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ABSTRACT 

In search for novel antiseizure drugs (ASDs), the European FP7-funded PharmaSea project used 

zebrafish embryos and larvae as a drug discovery platform to screen marine natural products to 

identify promising antiseizure hits in vivo for further development. Within the framework of 

this project, 7 known hetero-spirocyclic γ-lactams, namely pseurotin A, pseurotin A2, pseurotin 

F1, 11-O-methylpseurotin A, pseurotin D, azaspirofuran A, and azaspirofuran B, were isolated 

from the bioactive marine fungus Aspergillus fumigatus, and their antiseizure activity was 

evaluated in the larval zebrafish pentylenetetrazole (PTZ) seizure model. Pseurotin A2 and 

azaspirofuran A were identified as antiseizure hits, while their close chemical analogues were 

inactive. Besides, electrophysiological analysis from the zebrafish midbrain demonstrated that 

pseurotin A2 and azaspirofuran A also ameliorate PTZ-induced epileptiform discharges. Next, 

to determine whether these findings translate to mammalians, both compounds were analyzed 

in the mouse 6-Hz (44 mA) psychomotor seizure model. They lowered the seizure duration 

dose-dependently, thereby confirming their antiseizure properties and suggesting activity 

against drug-resistant seizures. Finally, in a thorough ADMET assessment, pseurotin A2 and 

azaspirofuran A were found to be drug-like. Based on the prominent antiseizure activity in both 

species and the drug-likeness, we propose pseurotin A2 and azaspirofuran A as lead compounds 

that are worth further investigation for the treatment of epileptic seizures. This study not only 

provides the first evidence of antiseizure activity of pseurotins and azaspirofurans, but also 

demonstrates the value of the zebrafish model in (marine) natural product drug discovery in 

general, and for ASD discovery in particular. 
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INTRODUCTION 

Epilepsy is one of the most common neurological conditions, affecting more than 70 million 

people of all ages with no geographical, social, or racial boundaries.1-3 It is a disease of the brain 

that is characterized by spontaneous recurrent unprovoked seizures.4 Despite an exponential 

growth of marketed antiseizure drugs (ASDs) over the past 25 years, seizures remain 

uncontrolled in one third of the patients due to drug resistance.5, 6 As uncontrolled epilepsy is 

associated with increased physical and physiological comorbidities and increased risk of sudden 

unexplained death, there is a substantial burden on the patients, their caretakers and society.6 

Hence, more efficacious ASDs that can treat patients with drug-resistant seizures are sorely 

needed.7  

The EU PharmaSea project, funded by the Seventh Framework Programme (FP7), is an SME-

academia-driven project of 24 partners that was initiated in 2012 to discover novel antibiotic, 

anti-inflammatory and neuroactive compounds from marine microorganisms isolated from 

some of the deepest, coldest, and hottest places on the planet.8 Neuroactive drug discovery 

focused on the identification of compounds with the potential to treat epilepsy. To the best of 

our knowledge, we have been the first to perform systematic large-scale screening of marine-

derived natural products for antiseizure drug candidates. Marine species offer an attractive 

source for drug discovery because they produce potent, selective, and structurally novel 

bioactive secondary metabolites to defend themselves, to locate mates, and to out-compete 

competitors for limited resources.8-10 Many of these do not have a terrestrial analogue and are 

thus unique in terms of chemical structure and bioactivity.8, 9 Among them are marine-derived 

natural products that can alter mammalian neurological activity. Classical examples are 

tetrodotoxins, saxitoxins, kainic and domoic acids, cone snail venom peptides, and sea anemone 

toxins.10 Nevertheless, marine natural products are highly underutilized in drug discovery.11 A 

main reason is the lack of systematic analysis in high-content bioassays given the often limited 

quantities of marine natural products available for screening purposes.11  

The zebrafish model is suitable for large-scale screening and captures the complexity of a whole 

body organism, including the central nervous system. As a vertebrate, zebrafish are highly 

similar to humans due to a high genetic, physiological and pharmacological conservation.12-14 

Moreover, given the small size of embryos and larvae, they fit in wells of microtiter plates and 

hence are suitable for medium to high-throughput testing.13, 14 Given the low volumes used in 

96- and 384-well plates, zebrafish larvae only require small amounts of sample in the low 

microgram range when added to their swimming water and even less when administered by 
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injection. This property is of particular interest for marine natural product drug discovery, 

where material is often scarce.11 Within the PharmaSea project, marine samples were screened 

in 96-well plate format using only 10 µg per well per screening round. From the established 

larval zebrafish seizure and epilepsy models15, the larval zebrafish pentylenetetrazole (PTZ) 

seizure model was chosen for drug discovery because: 1) the model has been extensively 

characterized in terms of behavioral and non-behavioral seizure markers16, 17, 2) it has been 

pharmacologically characterized with ASDs on the market16-18, 3) results translate well to 

rodent models17, 19, 20, and 4) the behavioral assay is suitable for high-throughput screening ‒ 

seizures can easily and rapidly be induced by a single administration of the convulsant drug to 

the larva’s aqueous environment16 and can be quantified by video recording16-18. 

Within the framework of the PharmaSea project, 5 pseurotins (pseurotin A, pseurotin A2, 

pseurotin F1, 11-O-methylpseurotin A, and pseurotin D) and 2 azaspirofurans (azaspirofuran A 

and B) were isolated from extracts of the bioactive marine fungus Aspergillus fumigatus, which 

was collected from a Red Sea sediment in Hurghada, Egypt. Interestingly, these compounds did 

not demonstrate antibacterial activity or cytotoxicity in contrast to other constituents from the 

crude extract21 and were readily available for further biological evaluation. Pseurotins are a 

family of fungal secondary metabolites that have not been well studied so far, except for 

pseurotin A that was found to exhibit a range of bioactivities at moderate to high test 

concentrations (up to 50 µg/mL).22-31 Azaspirofurans are chemically very similar to pseurotins, 

but feature an ethyl furan ring instead of a vicinal diol (Figure 1). Little is known about the 

bioactivities of azaspirofurans as they were identified only recently.32 So far, azaspirofuran A 

was observed to specifically inhibit the proliferation of the A459 cancer cell line.32, 33  

All compounds were investigated for antiseizure activity in the larval zebrafish PTZ seizure 

model. Interestingly, despite close structural similarities, only pseurotin A2 and azaspirofuran 

A ameliorated PTZ-induced seizures, suggesting a highly specific interaction. Besides, 

electrophysiological analysis from the zebrafish midbrain demonstrated that pseurotin A2 and 

azaspirofuran A also significantly lowered PTZ-induced epileptiform discharges. Next, the 

antiseizure activity of pseurotin A2 and azaspirofuran A was demonstrated in the mouse 6-Hz 

(44 mA) psychomotor seizure model. These results not only confirmed the translation of 

findings from zebrafish larvae to mice but also suggested that pseurotin A2 and azaspirofuran 

A are effective against drug-resistant focal seizures. Finally, ADMET profiling showed that 

both compounds are drug-like. Based on the prominent antiseizure activity and the promising 
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ADMET characteristics, we propose pseurotin A2 and azaspirofuran A as lead compounds that 

are worth further investigation for the treatment of seizures. 

 

 

RESULTS AND DISCUSSION 

Isolation and structural elucidation of compounds from the bioactive marine fungus 

Aspergillus fumigatus 

The marine fungal isolate MR2012 used in this study was isolated from a Red Sea sediment in 

Hurghada, Egypt and taxonomically identified on a molecular basis as Aspergillus fumigatus21.  

Compounds pseurotin A34, pseurotin A2
27, pseurotin F135, 11-O-methylpseurotin A34, pseurotin 

D36, and azaspirofurans A and B32, all known hetero-spirocyclic γ-lactams, were isolated from 

the CH2Cl2 fraction of the fungal fermentation21, 37 (Figure 1). Their structures were confirmed 

by HRESIMS analysis and by comparing the 1D and 2D NMR spectra and optical rotation with 

literature data as indicated (see supporting information for their 1D NMR data).  

 

Azaspirofuran A and pseurotin A2 ameliorate seizures in the zebrafish PTZ seizure model 

To investigate whether the isolated compounds display antiseizure activity, they were tested in 

the larval zebrafish PTZ seizure model both after a short (2 hours (h)) and long (18 h) incubation 

time at their maximum tolerated concentration (MTC) (Table 1). The MTC was defined as the 

highest concentration at which no larvae died nor showed signs of toxicity or locomotor 

impairment in comparison to vehicle (VHC)-treated control larvae. In case no MTC was 

reached, 100 µg/mL was used as the test concentration. In line with studies previously 

reported16, 17, addition of the GABAA-receptor antagonist PTZ to the swimming water of 7-days 

post-fertilization (dpf) zebrafish larvae strongly elevated larval locomotion (p ≤ 0.001) (Figure 

2 and 3) as a result of induced seizures (or seizure-like behavior) that were recognized as typical 

high-speed swimming, whirlpool-like circling, clonus-like seizures, and loss of posture, as 

previously described16. Azaspirofuran A (p ≤ 0.01) and pseurotin A2 (p ≤ 0.001) significantly 

lowered PTZ-induced seizures of larvae after 2 and 18 h of compound exposure, respectively 

(Figure 2). Remarkably, none of the chemical analogues showed notable activities despite their 

close structural similarities. These results suggest that azaspirofuran A and pseurotin A2 

specifically interact with their antiseizure target(s). In contrast to azaspirofuran A, 

azaspirofuran B lacks the methoxyl group (Figure 1), which seems necessary for the activity 
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against PTZ-induced seizures. It is unlikely that the activity of azaspirofuran A is due to an 

improved compound uptake as the LogP of azaspirofuran A and B is predicted to be 3.98 and 

3.81 (see methods), respectively, and good compound bioavailability in zebrafish larvae is 

expected from a LogP of 1 onwards38. The close analogues pseurotin A and A2 are 

diastereomers with different configurations at C-8 and C-9 (Figure 1).27 Their structural 

differences do not affect uptake, which is also expected to be adequate as the compounds are 

predicted to have a LogP of 3.23 (see methods). So, likely the structural differences result in 

distinct pharmacological activities rather than in altered bioavailabilities. Nevertheless the 

pharmacokinetics of the individual compounds in zebrafish larvae are currently unknown, so it 

cannot be ruled out that the actual brain concentrations of azaspirofuran A and pseurotin A2 are 

higher than those of their inactive analogues. Of note, like azaspirofuran A, pseurotin A, 

pseurotin D, and 11-O-methylpseurotin A also possess the methoxyl group and are not active, 

which can be due to the absence of the ethyl furan ring. These observations suggest that the 

molecular target(s) of azaspirofuran A and pseurotin A2 are not necessarily the same. 

Interestingly, antiseizure activity has not yet been reported for azaspirofurans or pseurotins. 

 

To investigate the concentration-response relationship, azaspirofuran A and pseurotin A2 were 

retested at their MTC, MTC/2, and MTC/4 (two-fold serial dilution) in the zebrafish PTZ 

seizure model at their optimal incubation time (2 and 18 h, respectively) in three independent 

experiments (Figure 3). Azaspirofuran A lowered PTZ-induced seizure behavior to the same 

extent as before at the MTC over the 30-minute (min) recording period (Figure 3A).  A more 

detailed analysis of the 5-min time intervals from the 30-min recording period revealed a 

significant reduction in the 10-30 min time window (p ≤ 0.001) (Figure 3B). No antiseizure 

activity was seen at lower concentrations. Pseurotin A2 showed concentration-dependent 

activity against PTZ-induced seizure behavior, both within the 30-min recording period (p ≤ 

0.01, Figure 3C) as during the 5-min time intervals (p ≤ 0.001, Figure 3D).  

 

Azaspirofuran A and pseurotin A2 ameliorate epileptiform brain activity in the zebrafish 

PTZ seizure model 

To determine whether azaspirofuran A and pseurotin A2 can ameliorate the PTZ-induced 

hyperexcitable state of the brain that is characterized by epileptiform discharges39, local field 

potential (LFP) recordings40 were non-invasively measured from the midbrain (optic tectum) 

of zebrafish larvae. To that end larvae were treated with either VHC or test compound (MTC 
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and optimal incubation time was used) followed by a 15 min during exposure to PTZ or VHC 

prior to the electrophysiology measurements (Figure 4 and 5). A larva was considered to have 

epileptiform brain activity when at least 3 electrical discharges were seen in the 10-min 

recording period that fulfilled the pre-defined requirements of an epileptiform event (see 

methods). Pre-incubation with azaspirofuran A significantly reduced (p ≤ 0.001) the percentage 

of larvae with PTZ-induced epileptiform activity with almost 60 % in comparison to PTZ-

treated controls (Figure 4A). Larvae also showed significantly less epileptiform events (p ≤ 

0.001) when pre-exposed to azaspirofuran A, resulting in a shorter cumulative duration of 

events (p ≤ 0.001) over the 10-min recording period (Figure 4B and C). Pseurotin A2 only non-

significantly lowered the percentage of larvae with PTZ-induced epileptiform activity with 33 

%, in comparison to controls (Figure 4D). However, larvae did show significantly less 

epileptiform events (p ≤ 0.01), resulting in a shorter cumulative duration of events (p ≤ 0.05) 

over the 10-min recording period (Figure 4E and F). Thus, both compounds not only ameliorate 

PTZ-induced seizures but are likely to do so by lowering the PTZ-induced hyperexcitable state 

of the brain. Of note, azaspirofuran A or pseurotin A2 did not induce abnormal electrical 

discharges in comparison to VHC-treated controls.   

 

Azaspirofuran A and pseurotin A2 ameliorate focal seizures in the mouse 6-Hz (44 mA) 

psychomotor seizure model 

Although the zebrafish model has a high degree of genetic, physiological, and pharmacological 

conservation13, it is more distinct from humans than rodents. Therefore, we were interested to 

see if the observed antiseizure properties of azaspirofuran A and pseurotin A2 would translate 

to a rodent model. The mouse 6-Hz (44 mA) psychomotor seizure model was chosen because 

it can detect compounds with novel antiseizure mechanisms and with potential against drug-

resistant seizures.41, 42 In this model drug-resistant focal impaired awareness seizures43, 

previously referred to as complex partial or psychomotor seizures44, are induced by low 

frequency, long duration corneal electrical stimulation. Mice injected i.p. with VHC (30 min 

before electrical stimulation) had a mean (± SD) seizure duration of 50 seconds (s) (± 19 s) 

(Figure 6). In line with previous studies41, 45, i.p. administration of the positive control valproate 

(300 mg/kg dose, 30 min before electrical stimulation) protected all mice against the induced 

seizures, significantly reducing the seizure duration to a mean of 4 s (± 6 s) (p ≤ 0.001). In 

contrast, i.p. administration of the negative control phenytoin (10 mg/kg dose, 120 min before 

electrical stimulation, as reported by Barton and colleagues41) did not significantly affect the 
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seizure duration (mean duration of 30 s (± 13 s)) as previously published41, 46, 47. Administration 

of 40 mg/kg azaspirofuran A (i.p. injected, 30 min before electrical stimulation) significantly 

lowered the seizure duration to a mean of 24 s (± 18 s) (p ≤ 0.05) in comparison to VHC-

controls. Administration of 40 mg/kg pseurotin A2 (i.p. injected, 30 min before electrical 

stimulation) significantly lowered the seizure duration to a mean of 26 s (± 18 s) (p ≤ 0.05) in 

comparison to controls. Treatment with azaspirofuran A as well as with pseurotin A2 showed a 

trend for dose-dependent reduction in seizure duration. 20 and 10 mg/kg azaspirofuran A non-

significantly lowered the seizure duration to a mean of 41 and 46 s (± 15 and 20 s), respectively. 

10 and 2.5 mg/kg pseurotin A2 non-significantly lowered the seizure duration to a mean of 27 

and 42 s (± 26 and 11 s), respectively. These data confirm the antiseizure properties of 

azaspirofuran A and pseurotin A2 in a standard mouse model of drug-resistant focal seizures. 

The identification and validation of these novel antiseizure hits thereby demonstrate the 

effectiveness of using the larval zebrafish model for ASD discovery. Besides, this study 

provides another example of the translation of results from zebrafish to rodent seizure models.  

Little is known about the molecular mechanisms underlying the bioactivities of azaspirofuran 

A and pseurotin A2 in general. Therefore, it is difficult to speculate on the antiseizure drug 

targets that could be involved. Of note, pseurotin A2 was reported to exert anti-inflammatory 

activity, a promising mode of action that has been proposed for the development of innovative 

ASDs and AEDs as neuroinflammation is involved in the origin of seizures and epilepsy.29, 48, 

49 In addition, pseurotin A is known to induce neuronal cell differentiation.22 This long-term 

effect is unlikely to be involved in the antiseizure actions of azaspirofuran A and pseurotin A2 

in this study because of the short-term exposure (2 and 18 h of exposure, respectively), but it is 

of particular interest for AED development. Further research is needed to unravel the molecular 

mechanisms of azaspirofuran A and pseurotin A2 that are responsible for their antiseizure 

activity against PTZ-induced seizures in zebrafish and focal seizures in mice.  

 

ADMET profiling of azaspirofuran A and pseurotin A2 

Finally, to define the drug-likeness of the antiseizure lead compounds, the ADMET profiles of 

azaspirofuran A and pseurotin A2 were elucidated using standard in vitro assays. The ADMET 

results are summarized in Table 2. No notable cytotoxicity or cardiotoxicity was observed for 

either one of the compounds. Both compounds showed an acceptable solubility and 

azaspirofuran A also demonstrated a high permeability, a desired combination that is not 

common. Furthermore, azaspirofuran A only weakly inhibited the CYP2D6 and CYP2C9 
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enzymes and did not affect the CYP3A4 enzyme, while pseurotin A2 did not inhibit any of the 

three types of CYP450 enzymes. Thus, azaspirofuran A and pseurotin A2 are unlikely to present 

drug-drug interactions. In addition, they are metabolically stable with a half-life (t1/2) of 33 and 

> 60 min for azaspirofuran A and pseurotin A2, respectively. Finally, azaspirofuran A showed 

a high level of plasma protein binding (95 %), which is not optimal but can be addressed, and 

pseurotin A2 has a much lower plasma protein binding of only 37 % with good recovery. Thus, 

azaspirofuran A and pseurotin A2 show promising ADMET characteristics and are therefore 

drug-like. Hence, we propose azaspirofuran A and pseurotin A2 as lead compounds worth 

further investigation for the treatment of epileptic seizures in general, and drug-resistant focal 

seizures in particular.  

 

 

CONCLUSIONS 

In this study, 7 known hetero-spirocyclic γ-lactams were isolated from the marine sediment-

derived fungus Aspergillus fumigatus MR2012 and investigated for antiseizure activity in the 

larval zebrafish PTZ seizure model. Pseurotin A2 and azaspirofuran A were found to have 

promising antiseizure activity, not present in the other structural analogues tested and thus 

suggested to have a structure-specific interaction with, possibly new, antiseizure drug targets. 

The antiseizure activity of pseurotin A2 and azaspirofuran A translated to a mouse model of 

drug-resistant focal seizures and in addition, both compounds were observed to be drug-like. 

Based on the prominent antiseizure activity in zebrafish and mice and their drug-likeness, we 

propose pseurotin A2 and azaspirofuran A as lead compounds that are worth further 

investigation for the treatment of epileptic seizures. Thereby, this study provides the first 

evidence of antiseizure activity of pseurotins and azaspirofurans, and gives another example of 

the translation of results from zebrafish larvae to mice. Moreover, this study demonstrates the 

value of the zebrafish model in (marine) natural product drug discovery in general, and for ASD 

discovery in particular. A detailed structure-activity relationship investigation is needed to 

understand the structural necessities of pseurotins and azaspirofurans to exert their antiseizure 

action. Moreover, further research is needed to unravel the molecular mechanisms of pseurotin 

A2 and azaspirofuran A that are responsible for their antiseizure activity against PTZ-induced 

seizures in zebrafish and focal seizures in mice. 
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METHODS 

Chemical experimental procedures 

NMR data were acquired on a Varian Inova 600 MHz NMR spectrometer. High resolution mass 

spectrometric data were obtained using a Thermo LTQ Orbitrap coupled to an HPLC system 

(PDA detector, PDA autosampler, and pump). The following conditions were used: capillary 

voltage of 45 V, capillary temperature of 260 °C, auxiliary gas flow rate of 10-20 arbitrary 

units, sheath gas flow rate of 40-50 arbitrary units, spray voltage of 4.5 kV, and mass range of 

100-2000 amu (maximal resolution of 30,000). For LC/MS, a C18 analytical HPLC column (5 

μm, 4.6 mm × 150 mm) was used with a mobile phase of 0 to 100 % MeOH over 30 min at a 

flow rate of 1 mL min−1. Biotage Flash system SP1-XOB1, Charlottesville WA, USA was used 

for initial purification. Compound purification was conducted using Agilent 1200 HPLC system 

with a Waters Sunfire C18 column (5 μm, 100 Å, 10 mm × 250 mm), connected to a binary 

pump, and monitored using a photodiode array detector. 

 

Microbial strain 

The marine fungal isolate MR2012 used in this study was isolated from a Red Sea sediment in 

Hurghada, Egypt in September 2011, and taxonomically identified on a molecular basis as 

Aspergillus fumigatus21. 

 

Microbial fermentation, extraction, and isolation 

The fungal isolate MR2012 initially cultured on a solid medium composed of (g/L) glucose 10, 

yeast extract 10, malt extract 4. A 6 liter fermentation was conducted on a medium composed 

of (g/L) sucrose 100, glucose 10, casamino acids 0.1, yeast extract 5, MOPS 21, K2SO4 0.25 × 

10−6, MgCl2.6H2O 1.0 × 10−6 for 12 days at 30 °C with shaking at 180 rpm. At the end of the 

incubation period, Diaion HP-20 resin was added to the culture media and shaken for 6 h at 180 

rpm, then cultures were centrifuged (3000 rpm for 20 min) where the residue composed of the 

fungal mycelia and resin were washed with distilled water twice and extracted with MeOH, and 

subjected to LC-HRESIMS analysis. This extract was fractionated successively with n-hexane 

(3 × 250 mL), CH2Cl2 (3 × 300 mL), and then EtOAc (3 × 250 mL). Each solvent fraction was 

evaporated in vacuo and subjected to LC-HRESIMS and 1H NMR analysis, which revealed that 

the CH2Cl2 fraction was the one of interest to follow. This CH2Cl2 fraction was loaded on Flash 

Biotage using a FLASH 65i cartridge, solvent MeOH/water 0-100 %, flow rate 60 mL/min over 
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20 min and UV collection wavelengths 225 and 254 nm to produce 6 fractions. All of these 

fractions were monitored by LC-HRESIMS. Injection of fraction 4 into Agilent HPLC system 

using semi-preparative Sunfire C18 column (250 × 10 mm, 5 µm) with CH3CN:H2O 30-90 % 

over 30 min with a 2 mL/min flow led to the isolation of 38 mg of pseurotin A, 30 mg of 

pseurotin A2, 2 mg of pseurotin F1, 6 mg of 11-O-methylpseurotin A, and 5 mg of pseurotin D. 

Injection of fraction 5 into Agilent HPLC system using semi-preparative Sunfire C18 column 

(250 × 10 mm, 5µm) with CH3CN:H2O 40-80 % over 30 min with a 2 mL/min flow led to the 

isolation of 26 mg of azaspirofuran A and 23 mg of azaspirofuran B. 

 

Compound preparation 

For experiments with zebrafish larvae, dry samples were dissolved in 100 % dimethyl sulfoxide 

(DMSO, spectroscopy grade) as 100-fold concentrated stocks and diluted in embryo medium 

to a final concentration of 1 % DMSO content. Control groups were treated with 1 % DMSO 

(VHC) in accordance with the final solvent concentration of tested compounds. For mice 

experiments, a mixture of poly-ethylene glycol M.W. 200 (PEG200), 100 % DMSO 

(spectroscopy grade), and demineralized water (PEG200:DMSO:water; 0.25:0.25:0.5) was 

used as solvent and VHC.   

 

Compound LogP prediction 

LogP (ACD/LogP) values were obtained from ChemSpider and predicted by means of the 

ACD/Labs Percepta Platform (PhysChem Module) based on the compound structure50. 

 

Experimental animals  

All animal experiments carried out were approved by the Ethics Committee of the University 

of Leuven (approval numbers 101/2010, 061/2013, 150/2015, and 023/2017) and by the Belgian 

Federal Department of Public Health, Food Safety & Environment (approval number 

LA1210199). 

 

Zebrafish  

Adult zebrafish (Danio rerio) stocks of AB strain (Zebrafish International Resource Center, 

Oregon, USA) were maintained at 28 °C, on a 14/10-h light/dark cycle under standard 
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aquaculture conditions. Fertilized eggs were collected via natural spawning and raised in 

embryo medium (1.5 mM HEPES, pH 7.2, 17.4 mM NaCl, 0.21 mM KCl, 0.12 mM MgSO4, 

and 0.18 mM Ca(NO3)2, and 0.6 μM methylene blue) at 28 °C, under constant light. 

 

 Mice 

Male NMRI mice (weight 18-20 g) were acquired from Charles River Laboratories and housed 

in poly-acrylic cages under a 14/10-h light/dark cycle at 21 °C. The animals were fed a pellet 

diet and water ad libitum, and were allowed to acclimate for one week before experimental 

procedures were conducted. Prior to the experiment, mice were isolated in a poly-acrylic cage 

with a pellet diet and water ad libitum for habituation overnight in the experimental room, to 

minimize stress.   

 

Zebrafish pentylenetetrazole seizure model 

 Toxicity evaluation  

Maximum tolerated concentration (MTC) was determined prior to further experiments and used 

as the highest test concentration. Experimental procedure was described before51. In brief, the 

MTC was investigated by exposing 12 larvae of 6 dpf to a range of concentrations in a 100 µL 

volume during 18 h. The following parameters were investigated after 2 and 18 h of exposure: 

touch response, morphology, posture, edema, signs of necrosis, swim bladder, and heartbeat. 

MTC was defined as the highest concentration at which no larvae died nor showed signs of 

toxicity or locomotor impairment in comparison to VHC-treated control larvae. In case no MTC 

was reached, 100 µg/mL was used as the highest test concentration.  

 

 Behavioral analysis 

Experimental procedure was described before17, 20. In brief, a single 7-dpf larva (in case of 2 h 

incubation) or 6-dpf larva (in case of 18 h incubation) was placed in each well of a 96-well plate 

and treated with either VHC (1 % DMSO) or compound in a 100 µL volume. Larvae were 

incubated in dark for 2 or 18 h at 28 °C, whereafter 100 µL of either VHC (embryo medium) 

or 40 mM PTZ was added to each well. Next, within 5 min the 96-well plate was placed in an 

automated tracking device (ZebraBox Viewpoint, France) and larval behavior was video 

recorded for 30 min. The complete procedure was performed in dark conditions using infrared 

light. Total locomotor activity was recorded by ZebraLab software (Viewpoint, France) and 
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expressed in actinteg units, which is the sum of pixel changes detected during the defined time 

interval (5 min). Larval behavior was depicted as mean actinteg values in the 30-min recording 

period and over 5 min time intervals. Data are expressed as mean ± SD or as mean ± SEM when 

the means of independent experiments were pooled. 

 

 Electrophysiology 

Experimental procedure was described before51-53. In brief, non-invasive LFP recordings were 

measured from the midbrain of 7-dpf zebrafish larvae pre-incubated with VHC only, PTZ only, 

compound and VHC, or compound and PTZ. Larvae were incubated for approximately 2 or 18 

h with VHC (1 % DMSO) or compound in a 100 µL volume (28 °C). After incubation, 100 µL 

VHC (embryo medium) or 40 mM PTZ (20 mM working concentration) was added to the well 

for 15 min (28 °C) prior to the recording. For electrophysiological recordings (room 

temperature), larvae were immobilized in 2 % low melting point agarose (Invitrogen) and the 

signal electrode [an electrode inside a soda-glass pipet (1412227, Hilgenberg) pulled with a 

DMZ Universal Puller (Zeitz, Germany), diameter ± 20 microns, containing artificial 

cerebrospinal fluid (ACSF: 124 mM NaCl, 10 mM glucose, 2 mM KCl, 2 mM MgSO4, 2 mM 

CaCl2, 1.25 mM KH2PO4, and 26 mM NaHCO3, 300-310 mOsmols)] was positioned on the 

skin covering the optic tectum. Each recording lasted 600 s and was analyzed manually by 

quantifying the number, cumulative duration, and mean duration of epileptiform-like events 

with Clampfit 10.2 software (Molecular Devices Corporation, USA). An electrical discharge 

was considered epileptiform if it was a polyspiking event comprising at least 3 spikes with a 

minimum amplitude of three times the baseline amplitude and a duration of at least 100 ms. 

Data are expressed as mean ± SD. 

 

Mouse 6-Hz (44 mA) psychomotor seizure model 

Experimental procedure was described before19, 45, 51. In brief, NMRI mice (average weight 28 

g, range 23-32 g) were randomly divided into control and treatment groups (n = 5-10). 50 µL 

(injection volume was adjusted to the individual weight) of VHC (PEG200:DMSO:water; 

0.25:0.25:0.5) or treatment (an ASD or test compound dissolved in VHC) was i.p. injected in 

mice and after 30 or 120 min (in case of phenytoin, as reported by Barton and colleagues41) 

psychomotor seizures were induced by low frequency, long duration corneal electrical 

stimulation (6 Hz, 0.2 ms, rectangular pulse width, 3 s duration, 44 mA) using an ECT Unit 

5780 (Ugo Basile, Comerio, Italy). Mice were manually restrained and a drop of ocular 



 

13 
 

anesthetic (0.5 % lidocaine) was applied to the corneas before stimulation. Following electrical 

current stimulation, the mouse was released in a transparent cage for behavioral observation, 

which was video-recorded. VHC-treated mice typically displayed stun, twitching of the 

vibrissae, forelimb clonus, and Straub tail. In addition, facial and mouth jerking as well as head 

nodding were observed occasionally. Seizure durations were measured during the experiment 

by experienced researchers, familiar with the different seizure behaviors. In addition, seizure 

durations were determined by blinded video analysis to confirm or correct the initial 

observations. Data are expressed as mean ± SD. 

 

ADMET profiling  

 Cell viability and MTT assays 

Experimental procedure was described before54. Three cell lines were used: a) Hep G2 (HB-

8065), a well-differentiated human hepatocellular carcinoma cell line, b) THLE-2, human liver 

epithelial cells transformed with SV40 large T-antigen and c) SHSY5Y, a thrice-cloned sub-

line of a human metastatic bone tumor. Cells were seeded at a concentration of 1×104 cells/well 

in 200 µL culture medium and incubated at 37 ºC in 5 % CO2 using 96-well plates for 24 h. 

Next, the medium was replaced with medium complemented with test compounds at different 

concentrations. After another 24 h incubation, the medium was replaced by 100 µL of a MTT 

(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) solution (5 mg/mL in PBS and 

diluted at 0.5 mg/mL in MEM without phenol red). The plates were gently shaken and incubated 

for 3 h at 37 ºC in a 5 % CO2 incubator. The supernatant was removed and 100 µL of 100 % 

DMSO was added. The plates were gently shaken to solubilize the formed formazan. The 

absorbance was measured using a multireader (Victor2 (Wallac)) at a wavelength of 570 nm. 

 

Cardiotoxicity 

Fluorescence-based assays were performed using HEK293 cell lines that stably express the 

Nav1.5-channel, Cav1.2-channel, or hERG K+-channel, using FMP Red Dye (Molecular 

Devices), calcium-sensitive fluorescent dye Fluo-4 (Invitrogen) and FluxOR™ reagent 

(Invitrogen), respectively, and a FLIPR Tetra High-Throughput Cellular Screening System 

(Molecular Devices), according to manufacturer’s protocols (Molecular Devices). 

Tetrodotoxin, israpidine and nicarpidine, and astemizole and haloperidol were used as standard 
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sodium channel, calcium channel, and hERG channel blockers. Data were analyzed using 

Genedata Screener. 

 

 CYP450 enzyme inhibition assay 

Experimental procedure was described before55. Assessment of CYP450 inhibition was 

conducted in 96-well plate format at 37 °C. Test compounds were dissolved in 

DMSO/acetonitrile (ACN) (2 µL) and diluted in 98 µL NADPH solution (2 mM). Reactions 

were started by addition of 100 µL potassium phosphate buffer (200 mM, pH 7.4) containing 

Human Liver Microsomes (HLM) (0.5 mg/mL).  Probe reactions for CYP3A4, CYP2D6 and 

CYP2C9 were conducted with 50 μM testosterone, 22 μM dextromethorphan and 10 μM 

diclofenac for 15 min. Reactions were terminated with the addition of a quench solution (90 

μL) of ACN containing internal standards for LC-MS/MS determination (60 ppb cortisone, 100 

ppb 4′-hydroxydiclofenac-13C6, 60 ppb levallorphan). 

 

 Metabolic stability assay 

The assay was performed with a mixture of test compounds (1 µM), NADPH (4 mM) and HLM 

(1 mg/mL) incubated at 37 °C. Reactions were quenched at 0, 15, 30, 45, 60, and 90 min, using 

an equal volume of ACN and then diluted 1:1 with water prior to analysis by LC-MS/MS.  

The analysis was performed using an Agilent Series 1290 LC system (Agilent Technologies, 

Santa Clara, CA, USA) using a Supelco Discovery HS C18 (2.1×50 mm) 3 μm column that was 

held at 30 °C. Solvent A contained water with 0.1 % formic acid and solvent B contained ACN 

with 0.1 % formic acid, and the flow rate was set at 400 μL/min. The gradient elution was 

performed as follows: 0-0.5 min 0 % eluent B; 0.5-7 min 100 % eluent B; 7-9 min 100 % eluent 

B; 9-9.2 min 0 % eluent B; and 9.2-10.5 min 0 % eluent B. An API 4000 mass spectrometer in 

positive ESI mode (AB SCIEX, Concord, ON, Canada) was used with a generic method for 

data acquisition on all compounds. Data processing was performed using MultiQuant Software 

(AB SCIEX, Concord, ON, Canada) to process the data. Peak areas were used to plot the Ln % 

remaining relative to time (t) = 0. The slope of the natural log of the percent remaining versus 

time was calculated to determine the first-order rate constant (k) and the half-life (t1/2) of the 

test compounds according to the following equation: t1/2 = 0.693/k (min) 
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 Kinetic solubility assay 

Experimental procedure was described before56. The kinetic solubility assay was conducted in 

96-well, flat-bottom, transparent polystyrene plates (Costar 9018, Corning, Tewksbury MA). 

Six two-fold serial dilutions of an initial 10 mM test compound solution were prepared in 

DMSO. After a 2-h incubation period (to avoid missing slow precipitation) absorbance was 

measured at 620 nm by an EnVision multilabel plate reader. The kinetic solubility was 

estimated from the concentration of test compound that produced an increase in absorbance 

above the background levels (i.e., 1 % DMSO in buffer). 

 

 Plasma protein binding assay 

Experimental procedure was described before57. Rapid equilibrium dialysis was performed with 

RED device inserts (Thermo Scientific, Meridian Rd., Rockford, IL) containing dialysis 

membrane with a molecular weight cut-off of 8000 Daltons. Serum (200 µL) containing test 

compound (5 µM) was added to the serum chamber of the insert and 350 µL of buffer was 

added to the buffer chamber of the insert. Dialysis was done at 37 ºC with shaking at 100 rpm 

for 5 h. Following dialysis, an aliquot of 50 µL was removed from each well (plasma and buffer 

side) and diluted with an equal volume of opposite matrix to nullify the matrix effect. Then a 

fraction (50 µL) of each dialyzed sample was crashed with 150 µL of ACN containing internal 

standard and vortexed for 1 min. The samples were centrifuged at 13,300 rpm at 4 ºC for 12 

min and 100 µL of supernatant was used for LC-MS/MS analysis. 

 

 Parallel artificial membrane permeability assay (PAMPA) 

The Gentest Pre-coated PAMPA Plate System (Corning) was used to perform the permeability 

assays. The 96-well filter plate, pre-coated with lipids, was used as the permeation acceptor and 

a matching 96-well receiver plate was used as the permeation donor. Compound solutions were 

prepared by diluting 10 mM DMSO stock solutions in PBS with a final concentration of 10 

µM. The compound solutions were added to the wells (300 μL/well) of the receiver plate and 

PBS was added to the wells (200 μL/well) of the pre-coated filter plate. The filter plate was 

then coupled with the receiver plate and the plate assembly was incubated at room temperature 

without agitation for 5 h. Next, the plates were separated and 50 μL solution from each well of 

both the filter plate and the receiver plate was transferred to a vial with 150 μL ACN and 

centrifuged at 13,300 rpm for 10 min at 4 ºC. The supernatant was diluted in a solution 
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water/ACN (50/50). The final concentration of compounds in both donor wells and acceptor 

wells was analyzed by LC-MS/MS.  Permeability of the compounds was calculated using the 

following equation:  

Permeability (cm/s): Pe = {-ln[1-CA(t)/Ceq]}/[A*(1/VD+1/VA)*t]} 

A = filter area (0.3 cm2), VD = donor well volume (0.3 mL), VA = acceptor well volume (0.2 

mL), t = incubation time (s), CA(t) = compound concentration in acceptor well at time t, CD(t) 

= compound concentration in donor well at time t, and Ceq = 

(CD(t)*VD+CA(t)*VA)/(VD+VA) 

 

 

ABBREVIATIONS 

ACN, acetonitrile; ACSF, artificial cerebrospinal fluid; ASD, antiseizure drug; dpf, days post-

fertilization; DMSO, dimethyl sulfoxide; FP7, Seventh Framework Programme; h, hours; 

HLM, Human Liver Microsomes; LFP, local field potential; min, minute; MTC, maximum 

tolerated concentration; PEG200, poly-ethylene glycol M.W. 200; PTZ, pentylenetetrazole; s, 

seconds; t1/2, half-life; VHC, vehicle 
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FIGURE LEGENDS 

Figure 1. Chemical structures isolated from extracts of the marine fungus Aspergillus 

fumigatus. 

  

Figure 2. Behavioral antiseizure analysis in the zebrafish PTZ seizure model. Antiseizure 

activity analysis of compounds at their maximum tolerated concentrations (MTC, Table 1) in 

the zebrafish pentylenetetrazole (PTZ) seizure model after 2 h (A) and 18 h (B) of incubation. 

PTZ-induced seizure-like behavior is expressed as mean actinteg units/5 min (± SD) during the 

30-min recording period. Number of replicate wells per condition: n = 48 (A) and n = 70-71 

(B) for VHC + PTZ and VHC + VHC controls, and n = 8-12 (A) and n = 9-14 (B) for compound 

+ PTZ conditions. Data are pooled from multiple experimental plates. Statistical analysis: one-

way ANOVA with Dunnett’s multiple comparison test (GraphPad Prism 5). Significance 

levels: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.  

 

Figure 3. Behavioral antiseizure analysis of azaspirofuran A and pseurotin A2 in the 

zebrafish PTZ seizure model. Antiseizure activity of azaspirofuran A (A-B) and pseurotin A2 

(C-D) in the zebrafish pentylenetetrazole (PTZ) seizure model after 2 h (A-B) and 18 h (C-D) 

of incubation, respectively. PTZ-induced seizure-like behavior is expressed as mean actinteg 

units/5 min (± SEM) during the 30-min recording period (A, C) and over 5-min time intervals 

(B, D). Means are pooled from three independent experiments with each 9-12 replicate wells 

per condition. Statistical analysis: (A, C) one-way ANOVA with Dunnett’s multiple 

comparison test, (B, D) two-way ANOVA with Bonferroni posttests (GraphPad Prism 5). 

Significance levels: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. Abbreviation: VHC, vehicle. 

 

Figure 4. Electrophysiological antiseizure analysis of azaspirofuran A and pseurotin A2 in 

the zebrafish PTZ seizure model. Noninvasive local field potential recordings from the optic 

tectum of larvae pre-exposed to vehicle (VHC) and pentylenetetrazole (PTZ), VHC only, 

compound and PTZ, or compound and VHC. (A-C) Larvae were incubated with 12.5 µg/mL 

azaspirofuran A for 2 h, (D-F) or with 12.5 µg/mL pseurotin A2 for 18 h, conform with the 

optimal condition used in the behavioral assay. (A, D) Larvae are considered to possess 

epileptiform brain activity when three or more events occurred during a 10-min recording. 

Epileptiform discharges are quantified by the number (mean ± SD) (B, E) and cumulative 
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duration (mean ± SD) (C, F) of events per 10-min recording. Number of replicate wells per 

condition: n = 33 (A-C) and n = 22 (D-F) for VHC + PTZ controls, n = 31 (A-C) and n = 21 

(D-F) for VHC + VHC controls, n = 15 (A-C) and n = 19 (D-F) for compound + PTZ conditions, 

and n = 15 (A-C) and n = 19 (D-F) for compound + VHC conditions. Statistical analysis: (A, 

D) Fisher’s exact test with Bonferroni posttest, (B-C, E-F) Kruskal-Wallis test with Dunn’s 

multiple comparison test (GraphPad Prism 5). Significance levels: * p ≤ 0.05; ** p ≤ 0.01; *** 

p ≤ 0.001.     

 

Figure 5. Representative local field potential recordings. 10-min noninvasive local field 

potential recordings from the optic tectum of larvae pre-exposed to vehicle (VHC) and 

pentylenetetrazole (PTZ), VHC only, compound and PTZ, or compound and VHC. Larvae were 

incubated with 12.5 µg/mL azaspirofuran A for 2 h or 12.5 µg/mL pseurotin A2 for 18 h, 

conform with the optimal condition used in the behavioral assay. 

 

Figure 6. Antiseizure activity analysis of azaspirofuran A and pseurotin A2 in the mouse 

6-Hz (44 mA) psychomotor seizure model. Psychomotor seizures were electrically induced 

30 min after i.p. injection of vehicle (VHC, n = 10), positive control valproate (n = 6), or test 

compound (n = 6-7), and 120 min after i.p. injection of negative control phenytoin (n = 5). 

Seizures are quantified by the duration (mean ± SD). Statistical analysis: one-way ANOVA 

with Dunnett’s multiple comparison test (GraphPad Prism 5). Significance levels: * p ≤ 0.05; 

** p ≤ 0.01; *** p ≤ 0.001.     

 

 

TABLE LEGENDS 

Table 1. Maximum tolerated concentrations (MTCs) of test compounds in 7-dpf zebrafish 

larvae.  In case no MTC was reached, 100 µg/mL was used as the test concentration. 

 

Table 2. ADMET analysis of azaspirofuran A and pseurotin A2. Abbreviations: 

concentration at which an assay is inhibited by 50 %, IC50. 
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Figure 5. 
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Figure 6. 

 

 

 

TABLES 

Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compound MTC (µg/mL) 

Pseurotin A 100 

Pseurotin A2 12.5 

Pseurotin F1 50 

11-O-methylpseurotin A 100 

Pseurotin D 100 

Azaspirofuran A 12.5 

Aaspirofuran B 12.5 
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Table 2. 

 

 

 

 

 

 

 

 

 

 

 

ADMET test Azaspirofuran A Pseurotin A2 

Cytotoxicity 

HEPG2 cells IC50 > 50 μM No effect IC50 > 50 μM No effect 

THLE2 cells IC50 > 50 μM Weak decrease IC50 > 50 μM Weak decrease 

SHSY5Y cells IC50 > 50 μM Weak decrease IC50 = 17.9 µM Decrease 

Cardiotoxicity 

Nav1.5 channel IC50 = 39.06 μM Low inhibitory effect IC50 > 50 μM No effect 

Cav1.2 channel IC50 > 50 μM No effect IC50 > 50 μM No effect 

hERG channel IC50 > 50 μM No effect IC50 > 50 μM No effect 

CYP450 enzymes 

CYP3A4 IC50 > 88 μM No effect IC50 > 88 μM No effect 

CYP2D6 IC50 = 23.4 μM Weak inhibition IC50 > 88 μM No effect 

CYP2C9 IC50 = 47.3 μM Weak inhibition IC50 > 88 μM No effect 

Other factors 

Hepatic clearance 20.17 μL/min/mg 

protein (t1/2 = 33.12 

min) 

Medium < 8.6 μL/min/mg 

protein (t1/2 > 60 

min) 

Low 

Kinetic solubility >100 μM Acceptable >100 μM Acceptable 

Protein binding 95.42 % Low percentage of free 

drug; 66.7 % recovery 

36.53 % High percentage of free 

drug; 100 % recovery 

Permeability 18.64x10-6 cm s-1 High 0.05x10-6 cm s-1 Low 
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