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Abstract: The subsurface “deep biosphere” represents one-tenth to one-third of Earth’s total 13 
global present-day biomass. The rest is dominated by land plants, a relatively recent 14 

development in geological history. Before ~400 Ma, a relatively low surface biomass with high 15 

productivity and fast turnover supplied carbon to a deep biosphere with high biomass but low 16 
productivity and slow turnover. Here, we argue that the deep biosphere outweighed the surface 17 

biosphere by about one order of magnitude for at least half of the history of life on Earth. This 18 
result offers a new perspective on the history of life on Earth with important implications for the 19 
search for life on other worlds. 20 

 21 
 22 

Since the realization that life is widespread within the Earth’s crust (e.g. Whitman et al. 1998, 23 
Heberling et al. 2010, Edwards et al. 2012), the deep biosphere has been recognized as an 24 
ancient, disparate and diverse ecosystem of global biogeochemical significance that provides 25 

analogues for habitats on Mars (Fisk & Giovannoni 1999, Weiss et al. 2000, Michalski et al. 26 
2013) as well as extrasolar planets (McMahon et al. 2013). However, estimates of the magnitude 27 

of the subsurface biomass on Earth have ranged widely. A highly cited estimate by Whitman et 28 
al. (1998) proposes a sub-seafloor prokaryotic biomass an order of magnitude greater than the 29 

surface prokaryotic biomass, and a sub-continental biomass intermediate between the two. 30 
Taking account of land plants, the total subsurface biomass (carbon) would be nearly half of the 31 

total global biomass (Whitman et al., 1998); other estimates vary between less than 1% and a 32 
third of the total biomass (Fry et al., 2008; Schrenk et al., 2010, Kallmeyer et al. 2012; 33 

McMahon and Parnell, 2014; Bar-On et al., 2018).  34 
 35 
Regardless of which value for subsurface biomass is adopted, it is overwhelmingly dwarfed by 36 
~500 Pg C of land plants (Whitman et al., 1998; Polis, 1999; Saugier et al. 2001; Carvalhais et 37 
al. 2014; 1 Pg = 1015 g carbon); animals contain less than 2 Pg C (Smil, 2002; Jennings et al., 38 

2008). The high plant biomass reflects colonisation of the free space above the soil, the large 39 
mass possible for a rooted sessile organism, access to abundant solar energy, and the 40 

preponderance of carbon-rich structural polymers and dead tissues in these organisms. Land 41 
plants are a young component of the biosphere, appearing in the Ordovician (~470 Ma) but 42 
probably dominating global biomass only since the Devonian-Carboniferous (~380-300 Ma) 43 
(Kenrick et al., 2012). 44 
 45 
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In contrast, the deep biosphere is ancient. Its fossil record is regrettably under-explored, but dates 46 

back at least to the early Palaeoproterozoic (Bengtson et al., 2017) and possibly to the Archean 47 
(Rasmussen, 2000). The modern deep biosphere is dominated by prokaryotic phyla with 48 
evolutionary origins in the Archean, (e.g., Proteobacteria, Firmicutes, Chloroflexi, 49 

Crenarchaeota, Euryarchaeota and Thaumarcheota; Magnabosco et al., 2014, 2016; Parkes et 50 
al., 2014; Kieft, 2016; for divergence time estimates see, e.g., Battistuzzi et al., 2004; 51 
Magnabosco et al., 2018; Wolfe and Fournier, 2018) and by similarly ancient autotrophic and 52 
heterotrophic metabolic strategies, including methanogenesis and sulphur cycling (e.g., Ueno et 53 
al., 2006; Shen et al., 2009; Bontognali et al., 2012; Knoll et al., 2016).  54 

 55 
These considerations suggest that the deep biosphere could have hosted most of Earth’s biomass 56 
prior to the Devonian. To investigate this hypothesis, this contribution reviews the distribution of 57 
biomass on the modern Earth, and compares it with the interval between ~2.0 Ga and the spread 58 
of land plants about 0.4 Ga. This geologically well-documented timeframe post-dates the great 59 

oxygenation event at ~2.4 Ga, and represents about half the history of life on Earth. 60 

 61 
 62 

The distribution of biomass 63 
 64 
We revisit the exhaustive classification of Earth’s biomass given by Whitman et al. (1998) to 65 

describe Earth’s biomass distribution today and in the interval from 2.0–0.4 Ga, prior to the 66 
proliferation of land plants (Figure 1). 67 

 68 
Land plant biomass 69 
Whitman et al. (1998), following Olson et al. (1983), estimated total modern plant biomass to be 70 

~560 Pg C, including 470 Pg in forests/woodlands and 90 Pg in other ecosystems. More recent 71 
estimates of forest/woodland biomass range from 429 to 536 Pg (Carvalhais et al. 2014; Saugier 72 

et al. 2001). This value can be scaled up to correct for recent deforestation (Crowther et al. 73 
2015), yielding a total pre-human plant biomass of ~980 Pg C. Somewhat higher values may 74 

have obtained in Earth’s history (e.g., during the Carboniferous), but the negative feedback effect 75 
of increased forest fires under higher atmospheric oxygen concentrations would not allow global 76 

plant biomass to rise much further (Lenton and Watson, 2000). 77 
 78 

Soil and shallow terrestrial biomass 79 
Today: Soils contain an immense reservoir of organic carbon, but this is mostly non-living 80 
detritus (Trumbore, 1997). Whitman et al.’s (1998) estimated microbial biomass of 26 Pg in 81 
modern terrestrial soils has recently been revised down to ~15 Pg, including all prokaryotes and 82 
fungi at the Earth’s land surface and within the metre below it (Serna-Chavez et al., 2013). 83 

 84 
Pre-vegetation: From the Archean until the rise of land plants, the land surface hosted 85 

widespread microbial communities reliant on oxygenic photosynthesis for carbon fixation 86 
(Konhauser and Lalonde, 2015; Lenton and Daines, 2017). Evidence for these early terrestrial 87 
mats and soil crusts includes widely reported geochemical signatures of oxidative weathering, 88 
carbon fixation, organic acids and ligand production in palaeosols (e.g., Watanabe et al., 2000; 89 
Beukes et al., 2002; Neaman et al., 2005; Crowe et al., 2013; Lenton and Daines, 2017); fossils 90 
of terrestrial stromatolites and microbial mats (e.g., Buick, 1992; Eriksson et al., 2000; Prave, 91 
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2002); and the rising abundance of sulphur in marine sediments from ~2.5 Ga, attributed to 92 

microbial pyrite oxidation on land (Stüeken et al., 2012). It has been suggested that cryptogamic 93 
ground cover expanded significantly in the Neoproterozoic, but this is contested (Knauth and 94 
Kennedy, 2009; Lenton and Daines 2017). 95 

 96 
Plants significantly increase the carbon content, nutrient availability and microbial activity of 97 
soil, as well as its volume. However, Serna-Chavez et al. (2013) show that soils in tropical 98 
forests (the most microbe-rich major soil biome) typically contain only ~4.5x as much microbial 99 
biomass per volume as those in arid deserts, the most plant- and microbe-poor land-surface 100 

biome. If this sparse desert biome covered the entire ice-free land surface, microbial soil biomass 101 
would still be as high as ~5 Pg C. Even in deserts, however, soil microbial biomass is tightly 102 
concentrated around plants, and would be much lower without their fertilizing effects (e.g., 103 
Gallardo and Schlesinger, 1992; Wardle, 1992; Herman et al., 1995). We therefore suggest a pre-104 
vegetation soil biomass range of ~0.5–5 Pg C. 105 

 106 

Aquatic biomass 107 
Today: Aquatic biomass is dominated by microscopic marine plankton and relatively low in 108 

aggregate. Whitman et al. (1998) estimated that prokaryotes in aquatic environments represent 109 
2.2 Pg C. Buitenhuis et al. (2013) estimated a range of 2.5 to 7.0 Pg C for most marine plankton; 110 
including the autotrophic dinoflagellates and some nanophytoplankton missing from this 111 

estimate would raise the total to ~3 to 8.5 Pg C (E. Buitenhuis, personal communication). 112 
 113 

Pre-vegetation: Aquatic biomass reflects a complicated interplay of climatic, bathymetric, biotic 114 
and biogeochemical factors. These factors include the nature of the dominant primary producers 115 
(once cyanobacteria, now eukaryotes), the supply of nutrients to the photic zone by runoff and 116 

upwelling, and the area and volume of shallow seas. It is unclear to what extent the proliferation 117 
of land plants increased the delivery of terrigenous nutrients to the oceans; vegetation 118 

inaugurated new and more pervasive processes of mineral weathering on land, but also 119 
permanently reduced atmospheric CO2 (suppressing weathering) and increased the retention of 120 

fines in terrestrial settings (Algeo et al., 1995; McMahon & Davies, 2018). Nevertheless, the 121 
fossil record hints at a gradual increase in marine productivity through the Phanerozoic (e.g., 122 

Bambach, 1993; Martin et al., 1996; Falkowski et al., 2004). Primary productivity would have 123 
been favoured by higher CO2 before the Devonian, but suppressed during periods of ocean 124 

stratification and redox-controlled phosphorus limitation during the Proterozoic (e.g., Reinhard 125 
et al., 2017). Autotrophic aquatic biomass may have been smaller before eukaryotic 126 
phytoplankton rose to dominance (Falkoswki et al., 2004), and heterotrophic aquatic biomass 127 
(today twice as large as autotrophic biomass) would have been much smaller prior to the 128 
stepwise oxygenation of the oceans and the rise of metazoans through the Phanerozoic (e.g., 129 

Bambach, 1993; Martin et al., 1996). In the absence of better constraints, we suggest that the 130 
sum of modern prokaryotic aquatic biomass represents a reasonable first order estimate of total 131 

aquatic biomass in the interval from 2.0 to 0.4 Ga; i.e., about ~1.5–3.5 Pg C (Buitenhuis et al., 132 
2013). 133 
 134 
Subseafloor biomass 135 
Today: This reservoir encompasses biomass in sediments and rocks beneath the seafloor. 136 
Kallmeyer et al. (2012) show on the basis of a large data set that marine sediments support a 137 
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biomass in the range of 1.5 to 22 Pg C (expected value ~ 4.1 Pg C), much less than the 303 Pg C 138 

proposed by Whitman et al. (1998). This dramatic downsizing was upheld by the meta-analysis 139 
of Bar-on et al., (2018), which yielded an expected value of ~7 Pg C. This biomass is sustained 140 
chiefly by heterotrophy, as shown by the fact that cell counts in marine sediments are much 141 

higher at continental margins than under the open ocean where very little carbon is buried 142 
(Kallmeyer et al., 2012). In contrast, the underlying basaltic/gabbroic basement of the oceanic 143 
crust appears to be a significant habitat for chemoautotrophs fuelled by water-rock reactions 144 
(Orcutt et al., 2011). Heberling et al. (2010) estimated that this largely unexplored region could 145 
support a biomass of 200 Pg, chiefly in pillow basalt. However, the few cell counts thus far 146 

reported from oceanic basement are much lower than this model would predict, including those 147 
measured close to mid-ocean ridges where hydrothermal circulation should create favourable 148 
conditions for life (e.g., Mason et al., 2010; Salas et al., 2015 ). The available cell counts have 149 
recently been extrapolated to a biomass of oceanic basement in the range 0.5–5.0 Pg C (Bar-On 150 
et al., 2018). Total subseafloor biomass today is therefore likely to be close to 10 Pg C. 151 

 152 

Pre-vegetation: Despite secular continental growth, the volume of the subseafloor habitat has 153 
been relatively stable through the last 2 Ga (Heberling et al. (2010). The productivity of the 154 

sediment-hosted biome is controlled by the burial of organic carbon, most of which derives from 155 
marine plankton rather than terrestrial plants. Export productivity may have increased through 156 
geological time (e.g., Bambach, 1993; Martin et al., 1996), but productivity is not the sole 157 

determinant of carbon burial, and organic-rich shales are common even in the Archean and early 158 
Proterozoic (Condie et al. 2001; Lyons et al., 2014 ). Indeed, persistent oceanic anoxia until the 159 

middle Palaeozoic facilitated copious carbon burial and could at times have supported higher 160 
subseafloor biomass than today, especially when shallow seas were more widespread. 161 
  162 

Where carbon is plentiful, suitable electron acceptors such as sulphate and nitrate are limiting 163 
instead. Subseafloor biomass must have grown both in the basement and the sediment cover as 164 

oxidants became increasingly available beneath the oceans—a secular change that began in the 165 
Archean and accelerated with the rise of land plants (e.g., Wallace et al., 2017; Stolper & Keller, 166 

2018). The magnitude and rate of the growth in biomass accompanying this gradual shift in 167 
redox conditions is difficult to estimate. Energy limitation thresholds are very low in the 168 

metabolically ultra-slow deep biosphere (Hoehler & Jørgensen, 2013), methanogens would 169 
probably have thrived beneath the low-sulphate Proterozoic oceans (e.g., Habicht et al., 2002; 170 

Crowe et al., 2011), and there is plausible fossil evidence of a deep marine biosphere as early as 171 

2.4 Ga (Bengtson et al., 2017). Reconstructing deep subseafloor biomass through deep time is a 172 
formidable challenge, but a conservative representative value for ~2.0–0.4 Ga would be in the 173 
range 5–10 Pg C. 174 
 175 

Continental deep biomass 176 
Today: In contrast to the downsizing of subseafloor biomass, new cell count data from the past 177 

two decades have broadly maintained Whitman et al.’s (1998) estimate of deep continental 178 
biomass in the range of 22–215 Pg C. McMahon and Parnell (2014) derived a range of 14 to 135 179 
Pg from these new data, but taking account of more recent groundwater distribution models 180 
(Gleeson et al., 2016) would raise this range to within 10% of Whitman et al.’s original estimate. 181 
The order-of-magnitude uncertainty remaining stems from the difficulty of scaling up from 182 
unattached cell numbers measured in water to total cell numbers that include a majority adhering 183 
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to mineral surfaces. However, independent estimates based on pore occupancy models and cell 184 

counts from bulk rock/sediment yield ranges of similar magnitude (Whitman et al., 1998; Onstott 185 
et al., 1998).  186 
 187 

Pre-vegetation: Whereas photosynthetic organic carbon supply appears to exert an 188 
overwhelming influence on cell counts in marine sediments, no such single overriding factor has 189 
been identified in the continental crust, which sustains a higher microbial population density 190 
(Kallmeyer et al., 2012; McMahon and Parnell, 2014). The factors limiting continental deep 191 
biomass are highly localised, and include photosynthetic carbon supply, electron donors, electron 192 

acceptors, and physical conditions, notably temperature (e.g., Moser et al., 2005; Onstott et al. 193 
2014); the relative importance of these factors in shaping the total biomass remains unclear. 194 
 195 
Carbon limitation was probably more widespread prior to the rise of land plants; cryptogamic 196 
ground cover contributes only around ~4% of terrestrial net primary production today (Elbert et 197 

al., 2012). However, these communities are highly photosynthetically active; a cm-thick 198 

microbial mat can be as productive as a water column tens to hundreds of metres deep (Lalonde 199 
and Konhauser, 2015). Moreover, prior to the spread of land plants, these communities would 200 

have occupied a much larger proportion of Earth’s surface and fixed carbon at a higher rate 201 
under the higher atmospheric CO2 concentrations then prevailing (e.g., Rothschild and 202 
Mancinelli, 1990). Microbial mats may also have exported carbon more efficiently to 203 

groundwater prior to the development of thick, extensively grazed, organic-rich soil layers, 204 
which recycle and respire carbon. Abiotic hydrocarbons, CO2 and CH4 would have provided an 205 

additional, independent carbon source for the deep biosphere, just as they do today (e.g., 206 
Chapelle et al., 2002; Sherwood Lollar, 2007). Molecular hydrogen is also widely available as an 207 
alternative electron donor in continental crust (Chapelle et al., 2002; Lin et al., 2005; Sherwood 208 

Lollar et al., 2007) and has been generated by radiolysis, serpentinization, and other processes 209 
throughout Earth history. Electron acceptors derived from photosynthetic oxygen pervaded the 210 

continental subsurface much earlier than the marine subsurface; the sulphate flux from oxidative 211 
pyrite weathering was comparable to modern values by 2.0 Ga (Stüeken et al., 2012). 212 

 213 
Variation in physical conditions such as crustal thickness, geothermal gradients, and porosity–214 

depth relationships may also have mediated continental biomass through deep time. The balance 215 
between sedimentary rocks and crystalline basement in the composition of the continents is 216 

especially pertinent, since sedimentary rocks are more porous; today they host ~15× more 217 
groundwater—and correspondingly more biomass—than crystalline rocks (Gleeson et al., 2016). 218 
Through the Phanerozoic the proportion of basement covered by sedimentary rock fluctuated by 219 
a factor of ~2 (Ronov 1980). Erosion which led to the global unconformity at the Precambrian-220 
Cambrian boundary left a paucity of sediment at that time, and has removed much of the 221 

Proterozoic record (Peters & Husson 2017). Nevertheless the record of shallow marine 222 
sedimentation was constant through the Proterozoic (Peters & Husson 2017) and there is no 223 

reason to think that continental composition or total volume in the Proterozoic was 224 
systematically different from the Phanerozoic. Taken together, these considerations strongly 225 
suggest that the terrestrial subsurface biomass has been, conservatively, at least 10% its current 226 
size for ~ 2 billion years, i.e., at least 2–20 Pg C. 227 

 228 

Discussion 229 
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Table 1. 
 
Biomass, Pg C 

Continental 
subsurface 
 

Subseafloor Aquatic Soil Plants 

With plants (pre-human) 20–200a,b,c 10c,d 3–8.5e 15f 980g,h,i, 
Before plants (<2.0 Ga) 2–20* 5–10 1.5–3.5 0.5–5 0 

*Conservative lower limit (10% of modern)  230 
(a) Whitman et al., 1998 231 
(b) McMahon & Parnell, 2014 232 
(c) Bar-On et al., 2018 233 
(d) Kallmeyer et al., 2012 234 

(e) Buitenhuis et al., 2013 235 
(f) Serna-Chavez et al., 2013 236 
(g) Saugier et al., 2001 237 
(h) Carvalhais et al., 2014 238 

(i) Crowther et al., 2015 239 

 240 
Table 1. Illustrative values and approximate ranges of biomass carbon in different reservoirs. 241 
Modern (pre-human) values are used for the post-vegetation interval. The pre-vegetation values 242 

were estimated by the present study, as explained in the text. 243 

The estimates discussed in the previous section are summarized in Table 1. Despite poor 244 

constraints on the estimated values of individual biomass reservoirs, it is difficult to avoid the 245 
conclusion that subsurface environments hosted the majority of Earth’s biomass from 2.0 to 0.4 246 

Ga. Even if the continental deep biosphere was as little as 10% of its present size (as in Table 1 247 
and Figure 1), the ranges and representative values we derive indicate a deep biosphere carbon 248 
reservoir ~1–15× as large as the remaining “surface biosphere” during this interval. Only after 249 

the rise of land plants did the biosphere become top-heavy, dominated by eukaryotes, and close 250 

to its present size. 251 
 252 
Although much of the deep biosphere derives carbon from photosynthesis at the surface, this 253 

relationship does not require high surface biomass, only high surface productivity. Marine 254 
phytoplankton may account for about half of all primary productivity but contribute less than 1% 255 
of global biomass (Falkowski et al., 2004). Similarly, microbial mats and lithic crusts maintain a 256 

low standing biomass but rapidly turn over carbon (Lalonde and Konhauser, 2015). Thus, like 257 
modern oceans, the ancient continents were probably characterised by high-productivity, low-258 
biomass surface populations and low-productivity, high-biomass deep populations with long 259 

carbon residence times.  260 
 261 
The extensive evidence for a subsurface biosphere on Earth has raised the possibility that other 262 
planets may also support life in a subsurface biosphere (Sherwood Lollar et al., 2007, Edwards et 263 

al., 2012). Given that plants proliferated so recently and are expected to die out with declining 264 
CO2 less than 1 Ga from now (O’Malley James et al., 2013), the evidence summarised here 265 
suggests that a smaller biosphere dominated by subsurface life could be considered more typical 266 

for even the most “Earth-like” inhabited terrestrial planets than the status quo on Earth itself. In 267 
fact, the hydrogen-generating mechanisms that occur in the Earth’s crust should all occur on any 268 
rocky planet. The constraints of surface water, surface irradiation spectrum and surface 269 

temperature used to characterize planetary habitability do not apply to a subsurface biosphere. 270 
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Therefore, the number of habitable planets around other stars may be substantially greater than is 271 

commonly supposed on the basis of surface habitability (McMahon et al., 2013). Despite the 272 
limits of restricted space, there are diverse eukaryotes in the terrestrial deep biosphere, including 273 
fungi, nematodes and protists (Ekendahl et al., 2003; Borgonie et al., 2011). Clearly, energy and 274 

nutrient availability in the subsurface are sufficient to support complex multicellular life. If life 275 
can originate in the subsurface, as implied by some models of abiogenesis (Sleep and Bird, 2007; 276 
Martin et al., 2008), a large proportion of life-bearing planets may be inhabited only in the 277 
subsurface. Whether such biospheres can ever be detected remains to be seen. 278 
 279 
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Figure 1. Earth’s biomass carbon in different reservoirs pre- and post-vegetation, based on the 566 
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