
University of Aberdeen

The Distance Standard Deviation

Edelmann, Dominic; Richards, Donald ; Vogel, Daniel

Publication date:
2017

Document Version
Other version

Link to publication

Citation for published version (APA):
Edelmann, D., Richards, D., & Vogel, D. (2017). The Distance Standard Deviation. (pp. 1-27). ArXiv.
https://arxiv.org/abs/1705.05777

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 01. May. 2024

https://abdn.elsevierpure.com/en/publications/0acffa79-e1c4-43e7-a06a-626aec33e0c7
https://arxiv.org/abs/1705.05777


The Distance Standard Deviation

Dominic Edelmann,∗ Donald Richards,† and Daniel Vogel‡

May 17, 2017

Abstract

The distance standard deviation, which arises in distance correlation analy-

sis of multivariate data, is studied as a measure of spread. New representations

for the distance standard deviation are obtained in terms of Gini’s mean differ-

ence and in terms of the moments of spacings of order statistics. Inequalities for

the distance variance are derived, proving that the distance standard deviation is

bounded above by the classical standard deviation and by Gini’s mean difference.

Further, it is shown that the distance standard deviation satisfies the axiomatic

properties of a measure of spread. Explicit closed-form expressions for the dis-

tance variance are obtained for a broad class of parametric distributions. The

asymptotic distribution of the sample distance variance is derived.

Key words and phrases. characteristic function; distance correlation coefficient; distance

variance; Gini’s mean difference; measure of spread; dispersive ordering; stochastic

ordering; U-statistic; order statistic; sample spacing; asymptotic efficiency.
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1 Introduction

In recent years, the topic of distance correlation has been prominent in statistical anal-

yses of dependence between multivariate data sets. The concept of distance correlation

was defined in the one-dimensional setting by Feuerverger [7] and subsequently in the

multivariate case by Székely, et al. [25, 26], and those authors applied distance corre-

lation methods to testing independence between random variables and vectors.
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Since the appearance of [25, 26], enormous interest in the theory and applications

of distance correlation has arisen. We refer to the articles [22, 27, 28] on statistical

inference; [8, 9, 14, 33] on time series; [4, 5, 6] on affinely invariant distance correlation

and connections with singular integrals; [19] on metric spaces; and [23] on machine

learning. Distance correlation methods have also been applied to assessing familial

relationships [17], and to detecting associations in large astrophysical databases [20, 21].

For z ∈ C, denote by |z| the modulus of z. For any positive integer p and s, x ∈ Rp,

we denote by 〈s, x〉 the standard Euclidean inner product on Rp and by ‖s‖ = 〈s, s〉1/2
the standard Euclidean norm. Further, we define the constant

cp =
π(p+1)/2

Γ
(
(p+ 1)/2

) .
For jointly distributed random vectors X ∈ Rp and Y ∈ Rq, let

fX,Y (s, t) = E exp
(√
−1(〈s,X〉+ 〈t, Y 〉)

)
,

s ∈ Rp, t ∈ Rq, be the joint characteristic function of (X, Y ) and let fX(s) = fX,Y (s, 0)

and fY (t) = fX,Y (0, t) be the corresponding marginal characteristic functions. The

distance covariance between X and Y is defined as the nonnegative square root of

V2(X, Y ) =
1

cpcq

∫
Rp+q

∣∣fX,Y (s, t)− fX(s)fY (t)
∣∣2 ds dt

‖s‖p+1 ‖t‖q+1
; (1.1)

the distance variance is defined as

V2(X) := V2(X,X) =
1

c2p

∫
R2p

∣∣fX(s+ t)− fX(s)fX(t)
∣∣2 ds dt

‖s‖p+1 ‖t‖p+1
; (1.2)

and we define the distance standard deviation V(X) as the nonnegative square root of

V2(X). The distance correlation coefficient is defined as

R(X, Y ) =
V(X, Y )√
V(X)V(Y )

(1.3)

as long as V(X),V(Y ) 6= 0, and R(X, Y ) is defined to be zero otherwise.

The distance correlation coefficient, unlike the Pearson correlation coefficient, char-

acterizes independence: R(X, Y ) = 0 if and only if X and Y are mutually independent.

Moreover, 0 ≤ R(X, Y ) ≤ 1; and for one-dimensional random variables X, Y ∈ R,

R(X, Y ) = 1 if and only if Y is a linear function of X. The empirical distance cor-

relation possesses a remarkably simple expression ([7], [25, Theorem 1]), and efficient

algorithms for computing it are now available [13].

The objective of this paper is to study the distance standard deviation V(X). Since

distance standard deviation terms appear in the denominator of the distance correlation

coefficient (1.3) then properties of V(X) are crucial to understanding fully the nature
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of R(X, Y ). Now that R(X, Y ) has been shown to be superior in some instances to

classical measures of correlation or dependence, there arises the issue of whether V(X)

constitutes a measure of spread suitable for situations in which the classical standard

deviation cannot be applied.

As V(X) is possibly a measure of spread, we should compare it to other such mea-

sures. Indeed, suppose that E(‖X‖2) <∞, and let X, X ′, and X ′′ be independent and

identically distributed (i.i.d.); then, by [25, Remark 3],

V2(X) = E(‖X −X ′‖2) + (E‖X −X ′‖)2 − 2E(‖X −X ′‖ · ‖X −X ′′‖), (1.4)

The second term on the right-hand side of (1.4) is reminiscent of the Gini mean differ-

ence [10, 31], which is defined for real-valued random variables Y as

∆(Y ) := E|Y − Y ′|, (1.5)

where Y and Y ′ are i.i.d. Furthermore, if X ∈ R then one-half the first summand in

(1.4) equals σ2(X), the variance of X:

1

2
E(|X −X ′|2) =

1

2
E(X2 − 2XX ′ +X ′2) = E(X2)− E(X)E(X ′) ≡ σ2(X).

Let X and Y be real-valued random variables with cumulative distribution functions

F and G, respectively. Further, let F−1 and G−1 be the right-continuous inverses of F

and G, respectively. Following [24, Definition 2.B.1], we say that X is smaller than Y

in the dispersive ordering, denoted by X ≤disp Y , if for all 0 < α ≤ β < 1,

F−1(β)− F−1(α) ≤ G−1(β)−G−1(α). (1.6)

According to [2], a measure of spread is a functional τ(X) satisfying the axioms:

(C1) τ(X) ≥ 0,

(C2) τ(a+ bX) = |b| τ(X) for all a, b ∈ R, and

(C3) τ(X) ≤ τ(Y ) if X ≤disp Y .

The distance standard deviation V(X) obviously satisfies (C1). Moreover, Székely, et

al. [25, Theorem 4] prove that:

1. If V(X) = 0 then X = E[X], amost surely,

2. V(a+ bX) = |b| V(X) for all a, b ∈ R, and

3. V(X + Y ) ≤ V(X) + V(Y ) if X and Y are independent.

In particular, V(X) satisfies the dilation property (C2). In Section 5, we will show that

V(X) satisfies condition (C3), proving that V(X) is a measure of spread in the sense
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of [2]. However, we will also derive some stark differences between V(X), on the one

hand, and the standard deviation and Gini’s mean difference, on the other hand.

The paper is organized as follows. In Section 2, we derive inequalities between

the summands in the distance variance representation (1.4). For real-valued random

variables, we will prove that V(X) is bounded above by Gini’s mean difference and by

the classical standard deviation. In Section 3, we show that the representation (1.4)

can be simplified further, revealing relationships between V(X) and the moments of

spacings of order statistics. Section 4 provides closed-form expressions for the distance

variance for numerous parametric distributions. In Section 5, we show that V(X) is a

measure of spread in the sense of [2]; moreover, we point out some important differences

between V(X), the standard deviation, and Gini’s mean difference. Section 6 studies

the properties of the sample distance variance.

2 Inequalities between the distance variance, the

variance, and Gini’s mean difference

The integral representation in equation (1.2) of the distance variance V2(X) generally

is not suitable for practical purposes. Székely, et al. [25, 26] derived an alternative

representation; they show that if the random vector X ∈ Rp satisfies E‖X‖2 <∞ and

if X, X ′, and X ′′ are i.i.d. then

V2(X) = T1(X) + T2(X)− 2T3(X), (2.1)

where
T1(X) = E(‖X −X ′‖2),
T2(X) = (E‖X −X ′‖)2,

(2.2)

and

T3(X) = E
(
‖X −X ′‖ · ‖X −X ′′‖

)
, (2.3)

Corresponding to the representation (2.1), a sample version of V2(X) then is given by

V2
n(X) = T1,n(X) + T2,n(X)− 2T3,n(X), (2.4)

where

T1,n(X) =
1

n2

n∑
i=1

n∑
j=1

‖Xi −Xj‖2,

T2,n(X) =
( 1

n2

n∑
i=1

n∑
j=1

‖Xi −Xj‖
)2
,

(2.5)
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and

T3,n(X) =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

‖Xi −Xj‖ · ‖Xi −Xk‖. (2.6)

We remark that the version (2.4) is biased; indeed, throughout the paper, we work with

biased sample versions to avoid dealing with numerous complicated, but unessential,

constants in the ensuing results. In any case, an unbiased sample version can be defined

in a similar fashion; see, e.g., [27]).

In the following we will study inequalities between the summands showing up in

equations (2.1) and (2.4). In the one-dimensional case, these inequalities will lead to

crucial results concerning the relationships between the distance standard deviation,

Gini’s mean difference and the standard deviation.

Lemma 2.1. Let X = (X(1), . . . , X(p))t ∈ Rp be a random vector. Moreover let

X = (X1, . . . , Xn) denote a random sample from X and let T1(X), T2(X), T3(X),

and T1,n(X), T2,n(X), T3,n(X) be defined as in equations (2.1)-(2.6). Then

T2,n(X) ≤ T3,n(X) ≤ T1,n(X), T1,n(X) ≤ 2T3,n(X). (2.7)

Further, if E‖X‖2 <∞ then

T2(X) ≤ T3(X) ≤ T1(X), T1(X) ≤ 2T3(X). (2.8)

Proof. First note that

T3,n(X) =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

‖Xi −Xj‖ · ‖Xi −Xk‖

=
1

n3

n∑
i=1

( n∑
j=1

‖Xi −Xj‖
)2
.

By the Cauchy-Schwarz inequality, (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i for all a1, . . . , an ∈ R; ap-

plying this inequality to the sums which define T1,n, T2,n and T3,n, we obtain

T2,n(X) =
1

n4

( n∑
i=1

n∑
j=1

‖Xi −Xj‖
)2

≤ n

n4

n∑
i=1

( n∑
j=1

‖Xi −Xj‖
)2

= T3,n(X)

and

T3,n(X) =
1

n3

n∑
i=1

( n∑
j=1

‖Xi −Xj‖
)2

≤ n

n3

n∑
i=1

n∑
j=1

‖Xi −Xj‖2 = T1,n(X).
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The second assertion in (2.7) follows by the triangle inequality:

T1,n(X) =
1

n2

n∑
i=1

n∑
j=1

‖Xi −Xj‖2

=
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

‖Xi −Xj‖ · ‖Xi −Xk +Xk −Xj‖

≤ 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

‖Xi −Xj‖
(
‖Xi −Xk‖+ ‖Xk −Xj‖

)
= 2T3,n(X).

The corresponding inequalities (2.8) for the population measures follow from the

strong consistency of the respective sample measures. Alternatively they can be derived

by applying Jensen’s inequality and the triangle inequality, respectively.

Using the inequalities in Lemma 2.1, we can derive upper bounds for the distance

variance in terms of the variance of the components X(1), . . . , X(p) and the Gini mean

difference of the vector X.

Theorem 2.2. Let X = (X(1), . . . , X(p))t ∈ Rp be a random vector with E‖X‖ < ∞,

and let X ′ = (X
′(1), . . . , X

′(p))t denote an i.i.d. copy of X. Then

V2(X) ≤
p∑
i=1

σ2(X(i)),

and

V2(X) ≤ (E‖X −X ′‖)2.

Proof. To prove the first assertion, we note that

V2(X) = lim
n→∞

(
T1,n(X) + T2,n(X)− 2T3,n(X)

)
≤ lim

n→∞
T2,n(X)

= (E‖X −X ′‖)2,

where the inequality follows by Lemma 2.1.

To extablish the second inequality we can assume, without loss of generality, that
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E‖X‖2 <∞. Then

T1(X) = E‖X −X ′‖2

= E
p∑
i=1

(X(i) −X ′(i))2

=

p∑
i=1

E
[
(X(i) − EX(i)) + (EX(i) −X ′(i))

]2
= 2

p∑
i=1

σ2(X(i)).

Applying Lemma 2.1 yields

V2(X) = T1(X) + T2(X)− 2T3(X)

≤ T1(X)− T3(X)

≤ 1
2
T1(X)

=

p∑
i=1

σ2(X(i)).

The proof now is complete.

In the one-dimensional case, Theorem 2.2 implies that the distance variance is

bounded above by the variance and the squared Gini mean difference.

Corollary 2.3. Let X be a real-valued random variable with E‖X‖ <∞. Then,

V2(X) ≤ σ2(X), V2(X) ≤ ∆2(X).

Let us note further that for X ∈ R, the inequality T2(X) ≤ T1(X) can be sharpened.

Proposition 2.4. Let X be a real-valued random variable with E(|X|2) <∞. Then,

T2(X) ≤ 2
3
T1(X).

Proof. By [31, p. 25],

1 ≥ [Cor(X,F (X))]2 =
Cov2(X,F (X))

σ2(X)σ2(F (X))
. (2.9)

By [30, equation (2.3)], Cov(X,F (X)) = ∆(X)/4; also, since F (X) is uniformly dis-

tributed on the interval [0, 1] then Var(F (X)) = 1/12. By the definition of the Gini

mean difference (1.5) and by (2.2), ∆2(X) = T2(X) and σ2(X) = T1(X)/2. Therefore,

it follows from (2.9) that

1 ≥ 12

16

∆2(X)

σ2(X)
=

3T2(X)

2T1(X)
,
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and the proof now is complete.

Interestingly, Gini’s mean difference and the distance standard deviation coincide

for distributions whose mass is concentrated on two points.

Theorem 2.5. Let X be Bernoulli distributed with parameter p. Then

V2(X) = ∆2(X) = 4p2(1− p)2.

Conversely, if X is a non-trivial random variable for which V2(X) = ∆2(X) then the

distribution of X is concentrated on two points.

Proof. It is straightforward from (2.1) to verify that, for a Bernoulli distributed

random variable X, ∆(X) = 2σ2(X) = 2T3(X) = 2 p(1− p). Hence, by (2.1),

V2(X) = 2σ2(X) + ∆2(X)− 2T3(X) = 4 p2(1− p)2.

Conversely, if X is a non-trivial random variable for which V2(X) = ∆2(X) then

the conclusion that the distribution of X is concentrated on two points follows from

Theorem 3.1.

For the Bernoulli distribution with p = 1
2
, Theorem 2.5 implies immediately that

V2(X), σ2(X), and ∆2(X) attain the same value, namely, 1/4. Hence, applying Corol-

lary 2.3 and the dilation property V(aX) = |a|V(X) in (C2), we obtain

Corollary 2.6. Let X denote the set of all real-valued random variables and let c > 0.

Then

max
X∈X
{V2(X) : σ2(X) = c} = max

X∈X
{V2(X) : ∆2(X) = c} = c,

and both maxima are attained by Z = 2 c1/2 Y , where Y is Bernoulli distributed with

parameter p = 1
2
.

This result answers a question raised by Gabor Székely (private communication,

November 23, 2015).

We remark, that the second implication of Theorem 2.2 as well as Theorem 2.5 also

follow directly from the result for the generalized distance variance in [19, Proposition

2.3]. However, the proof presented here provides a different and more elementary

approach to these findings.

3 New representations for the distance variance

The representation of V given in (2.1), although more applicable than the expression

given in equation (1.2), still has the drawback that it is undefined for random vectors



The Distance Standard Deviation 9

with infinite second moments. This problem can be circumvented by considering the

representation

V2(X) = ∆2(X) +W (X), (3.1)

where

W (X) = E
[
‖X −X ′‖ ·

(
‖X −X ′‖ − 2 ‖X −X ′′‖

)]
.

In the one-dimensional case, the representation (3.1) can be further simplified using

the concept of order statistics.

Theorem 3.1. Let X be a real-valued random variable with E|X| <∞, and let X, X ′,

and X ′′ be i.i.d. copies of X. If X1:3 ≤ X2:3 ≤ X3:3 are the order statistics of the triple

(X,X ′, X ′′) then

V2(X) = ∆2(X)− 4
3
E[(X2:3 −X1:3) (X3:3 −X2:3)] (3.2)

= ∆2(X)− 8E[(X −X ′)+ (X ′′ −X)+], (3.3)

where t+ = max(t, 0), t ∈ R.

Proof. We first prove the theorem for the case in which X is continuous. In this case,

we apply the Law of Total Expectation and use the independence of the ranks and the

order statistics [29, Lemma 13.1] to obtain

W (X)

= E
[
|X −X ′|

(
|X −X ′| − 2 |X −X ′′|

)]
=

3∑
k,k′,k′′=1

k,k′,k′′are pair-
wise distinct

E
[
|X −X ′|

(
|X −X ′| − 2|X −X ′′|

)∣∣∣(rX , rX′ , rX′′) = (k, k′, k′′)
]

× P
(
(rX , rX′ , rX′′) = (k, k′, k′′)

)
.
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Using the symmetry of X, X ′, and X ′′, it follows that

W (X) =
1

6

3∑
k,k′,k′′=1

k,k′,k′′are pair-
wise distinct

E
[
|Xk:3 −Xk′:3|

(
|Xk:3 −Xk′:3| − 2 |Xk:3 −Xk′′:3|

)]

=
1

6

3∑
k,k′,k′′=1

k,k′,k′′are pair-
wise distinct

E
[
|Xk:3 −Xk′:3|2

]
− E

[
|Xk:3 −Xk′:3| · |Xk:3 −Xk′:3|

]
.

Evaluating the first summand in the latter equation yields

1

6

3∑
k,k′,k′′=1

k,k′,k′′are pair-
wise distinct

E
[
|Xk:3 −Xk′:3|2

]

=
1

3

(
E
[
(X1:3 −X2:3)

2
]

+ E
[
(X1:3 −X3:3)

2
]

+ E
[
(X2:3 −X3:3)

2
])
.

Proceeding analogously with the second summand and simplifying the outcome, we

obtain

W (X) = −4

3
E
[
(X2:3 −X1:3) (X3:3 −X2:3)

]
.

This proves (3.2) in the continuous case.

For the case of general random variables, we now apply the method of quantile

transformations. Let U be uniformly distributed on the interval [0, 1] and let U , U ′,

and U ′′ be i.i.d.. Further, let F denote the cumulative distribution function of X.

With F−1(p) = inf{x : F (x) ≥ p} denoting the right-continuous inverse of F , we define

X̃ = F−1(Ũ), X̃ ′ = F−1(Ũ ′), and X̃ ′′ = F−1(Ũ ′′). By [29, Theorem 21.1], the random

variables X̃, X̃ ′, and X̃ ′′ are i.i.d. copies of X and

W (X)

= E
[
|X̃ − X̃ ′| ·

(
|X̃ − X̃ ′| − 2 |X̃ − X̃ ′′|

)]
=

3∑
k,k′,k′′=1

k,k′,k′′are pair-
wise distinct

E
[
|X̃ − X̃ ′| ·

(
|X̃ − X̃ ′| − 2 |X̃ − X̃ ′′|

)∣∣∣(rU , rU ′ , rU ′′) = (k, k′, k′′)
]

× P
(
(rU , rU ′ , rU ′′) = (k, k′, k′′)

)
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=
1

6

3∑
k,k′,k′′=1

k,k′,k′′are pair-
wise distinct

E
[
|Xk:3 −Xk′:3| ·

(
|Xk:3 −Xk′:3| − 2 |Xk:3 −Xk′′:3|

)]

= −4

3
E[(X2:3 −X1:3) (X3:3 −X2:3)].

The second representation for W (X), (3.3), now follows by a combinatorial symmetry

argument from the first representation.

In the continuous case with finite second moment, equation (3.3) is equivalent to

E(|X −X ′| · |X ′′ −X ′|) = σ2(X) + 4J(X), (3.4)

where

J(X) =

∫ ∞
x=−∞

∫ x

y=−∞

∫ ∞
z=x

(x− y) (z − x)f(z) f(y)f(x)dzdydx.

Formula (3.4) is essentially the key result in the classical paper by Lomnicki [18], who

also gave a simple expression for the variance of the empirical Gini mean difference,

∆̂n(X) =
2

n (n− 1)

∑
1≤i<j≤n

|Xi −Xj|. (3.5)

Indeed, it is shown in [18] that

Var
(
∆̂n(X)

)
=

1

n (n− 1)

(
4 (n− 1)σ2(X) + 16 (n− 2)J(X)− 2 (2n− 3)∆2(X)

)
. (3.6)

We note two consequences of Theorem 3.1 and equation (3.6). First, Theorem 3.1

implies that the decomposition (3.6) holds in an analogous way for the non-continuous

case. Second, for distributions with finite second moment, calculating the distance

variance yields the variance of ∆̂n and vice versa. These considerations imply that the

asymptotic variance ASV (∆̂(X)) = limn→∞ nVar(
(
∆̂(X)

)
) can be expressed alterna-

tively as

ASV (∆̂(X)) = 4σ2(X)− 2V2(X)− 2 ∆2(X). (3.7)

For a random sample X1, . . . , Xn of real-valued random variables, the difference

between successive order statistics, Di:n := Xi+1:n − Xi:n, i = 1, . . . , n − 1, is called

the ith spacing of X = (X1, . . . , Xn). Jones and Balakrishnan [15] (see also [30, 31])

studied closed-form expression for the moments of spacings and showed that

σ2(X) = E(D2
1:2) = 2

∫∫
−∞<x<y<∞

F (x)(1− F (y))dx dy (3.8)

and

∆(X) = E(D1:2) = 2

∫ ∞
−∞

F (x)(1− F (x))dx. (3.9)

By applying results in [15], we obtain an analogous representation for the distance

variance.
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Theorem 3.2. Let X be a real-valued variable with E(|X|) < ∞ and let X, X ′, X ′′,

and X ′′′ be i.i.d. Then,

V2(X) = 8

∫∫
−∞<x<y<∞

F 2(x)(1− F (y))2dx dy (3.10)

=
2

3
E[(X3:4 −X2:4)

2], (3.11)

where X1:4 ≤ X2:4 ≤ X3:4 ≤ X4:4 denote the order statistics of (X,X ′, X ′′, X ′′′).

Proof. By equation (3.9), we obtain

∆2(X) =
[
2

∫ ∞
−∞

F (x) (1− F (x))dx
]2

= 4

∫ ∞
−∞

∫ ∞
−∞

F (x) [1− F (x)]F (y) [1− F (y)] dx dy

= 8

∫∫
−∞<x<y<∞

F (x) [1− F (x)]F (y) [1− F (y)] dx dy.

Moreover, by [15, equation (3.5)]

E[(X2:3 −X1:3) (X3:3 −X2:3)]

= 8

∫∫
−∞<x<y<∞

F (x) [F (y)− F (x)] [1− F (y)] dx dy.

Hence,

V2(X) = ∆2(X)− 4
3
E[(X(2) −X(1)) (X(3) −X(2))]

= 8

∫∫
−∞<x<y<∞

[F (x)]2 [1− F (y)]2 dx dy,

which proves (3.10).

Finally, the formula (3.11) follows from (3.10) and from [15, equation (3.4)].

Theorem 3.2 now yields for the distance variance a new sample version which is

distinct from V2
n(X), as follows.

Corollary 3.3. Let X be a real-valued variable with E(|X|) < ∞ and let X =

(X1, . . . , Xn) be a random sample from X. Then, a strongly consistent sample ver-

sion for V2(X) is

U2
n(X) =

(
n

2

)−2 n−1∑
i,j=1

(
min(i, j)

)2(
n−max(i, j)

)2
Di:nDj:n, (3.12)

where Dk:n = Xk+1:n −Xk:n denotes the kth sample spacing of X, 1 ≤ k ≤ n− 1.
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Proof. Let h : R4 7→ R be the symmetric kernel defined by

h(X1, . . . , X4) =
2

3
(X3:4 −X2:4)

2,

where X1:4 ≤ X2:4 ≤ X3:4 ≤ X4:4 are the order statistics of X1, . . . , X4. By Theorem

3.2, we have E[h(X1, . . . , X4)] <∞. Hence, by Hoeffding [12],

Û2
n(X) =

2

3

(
n

4

)−1 ∑
1≤i1<i2<i3<i4≤n

h(Xi1 , . . . , Xi4)

is a strongly consistent estimator for V2(X). Using a straightforward combinatorial

calculation, we obtain

Û2
n(X) =

2

3

(
n

4

)−1 ∑
1≤i<j≤n

(i− 1) (n− j)(Xj:n −Xi:n)2.

On inserting the definition of the spacings, the latter equation reduces to

Û2
n(X) =

2

3

(
n

4

)−1 ∑
1≤i<j≤n

(i− 1) (n− j) (Di:n + · · ·+Dj−1:n)2

≡ 2

3

(
n

4

)−1 ∑
1≤i<j≤n

(i− 1) (n− j)
j−1∑
k,l=i

Dk:nDl:n.

Interchanging the above summations, we obtain

Û2
n(X) =

2

3

(
n

4

)−1 n−1∑
k,l=1

Dk:nDl:n

min(k,l)∑
i=1

n∑
j=max(k,l)+1

(i− 1) (n− j)

=
1

6

(
n

4

)−1 n−1∑
k,l=1

Dk:nDl:n min(k, l)
(

min(k, l)− 1
)

×
(
n−max(k, l)

) (
n−max(k, l)− 1

)
,

where the latter equality follows from the fact that
∑k

i=1 i = k(k − 1)/2. Since

1

6

(
n

4

)−1
=

4

n (n− 1) (n− 2) (n− 3)
,

then we deduce that U2
n(X) = Û2

n(X) + o(1). This completes the proof.

Denoting the vector of spacings by D = (D1:n, . . . , Dn−1:n), we can write the

quadratic form in (3.12) as

U2
n(X) = Dt V D,
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Figure 3.1: Illustration of (from left to right) the sample distance variance

U2
n, the squared sample Gini mean difference ∆̂2, and the sample variance

σ̂2 via their respective quadratic form matrices V , G, and S for sample size

n = 1, 000. The coordinate (i, j) corresponds to the (i, j)th entry of the

corresponding matrix, and the size of the corresponding matrix element is

specified via color code (see legend).

where the (i, j)th element of the matrix V is

Vi,j =

(
n

2

)−2 (
min(i, j)

)2 (
n−max(i, j)

)2
Both the squared sample Gini mean difference and the sample variance

σ̂2
n(X) :=

1

n (n− 1)

n∑
i=1

(Xi −Xn)2

can also be expressed as quadratic forms in the spacings vector D; specifically,

∆̂2
n(X) = DtGD, σ̂2

n(X) = Dt S D,

where the elements of G and S are given by

Gi,j =

(
n

2

)−2
i j (n− i) (n− j)

and

Si,j =
1

2

(
n

2

)−1
min(i, j) (n−max(i, j)).

Hence, comparing U2
n, ∆2

n, and σ2
n is equivalent to comparing the matrices V , G

and S. We use this fact to graphically illustrate differing features of V , ∆, and σ by

plotting the values of the underlying matrices; see Figure 3.1.

Moreover, these quadratic form representations lead to the rediscovery of results

from Section 2. For example, since V and G have the same diagonal entries then it
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follows that V and ∆ are equal for Bernoulli-distributed random variables. Also, if n

is even then the elements Vn/2,n/2, Gn/2,n/2, and Sn/2,n/2 all coincide, representing the

fact that the underlying measures coincide for the Bernoulli distribution with p = 1
2
.

Finally, since Vij ≤ Gij and Vij ≤ Sij for all i, j then we obtain an alternative proof of

Corollary 2.3.

It is also remarkable that V is twice the second Hadamard power of S and that V

and S both are positive definite, while G is positive semidefinite with rank 1. Finally,

we mention that there are numerous other statistics which can be written as quadratic

forms or square-roots of quadratic forms in the spacings, e.g., the Greenwood statistic,

the range, and the interquartile range.

4 Closed form expressions for the distance variance

of some well-known distributions

Exploiting the different representations of the distance variance derived in the preceding

sections, we can now state the distance variance of many well-known distributions. In

the following result, we use the standard notation 1F1 and 2F1 for the classical confluent

and Gaussian hypergeometric functions.

Theorem 4.1. 1. Let X be Bernoulli distributed with parameter p. Then V2(X) =

4 p2 (1− p)2.

2. Let X be normally distributed with mean µ and variance σ2. Then

V2(X) = 4
(1−

√
3

π
+

1

3

)
σ2.

3. Let X be uniformly distributed on the interval [a, b]. Then V2(X) = 2(b− a)2/45.

4. Let X be Laplace-distributed with density function, fX(x) = (2α)−1

exp(−|x− µ|/α), x ∈ R, α > 0, µ ∈ R. Then V2(X) = 7α2/12.

5. Let X be Pareto-distributed with parameters α > 1 and xm > 0, and density function

fX(x) = αxαmx
−(α+1), x ≥ xm. Then,

V2(X) =
4α2x2m

(α− 1) (2α− 1)2 (3α− 2)

6. Let X be exponentially distributed with parameter λ > 0 and density function

fX(x) = λ exp(−λx), x ≥ 0. Then, V2(X) = (3λ2)−1.
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7. Let X be Gamma-distributed with shape parameter α > 0 and scale parameter 1.

Then

V2(X) = 22(2−2α)
∞∑

j,k=1

Aj,k(α)2,

where

Aj,k(α) = 2−j−k
(

(α)j (α)k
j! k!

)1/2

× Γ(2α + j + k − 1)

Γ(α + j) Γ(α + k)
2F1 (−j − k + 2, 1− α− j; 2− 2α− j − k; 2) .

8. Let X be Poisson-distributed with parameter λ > 0. Then

V2(X) =
∞∑

j,k=1

4j+k−1

j! k!
λj+k A2

jk,

where

Ajk =
1

(j − 1)!

b(j−k)/2c∑
l=0

(
j − k

2l

)
(−1)l(1

2
)l (

1
2
)j−l−1 1F1(j − l − 1

2
; j;−4λ).

9. Let X be negative binomially distributed with parameters c and β. Then

V2(X) = (1− c)4β
∞∑

j,k=1

(β)j (β)k
j! k!

(1 + c2)−2β−2j22kcj+kA2
jk,

where

Ajk =

j−k∑
l1,l2=0

(
j − k
l1

)(
j − k
l2

)
(−c)l1(−1)l2(|l1 − l2|)!

∞∑
l=0

(β + j)− l
l!

(
2c

1 + c2

)l

×
|l1−l2|∑
m=0

(−2)m
(m)|l1−l2|

(|l1 − l2| −m)! (2m)!

2k+m−1 (1
2
)k+m−1

(k +m− 1)!

× 2F1(−l, k +m− 1
2
; k +m; 2).

10. Let X = (X1, . . . , Xp) be a multivariate normally distributed random vector with

mean µ = (µ1, . . . , µp) and identity covariance matrix Ip := diag(1, . . . , 1). Then

V2(X) = 4π
c2p−1
c2p

[
Γ(1

2
p) Γ(1

2
p+ 1)[

Γ
(
1
2
(p+ 1)

)]2 − 2 2F1

(
−1

2
,−1

2
; 1
2
p; 1

4

)
+ 1

]
.
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Proof. 1. See Theorem 2.5.

2. See the proof of Theorem 7 in [25] or [4, p. 14].

3. and 4. These follow directly from Theorem 3.1 and the results in Table 3 in [10].

5. and 6. These results follow directly from the representation (2.1) and [32, equa-

tions (4.2) and (4.4)].

7., 8., and 9. See [6, Propositions 5.6, 5.7, and 5.8].

10. See [4, Corollary 3.3].

By equations (3.6) and (3.7), we can also derive expresssions for the variance and

asymptotic variance of the sample Gini mean difference for the distributions 1.- 9. in

Theorem 4.1. To the best of our knowledge, these expressions are novel for the Gamma,

Poisson, and negative binomial distributions.

5 The distance standard deviation as a measure of

spread

In this section, we show that the distance standard deviation V(X) satisfies the criteria

(C1)-(C3) stated in Section 1 and therefore is an axiomatic measure of spread in the

sense of [2]. Moreover, we point out some differences and commonalities between V , ∆

and σ. First, we state some additional preliminaries about stochastic orders.

Definition 5.1 ([24], Section 1.A.1). A random variable X is said to be stochastically

smaller than a random variable Y , or X is smaller than Y in the stochastic ordering,

written X ≤st Y , if P(X > u) ≤ P(Y > u) for all u ∈ R.

Proposition 5.2 ([24], Section 1.A.1). A necessary and sufficient condition that X ≤st

Y is that

E[φ(X)] ≤ E[φ(Y )] (5.1)

for all increasing functions φ for which these expectations exist.

Another important ordering of random variables is the dispersive order, ≤disp, which

was stated earlier at (1.6) in the introduction. Bartoszewicz [1] proved the following

result.

Proposition 5.3 ([1], Proposition 3). Let (X1, . . . , Xn) and (Y1, . . . , Yn) be random

samples from the random variables X and Y , respectively, and let Dj = Xj+1:n −Xj:n

and Ej = Yj+1:n − Yj:n, j = 1, . . . , n − 1 denote the corresponding sample spacings. If

X ≤disp Y then Dj:n ≤st Ej:n for all j = 1, . . . , n− 1.

Applying this result to the representation of the distance variance derived in The-

orem 3.2, we conclude that the distance standard deviation V is indeed a measure of

spread in the sense of [2].
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Theorem 5.4. If X ≤disp Y then V(X) ≤ V(Y ).

Proof. Let us consider i.i.d. replicates (X, Y ), (X ′, Y ′), (X ′′, Y ′′), and (X ′′′, Y ′′′).

Moreover, let X1:4 ≤ X2:4 ≤ X3:4 ≤ X4:4 and Y1:4 ≤ Y2:4 ≤ Y3:4 ≤ Y4:4 denote the

respective order statistics. By Proposition 5.3,

(X3:4 −X2:4) ≤st (Y3:4 − Y2:4).

Applying equation (5.1) and Theorem 3.2 concludes the proof.

Using similar arguments, we can show that the result of Theorem 5.4 holds analo-

gously for the standard deviation and Gini’s mean difference; see also [16].

Theorem 5.5 ([24], Theorem 3.B.7). The random variable X satisfies the property

X ≤disp X + Y for any random variable Y which is independent of X

if and only if X has a log-concave density.

Applying Theorem 5.5, we obtain the following corollary of Theorem 5.4.

Corollary 5.6. Let X be a random variable with a log-concave density. Then

V(X + Y ) ≥ V(X)

for any random variable Y independent of X.

In particular if X and Y are independently distributed, continuous, random vari-

ables with log-concave densities, then

V(X + Y ) ≥ max(V(X),V(Y )). (5.2)

It is well known, both for the standard deviation and for Gini’s mean difference,

that analogous assertions hold without any restrictions on the distributions of X and

Y . In particular, for any pair of independent random variables X and Y with existing

first or second moments, respectively, there holds

σ2(X + Y ) = σ2(X) + σ2(Y ) ≥ max(σ2(X), σ2(Y )). (5.3)

Also, letting X ′ and Y ′ denote i.i.d. copies of X and Y , respectively, we have

∆(X + Y ) = E[max(|X −X ′|, |Y − Y ′|)] ≥ max(∆(X),∆(Y )). (5.4)

However we now show that this property does not hold generally for the distance

standard deviation, V , thereby answering a second question raised by Gabor Székely

(private communication, November 23, 2015).
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Example 5.7. Let X be Bernoulli distributed with parameter p = 1
2

and let Y be

uniformly distributed on the interval [0, 1] and independent of X. Then V(X) > V(X+

Y ).

Proof. By a straightforward calculation using (2.1), we obtain

V2(X + Y ) = T1(X + Y ) + T2(X + Y )− 2T3(X + Y )

=
2

3
+

4

9
− 14

15
=

8

45
.

However, by Theorem 2.5, V2(X) = 1/4 > V2(X + Y ).

Other common properties of the classical standard deviation and Gini’s mean dif-

ference concerns differences and sums of independent random variables. From the

representations of σ2(X + Y ) and ∆(X + Y ) given in (5.3) and (5.4), we see that

∆(X + Y ) = ∆(X − Y ), σ(X + Y ) = σ(X − Y )

for any independent random variables X and Y for which these expressions exist.

On the other hand, these properties do not hold in general for the distance standard

deviation.

Example 5.8. Let X and Y be independently Bernoulli distributed with parameter

p 6= 1
2
. Then V(X + Y ) > V(X − Y ).

Proof. By a straightforward calculation using (2.1), we obtain

V2(X + Y ) = 8 (p− p2)2
(
2 (p− p2)2 − 6 (p− p2) + 2

)
and

V2(X − Y ) = 8 (p− p2)2
(
2 (p− p2)2 − 2 (p− p2) + 1

)
.

Hence,

V2(X + Y )− V 2(X − Y ) = 8 (p− p2)2 (1− 2p)2,

and this difference obviously is positive for p 6= 1
2
.

However, an analogous property holds when either of the two variables has a sym-

metric distribution.

Theorem 5.9. Let X and Y be independent real random variables with E|X+Y | <∞.

Then V2(X + Y ) = V2(X − Y ) if either X or Y is symmetric about µ.

Proof. Since V(X − Y ) = V(Y −X) then we can assume, without loss of generality,

that Y is symmetric. Moreover since V2(X +µ) = V2(X) then we can assume that the

point of symmetry is at 0.
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By equation (1.2),

V2(X − Y )

=
1

π2

∫
R2

∣∣fX−Y (s+ t)− fX(s)f−Y (t)
∣∣2 dsdt

|s|2 |t|2

=
1

π2

∫
R2

∣∣fX(s+ t) f−Y (s+ t)− fX(s)f−Y (s)fX(t)f−Y (t)
∣∣2 dsdt

|s|2 |t|2

=
1

π2

∫
R2

∣∣fX(s+ t) fY (s+ t)− fX(s)fY (s)fX(t)fY (t)
∣∣2 dsdt

|s|2 |t|2

= V2(X + Y ),

where the third equality follows from the fact that Y and −Y have the same distribu-

tion.

6 The distance standard deviation as an estimator

In this section, we investigate the properties of the sample distance variance V2
n(X) and

the sample distance standard deviation Vn(X) as estimators and derive their asymp-

totic distributions. For these purposes, we employ the representation (3.1), viz.,

V2(X) = W (X) + ∆2(X)

where

W (X) = E [‖X − Y ‖ (‖X − Y ‖ − 2 ‖X − Z‖)] ,

and ∆(X) denotes the population value of Gini’s mean difference. Throughout this

section, X, Y , Z are i.i.d. p-variate random vectors with distribution F . For a sample

of i.i.d. random vectors X = (X1, . . . , Xn)t, each with distribution F , we define the

corresponding empirical quantities,

∆n(X) =
1

n2

n∑
i=1

n∑
j=1

‖Xi −Xj‖

and

Wn(X) =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

‖Xi −Xj‖ (‖Xi −Xj‖ − 2‖Xi −Xk‖) .

Note that

Wn(X) = T1,n(X)− 2T3,n(X),

cf. (2.4), and

V2
n(X) = Wn(X) + ∆2

n(X).
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Further, it is straightforward to verify that

EWn(X) =
(n− 1)(n− 2)

n2
W (X). (6.1)

The statistic ∆n(X) does not wear a hat to distinguish it from ∆̂n(X), the unbiased

version of the sample Gini difference, defined for univariate observations in (3.5) and

which we extend to multivariate observations by replacing the absolute value | · | by the

Euclidean norm ‖ · ‖; thus,

∆2
n(X) =

(n− 1)2

n2
∆̂2
n(X).

Similar to ∆̂n(X), we define

Ŵn(X) =
1

n(n− 1)(n− 2)

∑
1≤i,j,k≤n
i 6=j,j 6=k,k 6=i

‖Xi −Xj‖ (‖Xi −Xj‖ − 2‖Xi −Xk‖)

≡ n2

(n− 1)(n− 2)
Wn(X).

By (6.1), Ŵn(X) is an unbiased sample version of W (X).

Also, V̂n(X) = [Ŵn(X) + ∆̂2
n(X)]1/2 is an alternative to Vn(X) as an empirical

version of the distance standard deviation V(X). Although V̂n(X) is based on the

unbiased estimators Ŵn(X) and ∆̂n(X), the estimator V̂n(X) itself has a larger bias

than Vn(X). The results of Table 2 below indicate that Vn(X) is to be preferred

over V̂n(X) as an estimator of V(X) because it exhibits smaller finite-sample bias and

smaller variance for scenarios considered in our simulations.

Nevertheless, V2
n(X) and V̂2

n(X) have the same asymptotic distribution. In order

to establish that result, we define for x ∈ Rp,

ψ1(x) = E‖x− Y ‖2, ψ2(x) = E(‖x− Y ‖ · ‖x− Z‖),
ψ3(x) = E(‖x− Y ‖ · ‖Y − Z‖), ψ4(x) = E‖x− Y ‖,

and, with T1(X), T2(X), and T3(X) as defined in (2.2)-(2.3), we also define

m11 = 4E
[
ψ1(X)− ψ2(X)− 2ψ3(X)

]2 − 4
(
T1(X)− 3T3(X)

)2
,

m12 = 4E
[
ψ4(X)

(
ψ1(X)− ψ2(X)− 2ψ3(X)

)]
− 4T2(X)

(
T1(X)− 3T3(X)

)
,

m22 = 4Eψ2
4(X)− 4

(
T2(X)

)2
.

(6.2)

and let

γ = m11 + 4m12∆(X) + 4m22∆
2(X).

We now provide in the following result the asymptotic distribution of V2
n(X) and

V̂2
n(X).
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Theorem 6.1. Suppose that E(‖X‖4) <∞. Then, as n→∞,

√
n
(
V2
n(X)− V2(X)

) d−→ N(0, γ) (6.3)

and the same result holds for V̂2
n(X).

Proof. Consider the bivariate statistic B̂n(X) =
(
Ŵn(X), ∆̂n(X)

)t
, which has ex-

pected value B(X) = (W (X),∆(X))t. Define the functions K,L : Rp × Rp × Rp → R
such that

K(x, y, z) = ‖x−y‖(‖x−y‖−2‖x−z‖) + ‖y−z‖(‖y−z‖−2‖y−x‖)
+ ‖z−x‖(‖z−x‖−2‖z−y‖)

and

L(x, y, z) = (‖x− y‖+ ‖y − z‖+ ‖z − x‖),

(x, y, z) ∈ Rp×Rp×Rp. Then the statistic B̂n(X) can be written as a U-statistic with

the bivariate, permutation-symmetric kernel of order three, h : Rp × Rp × Rp → R2,

where

h(x, y, z) =
1

3

(
K(x, y, z)

L(x, y, z)

)
,

(x, y, z) ∈ Rp×Rp×Rp. Define the function h1 : Rp → R2, where h1(x) = Eh(x, Y, Z)−
B(X); then, h1 is the linear part in the Hoeffding decomposition of the kernel h, and

we calculate that

h1(x) =
2

3

(
ψ1(x)− ψ2(x)− 2ψ3(x)− T1(X) + 3T3(X)

ψ4(x)− T2(X)

)
,

x ∈ Rp. Since E(‖X‖)4 < ∞ then E[(h(X, Y, Z))2] < ∞; therefore, we deduce from a

classical result of Hoeffding [11, Theorem 7.1] that

√
n
(
B̂n(X)−B(X)

) d−→ N2

(
0, 9Eh1(X)h1(X)t

)
.

Denote the symmetric 2×2 matrix 9Eh1(X)h1(X)t by M = (mij)i,j=1,2, where the

elements m11, m12, and m22 are given in (6.2). Define g : R2 → R by g(x, y) = x+ y2;

then V̂2
n(X) = g

(
B̂n(X)

)
. Since ∇h(x, y) = (1, 2y)t then, by applying the Delta

Method, we obtain
√
n
(
V̂2
n(X)− V2(X)

) d−→ N(0, γ).

In the case of V2
n(X), we need only to apply the formulas Wn(X) = (n − 1)(n −

2)Ŵn(X)/n2 and ∆2
n(X) = (n−1)2∆̂2

n(X)/n2 to deduce that V2
n(X)−V̂2

n(X) = o(n−1).

Then it follows by the Delta Method that V2
n(X) has the same asymptotic distribution

as V2
n(X), as given in (6.3).

The asymptotic distribution of the sample distance standard deviation Vn(X) now

follows from Theorem 6.1 by the Delta Method:
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Distribution, F ARE(Vn;F ) ARE(σ̂n;F ) ARE(d̂n;F ) ARE(∆̂n;F )

N(0, 1) 0.784 1 0.876 0.978

L(0, 1) 0.952 0.8 1 0.964

t5 0.992 0.4 0.941 0.859

t3 0.965 0 0.681 0.524

Table 1: Asymptotic relative efficiencies with respect to the respective

maximum likelihood estimators of the distance standard deviation Vn,

the standard deviation σ̂n, the mean devation d̂n, and Gini’s mean

difference ∆̂n at the normal distribution, the Laplace distribution,

and the tν-distributions with ν = 5 and ν = 3.

Corollary 6.2. Under the conditions of Theorem 6.1, we have

√
n(Vn(X)− V(X))

d−→ N
(
0, γ/4V2(X)

)
,

and the same result holds for V̂n(X).

In the following, we study the empirical distance standard deviation Vn(X) as an

estimator of spread in the univariate case. For any
√
n-consistent and asymptoti-

cally normal estimator sn(X), we define its asymptotic variance ASV (sn(X);F ) at

the distribution F to be the variance of the limiting distribution of
√
n(sn(X) − s),

as n → ∞, where sn(X) is evaluated at an i.i.d. sequence drawn from F and s de-

notes the corresponding population value of sn(X) at F . Any estimators s
(1)
n (X) and

s
(2)
n (X) which estimate possibly different population values s1 and s2, respectively, at

a given distribution F , and which obey the dilation property (C2) in Section 1, can

be compared efficiency-wise by standardizing them through their respective population

values. We define the asymptotic relative efficiency of s
(1)
n (X) with respect to s

(2)
n (X)

at the population distribution F as

ARE
(
s(1)n (X), s(2)n (X);F

)
=
ASV (s

(1)
n (X);F )/s21

ASV (s
(2)
n (X);F )/s22

.

Even in the univariate case with normally distributed data, the integrals underlying

the parameters m11, m12, and m22 in (6.2) do not admit straightforward analytical

expressions. Nevertheless, by means of numerical integration, we can obtain values for

the asymptotic variance of Vn(X) for given population distributions and thus deduce

properties of the efficiency of Vn(X) in relation to other widely-used estimators of scale.

In Table 1, we provide the asymptotic relative efficiency of the distance stan-

dard deviation with respect to the respective maximum likelihood estimator at the

normal distribution, the Laplace distribution, and tν distributions with ν = 5 and



24 Edelmann, Richards, and Vogel

Distribution, F Sample size, n

5 10 50 500 ∞
N(0, 1) E(Vn) 0.663 0.658 0.640 0.634 0.633

E(V̂n) 0.701 0.665 0.639 0.634 0.633

nVar(Vn) 0.297 0.276 0.255 0.255 0.256

nVar(V̂n) 0.359 0.298 0.259 0.255 0.256

L(0, 1) E(Vn) 0.888 0.861 0.790 0.767 0.764

E(V̂n) 0.942 0.864 0.785 0.766 0.764

nVar(Vn) 0.955 0.836 0.668 0.605 0.613

nVar(V̂n) 1.136 0.858 0.663 0.604 0.613

t5 E(Vn) 0.818 0.799 0.744 0.727 0.725

E(V̂n) 0.866 0.804 0.741 0.727 0.725

nVar(Vn) 0.761 0.632 0.474 0.432 0.424

nVar(V̂n) 0.931 0.655 0.471 0.432 0.424

t3 E(Vn) 1.003 0.960 0.861 0.817 0.810

E(V̂n) 1.074 0.967 0.855 0.816 0.810

nVar(Vn) 5.762 2.001 1.089 0.777 0.680

nVar(V̂n) 8.420 2.177 1.067 0.774 0.680

Table 2: Simulated finite-sample values of the mean and the vari-

ance of the distance standard deviation Vn(X) for n = 5, 10, 50, 500

compared to asymptotic values (last column); V̂n(X) refers to the

version based on the unbiased estimates Ŵn(X) and ∆̂n(X); 10 000

repetitions.

ν = 3. The maximum likelihood estimator of scale in the location-scale family gen-

erated by the N(0, 1), or standard normal, distribution is the standard deviation. In

the Laplace model, the analogous estimator of scale is the mean deviation d̂n(X) =

n−1
∑n

i=1 |Xi −mn(X)|, where mn(X) denotes the sample median of X. In the case

of the tν-distribution, the maximum likelihood estimator of the scale parameter does

generally not admit an explicit representation.

In Table 1, the asymptotic efficiencies of the distance standard deviation are com-

pared with those of the standard deviation σ̂n(X), the mean deviation d̂n(X), and

Gini’s mean difference ∆̂n(X). The asymptotic variance of the maximum likelihood

estimator of the scale parameter for the tν-distribution is (ν + 3)/2ν. The population

values and asymptotic variances of the other estimators mentioned at the respective

distributions are given by Gerstenberger and Vogel [10, Tables 2 and 3].
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While the distance standard deviation has moderate efficiency at normality, it turns

out to be asymptotically very efficient in the case of heavier-tailed populations. For the

t5- and t3-distributions, the distance standard deviation outperforms its three competi-

tors considered here and moreover is very close to the respective maximum likelihood

estimator.

In Table 2, we complement our asymptotic analysis by finite-sample simulations. For

sample sizes n = 5, 10, 50, and 500 and the same population distributions as above, the

(simulated) expectations and variances (based on 10,000 observations) of the empirical

distance standard deviation Vn(X) = [Wn(X) + ∆2
n(X)]1/2 and the alternative version

V̂n(X) = [Ŵn(X) + ∆̂2
n(X)]1/2 are given along with their respective asymptotic values.

The corresponding values for the competing estimators σ̂n(X), d̂n(X), and ∆̂n(X) are

also provided by Gerstenberger and Vogel [10]. Table 2 indicates that Vn(X) indeed is

to be preferred over V̂n(X) in terms of bias as well as variance.
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