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Abstract 

We perform Eulerian-Lagrangian simulations of solid-liquid flow in a mixing tank. The simulations are 

three-dimensional and time dependent and in the transitional flow regime. The lattice-Boltzmann method 

is used to solve the volume-averaged Navier-Stokes equations. The overall solids volume fraction is of 

the order of 10%. Situations with the solids only partly suspended are compared to those with fully 

suspended solids. The emphasis is on the effect of the particle size distribution (PSD) on the suspension 

behavior. Four PSD’s all having the same d32 were investigated. It is harder to fully suspend particles with 

wider size distribution as compared to narrow distributions.  
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Introduction 

Examples of agitated solid-liquid suspensions can be found in mixing tanks with the purpose of 

contacting solid and liquid (e.g. catalytic slurry reactors) or achieving particle formation (crystallization) 

or dissolution. Describing the two-phase flow in such equipment has relevance for process design and 

optimization since flow is determinant for inter-phase mass transfer and the rate at which surface 

reactions take place. Sediment transport in pipelines for various applications, such as dredging, is another 

prominent technological example of solid-liquid flow.  

Solid-liquid flow has been the subject of many numerical simulation studies with a variety of 

methods and a wide spectrum of spatial and temporal resolutions. Studies of solids suspension in mixing 

tanks not only have relevance for processes carried out in such equipment. Since experimentation in 

mixing tanks is relatively easy – it is a confined system not necessarily having inlets and outlets and 

generally allowing for good optical access – they are a means of generating experimental data that are 

very useful for benchmarking numerical approaches to solid-liquid flow. Specifically experiments that 

make use of refractive index matching of the solids and liquid phase [1,2] are able to provide a wealth of 

detailed flow information that can be used for critical assessment of simulations. 

In previous papers [3,4,5] we have proposed a procedure for performing Eulerian-Lagrangian 

simulations of solid-liquid flow. It is based on solving the volume-averaged Navier-Stokes equations with 

a variant of the lattice-Boltzmann method, and calculating positions and velocities of individual particles 

through updating their equations of motion, making use of drag force correlations and soft collisions 

between particles. These thus are unresolved-particle simulations, as opposed to resolved-particle 

simulations that fully resolve the flow around individual particles and determine forces and torques on 

particles from first principles [6,7]. In our unresolved-particle simulations, Eulerian and Lagrangian 

properties communicate by means of mapping functions [5,8]. An important feature of the procedure is 

that it allows for the particle size to be of the order of the lattice spacing: ( )d O= ∆ . The width of the 

mapping functions, i.e. the spatial extent over which Lagrangian properties are felt by the Eulerian grid 
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and vice-versa, is a critical parameter in such simulations. In our procedure, making the choice for this 

parameter was enabled by comparing simulation results in periodic domains with particle-resolved 

simulations under the same conditions [4]. Applied to the solid-liquid flow in an agitated tank, the 

procedure was able to generate mesh-independent results [5]. That is, the method allows for a free choice 

of grid spacing ∆  relative to particle size d with ( )d O= ∆  so that we can keep refining the grid until it 

fully resolves the flow structures generated by the impeller and the way they interact with the solids.  

In the current paper, the numerical procedure is extended to allow for particle size distributions. 

With this ability, we want to investigate how the solids suspension process in a mixing tank is affected by 

the size distribution and how differently sized particles are dispersed over the tank volume. We will be 

comparing systems with tri-disperse size distributions of various widths that all have the same volume-

average particle size with monodisperse systems. Also different levels of suspension will be compared, 

including partially suspended cases where part of the particles form a (dynamic) granular bed on the 

bottom of the tank. With the freedom of choice for particle size relative to grid spacing our numerical 

procedure offers, it is well-suited for simulations involving particle size distributions. 

The aim of this paper is to show the extended capabilities of our Eulerian-Lagrangian simulation 

procedure as well as to generate predictions on solids distributions in mixing tanks thereby inviting 

experimentalists to test our results. Laser sheet visualizations supported by refractive index matching 

would provide critical validation material for the simulation results presented here. Our flow systems 

have been designed –in terms of solid-over-liquid density ratio and viscosity – with a specific glass and 

silicone oil refractive index matched system in mind [2]. Furthermore the container has flat walls to 

facilitate non-deformed optical access. 

The paper is organized in the following manner: We first introduce the flow system, the particle 

size distributions that were investigated, and the dimensionless numbers used to define specific situations. 

We then briefly discuss the simulation procedure (most further details  are in [3,4]) with an emphasis on 

incorporating size distributions, and the numerical settings. We then show the start-up behavior of the 
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suspension process and levels to which particles get dispersed over the tank volume as a function of flow 

conditions and the (width of the) size distribution. The final section summarizes the conclusions of this 

study. 

 

Flow system 

The flow geometry, including a coordinate system is given in Figure 1. The container is a cubic volume 

with side length L. The impeller is a 4-blade turbine with flat blades under an angle of 45o; it has diameter 

D. It rotates with N revolutions per unit time such that it pumps liquid in the downward (i.e. negative z) 

direction. The liquid in the tank is Newtonian and has density ρ  and kinematic viscosity ν . An impeller-

based Reynolds number is  defined as 2Remx ND ν≡ . 

In addition to liquid, the tank contains solid, spherical particles of density sρ ρ> . Gravity points in  

the negative z-direction: zg eg= − . The total volume of solids relative to the tank volume ( 3L ) is the same 

for every simulation in this paper. The overall solids volume fraction (solids volume over tank volume) is 

0.098φ = . The average particle diameter is 0.0208d D=  for all simulations.  

Four different particle size distributions (PSD’s) have been simulated: one monosized system (all 

particles have diameter 0 0.0208d D= ) that serves as the reference case, and three tri-disperse systems 

(i.e. systems with three different particle sizes). Their average particle diameter is defined as 

3 3
3 2

1 1
d n d n dα α α α

α α= =
= ∑ ∑ . The particle diameters in the three tri-disperse systems are 

( )3 3
0 0 02 , , 2d d d d= , ( )3 3

0 0 03 , , 3d d d d= , ( )3 3
0 0 04 , , 4d d d d=  respectively. In each tri-disperse 

system, 50% of the solids volume is contained in the center particle size 0d , the rest in the other two 

particle sizes. This set of constraints to the PSD as described above (same total solids volume, same d  

etc.) gives a unique number of particles nα  per size class. The volumetric size distributions are shown in 

Figure 2. Actual numbers of particles and their sizes (relative to 0d ) are in Table 1. 
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A modified Shields number [9,10] has been defined as ( )
2 2

0s

N D

g d

ρθ
ρ ρ

=
−

. It is indicative for the 

competition between agitation and settling of solids. The two major variables in this study are the PSD 

(the four variants as defined above) and θ . The latter has been varied in the range 16 260θ≤ ≤ . The 

dimensionless parameters that have fixed values are 0.098φ = , Re 4,000mx =  and 2.23sρ ρ = . 

 

Governing equations & numerical  procedures 

The equations solved and the numerical procedures followed are similar to [5]. The additional feature 

compared to [5] is that we are now dealing with particles of different sizes which has some consequences 

for the modeling and simulation procedures. These will be highlighted in the brief description below. 

The liquid flow is governed by volume-averaged versions of the continuity equation and 

momentum balance [11,12] 

 ( ) ( ) 0c c

t
ρφ ρφ∂ + ∇ ⋅ =

∂
u   (1) 

 ( ) ( ) su uu π fc c c

t
ρφ ρφ φ∂ + ∇ ⋅ = ∇ ⋅ +

∂
  (2) 

with 1cφ φ≡ −  the local continuous phase (liquid) volume fraction and φ  the local solids volume 

fraction, u the interstitial liquid velocity, π  the liquid’s stress tensor, and sf  the force per unit volume the 

solid particles exert on the liquid. Equations 1 and 2 are solved on a uniform, cubic, three-dimensional 

grid with a variant of the lattice-Boltzmann method [3].  

Newton’s equations of motion of a solid spherical particle with diameter id  read 

 ( )3 3

6 6
p

h c z

u
F F es i i s

d
d d g

dt

π πρ ρ ρ= + − −   (3) 
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p

h

ω
Ts i

d
d

dt

πρ =   (4) 

The kinematic equation is 
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d

dt
=p

p

x
u   (5) 

In Eqs. 3 – 5 , ,p p pu ω x  are the linear velocity, angular velocity and center location of the particle 

respectively. The particle feels a hydrodynamic force hF  and torque hT , as well as a contact force cF . 

Contact has two contributions: collision and lubrication. 

The collisions are soft-sphere, frictionless collisions. The latter means that there is no collisional 

torque and that cF  is a radial force. The radial repulsive soft-sphere force (i.e. a force acting on the line 

connecting the two sphere centers) is proportional to the overlap distance of the two spheres involved in 

the collision. The proportionality (i.e. spring) constant ijk  is expressed in terms of a contact time ct  and 

the masses of the particles i and j that collide [13]: ( )2 22ij i j ck m m tπ= +  with 3 6i s im dπρ= . 

Lubrication forces are included for representing close-range hydrodynamic interaction between 

particles. As for collisions, only radial forces are considered, the rationale being that they scale with 1 s  

whereas tangential effects (including torque) show the weaker scaling with ln s  with s  the space between 

two particle surfaces [14]. The expression we use for the radial lubrication force component between two 

particles i and j is [15] 

 
( )

( )
2 2

3
0 04 2

0

1 1
 if , and 0 if ijn ∆ui j

lub lub

i j

d d
F s s F s s

s sd d
πρν

 
= − ⋅ ≤ = > 

+  
 (6) 

with ijn ∆u⋅  the relative velocity between the two particles along the line connecting their centers, and 0s  

a model parameter that denotes the distance below which the lubrication force becomes active. A second 

model parameter 1s  is the (smaller) distance below which the lubrication force saturates [16]. It prevents 

the lubrication force from diverging when s approaches zero and accounts for  surface roughness of the 

particles. The parameters were set to ( )0 0.1 2i js d d= +  and ( )1 0.001 2i js d d= + . The lubrication force 

is attractive upon separation, and repulsive upon approach of particles. 



 7

As previously [5], for the hydrodynamic force we have taken a drag-only approach, i.e. lift, added 

mass, stress-gradient, and history forces [17] have been discarded. The drag force is written as   

 ( ) ( )3 Re,D pF u uid Fπρν φ= −   (6) 

with ( )Re 1 pu u idφ ν= − − . The function F  is partitioned as ( ) ( ) ( )Re, ReF p qφ φ=  with 

( ) ( )0.687Re 1 0.15Rep = +   the Schiller-Naumann correlation [18], and ( ) ( ) 2.65
1q φ φ −= −  the Wen & Yu 

expression [19]. The local solids volume fraction φ  in the above expressions is the result of particles of 

all sizes. We thus apply – in an ad hoc manner [20] – notions of how drag depends on particle size and 

local porosity for monodisperse systems to polydisperse systems by replacing d  with id . The Wen & Yu 

correlation has been applied as it is well suited for solid-liquid systems with relatively small particle 

Stokes numbers [21]. 

The hydrodynamic force hF  as it is contained in Eq. 3 is related to the drag force according to 

( )1h DF F φ= −  [22]. The drag force DF  is mapped on the Eulerian mesh to determine the body force sf  

in Eq. 2. For mapping, the clipped fourth-order polynomial function has been used [23]. Benchmark 

simulations [4] of monodisperse systems with particle diameter d  have led to the width of the mapping 

function 1.5dλ =  as an optimal choice. This choice we apply to the polydisperse cases as well, i.e. the 

width of the mapping function associated to a particle with diameter i is 1.5i idλ = . 

Particles rotate under the influence of the hydrodynamic torque ( )3 1
2h pT ω ωidπρν= −  with ω  the 

vorticity of the liquid in the direct vicinity of the particle. Particle rotation is not coupled back to the 

liquid and therefore has no influence on the overall dynamics of the two-phase flow in the mixing tank. 

The default resolution of the simulations is such that the average particle diameter is 

0 1.6d d= = ∆ . Then the impeller has diameter 76.8D = ∆  and the tank side length 176L = ∆ . The 

impeller makes one revolution in 2560 time steps. The kinematic viscosity is chosen as to match the 

desired impeller-based Reynolds number (Re 4,000mx = ). With an impeller-based Reynolds number of 
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4,000 and the current levels of spatial and temporal resolution  there is no need for turbulence modeling 

through subgrid-scale models as used in large-eddy simulations [5]. Gravitational acceleration is set to 

achieve a certain value of θ . The collision time ct  is set to 10 time steps which corresponds with the time 

needed for 1.4o of impeller rotation. When presenting the results we will briefly discuss the subject of grid 

convergence: we compare tri-disperse results with the default resolution of 0 1.6d d= = ∆  with those 

having 0 2.0d d= = ∆ . The subject of grid convergence was extensively discussed – for monosized 

systems – in [5]. 

 

Results  

Impressions & start-up behavior 

Initially the particles form a loosely packed granular bed resting on the tank bottom. The solids volume 

fraction of this bed is approximately 0.60. The beds are generated by randomly placing the particles – in a 

non-overlapping fashion – in a container of size ( )0.45L L L x y z⋅ ⋅ ⋅ ⋅ . Random numbers are taken from a 

uniform distribution representing the x, y and z location of particle centers. The particle location is 

accepted if the new particle does not overlap with already placed particles; it is rejected if the new particle 

overlaps. This process is repeated until the desired number of particles per particle size has been placed. 

This process has limits to the solids fractions that can be reached [24]. As an example, for particle size 

distribution (PSD) #4 (see Table 1), a solids volume fraction of approximately 0.46 can be reached this 

way. A cross section through this system is shown in Figure 3a. Letting the particles in this system settle 

under gravity through the same liquid as in the mixing tank creates the loosely packed bed as shown in 

Figure 3b. When a less dense randomly-placed system is generated, as in Figure 3c, the eventual settled 

granular bed has a different structure; there is a profound level of segregation with many small particles at 

the bed’s upper surface. We will be comparing mixing tank simulations with a mixed granular bed 

(Figure 3b) and a segregated granular bed (Figure 3d) as a starting point and assess for how long the 

agitated systems remembers the initial structure of the bed. 
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The so generated beds are placed in the mixing tank. Liquid and particles initially have zero 

velocity. At time equals zero ( 0t = ) we start the impeller with its angular velocity Ω  gradually 

increasing according to ( )1
21 cosN tNπ π Ω = −   in the period 0 2t N≤ ≤ ; for 2t N>  the angular 

velocity of the impeller is constant at 2NπΩ = . In the start-up period with length 2 N  the impeller 

completes one revolution, after that it runs with constant speed. With the bed as shown in Figure 3d as 

initial condition, the start-up of the agitation process is visualized in Figure 4. One sees the formation of a 

downward liquid stream generated by the impeller impacting on the granular bed. That bed is eroded and 

particles start to get suspended. A more detailed view of the erosion process is shown in Figure 5 where – 

in a vertical cross section through the center of the tank – information on particle locations and liquid 

velocity vectors are combined. The right panel of Figure 5 shows that small particles collect underneath 

the impeller for the case of the initially segregated bed. 

The way the suspension process evolves in time is summarized in Figure 6, that also gives an 

overview of the main simulation cases that have been studied in this paper. The time series show the 

evolution of the average vertical location of the particles in the period 0 60t N≤ ≤ . Three levels of 

agitation are shown in the figure (Shields numbers θ = 260, 65.0, and 16.2) as well as five different initial 

granular beds: one bed with PSD #2; one mixed bed with PSD #3; one segregated bed with PSD #3; one 

mixed bed with PSD #4; one segregated bed with PSD #4. In the time series we distinguish between the 

overall, volume-average vertical location of the solids, and the average vertical location of the individual 

particle sizes (three per PSD). In addition we show – for reference – data for monosized systems.  

For the highest Shields number of θ = 260, the particles distribute themselves over the entire height 

of the tank, such that in steady state their average vertical location 2pz L≈ . Compared to the 

monosized system, the development to steady state for the polydisperse systems takes longer 

(approximately 40 revolutions for monosized and 50 revolutions for polydisperse). It is also interesting to 
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note that, consistently, the largest particles have the highest pz , also when they start on average lowest 

in the segregated initial granular bed cases.  

As expected, lowering the Shields number clearly reduces pz . We now see the largest particles − 

on average − ending up at lower levels in the tank, and the smallest particles highest. There is a 

dependency on the initial bed structure that persists over all 59 impeller revolutions simulated which is 

due to the fact that for the lower Shields numbers not all particles get mobilized. This specifically is the 

case for θ = 16.2.  

For all polydisperse cases studied, the volume-averaged vertical location of the solids closely 

follows the average location of the mid-size particles, where it should be reminded that the mid-size 

particles make up half of the total solids volume (see Figure 2 and Table 1). After steady state is reached, 

there is no significant / consistent difference between the volume-averaged vertical location of the 

polydisperse systems and that of the monosized systems.  

In the previous paper that dealt with monosized systems exclusively [5], grid convergence of the 

numerical procedure was demonstrated. In the present paper grid effects have been investigated by 

comparing simulations with 0 1.6d = ∆  to those with 0 2.0d = ∆  having for the rest the same 

dimensionless parameters. The results in Figure 7 indicate no significant differences in terms of pz  for 

the two resolutions. Similar differences were observed when comparing monosized systems with 

1.6d = ∆  and 2.0d = ∆  in [5]. 

 

Developed flow and steady-state behavior 

In this sub-section the focus is on the stages of the solids suspension process when the flow has fully 

developed. In Figure 8 we show instantaneous realizations of how the particles disperse themselves over 

the tank volume for PSD #4 as well as liquid velocity magnitude distributions for three values of the 

modified Shields number. For the lowest value (θ = 16.2) the particles get hardly entrained by the liquid 
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flow. The main effect of the liquid flow is to deform the bed shape and to erode its surface so that only a 

small number of the smaller particles get detached from the bed. This has been observed for the other 

PSD’s at θ = 16.2 as well and in the remainder of this section we will not discuss results with this Shields 

number any further. The velocity contours show the liquid stream coming off the impeller and it being 

deflected in case dense packings of solids form underneath the impeller. 

Since the suspension process is competition between gravity and fluid flow, the way particles on 

average distribute themselves vertically is considered. With PSD #4 as an example, this is shown in 

Figure 9. The solids concentration profiles have been scaled such that a perfectly uniform distribution 

would show 1φ φ =  for all z.  For θ = 260 there is not much difference between the way the differently 

sized particles distribute over the vertical (z) coordinate, despite the fact that a large particle has a volume 

that is 16 times that of a small particle. On average, the larger particles are slightly over-represented in the 

upper parts of the tank. The latter is a result of the larger particles being more inertial and as a result able 

to store more kinetic energy, see Figure 10. The Stokes number – as a measure for particle inertia – of the 

three particle sizes in PSD #4 are 
2

2
9

4
St s id Nρ

ρ ν
≡ = 1.4, 3.4 and 8.9 respectively (in the definition of the 

St we take the blade passage time ( ) 1
4N

−
 as the flow time scale). The higher kinetic energy of the larger 

particles make them disperse better and therefore a little less susceptible to settling in the upper regions of 

the tank where the liquid flow is relatively weak. 

The vertical concentration profiles for θ = 260 do not depend on the initial state of the granular bed 

(mixed versus segregated). For θ = 260 the results indicate that we have a well-mixed flow system with 

well-suspended solids. For θ = 65 the situation is clearly different with now relatively less larger particles 

in the upper part of the tank and an overrepresentation of them near the bottom. Also the initial bed 

configuration still has an impact on the vertical concentration profile 50 to 60 impeller revolutions after 

startup with higher concentrations of large particles close to the bottom wall for the initially segregated 

bed. 
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An interesting effect of the size distribution of the solids on the overall behavior of the suspension 

process is the formation and size of a persistent solids cone underneath the impeller. The liquid stream 

coming off the impeller in the downward direction is not very well able to agitate the region near the 

center of the tank underneath the impeller. As a result, the granular bed there is hard to mobilize and 

particles collect in this relative quiescent part of the tank. In Figure 11 we visualize this effect by showing 

for a number of simulations the time-averaged solids volume fraction (of all particle types combined) in a 

vertical cross section through the center of the tank. The monosized system at θ = 260  hardly shows a 

solids cone underneath the impeller and that also holds for PSD #2. For the wider size distributions PSD 

#3 and #4, however, a small solids cone does form on the bottom underneath the impeller. Differently 

from expected, the latter cone does not only consist of the large particles, it also contains the smaller ones 

as can be seen in Figure 12. For the lower value of θ = 65, a solids cone is present for all size 

distributions, see the right panels of Figure 11. The cone is larger for the wider PSD’s. As for θ = 260, all 

types of particles are present in the cone, see Figure 12. The cone is a manifestation of the mutual 

feedback between the solid and liquid dynamics. Velocity fields of liquid and solid in the cone region are 

shown in Figure 13. For θ = 65 it is remarkable to see the packing of solids in the cone being exposed to a 

strong liquid shear flow at its sloped surface.       

 

Conclusions 

In this paper we have described and applied a numerical modeling procedure for polydisperse solid-liquid 

flow based on a Eulerian-Lagrangian approach. Polydispersity enters the procedure at a number of places: 

in the short-range interactions between particles (lubrication and collisions), in the way the drag force on 

the particles is determined, as well as in the transfer between Eulerian (liquid) and Lagrangian (particles) 

information through mapping function, the width of which depends on particle size. Since the numerical 

procedure for monosized systems has previously shown to give results that are independent of particle 
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size relative to grid spacing, it is argued that the extended procedure is well placed for accommodating 

situations with multiple particle sizes in a single simulation.  

In order to focus on particle size distribution effects, we compare cases that have the same volume-

average particle size and only differ in terms of the width of the size distribution. With the simulations, 

we go through the entire process of solids suspension, i.e. we begin with a loosely packed, static granular 

bed on the bottom of a mixing tank and then start impeller rotation that induces fluid flow and 

subsequently mobilization of the solids. The structure of the granular bed the simulation starts with, i.e. 

the way the different particle sizes are distributed over the bed height, has an influence long after the 

impeller was switched on, specifically when the flow is not sufficiently strong to achieve full suspension 

of solids. It was also noted that, compared to monosized systems, it takes more time to reach a steady 

suspension state for polydisperse systems.    

In terms of global characteristics – for instance the average height of the particles in the tank –  the 

volume-average trends of polydisperse systems closely follow their monodisperse counterparts. At a more 

detailed level, however, important differences in suspension behavior between different size distributions 

are observed, such as the formation and extent of a cone of solids resting on the bottom near the center of 

the tank that depends on the width of the size distribution. 

It is very important to critically assess the predictions as presented in this paper that are based on 

numerical simulations only. Not only because strong assumptions have been made regarding the physics 

of the system (for instance drag-only when it comes to hydrodynamic forces), but also because of limits 

on the spatial resolution with which the liquid flow is simulated. Experimental work that reveals details 

about the way solids get distributed over the container, as well as solids and liquid flow velocities is much 

needed for validation purposes. Optical experiments based on refractive index matching would be ideally 

suited for this purpose. We are developing an experiment in a lab-scale square tank with a side-length of 

220 mm. With the geometrical settings of this paper, the particles would then have an average size of 

0d d= ≈ 2 mm. The refractive index matched system in [2] uses glass particles and a specific silicon oil 
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with a dynamic viscosity of 0.021 Pa⋅s. An impeller speed of N=9.2 rev/s would achieve flow conditions 

(as quantified by Reynolds and Shields numbers) in line with the simulations presented in the current 

paper. 
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Figures  

 
Figure 1. Mixing tank geometry: top view and side view. The origin of the Cartesian coordinate system is 
in the center of the bottom wall.  
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Figure 2. Schematic of the four particle size distributions. Black: monosized; blue: particle sizes 

( )3 3
0 0 02 , , 2d d d ; red: ( )3 3

0 0 03 , , 3d d d ; green: ( )3 3
0 0 04 , , 4d d d . All distributions have 0d d= ; 

all have the same total volume of solids, the three tri-disperse distributions have 50% of their  volume in 
particles with diameter 0d . 
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Figure 3. Creating granular beds with PSD #4. a. Cross section through a set of non-overlapping particles 
with random positions; b. the same set of particles after settling; c. a less dense set of particles with 
random positions; d. the resulting granular bed after settling. Large, middle and small particles are red, 
green, and blue respectively. 
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Figure 4. Three snapshots of the suspension process with PSD #4 ( 3 3
0 0 04 , , 4d d d ). The contours in the 

vertical plane through the center of the tank denote the interstitial liquid velocity magnitude. From small 
to large the particle colors are blue, yellow, and red. Only the particles in and behind the contour plane 
are depicted. 0 1.6d = ∆ , 260θ = . Since the first impeller revolution takes 2 N , the three snapshots are 

after 2.0, 4.0 and 8.1 impeller revolutions respectively. 
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Figure 5. Cross sections through the granular beds (particle locations and liquid interstitial velocity 
vectors) of two simulations with PSD #4. Left a mixed bed; right a segregated bed. Moment 9.1tN = ,  

0 1.6d = ∆ , 260θ = . 
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Figure 6. Time series of the average vertical particle positions pz  as a function of time. From left to 

right θ  decreases. Three different PSD’s; mx and seg stands for mixed and segregated bed as initial 
condition; mono is the time series for monosized particles at the indicated θ ; vol av is volume averaged; 
small, mid, large are the three particles sizes per PSD. 0 1.6d = ∆ . 

 



 23

Figure 7. Time series of the average vertical particle positions pz  as a function of time. Assessment of 

grid effects. The solid curves have the default resolution of 0 1.6d = ∆ , the dashed curves have 0 2.0d = ∆ . 

Left: PSD #3 with initially segregated bed at θ =260; right: PSD #3 with segregated bed at θ =16.2. Blue, 
green and red refer to the small, middle and large particles in the PSD respectively. 
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Figure 8. Instantaneous realizations at 60tN =  with PSD #4. Contours of interstitial liquid velocity 
magnitude and particles in a vertical cross section through the center of the mixing tank. From left to 
right: 260, 65.0,16.2θ = . Large, middle, and small particles are black, grey, and white respectively. 

0 1.6d = ∆ .  
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Figure 9. Time-averaged (over 50 60tN≤ ≤ ) vertical particle concentration profiles for all particles and 
for individual particle sizes normalized by the (per-particle-size) tank-averaged concentration φ  for 

PSD #4 with mixed bed initial condition (top), and segregated bed initial condition (bottom). θ  as 
indicated; 0 1.6d = ∆ .  
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Figure 10. Time-averaged (over 50 60tN≤ ≤ ) vertical profiles of kinetic energy of particles k 
normalized by 21

0 02 vtipk m≡  with 0m  the mass of a particle with diameter 0d ; 0 1.6d = ∆ . 
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Figure 11. Time-averaged (over 50 60tN≤ ≤ )  solids volume fraction contours in a vertical plane 
through the center of the mixing tank. Left: θ =260; right: θ =65.0. From top to bottom: monosized 
system (PSD #1), PSD #2, PSD #3 with mixed initial bed, PSD #4 with mixed initial bed. 0 1.6d = ∆ . The 

white rectangles in the lower panels indicate the fields of view in Figure 12. 
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Figure 12. Instantaneous particle location realizations at 60tN =  for PSD #4 in the plane and field of 
view indicated in Figure 11 (lower panels). Left: θ =260; right θ =65.0. 0 1.6d = ∆ . 
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Figure 13. Instantaneous particle velocity vectors (top) and interstitial liquid velocity vectors (bottom) at 
60tN =  for PSD #4 around the solids cone that forms on the bottom. Left: θ =260; right θ =65.0. For the 

top panels: the color of the vector indicates the particle size (blue, green, and red for small, middle, and 
large particles respectively). 0 1.6d = ∆ . 
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Tables 
 
Table 1. Particle size distributions 
Size distr. #    
1 

0d d= : 250,000   

2 
0d d= : 125,000 3

0 02 0.7937d d d= ≈ : 110,622 3
0 02 1.260d d d= ≈ : 34,844 

3 
0d d= : 125,000 3

0 03 0.6934d d d= ≈ : 153,547 3
0 03 1.442d d d= ≈ : 24,605 

4 
0d d= : 125,000 3

0 04 0.6300d d d= ≈ : 193,243 3
0 04 1.587d d d= ≈ : 19,172 

 


