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Abstract

Machining operations are performed on composite parts to obtain the final ge-

ometry. However, machining composites is challenging due to their low machin-

ability and high cost. Numerical modelling of machining presents a valuable tool

for cost reduction and a better understanding of the cutting process. Meshfree

methods are an attractive choice to model machining problems due to their ca-

pability in modelling large deformations. This work presents an explicit mesh-

free model for orthogonal cutting of unidirectional composites based on the

Element-Free Galerkin (EFG) Method. Advantages of the proposed model in-

clude: simple and automated preprocessing, advanced material modelling and

ability to model high-speed machining. Workpiece material is modelled as or-

thotropic Kirchhoff material with a choice of three failure criteria: maximum

stress, Hashin and LaRC02. Frictional contact calculations are performed based

on central differencing, therefore avoiding the use of penalty parameters. Valida-

tion of the EFG model is conducted by comparing cutting forces against orthog-

onal cutting experiments on GFRP samples using a vertical milling machine. It

is found that while the numerical cutting forces are in good agreement with ex-

perimental ones, the numerical thrust forces are significantly under-estimated.

Analysis of failure showed that chip is formed along the fibre direction in the

studied range.
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Nomenclature

∆t Time step

∆tcr Critical time step

Γ Boundaries of the computational domain

Ω Computational domain5

δW con Virtual contact work

δW ext Virtual external work

δW int Virtual internal work

δW kin Virtual kinetic work

γ Cutting tool’s rake angle10

φ Shape function vector

µ Contact friction coefficient

ν12 Major Poisson’s ratio

ν21 Minor Poisson’s ratio

ψ Kink misalginment angle in compressive fibre failure15

ρ Density of the body

σ Cauchy stress tensor

σi Normal stress component in the ith direction

τ12 In-plane shear stress
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θ Fibre orientation angle20

Υ Fracture plane angle

Υ0 Fracture plane angle in pure transverse compressive loading

εt1 Ultimate strain failure in fibre direction (tension)

εt2 Ultimate strain failure in transverse direction (tension)

ϕ Shear plane angle25

E1 Young’s modulus in fibre direction

E2 Young’s modulus in transverse direction

Fc Main cutting force

Ft Thrust force

G12 In-plane shear modulus30

J Weighted least sqaures functional

N Total number of nodes in the domain

Sl In-plane shear strength

Xc Compression strength in fibre direction

Xt Tension strength in fibre direction35

Y c Compression strength in transverse direction

Y t Tension strength in transverse direction

A MLS moment matrix

B The strain matrix

C Material coefficients matrix40

D Damage matrix
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E Green Lagrange strain tensor

F Deformation gradient

G MLS weighted polynomial matrix

I Identity matrix45

M Mass matrix

S Second Piola Kirchhoff stress tensor

T Rotation matrix

t̄ Prescribed traction on traction boundary

ū Prescribed displacement on displacement boundary50

a Acceleration vector

b Body forces vector

f con Nodal contact force vector

fext Nodal external force vector

f int Nodal internal force vector55

fkin Nodal kinetic force vector

n Outward normal unit coordinate

p Polynomial basis function

q Unknown MLS coefficients vector

t In-plane tangential unit coordiante60

u Displacement vector

v Velocity vector

x Spatial coordinates
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g Contact gap function

m Number of monomials in a basis functions65

n Number of nodes in the DoI

r the cutting ratio

1. Introduction

Increased utilisation of composite products led to increase in machining of

composites. Numerical modelling can be used to guide the selection of machining70

parameters in order to improve machinability of composites [1], while reducing

the reliance on expensive experimental approach. Modelling of machining was

performed using well-established methods such as the Finite Element Method

(FEM). However, recently meshfree methods proved to be a promising candidate

in simulating machining process since they are well suited for modelling large75

deformation and material failure.

Orthogonal cutting is widely used in academic studies of machining (both

experimental and numerical) as it provides a good insight into the cutting mech-

anisms while minimising the geometrical complexities associated with oblique

cutting operations. Fibre orientation (θ) is the dominant variable affecting the80

cutting forces and chip formation mechanisms of unidirectional composites. In

the range 0o < θ < 90o, the chip formation starts with intense local compression

leading to compression-induced shear cracking along the fibre-matrix interface

reaching to the free surface [2, 3]. The chips usually gets smaller as θ increases

[4]. However, they separate parallel to fibre direction [2, 3]. Experimentally, it85

was found that cutting forces range between local minima at 15o ≤ θ ≤ 30o and

a maxima at θ = 90o. This is explained with increasing of compressive stresses

with increased fibre orientations [5].

Meshfree methods are classes of solution techniques of differential equations

that do not rely on pre-defined nodal connectivity in constructing the approx-90

imated domain. Meshfree methods include: element-free Galerkin (EFG) [6],
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smoothed particle hydrodynamics (SPH) [7], HP clouds [8], reproducing kernel

particle methods [9], radial point interpolation method (RPIM) [10], natural

neighbour radial point interpolation method (NNRPIM) [11, 12] and the natu-

ral radial element method (NREM) [13, 14] to name a few. Interested readers95

in the recent advances in meshfree methods should refer to the review of Chen

et al. [15]. EFG was proposed in 1994 by Belytschko et al. [6] for elasto-statics

and fracture mechanics problems. Subsequently, it was improved and extended

to study many other areas such as fluid flow calculations [16], metal forming

[17], shells [18, 19], plates and laminates [20, 21]. Recently, a comparison of100

different meshfree methods (EFG, NNRPIM, NREM) with second order FEM

was performed by Belinha et al. [22]. The study compared convergence rate

and efficiency of these methods for the analysis of composite plates. It was

found that meshfree methods, especially EFG, is of comparable accuracy and

efficiency to that of second order FEM. Recently, meshfree methods were applied105

in modelling composites machining. Iliescu et al. [23] used the discrete element

method. The workpiece was modelled as discrete particles with connections.

Fibres were modelled as closely joint lines of particles. The model was used

to investigate the chipping mechanisms. The method was able to qualitatively

capture failure mechanisms at different fibre orientations. SPH method was110

applied by Shchurov et al. [24] to study UD composites with steel fibres and

aluminium matrix. The material was modelled using two distinct Johnson-Cook

models. The chip formation was compared with FRP images found in literature.

Recently, orthogonal cutting model using the element-free Galerkin method was

proposed by Kahwash et al. [25]. The model assumed steady state and com-115

pared cutting forces with published experimental and FEM models. The EFG

model was of comparable accuracy to the FEM models while the pre-processing

phase was simpler. This showed that EFG is promising method in simulating

orthogonal cutting.

In developing a machining model, several aspects should be considered care-120

fully, such as simulation type, constitutive model, material failure and contact

modelling. A brief description of each follows: Machining simulation can be
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steady-state or dynamic. Steady-state simulation utilises implicit algorithms

while the dynamic uses explicit algorithms. Cutting speed and computational

resources should be considered when making this choice. Steady state simula-125

tions were utilised in machining simulations at low cutting speeds. Some studies

that used steady state approach include [26, 27, 28, 29, 30, 31]. On the other

hand, dynamic simulations take the inertial effects into account. This is more

suitable for simulating high speed machining. Some studies that used dynamic

approach include [32, 33, 34, 35, 36, 37, 38, 39]. The dynamic approach is be-130

coming more popular recently. This is due to the highly dynamic nature of the

machining problem, especially at the beginning of the cutting process.

Material modelling is another important aspect of machining simulations.

Appropriate choice of constitutive and failure models is essential for accurately

predicting cutting force and chip formation. Constitutive models falls under two135

broad categories: equivalent homogeneous (single phase) and multi-phase mate-

rial models. The former assumes the material to be one equivalent phase, while

the latter models matrix and reinforcement separately with interface elements

in between. Most of the single phase models assumed linear elastic constitutive

material, such as [26, 27, 29, 31, 25]. However, recently, Zenia [38, 39] assumed140

a combined elasto-plastic material with isotropic hardening. In multi-phase ma-

terial model, the fibres are usually modelled as brittle-elastic while the matrix

is modelled as elasto-plastic material. Interface elements operate as traction

transmitter between the phases. Cohesive zone elements (CZE) are widely used

interface elements because they can account for both damage and fracture [1].145

Some studies that used multi-phase modelling include [40, 41, 42, 43]. Workpiece

material failure is predicted by composite failure theories. Several theories have

been used in machining literature such as Tsai-Hill [26, 32, 28], maximum stress

[29, 28] and Hashin [29, 33, 35]. On the other hand, some studies [26, 27, 44]

combined two failure mechanisms, a primary failure for the onset of chip forma-150

tion and a secondary for the progression and completion of chip formation. The

primary failure model was governed by the shear properties in the cutting zone

while the secondary failure was governed by the material failure envelopes.
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Modelling of machining involves modelling multi-body problem with con-

tact/impact loading. Modelling of contact is challenging since it adds one or155

more nonlinearity to the calculations. Usually, it is imposed as a constraint

on the global system equations using some constraint techniques such as the

penalty, Lagrange multiplier or one of their different variations. Several works

studied contact phenomena using the Element-free Galerkin. A frictionless

penalty formulation for elasto-statics was proposed in [45]. A contact detection160

algorithm designed for meshfree methods was proposed in [46] based on the

moment matrix. The proposed algorithm was successfully applied to RKPM

simulation of Taylor Impact bar. Li et al. [17] developed a procedure for con-

tact impact problems utilising the EFG method and stress-point integration in

discretising the weak form. Furthermore, an algorithm for contact calculations165

based on the central difference method at the contact interface. The proposed

formulation is applied in metal forming applications with benchmark tests such

as Taylor impact bar and backward extrusion. Xiong et al. [47] applied the EFG

to the problem of plain strain rolling. They developed a rigid-plastic material

model for slightly compressible materials and found that the EFG was capable170

of describing the velocity field discontinuity near the roller edges.

In this paper, a model to simulate the orthogonal cutting of unidirectional

composites using the Explicit EFG method is proposed. The main outputs of

interest are the cutting forces and chip formation at positive fibre orientations.

Theoretical model development is presented first followed by numerical imple-175

mentation of the model and experimental procedure for validating force results.

Then cutting forces and chip formation predictions using different failure criteria

are presented and discussed.

2. The Explicit Element Free Galerkin Model

This section describes the development of the mathematical model of orthog-180

onal cutting of composites. We start by developing the continuum mechanics

model then deriving the discretised system equations in space and time. Aux-
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iliary models such as contact force calculations and material modelling are also

presented.

2.1. Governing Equations185

Consider a solid body at time t = 0 occupying a reference configuration

Ω0 and bounded by Γ0. The body is then subjected to forces, which create

a displacement field u. At time t, the current configuration is Ωt and the

boundaries are Γt. In order to determine the state of the body at time t, we

start with the conservation of momentum equation in its differential form190

5 · σ − b = ρa (1)

where, σ is the stress field, b is the body force tensor, ρ is the density of the

material and a is the acceleration of the body. Equation (1) is subject to the

following traction and displacement boundary conditions:

njσ = t̄ on Γt (2)

ui = ūi on Γu (3)

where Γt and Γu are traction and displacement boundaries respectively. In

addition, Equation (1) is subject to the following initial conditions195

u(x0, 0) = u0(x0) (4)

σ(x0, 0) = σ0(x0) (5)

The weak form of Equation (1) is obtained by multiplying the differential

form by a kinematically admissible, virtual displacement field δu and integrating

over the current configuration Ωt [48]. After integration by parts and rearrang-

ing we obtain:

∫
Ωt

δεTσ dΩ−
∫

Ωt

δuTb dΩ−
∫

Γt

δuT t̄ dΓ−
∫

Ωt

ρ δuT a dΩ = 0 (6)

where, δεT = ∂(δuT )
∂x is the spatial variation of the strain field. Equation (6)200

cannot be evaluated as it refers to the current (unknown) configuration of the
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body Ωt. Integration domain can be changed from Ωt to a known configura-

tion using an appropriate stress and strain measures [49]. To achieve this, two

main approaches are used, namely, total Lagrangian formulation or updated

Lagrangian formulation. In the former, the integration domain is changed to205

Ω0, while in the latter, the integration domain is changed to the last known

configuration Ωt−1.

In this study, the Updated Lagrangian formulation is adopted. This is due

to the presence of contact forces, which should be calculated with reference

to the deformed configuration rather than the un-deformed [48]. Furthermore,

Second Piola Kirchhoff stress and Green-Lagrange strain are used. These mea-

sures are suitable for describing geometrical non-linearity and are widely used

in nonlinear solid mechanics problems that involve large deformations. Second

Piola Kirchhoff stress S is related to Cauchy (nominal) stress by

S = det(F)F−1 · σ · F−T (7)

where, F is the deformation gradient. The Green-Lagrange strain tensor is

defined as follows

E =
1

2
(FT · F− I) (8)

where, I is the identity matrix.

Now we can rewrite Equation (6) as follows:∫
Ωr

δET S dΩ︸ ︷︷ ︸
δWint

−
∫

Ωr

δuTb dΩ−
∫

Γr

δuT t̄ dΓ︸ ︷︷ ︸
δWext

+

∫
Ωr

ρ δuTa dΩ︸ ︷︷ ︸
δWkin

= 0 (9)

where, Ωr ≡ Ω0 for total Lagrangian formulation and Ωr ≡ Ωt−1 for updated

Lagrangian formulation. Equation (9) can be viewed as a the principle of virtual210

work and each of the terms can be given a physical interpretation as follows:

δW int is the virtual internal work, δW ext is the virtual external work and δW kin

is the virtual kinetic work.

2.2. Meshfree Approximation

The meshfree spatial discretisation is achieved through Moving Least Squares

(MLS) approximation [6, 50, 51]. Consider a continuous field variable u(x) de-
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fined in the domain Ω. A discrete approximation uh can be formulated as

follows:

uh(x) =

m∑
j

pj(x)qj(x) ≡ pT (x)q(x) (10)

where, p is a complete polynomial basis function with m monomial terms, q(x)

is a vector of unknown coefficients. A complete polynomial linear basis function

in 2D is given as:

pT (x) =
{

1 x y
}
, m = 3 (11)

The unknown coefficients qj(x) in Equation 10 can be calculated by minimis-

ing the difference between the local approximation and the function through a

weighted least-squares fit, which gives:

J =

n∑
I

w(x− xI)[p
T (x)q(x)− uI ]

2 (12)

where n is the number of points in the neighbourhood of xI for which the weight215

function w(x− xI) 6= 0, and uI is the nodal value of u at x = xI .

Equation 12 can be re-written as follows

J = (P q− u)
T
W(x)(P q− u) (13)

where,

uT =
{
u1 u2 · · · un

}

P =


p1(x1) p2(x1) · · · pn(x1)

p1(x2) p2(x2) · · · pn(x2)
...

...
. . .

...

p1(xn) p2(xn) · · · pn(xn)



W(x) =


w(x− x1) 0 · · · 0

0 w(x− x2) · · · 0
...

...
. . .

...

0 0 0 w(x− xn)



11



  

qj(x) is obtained by differentiating Equation 13 with respect to q and finding

the stationary point
∂J

∂q
= (P q− u)

T
W(x) = 0 (14)

Therefore, q is given as

q = A−1 G u (15)

where, A = PT W(x) P is called the moment matrix and G = PT W(x).

From the above, the final MLS approximation relationship is obtained

uh(x) =

n∑
I=1

φI(x)uI = φ(x)u (16)

The shape function φ(x) is defined by

φ(x) =

m∑
j=0

pj(x)(A−1(x)G(x))j = pTA−1G (17)

The partial derivatives of φI(x) can be obtained as follows

φ,i =

m∑
j

{pj,i(A−1G)j + pj(A
−1
,i G) + (A−1G,j)j} (18)

where the index that follows a comma is a spatial derivative and

A−1
,i = −A−1A,iA

−1 (19)

An important aspect of the meshfree shape function calculations is the choice

of the weight function. Different weight functions were proposed in literature

e.g. exponential, high-order splines and others. The weight function used in this

study is a regularised weight function proposed by Most [52]. It approximately

possesses the Kronecker-delta property, which is inherited by the shape function.

This makes imposing of displacement boundary conditions possible without the

need for using constraints methods such as penalty or Lagrange multiplier. The

regularised weight function is given as:

wR(di) =
w̃R(di)∑m
j=1 w̃R(dj)

(20)

w̃R(d) =

((
d
D

)2
+ ω

)−2

− (1 + ω)−2

ω−2 − (1 + ω)−2
; ω � 1 (21)
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where, d is the distance between the point of interest and the support node,

m is the number of nodes within the domain of influence, D is the size of the

domain of influence and ω is a constant that is usually much smaller than one.

In this study ω = 10−5 is used following the recommendations of Most et al.220

[52].

2.3. Discretisation of Governing Equations

Using the meshfree MLS approximation, the continuum equation (9) can

be changed into spatially discretised equations. Firstly, the displacement-strain

relationship has to be discretised followed by discretisation of the weak form225

terms. Finally, temporal discretisation of the semi-discrete equations become

possible.

2.3.1. Displacement-Strain Equations

In this study, we consider a plane stress problem of orthotropic materials.

Hence, Green Lagrange strain tensor can be represented in Voigt notation as a

vector:

ET =
{
Exx Eyy Exy

}
(22)

The 2D displacement field uT =
{
ux uy

}
can be approximated at a

point of interest using MLS shape functions as follows

u =

n∑
I

φIuI (23)

where φ is the MLS shape function, n the number of nodes in the support

domain of the point of interest. This leads to

δu =

n∑
I

φIδuI (24)

The strain can be discretised as follows

E =

n∑
I

∇ φIuI =

n∑
I

BIuI (25)

13



  

where B is called the strain matrix. The virtual strain caused by the virtual

displacement field is approximated as follows

δE =

n∑
I

BIδuI (26)

The strain-displacement matrix is given below

B =


F11

∂φ1

∂x F21
∂φ1

∂x . . .

F12
∂φ1

∂y F22
∂φ1

∂y . . .

F11
∂φ1

∂y + F12
∂φ1

∂x F21
∂φ1

∂y + F22
∂φ1

∂x . . .

 (27)

In case of small displacement, F ≈ I and B becomes equivalent to the well-

known strain matrix for small displacement linear elasticity.230

2.3.2. Discretisation of the Virtual Work Terms

Using the MLS shape function and its derivatives in addition to the strain-

displacement relations, each term in Equation (9) can be discretised spatially

as follows:

δW int =

∫
Ωr

δET SI dΩ =

∫
Ωr

n∑
I

BT
I δu

T
I SI dΩ (28)

In order to complete the equation development for the entire domain, the sum-

mation above should be re-written with respect to the global nodal numbering

(1 → N). Due to the local support property of the MLS shape function. This

change can be readily made. This means that the contributions of the points

outside the domain of influence will be zero. Therefore Equation (28) becomes

δW int =

∫
Ωr

N∑
I

BT
I δu

T
I SI dΩ =

N∑
I

δuTI

∫
Ωr

BT
I SI dΩ (29)

We denote the local nodal internal force as follows

f intI =

∫
Ωr

BT
I SI dΩ (30)

Equation (28) becomes

δW int =

N∑
I

δuTI f intI (31)

14



  

Now we can generalise the above formulation for the entire domain by applying

the summation over all the nodes in the domain and collecting the contributions

in global matrices as follows

δû =

N∑
I

δuI f int =

N∑
I

f intI (32)

Therefore

δW int = δûT f int (33)

Using similar procedure we can discretise the external virtual work:

δW ext =

∫
Ω

δuTbdΩ +

∫
Γt

δuT t̄dΓ =

∫
Ω

N∑
I

φTI δu
T
I bdΩ +

∫
Γt

N∑
I

φTI δu
T
I t̄ dΓ

=

N∑
I

δuTI

[∫
Ω

φTI bdΩ +

∫
Γt

φTI t̄ dΓ

]
︸ ︷︷ ︸

fext
I

= δûT fext

(34)

The kinetic term is discretisted following the same argument as the previous

two components

δW kin =

∫
Ω

δuT ρüdΩ =

∫
Ω

N∑
I

φTI δu
T
I ρ

N∑
J

φJaJdΩ

=

N∑
I

N∑
J

δuTI

∫
Ω

φTI ρ φJdΩ︸ ︷︷ ︸
MIJ

aJ = δûTMa
(35)

By combining Equations [31, 34, 35] we obtain

δûT
(
f int − fext + Ma

)
= 0 (36)

Equation (36) can now be discretised in time. In this study, the central difference235

method is utilised. Using lumped mass matrix and suitable timestep (refer to

Section (3.2)), the solution can be obtained without system equations inversion,

which makes the implementation computationally more efficient.
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2.4. Contact-Impact

Machining simulations are multi-body problems with contact between the

cutting tool and the workpiece. As such, contact force calculations need to be

added to the model. Modelling contact is a challenging task since the contact

boundaries are part of the solution (i.e. not known a priori). This adds boundary

non-linearity to the problem in addition to the geometrical and material non-

linearity [53]. Kinematic contact condition is imposed on the system, which

states that two material points cannot occupy the same space at the same time.

This can be formalised by the use of gap function as follows:

g(x) ≤ 0 (37)

The gap function of discretised system is defined in matrix form as

gi = (xS − xM ) · i ; i = [n, t] ; i = [n, t] (38)

A convenient way of studying contact problems is the “master-slave” approach,240

where the master body is considered rigid body and applying the kinematic

contact condition on any slave nodes that penetrate a master segment. A basic

terminology of contact is illustrated in Figure (1)

16
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2

Figure 1: Basic Contact Terminology [[25]]

The nodal contact forces are calculated using central difference scheme as

follows [46, 54]: The normal force acting on the slave nodes due to penetration

of a master segment (frictionless contact) is given as:

f conn,j =
2Ms(j)gj

(∆t)2
· n (39)

where, ∆t is the time step and Ms(j) is the mass of the penetrating slave node,

which is calculated using the mass expression in Equation 35 during the assembly

of the system equations in the preprocessing stage. By utilising Coloumb friction

law, we can calculate the tangential contact force in terms of relative velocity of

contacting slave/master vr or in terms of the tangential gap. For stick conditions

f cont,j =
Ms(j)vr(j)

∆t
· t =

Ms(j)gt,j

(∆t)2
(40)

For slip condition:

f cont,j = µf conn,j (41)

In order to decide which contact condition applies, two trial tangential forces

are calculated using Equations 40 and 41. If the trial stick force is smaller than

17



  

trial slip force, then the contact segment is considered to be in stick condition;

otherwise slip condition is applied. The contact force is then updated accord-

ingly. Thus, the contact force acting on each slave node j can be calculated for

stick condition

f conj =
Ms(j)

(∆t)2
(2gj · n + gj · t) (42)

and for slip condition

f conj =
2Ms(j)

(∆t)2
gj · n (1 + µ) (43)

The contact nodal forces calculated in Eqns (42, 43) should be added to the

virtual work in order to obtain the final spatially discretised form of the virtual

work equation.

δW con =

∫
Γc

f δuTdΓ =

∫
Γc

m∑
j

fjδu
TdΓ =

m∑
j

fj

P∑
I

(φIδu
T
I ) (44a)

=
P∑
I

φI m∑
j

fj

 δuTI =
P∑
I

f̄j δu
T
I = f con δûT (44b)

The last term can be added to Equation [36] to obtain

δûT
(
f int − fext − f con + Ma

)
= 0 (45)

Since δuT is arbitrary, it follows that:

Ma = fext + f con − f int (46)

Practically, distributing the local contact forces into the global contact force

vector using the shape function is not required in this case. This is a consequence245

of the almost-interpolating property of the shape function combined with the

force calculations at the nodes (not at quadrature points). However, it is kept

to maintain the generality of the algorithm and in the case of using weight

functions that do not have interpolating properties. It is worth noting that the

above nodal force calculations given in Equations (42, 43), are equivalent to250

penalty method with variable penalty parameter. The “penalty parameter” is

calculated from the mass of the node and timestep of the algorithm. This has
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an advantage from numerical implementation point-of-view, as the same contact

algorithm can be used with implicit and explicit solvers and only the ”penalty

parameter” value would change. In implicit algorithms, mass and time steps255

are usually not calculated, a constant penalty parameter can be used. Choosing

penalty parameter is usually requires numerical experiments [55]. However, in

the case of explicit algorithm such as the proposed model, choosing the penalty

parameter is avoided without adding extra unknowns to the system (e.g. as in

Lagrange multiplier).260

2.5. Temporal Integration

Equation [46] is called the semi-discrete equation because it is discrete in

space but not in time. The central difference method is used to discretise in

time. It is commonly used method in nonlinear solid mechanics. The temporal

quantities, i.e. velocity and acceleration are calculated based on the central

differencing formulae. The equations and procedure presented by Belytschko

et al. [56] are adopted in this work. Time increments are divided into half

steps, which enable energy balance calculations. The simulation time tn varies

between 0 and T . The time increment quantities are

∆tn+1/2 = tn+1− tn ; tn+1/2 = 0.5(tn+1 + tn) ; ∆tn = tn+1/2− tn−
1/2 (47)

The velocity at the first half time step vn+1/2 can be calculated using the

acceleration of the previous time step as follows:

vn+1/2 = vn + (tn+1/2 − tn)an (48)

After that, displacement at increment n + 1 can be calculated from vn+1/2

as follows

un+1 = un + ∆tn+1/2vn+1/2 (49)

One of the main features of the CDM is that acceleration an+1 can be cal-

culated using all known quantities at time tn as per Equation 46. Once the new

acceleration is calculated, the second velocity update can be obtained using the
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following formula:

vn+1 = vn+1/2 + (tn+1 − tn+1/2)an+1 (50)

The details of the numerical implementation of these equations are presented in

Section 3.6.

2.6. Material Modelling

In this section, a novel material model is developed. It consists of two main265

parts: the constitutive equations that describe the pre-failure material behaviour

and progressive failure model that predicts the onset and propagation of failure

in the workpiece material.

2.6.1. Constitutive Equations

The material behaviour before failure is modelled using Saint Venant-Kirchhoff

material model [48], which is an extension of linear elastic behaviour while tak-

ing into account the nonlinear components of stress and strain (using Green

Lagrange strain and PK2 stress). The material model is written as follows:

S = C E (51)

This material model can describe fully anisotropic material [48], so it is capable270

of dealing with orthotropic materials.

2.6.2. Progressive Material Failure

In this work, three failure criteria are used, namely, maximum stress, Hashin

and LaRC02 failure. Summary of their equations is given in Appendix A. Stress

in local coordinates is required for failure calculations. The local stress can be

retrieved from global stress using the following relation:

S12 = T · Sxy (52)

where, S12 is the local stress, Sxy and T is the rotation matrix given by:

T =


c2 s2 2sc

s2 c2 −2sc

−sc sc c2 − s2

 (53)
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where, c = cos(θ) and s = sin(θ).

Failure envelopes for the workpiece material used in experiments using the

different failure criteria is given in Figure 3. Maximum stress and Hashin criteria275

have been used before in the modelling of machining composites e.g. [33, 29, 25].

LaRC02 was developed by Dàvila et al. [57] of NASA and named after Langley

Research Centre. It is based on Puck’s action plane concept [58] combined with

concepts proposed by Hashin [59]. The aim was to develop failure criteria that

does not rely on experimental parameters but based on physical understand-280

ing of the composite lamina failure. LaRC02 was chosen in this work for the

following reasons:

• It can account for the positive effect of transverse compression on the shear

strength of unidirectional lamina.

• It corresponds well with the experimental evidence of the World Wide285

Failure Exercise.

• It does not contain empirical parameters/tuning parameters.

• While newer versions of LaRC02 were later developed (LaRC03 and LaRC04),

they require additional material testing and are more complicated to im-

plement.290

Progression of failure is modelled using stiffness degradation concept whereby

the stiffness of the material point is degraded selectively based on the type of

failure. The stiffness degradation procedure and parameters are similar to the

one used in [25]. A normalised damage matrix D is used to store the damage

status of the integration points at each time step. For each integration point, 3295

damage values are stored, namely, fibre, matrix and interface. These values are

calculated from one of the failure criteria mentioned above. The value of the

damage parameter varies between 0 (no damage) to 1 (complete damage).

3. Numerical Implementation

The proposed model is implemented in MATLABR© code; (refer to subsection300

3.6). This section describes some aspects of the code implementation including
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model settings, critical time step calculations and material parameters.

3.1. Numerical Integration of the Weak Form Terms

Numerical integration of the weak form terms is performed using Gaussian

quadrature over background mesh. The integral is converted into a sum over

the integration points of the cell. For example, integration of the internal nodal

force can be performed as follows: Assuming that the domain is covered by nc

cells, in each cell there are nG integration points at positions xG; Equation (30)

becomes:

f intI =

∫
Ωr

BT
I SI dΩ =

nc∑
k

nG∑
i

$iBI(xGi)SI(xGi)|Jik| (54)

where, $i is the weighting factor for Gauss point at xGi and |Jik| is the

determinant of the Jacobian matrix of the kth background cell. Throughout305

this study, 2 × 2 Gauss points per cell are used. This was found to give best

performance as higher number of integration points tended to increase numerical

noise in the solution.

Figure 2: Close up near the cutting edge showing the nodal distribution (blue points) and

Gauss integration points (red points) within the background mesh (black)
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3.2. Critical Time Step

The central difference method is only conditionally stable [48, 49, 60]. This

means that a robust algorithm should have an automatic time step calculation.

The critical time step is related to the stress wave propagation speed. This

is a function of the material density and mechanical properties as well as the

distance between discretisation nodes. Unlike isotropic material, a composite

laminate has several phase velocities. The maximum velocity is used in critical

time step calculations [61]

cmax =
√
C11/ρ ; where C11 =

E1

1− ν12 ν21
(55)

∆tcr <
min(dist)

cmax
(56)

where, dist is the distance between nodes.310

3.3. Material Failure Parameters

In order to estimate the shear and normal strength in the cutting zone, we use

the merchant model. Using principle force components, shear and normal stress

components acting on the shear plane can be calculated as per the following

well-known relations

Fs = Fc cos(ϕ)− Ft sin(ϕ) (57)

Fns = Fc sin(ϕ) + Ft cos(ϕ) (58)

where, Fc and Ft are the cutting and thrust forces respectively, which can be

obtained from experiments using force dynamometer, and ϕ is the shear plane

angle, which is given as follows:

ϕ = tan−1 r cos γ

1− r sin γ
(59)

where,γ is the rake angle of the cutting tool and r is the cutting ratio, i.e.

the ratio of the chip thickness to the depth of cut. Since composites display

brittle behaviour, it is reasonable to assume that r ≈ 1 [62]. Using the above
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equations and knowing the area of the shear plane, we obtain the normal and315

shear strength values used to evaluate failure in the cutting zone as shown in

Table 1.

Table 1: Interfacial Normal and shear strength values

θo 0 15 30 45 60 75 90

Sσ (N/mm2) 146.3 103.5 102.9 119.2 143 158.9 183.5

Sτ (N/mm2) 49.3 26.8 35.2 50.2 71 85.1 113

Generating the failure envelopes for the material under study is performed

in order to gain a better understanding of the chip formation mechanisms and

how the different failure criteria differ in each loading case. The failure envelope320

is a 3D closed surface, however, for clarity it is depicted as two 2D graphs:

σ11 − σ22 envelope is shown in Figure 3a and Figure 3b shows the σ22 − τ12

envelope. The normal stresses envelope for Max stress and Hashin is identical

since τ12 = 0. The differences between the failure criteria are clear in Figure 3b.

LaRC02 better predicts the beneficial effect of transverse compression on the325

shear failure which was observed experimentally that Hashin and max stress do

not describe.

3.4. Model Set Up

The material is assumed to be in plane stress condition. Positive fibre orien-

tation is defined in the same direction as the cutting tool movement. Mechanical330

properties of the GFRP samples are given in Table 2. In this study, the tool

is considered as a rigid body and the thermal effects are not considered. Given

that the cutting is performed at low cutting speed, thermal effects are expected

to be small. Friction coefficient is made function of fibre orientation as in [63].

However, the effect of friction coefficient was found to be minimal due to the335

termination of the simulation at the completion of the first chip. Other model

parameters such as cutting speed, depth of cut, rake and clearance angles were

similar to the experimental set up; refer to Table 3.
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Figure 3: Failure Envelopes for the GFRP samples used in Experiments

3.5. Model settings

The number of nodes was set at 13,648; refer to §5.3.using the nodes as340

vertices for the background mesh resulted in 13,401 cells in the domain and

53,604 Gauss points. These parameters were kept constant throughout the

study.

Constructing the meshfree domain of influence (DoI) followed the procedure

proposed in [25]. Visibility criterion was used to update DoI of integration points345

near the chip root (non-convex boundary). This improves the accuracy of the

stress field near discontinuities. The analysis was terminated at the completion

of the first chip according to the termination criteria in Section 5.4.

3.6. Main algorithm

The main algorithm of the dynamic EFG model is shown below. Time350

integration follows the equations in Section 2.5. The stress is calculated initially

in order to update the damage matrix, thus it is called “trial stress”. If damage

progression occurs during a time step. The stress calculations are repeated in
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order to accurately calculate f int. The chip formation completion is checked

every time step according to the details of Section 5.4.355
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Inputs

Generate geometry, distribute nodes,

Gauss points, compute DoI

Compute and store φ, φ,x, M; Eqns (23, 26, 35)

Initialise global variables and compute ∆tcr, Eqn.(56)

while t ≤ T

Update ∆t, velocity,

displacement; Eqns.(47,48,49)

update φ, φ,x

Compute contact force f con; Eqns (42, 43)

Compute trial stress Sxy,

local trial stress S12; Eqns. (51, 52)

Damage detected?
Update damage variable

D = D(S12)

Compute f int(S,D); Eqn.(32)

Compute acceleration; Eqn (46)

Update velocity and ∆tcr;

Eqns. (50,56)

Chip formation

complete?
Terminate

update global variables,

update counter

Yes

No

YesNo



  

4. Experimental Design

4.1. Workpiece Material

The experiments were conducted on Uni-Directional laminates of glass fibre

reinforced plastic (UD-GFRP). Tension, compression and shear tests were per-360

formed on specimen of the materials in order to know the material properties

which will be used for comparison with modelling results. A minimum of 5 rep-

etitions were carried out to ensure reliable results. The average and standard

deviation of the tests are shown in Table 2. A sample of the tests is presented

in Figure 4, which shows the tensile test results obtained for seven samples and365

the average stress-strain curve. As expected, a linear relation is clear for all the

specimen.

Table 2: Mechanical properties of the GFRP specimen

Property Unit Mean Std.

ρ kg/m3 1.58 -

E1 GPa 34.28 2.257

E2 GPa 11.57 0.496

ν12 - 0.24244 0.037

ν21 - 0.0932 0.007

G12 GPa 2.05 0.207

Xt MPa 697.8 36.576

Y t MPa 89.7216 7.251

Xc MPa 443.76 66.09

Y c MPa 148.33 4.13

Sl MPa 33.1 2.238

εt1 % 2.3 0.164

εt2 % 1.817 0.121
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Figure 4: Stress-strain curve during tensile test

4.2. Experimental Design/procedure

Single-point orthogonal cutting experiments were conducted using 3 axis

DENFORD vertical CNC machine (VMC 1300 PRO). It has variable feed rate370

up to 5000 mm/min. The spindle was locked to prevent rotational movement

during cutting. The cutting speed was controlled by the table feed speed. High

speed steel cutting tools with 0o rake angle were used. The squared-profile tool

is fixed inside the circular tool holder using a specially designed fitting.

Ensuring consistent depth of cut throughout the workpiece is essential in375

obtaining accurate force measurements. A magnetic base, metric dial gauge is

used to ensure the cut surface is flat within acceptable range of tolerance which

is set to be ±20µm. The dial gauge is fixed on the ceiling of the machine, then

made contact with the top of the workpiece, zeroed and then the workpiece

moved slowly while taking readings of the dial. Adjustments to the workpiece380

position were made iteratively until the workpiece was appropriately levelled.

The workpiece was fixed sideways in order to investigate the effect of fibre orien-

tation. This was achieved using bespoke clamp. The clamp was fixed on top of

a triaxial force piezo-electric dynamo-meter (Kistler 9257B). The dynamometer

was connected with charge amplifier, data acquisition device and PC to collect385
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Figure 5: Experimental set up

and analyse the force signals. Three repetitions of every test were carried out

in order to ensure reliable force readings. The experimental set up is shown in

Figure 5 and the running parameters are shown in Table 3.

Table 3: Experimental set up parameters

Process parameters Units Levels

Speed mm/min 3800

Rake Angle Deg 0

Depth of Cut mm 0.25

Fibre Orientation Deg 0, 15, 30, 45, 60, 75, 90
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5. Results and Discussion

5.1. Effect of Failure Criteria on Cutting Forces1
390

Table 4 shows the comparison of the normalised mean cutting force between

the EFG model with different failure criteria and the experiments for the range

15o ≤ θ ≤ 75o. The experimental values had a minimum of 32.6± 1.6N/mm at

θ = 15o and maximum of 61 ± 1.53N/mm at θ = 75o. Forces using Maximum

stress failure ranged from minimum of 27.6N/mm at θ = 30o to maximum of395

56.8N/mm at θ = 75o. Force using Hashin failure ranged from minimum of

36.3N/mm at θ = 30o to maximum of 50.1N/mm at θ = 75o. Force using

LaRC02 failure ranged from minimum of 30.3N/mm at θ = 30o to maximum

of 58.5N/mm at θ = 75o. Maximum deviation from experimental force range

was 3.2N/mm using LaRC02 at θ = 15o, while for Hashin it was 9.6N/mm at400

θ = 75o and for Maximum stress, it was 5.1N/mm at θ = 30o. This indicates

that LaRC02 generated results closest to experimental data within the studied

range.

Table 4: Cutting force comparison between model and experiments with different failure

criteria

θo
Fc(N/mm)

Max stress Hashin LaRC02 Experiments

15 31.4 39.4 37.4 32.6 ±1.60

30 27.6 36.3 30.3 34.5 ±1.87

45 36.7 41.6 43.9 42.3 ±4.14

60 48.6 49.7 50.3 53.5 ±7.43

75 56.8 50.1 58.5 61 ±1.53

Table 5 shows thrust force comparison. It is clear that the model significantly

under-estimated the thrust force throughout the studied range. The force val-405

1Note on terminology: In this work, cutting forces are the main cutting force Fc and thrust

force Ft. However, when discussed individually, we shall refer to Fc as the cutting force.
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ues tended to increase with increased orientation angle. This might be due to

the combined effect of increasing friction coefficient and cutting force magni-

tude at higher orientations. The expeirmental values showed little variation in

the thrust force across the studied range (when taking the error bounds into

account). The experimental values ranged between 16.9 to 19.2N/mm. Force410

calculated with maximum stress ranged between 0.9 to 5.6N/mm. Force cal-

culated using Hashin were between 1.6 to 4.1N/mm and using LaRC02 ranged

between 2.1 to 5.5N/mm. This significant under-estimation of the thrust force

is seen throughout modelling of machining composite literature, across different

numerical schemes e.g. [25, 29, 35, 33]. This indicates that it is not related415

to the choice of meshfree methods, rather it is more related to the difficulties

in accurately modelling the composites behaviour under machining conditions.

In the current study, two reasons may have contributed to the low thrust force

values. Firstly, starting the machining process within the workpiece rather than

the free edge. This set up was chosen for numerical stability reasons. Secondly,420

terminating the simulation after the completion of the first chip. This reduced

the bouncing back effect (bouncing back of the machined surface and exert-

ing vertical reaction force on the clearance face of the cutting tool), which was

identified as important contributor to the thrust force magnitude in composites

machining [62, 33, 29]. Clearly this is an area where significant improvement425

is required by implementing better constitutive models and material separation

criteria.
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Table 5: Thrust force comparison between model and experiments with different failure criteria

θo
Ft(N/mm)

Max stress Hashin LaRC02 Experiments

15 0.9 2.3 2.7 19.2 ±0.66

30 1 1.6 2.1 16.9 ±0.96

45 2.4 2.7 2.9 17.3 ±1.65

60 4.1 3.1 3.5 18.0 ±1.09

75 5.6 4.1 5.5 18.5 ±3.10

5.2. Mechanisms of Chip formation

The study of chip formation is essential in shedding light on the mechanisms

of cutting. Machining models provide a valuable tool in analysing the chip430

formation process that is difficult to conduct experimentally such as obtaining

the failure stresses and failure modes. Figures [ 6, 7, 8, 9] show the progression

of the fibre and matrix failure at θ = 30o, 75o at the beginning of cutting (left

figures), halfway (middle figures) and near the end of the chip formation (right

figures). Each row represents a different failure criteria: top (max stress), middle435

(Hashin) and bottom (LaRC02). It is worth noting that the chip formation was

complete at slightly different intervals between the different failure criteria but

time was normalised for each individual case for ease of comparison.

Fibre failure at θ = 30o is shown in Figure 6. It is noted that the maximum

stress did not predict any significant fibre damage. This is due to the uncoupling440

of the shear effects, which plays an important role in reducing the failure stress

of the material. Hashin failure predicts moderate fibre failure along a narrow

band of the chip boundaries. This due to the effect of shear stress on the failure

stress as the location of fibre failure coincides with high shear stresses. This

means that the completion of chip formation in Hashin is due to fibre failure445

since matrix failure has been completed already (refer to Figure 7f). As for

LaRC02, a substantial fibre damage is predicted in the chip. This is mainly

due the different way of calculating fibre failure under compression. LaRC02
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predicts fibre fails under compression due to formation of kink bands resulting

from shear deformation. The kink generates misalignment in the fibres and leads450

to damage in the fibre and the nearby supporting matrix. This is expected to

be dominant failure at lower fibre orientations and 0o rake angle as the rake

face directly engages with the workpiece causing severe compressive load on the

fibres. Naturally, this loading will propagate along the fibre direction and will

cause the observed severe damage.455

Figure 7 shows the progression of matrix failure at θ = 30o. The matrix

failure starts early near the end of the tool nose and quickly propagates along the

fibre directions towards the free surface. A wide band of failure emanating from

the rake face towards the free surface is observed due to the high compressive

stresses exerted by the 0o rake tool. The completion of the chip formation is460

characterised by almost complete damage in the chipped area. Furthermore, the

damage is extended in the machined surface along the fibre direction to a small

depth. This is consistent with experimental evidence that cutting at small angles

produces good finished surface of the uni-directional composites [64]. The chip

formation is qualitatively similar for all the failure criteria. However, LaRC02465

predicted less matrix damage in the chip. This is due to the increased shear

strength at high compressive load in the matrix direction. (Compare second

quadrant in Figure 3b).

Figure 8 shows the fibre failure at θ = 75o. Similarly to Figure 6, maximum

stress failure criteria predicted negligible failure at the chip root. Hashin and470

LaRC02 predicted limited failure of the fibre perpendicular to the fibre orienta-

tion. This is confirmed experimentally in [4]. The matrix damage is shown in

Figure 9. The chip is smaller than in the case of θ = 30o. This is noted exper-

imentally in [28] and explained by the change in the main failure mechanisms

from bending of the fibres to brittle crushing. The damage extends to the entire475

chip in this case due to the non-positive rake angle. Ahead of the complete chip

a large area of damaged workpiece. Damage to the machined surface is also

larger than in the case of θ = 30o. It is noted that the damaged area is similar

using the different failure criteria. This can be explained with the help of Figure
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Fibre damage progression at θ = 30o using maximum stress (a, b, c), Hashin (d, e,

f) and LaRC02 (g, h, i)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Matrix Damage at θ = 30o for different failure criteria
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(d) (e) (f)

(g) (h) (i)

Figure 8: Fibre Damage at θ = 75o for different failure criteria

3b by noting that at high fibre orientations, the ratio
−σ22

τ12
increases. This will480

cause the stress evolution to follow a path closer to the negative σ22 axis. At

this region the three failure envelopes are close to each other.

5.3. Effect of Nodal Density on Cutting Forces

A study of the nodal density effect on the cutting forces is carried out in

order to determine the minimum number of nodes that would give a satisfactory485

results. Table 6 shows cutting force convergence against the number of nodes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Matrix Damage at θ = 75o for different failure criteria
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Table 6: Cutting force convergence against the number of nodes

N 2592 4868 7876 11521 13648 15955

Fc (N/mm) 80.6 63.9 55.5 50.8 48.3 48.3

It is clear that convergence approaches the accurate force value from the

top since the model is usually stiffer when it contains lesser number of nodes.

N = 13, 648 is chosen for the simulations throughout the study, since it is the

minimum number that achieve convergence.490

5.4. Termination Criteria

Completion of the chip formation in orthogonal cutting is usually charac-

terised by material damage propagating from the cutting point (in 2D) to the

free surface. Detection of completion of chip formation is somewhat complicated

and requires intensive geometrical calculations that add to the computational495

cost of the code. In this study, a numerical approach utilising the critical time

step is devised to predict the completion of the chip without resorting to bur-

densome geometrical calculations. It was noted that the completion of the chip

is detectable from a sudden drop in the critical time step. This is due to the

loss of stiffness in the chip as it becomes completely damaged. This in turn will500

induce sudden large displacement causing the nodes along the chipping plane to

get closer and thereby causing significant drop in the time step (refer to Eqn 56).

This effect is shown in Figure 10, where the timestep remains nearly constant

until the chip completion where the force diverges due to high displacements

of the contact surface between the tool and workpiece. In the algorithm 3.6,505

the gradient of the critical time step is calculated at every time step, when the

sudden drop is detected, the code terminates.
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Figure 10: Detection of chip formation completion from gradient of critical time step

6. Summary and Conclusions

This paper presented a novel explicit Element-Free Galerkin Model to simu-

late the dynamic orthogonal cutting of unidirectional composites. The discrete510

system equations were derived from the virtual work principle and nonlinear

analysis was handled using Updated Lagrangian approach. An orthotropic

Kirchhoff material model combined with option of three different failure cri-

teria were used to model the material behaviour. LaRC02 failure criteria, which

has not been used before in composite machining simulations, was found to give515

a better accuracy in cutting force prediction as well as to capture important

fibre failure modes that were not predicted by Hashin or Maximum stress cri-

teria. Frictional contact calculations were handled by a novel algorithm using
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central differencing at the contact nodes. The proposed method avoided the

selection of numerical parameters as in the penalty method while not increasing520

the unknowns as in Lagrange multiplier. Another advantage is that the same

algorithm reduces to penalty formulation that can be used in implicit numerical

analysis.

The model results were compared with experimental evidence of orthogonal

cutting at 0o rake angle and fibre orientations 15o ≤ θ ≤ 75o. It was found525

that the cutting force was predicted with good accuracy for all the failure mod-

els; however, thrust force was significantly under-estimated by the model. This

maybe due to the inability to capture the bouncing back effect and terminat-

ing the analysis at the completion of the first chip. Chip formation analysis

confirmed that the chip separation occurred along the direction of fibres. This530

means that the cutting plane coincides with fibre directions in the studied range.

The model can be extended to study other operating and material parameters

such as rake angles, fibre orientations, cutting speeds. The range of study was

limited here by the availability of reliable experimental data for validation.

Comparison between the steady-state machining model of earlier work by535

the authors [25] and the current dynamic model highlights several differences:

The proposed model is capable of modelling high speed machining by taking

the inertial effects into account. This extends the applicability of the model

to realistic speeds while maintaining accuracy. Furthermore, chip formation is

better studied with the dynamic model rather than the steady-state model. The540

dynamic model is equipped with more advanced material modelling and more

efficient meshfree algorithm with direct imposition of boundary conditions. On

the other hand, the steady-state model is less computationally intensive. This

can be attributed to the very small time step required to maintain the numerical

stability of the dynamic model. The advantages of using meshfree methods545

is clear in both models, such as easy and automatic pre-processing and high

quality approximation of field variables. The model can be improved by using

multiphase modelling rather than using the equivalent homogeneous material,

also by including the thermal and strain-rate effects when modelling high speed
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Appendix A: Summary of Equations of Failure Criteria735

In the following failure criteria, the normalised failure index dki varies be-

tween 0 (no failure) and 1 (total failure). For each integration point, two or

three values are calculated and stored in the damage matrix D using one of the

below failure criteria.

Maximum stress740

For fibre tension σ1 > 0

dtf =
( σ1

Xt

)2

≤ 1

where, Xt is the tensile strength in fibre direction.

For fibre compression σ1 < 0

dcf =
( σ1

Xc

)2

≤ 1

where, Xc is the compressive strength in fibre direction.

For matrix cracking σ2 > 0

dtm =
( σ2

Y t

)2

≤ 1

where, Y t is the tensile strength in transverse direction.

For matrix crushing σ2 < 0

dcm =
( σ2

Y c

)2

≤ 1

where, Y c is the compressive strength in transverse direction.

For shear failure

ds =
(τ12

Sl

)2

≤ 1

where, Sl is the in-plane longitudinal shear strength.745

Hashin

For fibre tension σ1 > 0

dtf =
( σ1

Xt

)2

+
(τ12

Sl

)2

≤ 1
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For fibre compression σ1 < 0

dcf =
( σ1

Xc

)2

≤ 1

For matrix cracking σ2 > 0

dtm =
( σ2

Y t

)2

+
(τ12

Sl

)2

≤ 1

For matrix crushing σ2 < 0

dcm =
( σ2

2Str

)2

+

[(
Y c

2Str

)2

− 1

]
σ2

Y c
+
(τ12

Sl

)2

≤ 1

where, Str is the in-plane transverse shear strength.

LaRC02

For matrix tension σ2 > 0

dtm =
( σ2

Y t

)2

+
(τ12

Sl

)2

For fibre tension σ1 ≥ 0

dtf =
ε1

εt1

For matrix compression σ2 < 0 and σ1 ≥ Y c

dcm =

(
τT
eff

Str

)2

+

(
τL
eff

Sl

)2

where, τT
eff and τL

eff are the effective stress:

τT

eff =
〈
−σ2 cosΥ (sinΥ − ηT cosΥ )

〉
τL

eff =
〈
cosΥ (|τ12|+ ηLσ22 cosΥ )

〉
where, 〈· · · 〉 is the Macaulay operator, Υ is fracture plane angle and Υ0 is

fracture plane angle in pure transverse compressive loading. The transverse

shear strength is given as:

Str = Y c cosΥ0

(
sinΥ0 +

cosΥ0

tan 2Υ0

)
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The coefficients of transverse and longitudinal influence are given as

ηT =
−1

tan 2Υ0

ηL ≈ − S
l cos 2Υ0

Y c cos2 Υ0

For matrix compression σ2 < 0 and σ1 < Y c

dcm =

(
τmT
eff

Str

)2

+

(
τmL
eff

Sl

)2

where, the additional superscript m denotes that the stresses are calculated in

the misalignment frame coordinates.

σm1 = cos2 ψ σ1 + sin2 ψ σ2 + 2 sinψ cosψ τ12

σm2 = sin2 ψ σ1 + cos2 ψ σ2 − 2 sinψ cosψ τ12

τm12 = − sinψ cosψ σ1 + sinψ cosψ σ2 + (cos2 ψ − sin2 ψ) τ12

where, ψ is the kink misalignment angle and is given as:

ψ =
τ12 + (G12 −Xc) ψc

G12 + σ1 − σ2

ψc = tan−1


1−

√
1− 4

(
Sl

Xc + ηL
)(

Sl

Xc

)
2

(
Sl

Xc + ηL
)


For fibre compression σ1 < 0 and σm2 < 0

dtf =

〈
|τm

12|+ ηLσm2
Sl

〉
For fibre compression σ1 < 0 and σm2 ≥ 0

dcm =

(
σm

2

Y tr

)2

+

(
τm
12

Sl

)2
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