Supporting Fig. S2 where

using SC medium suplemented with either 1% or 4% glucose does not alter the relative ordering of

the two species.

2 Dynamical systems theory: species coexistence

In dynamical systems theory, season number is a subscript n, so fn+1 = Φ(fn) where f0 = f is the C.

albicans inoculum frequency. It follows by definition that Φ(0) = 0 because with no C. albicans in the

inoculum, it can never appear. Similarly, Φ(1) = 1 must hold as a closed community containing only

C. glabrata initially must always do so. For completeness, Gn+1 = 1− Φ(1−Gn) is the dynamical

system describing the dynamics of C. glabrata frequencies (Gn = 1− fn).

Standard theory states that stable species coexistence occurs when Φ has a stable fixed point fc,

meaning Φ(fc) = fc and −1 < dΦ
df (fc) < 1. Here there is a value, fc 6= 0 or 1, of frequencies

that remains unchanged after any number of seasons (Figure 2(c)). System bistability (whereby two

long-term equilibrium outcomes are possible, depending on inoculum frequencies) at frequencies f1

and f2 occurs when Φ(f1) = f1,Φ(f2) = f2,−1 < dΦ
df (f1) < 1 and −1 < dΦ

df (f2) < 1 but f1 6= f2.

‘Bistable exclusion’ (either species can go extinct, depending on inoculum frequencies) arises when

f1 = 0 and f2 = 1 in the definition of bistability and, when this occurs, theory tells us there is an

unstable coexistence point fu between 0 and 1 that satisfies
∣∣∣dΦ
df (fu)

∣∣∣ > 1 (Figure 2(d)). Time-

dependent features of the community, even chaotic dynamics, can be deduced from the geometry of

Φ. However, this geometry depends critically on the fluconazole (a) and glucose (g) supplied and we

write fn+1 = Φ(fn, a, g) to emphasise this, or fn+1 = Φ(fn, an, gn) when the fluconazole or glucose

supplied changes each season.
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Supporting Fig. S2: Dose-response data at 24 hours for C. albicans and C. glabrata as monocultures
in SC media supplemented with (a) 1% and (b) 4% glucose, for increasing fluconazole concentrations:
dots are experimental data, best-fit Hill curves to data are black lines (grey lines: 95% confidence
intervals) and density is stated in terms of 600nm optical density (turbidity). (c) Analogous data
to (a) and (b), but at 2% glucose and density is determined by counting colonies. Note: (a) and
(b) use a logarithmic x-axis with density measured as OD, (c) uses a standard x-axis with density
measured as cells/ml. Data error bars are 95% CI of the mean, n = 3.

3 Bottom-up model development

To explore two species C. albicans and C. glabrata competition in an environment depending explic-

itly upon the extracellular concentration of an extracellular nutrient (glucose) and the concentration

of fluconazole, we develop a simple metabolic model based on (53), and do not consider detailed

metabolic properties of each species (67). In particular, the catabolism of this sugar and its inter-

mediates is modelled as in (53), with a two-reaction process corresponding to glycolysis and the

tricarboxylic acid (TCA) cycle. In the first reaction, sugar is taken from the environment and par-

tially oxidized to form an intracellular metabolic intermediate, Xin, and n1 molecules of ATP. In

the second reaction, the intracellular intermediate is either completely oxidized to form CO2 and n2

molecules of ATP, or it passively diffuses out of the cell as an extracellular intermediate, Xex with

D representing a transport constant (53).

Since n1 < n2 this representation of sugar catabolism implicitly includes the rate-efficiency trade-off,

known to play a crucial role in the outcome of resource competition amongst microorganisms (53,63).

In our model the strength of the rate-efficiency trade-off constraining growth of one species depends

on the presence of the competing species in the environment. For example, a Crabtree-positive

C.glabrata (66) ferments most of the glucose to generate ethanol as bi-product (67). In the absence

of competition from C. albicans, C. glabrata will eventually utilise ethanol as an additional energy
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source once the glucose has been depleted. However, C.albicans is a Crabtree-negative species (66)

that utilises most of its glucose through the TCA cycle to generate biomass and CO2 (67). Therefore

if present in the environment alongside C.glabrata, C.albicans competes for both glucose and ethanol,

thus affecting C.glabrata growth rate and efficiency. These interactions are key to determining the

two-species competition outcome, but are not captured by simpler models where the rate-efficiency

trade-off is explicitly incorporated into the model (63).

We further assume that both catabolic reactions exhibit saturating enzyme kinetics so that the rates

of ATP production during glycolysis, v1, and the TCA cycle, v2, are given by

v1(S) =
V1S

K1 + S
, (1)

v2(Xin) =
V2Xin

K2 +Xin
, (2)

where V1 is the maximal uptake rate of resources in the glycolysis pathway and K1 is the Michaelis-

Menten constant. Similarly, V2 denoted the maximal rate of CO2 production in the TCA cycle

pathway and K2 its half-saturation constant. In addition we assume that the rate of cell growth is

proportional to the rate of ATP production (68) according to a proportionality constant, G.

Despite the use of fluconazole in the clinic for decades, the basis of its antifungal mechanism is poorly

understood (69). We assume that fluconazole growth suppression is the accumulation of processes

that decrease per capita growth rate in a nonlinear and concentration-dependent manner, with greater

inhibition at higher drug concentrations. We also assume that the inhibitory effect of fluconazole

on growth depends only on the intracellular accumulation of the drug (70), not on the extracellular

concentration. Therefore we represent reduction in growth rate by a function 0 ≤ i(Fin) ≤ 1 which

takes the form

i(Fin) = 1− a(Fin)N

bN + (Fin)N
(3)

where Fin and Fex are the concentrations of intracellular and extracellular fluconazole respectively

while a, b and N relate to the fluconazole resistance properties of the cell. Furthermore, we as-

sume that fluconazole import into the cell is a saturating function of the extracellular fluconazole

concentration of the form

I(Fex) =
ViFex

Ki + Fex
, (4)

where Vi is the maximal uptake rate of extracellular fluconazole in the fluconazole transporter path-

way and Ki its half-saturation constant. In C. albicans, intracellular fluconazole concentration is

known to saturate over 24 hours (65) and here we confirm the same finding for C. glabrata (Sup-

porting Fig. S5). This suggests that the saturating import function is balanced by a saturating

export function. Assuming that the rate of export is dependent on the intracellular accumulation of

fluconazole (71), the export function takes the following form

E(Fin) =
VeFin

Ke + Fin
, (5)

where Ve is the maximal rate of efflux in the efflux pathway and Ke its the half-saturation constant.

The dynamics of between-species competition for a fixed time period each season begins with the

introduction of fluconazole (Fex), glucose (S) and both species (Ca and Cg) into the environment

and ends with the sugars exhausted, consumed during cell growth. The subscripts a and g throughout

denote C. albicans and C. glabrata, respectively. One season of competition and pharmacodynamics

is described by the differential equation (6). To mimic the dynamics of the laboratory microcosm in

S7



the model, at the end of each season a fixed number of cells is transferred to a new environment that

contains replenished growth medium, with glucose and fluconazole kept at the same concentration

at the start of each season.

3.1 Model parameterisation

The following parameter values were taken from the literature: set n1 = 2 pmol ATP/pmol glucose

and n2 = 30 pmol ATP/pmol Xint (72) while D = 10−12 as in (53). The remainder were estimated

below and are reported in Supporting Table S1.

3.1.1 Growth parameters

The growth kinetics parameters associated with C. albicans (C. glabrata), namely Ga, V1,a, K1,a, V2,a

and K2,a (Gg, V1,g, K1,g, V2,g and K2,g ) were estimated by fitting numerical solutions of microbial

population growth over time, determined using (6) with Cg = Fin = Fex = 0 (Ca = Fin = Fex = 0),

to empirically obtained C. albicans (C. glabrata) growth data. The optimal parameter set was

determined using two different methods: first, by optimising a root mean square (RMS) metric we

obtain an initial guess that is then used as an input to the Markov Chain Monte Carlo (MCMC) Matlab

Toolbox from where a maximum likelihood estimate (MLE), given the data and using uninformative

priors, can be determined. Supporting Fig. S3 (a) shows the experimentally obtained growth curve

for C. albicans over 24hours (black line) and the model fit using the optimised RMS values (blue

line) and the MCMC MLE (red line). Both methods identify the same optimal parameter values and

Supporting Fig. S3 (b) illustrates the estimated posterior marginal distributions determined using the

MCMC toolbox. The fitted growth parameter values for C. albicans are listed in Supporting Table

S1.

Supporting Fig. S4(a) shows an experimental growth curve dataset for C. albicans over 24 hours

(black line) superimposed on top of which is the model fit determined using RMS optimisation (blue

line) and the MCMC MLE (red line), posterior marginals of the MCMC chains are shown in Supporting

Fig. S4 (b). In this case the RMS optimum differs significantly from the MLE estimate, with the

RMS optimal parameter values corresponding to published values for C. glabrata (66) while the MLE

optimal values corresponding to published values for the closely related species, S. cerevisiae (66),

as illustrated in Supporting Fig. S4(c). This, to be consistent with known estimates for the species

we are using, we chose to proceed with the RMS-determined parameter estimates for C. glabrata

growth, these are listed in Supporting Table S1.

3.1.2 Drug transport and inhibition

The drug import/export parameters associated with C. albicans (C. glabrata), namely Vi,a, Ki,a, Ve,a
and Ke,a (Vi,g, Ki,g, Ve,g and Ke,g) were estimated by fitting the numerical solution of intracellular

fluconazole accumulation, Fin described by the system (6) with Cg = 0 (Ca = 0), to the experimental

data on C. albicans (C.glabrata) intracellular fluconazole accumulation. The optimal parameter set

was determined using two different methods: first, by optimising a root mean square (RMS) metric we

obtain an initial guess that is then used as an input to the Markov Chain Monte Carlo (MCMC) Matlab

Toolbox from where a maximum likelihood estimate (MLE) was obtained. Given this modelling

construct, the MLE fit converged to a parameters set with non-physical characteristics and therefore

we chose to proceed with the RMS-determined parameter estimates with the experimental data and
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the model fit shown in Supporting Fig. S5 and the optimal parameter values presented in Supporting

Table S1.

The drug inhibition parameters associated with C. albicans, namely a, b and n (see equation (3))

were estimated in the following way. The dose-response curve showing the final population density

at 24 hours generated by (6) with Cg = 0 for different initial drug concentrations (0−64µg/ml) was

fitted to the experimentally obtained C. albicans dose-response data. The optimal parameter set was

determined as a MCMC MLE estimate using the MATLAB MCMC Toolbox with the results illustrated

in Supporting Fig. S6(a) and the best fit parameter values given in Supporting Table S1. For C.

galbrata no inhibition of the growth was detected for a range of drug concentrations (0− 32µg/ml)

with inhibition observed only at the final concentration of 64µg/ml (Supporting Fig. S6). Therefore

for C. glabrata we set i(Fin) = 1 and note that prediction of the competition outcomes and the

subsequent experimental tests were conducted at fluconazole concentrations well below 64µg/ml.

Note that while fluconazole concentrations in the model simulations are represented in [pmol/ml]

they are reported in [µg/ml] after conversion.

Supporting Table S1: Maximum likelihood model parameter values.

Parameters C. albicans C. glabrata

V1 [pmol/cell/min] 0.017999 0.1

K1 [pmol/ml] 4.1652× 106 22× 107

V2 [pmol/cell/min] 0.29767 0.1

K2 [pmol/ml] 5.4323× 109 4× 109

G [cell/pmol ATP] 0.042412 0.066

Vi [pmol/cell/min] 655× 10−11 9.8× 10−9

Ki [pmol/ml] 6× 104 1.6× 104

Ve [pmol/cell/min] 2× 10−11 3.9× 10−11

Ke [pmol/cell/min] 5.8 0.7

a 0.52059 n/a

b [pmol/ml] 12.001 n/a

n 5.2347 n/a
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Supporting Fig. S3: (a) Growth of C. albicans (cells/ml) over a single season (24 h) in SC medium
containing 2% glucose and in the absence of drugs (error bars are mean ± standard error, n = 6).
The black line represents experimental data, while the best fits for the model (6) with Cg = Fin =
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Supporting Fig. S4: (a) Growth of C. glabrata (cells/ml) over a single season (24 h) in SC medium
containing 2% glucose and in the absence of drugs (error bars are mean ± standard error, n = 6).
The black line represents experimental data, while the best fits for the model (6) with Ca = Fin =
Fex = 0, are shown in red (a MCMC MLE) and blue (a local RMS optimum). The grey areas in the
plot correspond to 95% confidence interval for the MCMC MLE; (b) estimated posterior marginal
distributions from the computed MCMC chains for the five fitting parameters, plotted in a pairwise
fashion; (c) a typical burn-in trajectory of the MCMC Metropolis-Hastings algorithm plotted in
(V1, V2)-space, showing the initial state (a local RMS optimum, red dot) corresponding to published
values for C. glabrata and the MLE estimate corresponding to published values for Saccharomyces
cerevisiae (blue dot).
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a) C. albicans b) C. glabrata

Supporting Fig. S5: Intracellular fluconazole accumulation for (a) C. albicans and (b) C. glabrata.
The black dots represent experimental data (error bars are mean ± standard error, n = 3), while
the grey line represents a locally optimal RMS fit of the model (6) with Cg = 0 (Ca = 0) to C.
albicans (C.glabrata) data. To reflect the experimental environment our initial environment contains
2% w/v glucose and a low concentration of fluconazole, namely 0.015µg/ml that does not have
a significant inhibitory effect on the microbial population . The initial cell density for C. albicans
species is set to Ca(0) = 12.8× 108 (cells/ml), while the initial cell density for C.glabrata species is
set to Cg(0) = 13.6× 108 (cells/ml).

a) C. albicans b) C. glabrata

Supporting Fig. S6: Dose response curve at 24 hours for (a) C. albicans and (b) C. glabrata in
response to increasing fluconazole. Black dots represent experimental data. The MLE model fit is
plotted in blue while the optimal Hill curve for the C. albicans dose-response is shown as a black
dashed line. Error bars are estimated for model fits and show mean standard error, n = 3 for data.
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3.2 The theoretical model statement: Φ(f, a, g) in detail

To explore the dependence of a theoretical community of two Candida species on antibiotic and extra-

cellular nutrients, we studied a mathematical model of Φ and its dynamics. C. albicans and C. glabrata

respond differently to both fluconazole (Supporting Fig. S2) and glucose (Supporting Fig. S3(a), Sup-

porting Fig. S4(a)) so the model describes two-species frequency- and density-dependent competition

in environments that explicitly depend upon extracellular glucose and fluconazole. Accordingly, sugar

catabolism is modelled (as elsewhere (53)) using a coarse-grained, two-reaction representation of gly-

colysis and the TCA cycle. The first reaction occurs at rate v1 where glucose is imported and partially

oxidized to form an intracellular metabolic intermediate, Xin, and n1 molecules of ATP. The second

reaction occurs at rate v2 with the intracellular intermediate either completely oxidized to form CO2

and n2 molecules of ATP, or it passively diffuses out of the cell as an extracellular intermediate, Xex

with D representing a diffusion constant (53).

The dynamics of between-species competition in each season begins with the introduction of flu-

conazole (Fex) and glucose (S) while observing the densities of both species (Ca and Cg) in the

environment; subscripts a and g denote C. albicans and C. glabrata, respectively. Extracellular flu-

conazole (Fex) is imported into the cell at a rate I, while intracellular fluconzole Fin is exported out

of the cell and into the environment at a rate E, with i denoting a drug inhibition function which

depends on Fin.

Subsequently, one season of competition is described by the following differential equation (see

Supporting Information 3 for parameterisation):

dS

dt
= −v1,a(S)Ca − v1,g(S)Cg, (6a)

dXex

dt
= D(Xin,a −Xex)Ca +D(Xin,g −Xex)Cg, (6b)

dCa

dt
= Ga · i(Fin,a) [v1,a(S)n1 + v2,a(Xin,a)n2)]Ca, (6c)

dCg

dt
= Gg · i(Fin,g) [v1,g(S)n1 + v2,g(Xin,g)n2)]Cg, (6d)

dXin,a

dt
= [−D(Xin,a −Xex) + v1,a(S)− v2,a(Xin,a)]Ca, (6e)

dXin,g

dt
= [−D(Xin,g −Xex) + v1,g(S)− v2,g(Xin,g)]Cg, (6f)

dFin,a

dt
= (I(Fex)− E(Fin,a))Ca, (6g)

dFin,g

dt
= (I(Fex)− E(Fin,g))Cg, (6h)

dFex

dt
= (E(Fin,a)− I(Fex))Ca + (E(Fin,g)− I(Fex))Cg. (6i)

To mimic the laboratory microcosm at the end of each season a fixed number of cells is transferred to

a new environment containing replenished growth medium with glucose and fluconazole at the same

concentration at the start of each season. To form the map Φ(f, a, g), we set f = Ca(0)/(Ca(0) +

Cg(0)) and solve the differential equation (6a-i) setting Fex(0) = a,Xex(0) = g for T = 24h units

of time, then F = Ca(T )/(Ca(T ) + Cg(T )) is the value of Φ(f, a, g).
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4 Irreversible community dynamics

We can now present a technical mechanism supporting irreversible community dynamics following

drug withdrawal. Suppose that a model system, Φ(f, a, g), satisfies the following axioms: (1) it

possesses bistable exclusion for all a ≥ 0 and g > 0; (2) f = 0, f = fu and f = 1 are the only

solutions (fixed points) of

f = Φ(f, 0, g), (7)

with unknown f , for any g ≥ 0. (3) fu (whose value depends on g) is an unstable coexistence point

when a = 0 and (4) a1 > 0, ..., aN > 0 are drug dosages for a treatment that eventually stops, so

0 = aN+1 = aN+2 = aN+3 = ...; thus our model is a discrete map that is eventually autonomous.

Now suppose (gn) is a sequence of glucose dosages and f0 > fu(g0) but fN < fu(gN ), where fN is

the N -th element of the sequence fn+1 = Φ(fn, an, gn). Then, the two sequences

no drug ever given︷ ︸︸ ︷
fn+1 = Φ(fn, 0, gn) and

drug treatment eventually stops︷ ︸︸ ︷
fn+1 = Φ(fn, an, gn)

will satisfy fn → 1 (C. albicans dominates) in the former but fn → 0 (C. glabrata dominates) in

the latter, as n→∞. Mathematically, these conditions describe a treatment-induced tipping point

determined by fu(g) (see §4.1 below) whereby the use of antibiotic, albeit only for N seasons, forces

dynamics towards the ‘separatrix’ fu(g) and if this point is passed during treatment, or not, different

species will dominate long-term.

4.1 Illustration of a tipping mechanism

To illustrate the existence of a treatment induced tipping point, suppose that the frequency dynamics

of C. albicans are given by the dynamical system

fn+1 = Φ(fn, a, g)

where a is the fluconazole extracellular supply concentration and g is the glucose supply concentration.

If we set the C. glabrata frequency to be Gn = 1− fn then

Gn+1 = 1− Φ(1−Gn, a, g)

follows. Given a sequence of treatments, (an, gn), then the non-autonomous system fn+1 =

Φ(fn, an, gn) describes the system’s dynamics.

Supporting Fig. S7 indicates what can happen when an alternates periodically between ‘on’ (meaning

an > 0) and ‘off’ (an = 0) treatment states when competitive exclusion holds between the two

organisms. In this case the repeated application and withdrawal of the drug leads to cyclical dynamics

between the two pathogens, oscillating between the near-exclusion of either species through time.

However, now suppose that the system response to the drugs differently so that when a = 0 com-

petitive exclusion still applies, but when a > 0 a ‘bistable exclusion’ condition applies. Supporting

Fig. S8 gives the geometry of Φ in this case, written in terms of 1 − Φ(1 − G, a, g) with G on

the x-axis. It is now possible for tipping behaviour to occur because the drug-treated state has an

unstable fixed point labelled fu (and we also write fu = 1−Gu) in the main text. If it happens to

be the case that the system is treated with drug for a while and during that treatment fn (or Gn)

moves from one side of the tipping point to the other, it is in this situation that irreversible dynamics

will occur following drug withdrawal.
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Supporting Fig. S7: This shows a typical reversible drug-treatment dynamic first with no drug given,
then the application and, finally, the withdrawal of the drug. In a), the community is described by the
map fn+1 = Φ(fn, a, g) where a has been set to zero. In the middle such plot the dynamical system
describing the community is fn+1 = Φ(fn, a, g) where a is now positive, and the rightmost plot
again has fn+1 = Φ(fn, 0, g) as its dynamical model. When a = 0 the model selects for C.albicans
whereas when a > 0 it selects for C.glabrata and the off-on-off sequence of the drug treatment sees
the frequency of C.albicans oscillate in the community, as shown in b).

The conditions alluded to above merely give one possible set of sufficient conditions for tipping to

occur, there are many other of analogous conditions describing situations whereby tipping behaviour

will arise and some of these may lead to tipping more readily than the above conditions indicate. For

example, if we are able to vary both a and g simultaneously then the two-parameter (i.e. codimension

two) variation is able to encounter a tipping curve rather than a tipping point.

To formalise this a little, consider the non-autonomous system

fn+1 = Φ(fn, an, gn)

and suppose the fixed-point equation f = Φ(f, a, g) has a nontrivial, unstable (i.e. f 6∈ {0, 1}) fixed

point that depends both on a and g. Write the solution of this equation f = fu(a, g) and note,

therefore, that fu(0, g) is a function of g alone that describes the variation of a tipping point with

respect to change in glucose availability for the untreated dynamical system. Now, when the drug

treatment is removed, meaning an = 0 for all n ≥ N , for some N , if the sequence of states (fn)

manages to approach or else traverse the value fu(0, gn) at some value of n, whether from above

to below or vice versa, then tipping behaviour will become apparent. This additional parametric

freedom makes tipping points potentially easier to locate from an empirical perspective because of

the additional parametric freedom when compared with experimental systems that hold glucose, g,

constant throughout. Moreover, as Figure 1 shows in the main text, we were not able to locate

tipping behaviour unless we varied both a and g as part of the treatment protocol. This is not to

say that tipping points do not exist in our laboratory community with respect to variation only in a,
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but given the small number of parametric states that can be searched for tipping behaviour, we were

only able to observe tipping when both a and g were varied together, as a was withdrawn.

a)

b)

Supporting Fig. S8: We now write Gn = 1 − fn, where Gn is the frequency of C.glabrata in the
community, so Gn+1 = 1−Φ(1−Gn, a, g) is the dynamical system that describes the community’s
dynamics from the perspective of C. glabrata. a) This shows a reversible on-off drug treatment
dynamic whereby the initial application of the drug selects for C.glabrata but the sytem trajectory
get very close to the unstable fixed point fu without actually quite breaching it. As a result, when the
drug is withdrawn, C.glabrata rescinds. However, b) shows a different set of dynamics for the same
type of map Φ whereby, in this case, the drug dose a > 0 has the property that the tipping point (red
dot) is breached after one or two drug treatments. As a result, when the drug is removed C.glabrata
continues to dominate and, as a result, C.albicans may be eventually lost from the community.

Figure S9 below now illustrates how a tipping point arises in replicates of the community dynamics

in the case, like treatment γ, whereby fluconazole and glucose concentrations are reduced.
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Supporting Fig. S9: a) Shown are 1000, 17-day replicate computer-simulated trajectories where
the fluconazole and glucose changes are indicated by the legend: the replicates diverge markedly on
days 5 and 6 before drug treatment ends. b) This is an analogous set of computational simulations
to a) but where, with a subtly different change in environmental conditions, the tipping point only
occurs after the drug treatment has ended. c) This shows histograms of community configurations
for each day of the simulations taken from the data in a). This also shows how an initial community
seeded with 50% of each of the two Candida species soon diverges into a set of communities with
very different configurations, as reflected by the increase in variance and change in form of the
histograms that reflects what is observed empirically in Figure 4(c). When we extend the simulations
for sufficient time, here 16 days, we observe two distinct types of community come to dominate with
very different species, and therefore, resistance profiles.
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5 Appendix - Additional Figures
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Supporting Fig. S10: Analogous to Figure 3(a) in the main text but here tipping points in system
dynamics are observed with respect to small changes in glucose availability as can be seen by com-
paring dynamics in the main plot with those in the inset, noting the glucose supply percentage in
each case.
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Supporting Fig. S11: Additional analysis for Figure 4: histograms of observed C.albicans frequencies
in communities undergoing treatments α, β and γ (defined in the main text) on the last season of
each treatment and AIC-optimal Gaussian mixture models are fitted to data. The three resulting
plots (in red, blue and black) also show (as three black lines) a summation of two Gaussians are
optimal for treatment β (one isn’t sufficient because of skew), three are optimal for α because of
the datapoints outside the main cluster, whereas five Gaussians are optimal for treatment γ because
of a much wider support of the data. These data are taken from 48 replicates for treatment α, 96
for β and 55 for γ.

Figure S12 below refers to ‘diffusion theory’ associated with the data in Figure 4. By this we mean

that if a collection of m replicate timeseries, fj(t), of C.albicans percentages in the community is

known on days t = 1, 2, ..., N (t denoting time), then define the mean percentage each day µ(t) =∑m
j=1 fj(t)/m. If the C.albicans percentages are assumed to follow some, possibly deterministic
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(e.g. defined by some underlying dynamical system), trajectory or signal, s(t), subject to additive

but zero-mean noise generated by a random walk, σ(t), then µ(t) ≈ s(t) (with better approximation

for larger m as described by the central limit theorem) and the diffusion equation predicts the mean

deviation of {fj(t)} from s(t) would be approximated by σ · t1/2 for some noise constant, σ. As

the triangle inequality states that between-replicate variation is less than 2× standard deviation, we

fitted BRV versus time data against power laws of the form σ · tp where p and σ are unknown fitting

parameters. We say that data is consistent with diffusion theory if the hypothesis that p = 1/2

cannot be rejected. If p > 1/2 according to this fit, we say that the data is super-diffusive. As Figure

S12 explains, treatments α and β are consistent with diffusion theory (although a more likely model

of the dynamics of the BRV data is available for α) whereas treatment γ (for which we claim tipping

behaviour) is super-diffusive.
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Supporting Fig. S12: Additional analysis for Figure 4. We asked whether the replicate trajectories
of treatments α, β or γ diverged in manner consistent with the theory of diffusive random walks and
continuous (but rapid) transitions. For this we fitted two mathematical models against between-
replicate variation (BRV) data: a power law (where diffusion theory predicts the power, p, equals
1/2) and a Hill-type function that can capture rapid, continuous transitions between states. The
most likely of the fits (based on AIC relative likelihoods (stated as RL)) is shown for each treatment
as a thick, coloured line whereas the least likely model is shown as a dashed line. The most likely
model for treatment α in red is the rapid transition model which transitions on days 6,7 and 8,
approximately by just 5 C. albicans % units and this data has a (less likely) power law fit where
p ≈ 0.57 ± 0.11 (95% CIs). Thus, this data is consistent with diffusion theory although a change
by 5% over a 3-day period is the more likely model. Treatment β in blue, on the other hand, is
better described by diffusion theory where p ≈ 0.48± 0.12. Treatment γ for which we claim tipping
is super-diffusive (p ≈ 1.6 ± 0.1) and the more likely model of BRV, namely the rapid transition
datafit, increases by approximately 20% units from day 4 to 5.
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