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Abstract 

Innovative neurostimulation therapies require improved electrode materials, such as poly(3,4-

ethylenedioxythiophene) (PEDOT) polymers or IrOx mixed ionic-electronic conductors and 

better understanding of how their electrochemistry influences nerve growth. We monitored 

amphibian neurons growing on transparent films of electronic (metal) conductors and 

electronic-ionic conductors (polymers and semiconducting oxides). Materials were not 

connected directly to the power supply, but a dipole was created wirelessly within them by 

electrodes connected to the culture medium in which they were immersed. Without electrical 

stimulation neurons grew on gold, platinum, PEDOT-polystyrene sulfonate (PEDOT-PSS), 

IrOx and the mixed oxide (Ir-Ti)Ox but growth was not related to surface texture or 

hydrophilicity. Stimulation induced a dipole in all conductive materials but neurons grew 
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differently on electronic conductors and mixed-valence mixed-ionic conductors. Stimulation 

slowed, but steered neurite extension on gold but not on platinum. The rate and direction of 

neurite growth on PEDOT-PSS resembled that on glass but on IrOx and (Ir-Ti)Ox neurites 

grew faster and in random directions. This suggests that electrochemical changes induced in 

these materials controlled growth speed and direction selectively. Evidence that the electric 

dipole induced in conductive materials controlled nerve growth will impact electrotherapies 

exploiting wireless stimulation of implanted material arrays, even where transparency is 

required.  

 

 

Introduction 

State-of-the-art microstimulation for spinal cord repair, deep brain stimulation and 

cochlear implants relies on small implanted metallic capacitative electrodes connected 

directly to a power source.[1] Although platinum, gold and metal alloys are relatively safe 

implant materials, adverse reactions may occur at the tissue-material interface when used as 

electrodes. Unfavourable secondary effects include pH changes, electrode dissolution, 

production of O2 gas, H2 gas, free radicals and heat, which can all cause tissue necrosis, 

highlighting the need for safer alternatives.[2] New candidate materials include intercalation 

mixed-valence mixed electronic-ionic conducting electrodes, such as iridium oxide (IrOx), or 

conducting polymers such as polypyrrole (PPy) or Poly(3,4-ethylenedioxythiophene) 

(PEDOT), which offer faradaic (oxidation-reduction) processes within the material, larger 

charge injection capacities and lower impedances because the materials undergo redox 

processes.[3] However, their electrochemical stability, mechanical durability and long-term 

performance after implantation require further evaluation.[4] 

A particular challenge for small electrodes is the increase in localized charge density, 

which amplifies cytotoxic secondary reactions. This can be addressed by using IrOx, 

conducting polymers (e.g. PEDOT or polypyrrole) and their hybrids, which are mixed valence 
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phases with open structures and valence change capabilities that undergo intercalation or 

deintercalation of ions through their whole volume, thus increasing charge capacity by one 

order of magnitude and preventing secondary reactions.[5,6] IrOx-based materials prepared by 

dynamic electrodeposition offer a wider safe stimulation window than other IrOx materials 

and compared to metals they increase the effective electrode surface area, reduce its 

impedance, and increase the stimulation charge capacity tenfold.[5,6] Mammalian neuron 

growth on IrOx, polypyrrole, and PEDOT conducting polymers prepared with a variety of 

counterions has been assessed at fixed time points, but not dynamically.[5,7,8] 

Studies of dynamic neuron growth during external electric field stimulation typically use 

amphibian (Xenopus laevis) spinal neurons because they are relatively larger, easier to culture, 

have fewer complications related to sterility, and they grow faster than mammalian neurons. 

On tissue culture plastic substrates, which are electrically insulating, the growing tips (growth 

cones) of X laevis neurons exhibit robust responses to external electric fields delivered 

directly through the culture medium, including growth cones turning to face the cathode, new 

branches emerging to face the cathode, and faster growth cone migration toward the 

cathode.[9,10] These responses are influenced by the physical and chemical properties of the 

substratum: in contrast to fast, cathode biased growth on bare plastic (net negative charge), 

when the substratum was coated with polylysine (net positive charge) growth cones moved 

slowly and toward the anode.[9] Axons and dendrites of rat hippocampal neurons, which 

require a polylysine coated substrate for growth, exhibited distinct behaviors.[11,12] Therefore, 

it is important to understand the interplay between growth surface characteristics, 

electrochemistry and nerve growth dynamics, especially during stimulation with an external 

field, which induces electric fields simultaneously within the culture medium and indirectly 

within the conductive material on which neurons may grow.  

By electrochemical principles, hardwired electrodes drive an electric field within an 

electrolyte solution (e.g. culture medium). When a conducting material is immersed in it a 
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dipole (electrical potential) is induced within the material indirectly; a phenomenon known as 

‘bipolar electrochemistry’.[13] The induced potential, with a polarity opposite to that imposed 

in the electrolyte medium, starts at the borders between the ionic medium and the material, 

with concurrent redox reactions induced at the material at sufficiently large potentials. The 

ability to induce an electric field wirelessly on an implanted conductive material has 

advantages for electrostimulation therapies but there is poor understanding of the interplay 

between electrochemical changes in the materials and the consequences for neuron attachment, 

survival and nerve process outgrowth. 

This study is the first to evaluate the dynamic behavior of neurons responding to bipolar 

electrochemical changes induced in conductive substrates, encompassing metals, polymers 

and oxides with established electrochemical behaviors.[6,14,15,16] Neurons were plated directly 

on the materials (no coating), which is distinct from studies in which neuron growth on 

insulating materials,[16] or polylysine-coated materials was tested, either without an imposed 

external electric field,[5,7,8,14,17,23] or when the material was connected directly to the power 

supply.[18,19] At sufficiently high potentials O2 and H2 gas bubbles formed at the edges of the 

materials, supporting the notion that indirect electrical stimulation produced a dipole within 

the material layer by bipolar electrochemical principles.  

Our data will impact the design of wireless electrostimulation therapies because they 

show that implantable conductive materials can be tailored to control the speed or direction of 

nerve outgrowth, they identify a safe potential limit for the materials, and they demonstrate 

that the principles apply to circumstances requiring electrode transparency (e.g. retina), which 

are particularly challenging. 

Materials and Methods 

Preparation of conductive substrates 

Supporting Information (Table S1) details synthesis of the whole range of conductive 

substrates but essential details are here. Materials were prepared as transparent (Figure 1) thin 
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films on glass or quartz (Ir-Ti mixed oxides). Milli Q water was used for all solutions. Soda 

lime glass slides (25 mm x 60 mm) coated with a 300 nm layer of indium tin oxide (ITO) 

were from Solems (catalog number YSUB/ITOSOL). For the electrodeposition of IrOx and 

polymers 24mm x 70 mm soda lime glass slides (AFORA reference KN26X76TB) were 

coated by thermal evaporation with a 5 nm adhesion layer of Ti followed by either gold (15 

nm) or platinum (12 nm); a thickness that ensured transparency (Figure 1).  

 

Figure 1. Experimental scheme. A and B) Transparency of materials (blue) electrodeposited onto glass. 

C) IrOx material during an electric field experiment. The end of an agar bridge is visible (asterisk) and 

the microscope objective turret can be seen through the material. D) The electric field set up. Control 

(no electric field) and electric field conditions were run in parallel. Materials were not ‘wired’ directly 

to the power supply. Arrows indicate the imposed external electric field (solid red arrow) in the culture 

medium and the dipole (dotted red arrow) of opposite polarity induced within the materials on which 

the neurons grew. For some experiments the cells grew directly on the plastic and the materials were 

omitted.[10,16] 

 

IrOx thin films were prepared using a dynamic electrodeposition procedure modified 

from previous methods by sweeping from 0 and 0.55 V vs Ag/AgCl during 50 cycles.[6,20,21] 
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Briefly, a final volume of 50 ml of solution (pH 10) was prepared by dissolving sequentially, 

2·10-4 moles of IrCl3.H2O (Aldrich 99.9%), 1·10-3 moles of oxalic acid, H2C2O4.2H2O 

(Aldrich 99%) and 5·10-3 moles of K2CO3 (Aldrich, 99%) in water. The solution was kept at 

37ºC for 4 days and then stored at 4ºC until use. Electrosynthesis was performed using a VMP 

potentiostat (Bio-logic) to control electrodeposition. A three-electrode cell system consisted 

of a Pt counter electrode and a working electrode with the same dimensions and a Pt quasi-

reference electrode with a potential equal to that versus Ag/AgCl. This pseudo-reference Pt is 

stable versus Ag/AgCl during CV, possibly due to the formation of an oxide on the surface.[22] 

Positive and negative electrodes were placed in a parallel arrangement using two Teflon 

pieces to maintain a distance of 1 cm between electrodes. 

Ir-Ti mixed oxides were prepared on quartz slides (VWR International) following 

thermal evaporation with a 5 nm thick Ti adhesion layer and 12 nm of Pt. (Ir-Ti)Ox films 

were prepared by spin coating ethanol solutions containing titanium (IV) and iridium (III) 

salts.[14] The mixed Ir-Ti solution was prepared by mixing equal volumes of Ti and Ir 

solutions. The 0.21 M titanium solution (50 ml final volume) was formed by dissolving 

Titanium isopropoxide (Ti(OiPr)4 99.99%, Aldrich 0.011 M) in ethanol in the presence of 

acetylacetone (99+%, Aldrich 0.024 M) and allowed to age for one day. 0.024 M iridium (III) 

chloride solutions (1.2·10-3 M of IrCl3·xH2O 99.9%, Aldrich) were prepared to achieve 

mixtures Ir:Ti 1:10 and in 0.048 M concentration to achieve final ratios Ir:Ti 2:10. Both 

contained acetic acid (CH3COOH 99% Aldrich) in six fold excess with respect to iridium. The 

solutions were mixed and filtered (0.2 µm) prior to spin coating at 3000 rpm using a spin 

processor (Laurell Technologies Corporation, model WS-400B-6NPP-LITE/8K). Monolayers 

with a Ir:Ti ratio 1:10 were annealed at 600oC during 4 hrs or 6 h and at 650oC for 4 or 6 h. 

Three layer coatings with the Ir:Ti ratio 1:10 and 2:10 were prepared by this procedure and 

annealed at 600oC for 6 h. 
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Materials based on poly(3,4-ethylenedioxythiophene) (PEDOT) were prepared from 

the monomer 3,4-(ethylenedioxy)thiophene (EDOT) (Sigma-Aldrich, 97%) stored at 4 ºC 

until use.[8] Before use, the 0.01 M EDOT solution mixed with the different counterions was 

deoxygenated under argon for 30 minutes. For PEDOT-PSS synthesis the 

electropolymerization solution contained 0.1 M Poly(3,4-sodium styrene sulfonate) (PSS). 

PEDOT-PSS films were synthesized in two ways: potentiostatically at 0.9 V versus reference 

(PEDOT-PSS, potentiostatic) and galvanostatically with a current of 1.25 mA (PEDOT-PSS, 

galvanostatic) using the same type of substrate, electrochemical cell and potentiostat 

described above for IrOx. The reaction was stopped when charge reached 900 mC/ 10 cm2, 

for thin samples, and 4000 mC/10 cm2 for thick samples. 

Before use the materials were rinsed with Milli Q water and allowed to dry. No further 

surface treatment was performed. The material-coated section of each slide was cut into thirds 

and pieces were secured (material side up) to both channels of the electric field chamber and 

neurons were plated onto them directly (Figure 1D).  

Assessing properties of the materials 

Sample characterization confirmed previous observations.[6,14,23] Atomic Force 

Microscopy (AFM) performed in oscillating (tapping) mode characterized the material 

topography (Agilent Technologies model 5400 Scanning Probe Microscope, analysed with 

Mountains Map Premium software from Digital Surf Co), which was quantified from 

measurements of peak to valley distance and mean roughness (deviation with respect to 

central plane). For each material up to five zones were assessed in the same surface.  

The composition of each material was confirmed by grazing angle X-ray-diffraction, 

X-ray photoelectron spectroscopy (XPS) and infrared analysis (ATR-IR) as described 

previously.[6,14,23] Hydrophilicity was measured after rinsing the sample with milli Q water, 

allowing it to dry and placing a 1 µl droplet of milli Q water on the sample. The contact angle 
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of the droplet relative to the sample surface was measured using a Pocket PG2 goniometer. 

The conductivity and redox characteristics of the materials have been described.[8,6,14,17]  

Cell culture  

Animal procedures were carried out under license in accordance with the United 

Kingdom Animals (Scientific Procedure) Act 1986 and were approved by the ethics 

committee of the University of Aberdeen. Embryos and primary cultures of Xenopus laevis 

spinal neurons were prepared as previously.[9,10] Unless stated otherwise reagents for cell 

culture were from Sigma. Embryos obtained by in vitro fertilisation were maintained in 5% 

DeBoer’s solution (5.5 mM NaCl, 0.07 mM KCl, 0.02 mM CaCl2, pH 7.2) until Nieuwkoop 

stage 20-22. Embryos, still in their jelly coats, were immersed briefly in 70% ethanol to 

surface sterilise them immediately before dissection and then rinsed sequentially in 5% 

DeBoer’s solution and then Steinberg’s solution. All solutions were filter sterilised for use. 

The dorsal thirds of embryos were transferred to 1 mg ml-1 type I collagenase in Steinberg’s 

solution (58 mM NaCl, 0.67 mM KCl, 0.44 mM Ca(NO3)2, 1.3 mM MgSO4, 4.6 mM Trizma 

Base, pH 7.9) for neural tube dissection. Neural tubes were disaggregated in Ca2+-Mg2+-free 

Steinberg’s (58 mM NaCl, 0.67 mM KCl, 4.6 mM Trizma Base, 0.4 mM EDTA, pH 7.9), 

which was then replaced with culture medium: 20 % (v/v) modified Leibovitz L-15 medium 

without L-glutamine (ICN Biomedical), 2 % (v/v) penicillin (5000 IU ml-1)-streptomycin 

(5000 µg ml-1), 1% (v/v) fetal bovine serum, 77 % (v/v) Steinberg’s solution (pH 7.9) and 

triturated gently, to yield a plating density of 1.5 neural tubes per channel. 

Electric field application  

Electric field chambers were modified Falcon 3003 tissue culture dishes.[10,16] For cells 

plated on plastic, silicone adhesive (Dow Corning RTV 3140) secured two strips of no. 1 

thickness coverglass (64 mm long x 12 mm wide) 10 mm apart in parallel to define each 

channel. Neurons were plated in the area between the strips and covered with a coverglass (64 
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mm x 24 mm) secured using silicone compound (Dow Corning DC4), yielding channel 

dimensions of 64 mm x 10 mm x 0.5 mm.  

Modification of this method was used for conductive materials (Figure 1D). The 

fragment of material coated glass (~20 mm x 25 mm) was glued to the dish, material side up. 

Silicone adhesive (Dow Corning RTV 3140) secured a strip of coverglass (20 mm x 5 mm, no. 

1 thickness) to each long edge of the sample, leaving a 10 mm gap. A third coverglass (20 

mm x 20 mm) was placed over the cell suspension after plating, secured with silicone grease 

to create a 20 mm x 10 mm x 0.5 mm channel. 

The electric field was from a DC power supply connected to two Ag/AgCl electrodes 

in baths of Steinberg’s solution. Electrical contact to the cell cultures was made through two 

2 % w/v agar bridges (in Steinberg’s solution), with one end of each bridge in the electrode 

bath and the other end in the pools of culture medium at each end of the channel. Medium was 

contrained by dams of RTV3140 silicone. The electric field was set by measuring the voltage 

across the chamber length to yield 50, 100 or 150 mV mm-1.  

Time lapse analysis of neuron growth 

The length of each neurite and the angle of its growth cone (distal tip of neurite) 

relative to the electric field were determined from phase contrast images captured hourly for 

3h using a Zeiss Axiovert 25 microscope and a monochrome CCD camera (Hitachi, Japan) 

using MetaMorph software (Molecular devices, USA). During electric field stimulation the 

external cathode was to the left and the external anode was to the right (horizontal field vector) 

in all mages. Therefore, the angles of growth cone turning relate to the polarity of the external 

electric field imposed within the culture medium rather than the field induced within the 

underlying conductive material. Composite drawings (e.g. Fig 4D) were made by hand on 

acetate sheets to summarise growth responses qualitatively. Cell images were printed at the 

same scale and the entire path of each neurite was then traced. The centre of the cell body of 

each neuron was superimposed on a common point and individual neurons were traced, taking 
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care to maintain the horizontal axis, which was parallel to the imposed external electric field 

vector and therefore, parallel to the induced dipole in the material. 

Statistical Analysis 

All growth cones that migrated throughout during the experiment were included in the 

analysis. Data were not normalised but cell survival was expressed as the percentage of total 

growth cones that continued to advance during the entire 3h and then compared to the relevant 

substratum-matched control using a D-test.[24] The mean rate of growth cone advance and the 

mean angle turned by growth cones were compared to (no electric field) controls with an 

unpaired Student’s 2-tailed t test (Excel) with a P ≤ 0.05 indicating significance. Data shown 

are mean ± SEM unless stated otherwise in the figure. The number of growth cones measured 

on each material, the number of culture dishes and the number of experimental repeats are 

indicated in the relevant figures. Cell culture experiments were repeated on at least three 

different days using different clutches of embryos. 

Results 

Neuron growth on materials without an imposed external electric field 

Neuron growth responses for all conditions are summarised in Table 1. Initial 

experiments determined which of the transparent films supported neuron outgrowth without 

any imposed electric stimulation. Assessment on the complete set of 16 materials prepared is 

summarised in the Supporting Information (Figure S1, Figure S2) and data from the six best 

performing materials are presented in the main text (Figure 2). These include metals 

(platinum and gold), conductive polymers (PEDOT) and semiconducting oxides (IrOx and 

(Ir-Ti)Ox). About 6h after plating directly onto glass and without an imposed field there were 

24 growth cones per dish (Figure 2A) but there were significantly more on gold, PEDOT-PSS, 

(Ir-Ti)Ox and platinum. Gold performed best, with six times more growth cones per dish than 

glass and on PEDOT-PSS (prepared either by galvanostatic or potentiostatic methods) there 
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were about three fold more than on glass (Figure 2A). IrOx and platinum performed as well as 

glass but (Ir-Ti)Ox supported growth better. 

 

 

Table 1. Qualitative summary of neuron growth on materials compared to glass 

Material Sproutinga Electric fieldb Dynamic behavior 

 Growth cones 

dish-1 

 

 

Sustained 

migrationc 

Migration 

speedc 

Directed to 

cathoded 

platinum ↔ no ↑ ↔  

 yes ↔ ↔ ↔ 

gold ↑ no ↔ ↑  

 yes ↓ ↔ ↑ 

PEDOT-PSS 

(potentiostatic) 

↑ no ↔ ↑  

 yes ↓ ↔ ↑ 

 

 

     

PEDOT-PSS 

(galvanostatic) 

↑ no ↑ ↑  

 yes ↓ ↔ ↑ 

IrOx ↔ no ↔ ↑  

 yes ↓ ↑ ↔ 

(Ir-Ti)Ox ↑ no ↔ ↑  

 yes ↔ ↑ ↔ 

Key: ↑ significantly better; ↓ significantly worse; ↔ no change.  
a)Sprouting was quantified only for no electric field conditions and compared to glass. 
b)External imposed field 50 mV mm-1. c)Compared to responses on glass without, and with 

electric fields, respectively. d)Compared to glass during electric field stimulation.  

 

 

The influence of each material was quantified further by calculating the percentage of 

growth cones that advanced continuously throughout the experiment and their migration 

speed (Figures 2B,2C). On glass 36% of the growth cones advanced, migrating at 9.3 ± 0.9 

µm h-1. The values for gold or PEDOT-PSS(potentiostatic) were similar to glass but they were 

faster on PEDOT-PSS(galvanostatic). When compared to glass, PEDOT-PSS(galvanostatic) 

was the only material that improved neurite sprouting, sustained migration and the rate of 

growth cone advance collectively (Figure 2, Table 1). With the exception of platinum each 
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material increased the rate of growth cone migration (Figure 2C) compared to glass, with 

fastest migration on IrOx (21.4 ± 1.3 µm h-1).  

Physical traits of favoured materials 

Because gold, IrOx and PEDOT-PSS(potentiostatic and galvanotatic) supported 

neurite growth better than glass we compared their surface characteristics to identify traits that 

favoured growth. Atomic force microscopy revealed that the surface textures of the gold and 

(Ir-Ti)Ox films were smoother than glass but IrOx and PEDOT-PSS surfaces were rougher 

(Figure 3). There was no correlation between neurite growth and surface roughness. IrOx and 

PEDOT-PSS, which are rougher than glass, each increased neurite growth rates, but so did 

gold, which is smoother than glass. Similarly, the smoothest surface (gold) supported 

neuronal differentiation best (growth cones per dish) but the roughest (PEDOT-PSS) surfaces 

also improved it (Figure 2A). 

The relative hydrophilicity of the materials was determined from contact angle 

measurements, with largest values indicating lowest hydrophilicity. All materials that 

supported growth were less hydrophilic than glass. Ranked with increasing hydrophilicity: (Ir-

Ti)Ox < PEDOT-PSS(potentiostatic) = IrOx < PEDOT PSS(galvanostatic) < gold << glass 

(Figure 3D). The hydrophilicity of gold surfaces has been controversial. Our data support the 

idea that during exposure to air bound oxygen renders gold less hydrophilic.[25] Here, neuron 

outgrowth was supported best by surfaces with intermediate hydrophilicity. The contact angle 

(60 ± 8.6; n = 11) for Falcon tissue culture plastic, which supports growth better than glass, is 

similar to angles for PEDOT and IrOx.  

Neurite growth on an insulating (plastic) substrate 

The dynamic behavior of X laevis neurites growing on an insulating material (tissue 

culture plastic) was quantified during electric field exposure for comparison to conductive 

substrates. Such studies typically use 150 mV mm-1,[10,16] which resembles the natural electric 
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field in the developing X laevis spinal cord,[26] but we also defined responses at 50, 100 and 

150 mV mm-1.  

In the absence of an electric field neurites advanced in random directions, but in fields 

of 50, 100 or 150 mV mm-1 they turned toward the cathode (Figure 4). This was quantified 

for individual growth cones by measuring their change in growth direction and their migration 

rate. Without an electric field growth cones changed direction by 1 ± 3 degrees (zero is 

random). However, during exposure to fields of 50, 100 or 150 mV mm-1 growth cones turned 

increasingly toward the cathode (indicated by negative angles) by -8 ± 2, -19 ±2, and -42 ± 3 

degrees, respectively (Figure 4A). Compared to no electric field controls (20 ± 1 µm h-1) 

growth cones migrated faster in fields of 100 mV mm-1 or 150 mV mm-1 (27 ± 1 µm h-1 and 

34 ±1 µm h-1; p < 0.005 each) but not at 50 mV mm-1 (22 ± 1 µm h-1) (Fig. 4B).  

Evidence for induction of an electrical dipole in materials 

Neuron growth on conductive materials was quantified under conditions where the 

electric field was delivered by electrodes immersed in saline baths connected by agar-salt 

bridges to pools of culture medium at each edge of the neuron-seeded materials. Consequently, 

a uniform electric field was imposed in the culture medium bathing the cells, and 

simultaneously, an indirect electric dipole of opposite polarity was hypothesised within the 

conductive film on which the cells grew (Figure 1, Figure 5).  

During exposure to fields larger than 50 mV mm-1 changes observed in the culture 

medium, and in the conductive films themselves confirmed the existence of a dipole within 

the material. Some materials subjected to high potentials (fields >50 mV mm-1) generated 

bubbles at the material edges, with pH increase at the induced cathode margin (Figure 5). 

These changes did not occur on (insulating) glass or plastic substrates, even at 150 mV mm-1, 

suggesting that they arise from electrochemical processes induced in the conductive films.  

High electric fields had detrimental effects on the integrity of some coatings. At low 

potentials (≤50 mV mm-1) the gold substrate and its underlying titanium adhesion layers 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



     

14 

 

remained intact but at higher potentials (100 or 150 mV mm-1) the gold layer delaminated, 

beginning at the induced anode, with a distinct front that receded from that edge as the 

experiment proceeded (Figure 5). This did not occur for pure gold films with no underlying 

titanium, supporting the idea that an electric field was induced within the material itself. 

Consequently, in subsequent experiments the electric field was restricted to 50 mV mm-1, at 

which there were no significant pH changes in the medium and materials remained intact, 

even upon microscopic inspection.  

Growth cone behavior on conductive substrates during electrical stimulation 

The materials were deliberately prepared as transparent films to permit observation of 

dynamic growth cone behavior. Table 1 is a qualitative summary of the growth responses with 

and without external electric field stimulation. The polarities described refer to the electric 

field imposed in the medium. As expected, growth cones migrated in random directions on 

glass without stimulation but after 3h in an electric field of 50 mV mm-1 the growth cones had 

turned toward the cathode to the same extent (-5 ± 2 deg, n = 61) as those on plastic (-8 ± 2 

deg, n = 242; p > 0.05) (Figure 4 and Figure 7). Although this low field did not increase 

growth cone migration speed on plastic (Figure 4B), growth on glass was faster with 

stimulation (12.2 ± 1.2 µm h-1, n = 61) than without it (9.3 ± 0.9 µm h-1, n = 44; p <0.05). The 

percentage of growth cones on platinum and (Ir-Ti)Ox substrates that advanced continuously 

during the entire 3h experiment was similar to glass but was less on all other materials 

(Figure 6A). The speed of growth cone migration was similar for glass, platinum, gold and 

PEDOT-PSS materials, but growth cones on IrOx and (Ir-Ti)Ox migrated faster (Figure 6B).  

Neurons growing on gold or platinum behaved differently during 50 mV mm-1 electric 

field exposure. Neurite growth on gold was biased toward the cathode, with significant 

turning evident within the first hour and by 3 hours growth cones had turned 3 fold more (-15 

± 3 deg) toward the cathode than those on glass (-5 ± 2 deg; p< 0.05) (Figure 7A). Whereas 

electrical stimulation increased the migration speed for growth cones on glass (Figure 4B), 
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those on gold advanced more slowly with stimulation (9.6 ± 0.9 µm h-1, n = 78) than without 

it (15.5 ± 1.4 µm h-1, n = 73; P<0.01) and fewer advanced continuously during field exposure 

than without it (Figure 6A). However, upon field exposure the speeds of growth cone advance 

on gold and glass were similar (Figure 6B), suggesting that those growth cones with persistent 

migration on gold advanced at least as well as those on glass. During electric field exposure 

growth cones on platinum migrated at the same speed (11.2 ± 0.8 µm h-1) and turned toward 

the cathode to the same extent (-10.9 ± 3.3, n = 64) as those on glass. Similarly, the proportion 

of growth cones that continued to grow throughout the experiment was identical to that on 

glass (Figure 6A). Collectively, this indicates that platinum and gold support growth 

differently during electric stimulation; with better neurite extension on platinum and better 

directional (cathode) growth on gold. 

Dynamic growth cone behaviors on semiconducting IrOx and mixed (Ir-Ti)Ox 

materials were similar during 50 mV mm-1 external electric field exposure. On IrOx and (Ir-

Ti)Ox substrates growth cones migrated faster than on glass, with and without electric field 

stimulation (Figure 6B and Figure 2C). Migration speeds of growth cones on IrOx (20.2 ± 1.2 

µm h-1, n = 69) and (Ir-Ti)Ox (16.9 ± 0.9 µm h-1, n= 83) were not affected by electric field 

stimulation (15.4 ± 2.3 µm h-1, n = 24; 16.8 ± 1.5 µm h-1, n = 38, respectively). Compared to 

neurons on glass, fewer growth cones on IrOx sustained growth throughout field exposure but 

on (Ir-Ti)Ox the field did not affect sustained growth (Figure 6B). The direction of neurite 

growth was not influenced by the electric field on IrOx or (Ir-Ti)Ox (Figure 7A). Collectively, 

the data indicate that IrOx and (Ir-Ti)Ox each support nerve growth during electric field 

stimulation better than glass or metallic (gold or platinum) substrates but that the field does 

not steer the path of growth cone advance.  

On conductive PEDOT-PSS (potentiostatic and galvanostatic) polymer films fewer 

growth cones advanced continuously throughout electric field exposure than on glass (Figure 

6A) but growth was directed toward the cathode more on PEDOT-PSS (Figure 7). Growth 
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cones turned -16 ± 4 degrees (n = 42) on PEDOT-PSS (potentiostatic) and -25 ± 7 degrees (n 

= 32) on PEDOT-PSS(galvanostatic) toward the cathode but the time courses differed. On 

PEDOT-PSS(potentiostatic) significant cathodal turning occurred within an hour of electric 

field initiation, but on PEDOT-PSS(galvanostatic) this was not significant until the second 

hour, with most turning occurring between the second and third hours. The rate of growth 

cone advance was not affected by the electric field on either PEDOT-PSS material (12.9 ± 1.0 

µm h-1, n = 42, potentiostatic; 12.4 ± 1.2 µm h-1, n = 32 galvanostatic) when compared to 

material-matched, no electric field controls (14.1 ± 0.9 µm h-1, n = 75 potentiostatic; 13.3 ± 

0.7 µm h-1, n = 136). The robust growth during electric field stimulation and the strong 

cathodal orientation responses suggest that these materials would be good candidates for 

indwelling electrodes. 

Discussion 

Innovative electrotherapies demand electrodes that permit long term, intimate neuron-

electrode association. The need for material transparency presents additional challenges for 

some applications (e.g. retina). State-of-the-art metallic electrodes require direct connection to 

a power source and can also induce harmful secondary effects during stimulation. Our aim 

was to identify electrically conductive materials with improved properties that support neuron 

growth during electrical stimulation and that can also achieve an electric dipole without a 

directly wired connection. We coupled the synthesis of transparent, thin, conductive 

substrates, with a culture model that permits direct observation of neuron growth during 

stimulation.[10] These time lapse experiments offer advantages, including direct observation of 

differentiation, survival and neurite outgrowth for neurons in intimate contact with conductive 

substrates, and microscopic assessment of the material integrity. Unlike mammalian neurons, 

which require cell attachment factors, X laevis neurons grow on uncoated surfaces, allowing 

direct assessment of the neuron-material interaction.  
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Electrophysiological recordings have been made from live neurons on transparent 

electrodes, and cell growth has been assessed at discrete endpoints from fixed neurons or 

neuronal stem cell lines but this is the first study of the dynamic behavior of neurons growing 

directly on (uncoated) conductive substrates during electric field stimulation.[27] Our study 

differs from previous reports in which materials were hardwired to the power source.[18,19] We 

demonstrate for the first time that an electric dipole is induced in the materials without direct 

connection to a power supply and that it is sufficient to control neuron growth, with different 

materials triggering different growth responses. These properties can be exploited to deliver 

electrostimulation indirectly with implanted material arrays, even when transparency is 

desired, opening exciting possibilities for innovative clinical therapies. 

Neurons grew well on films of gold PEDOT-PSS, IrOx, platinum, and (Ir-Ti)Ox 

without external electrical stimulation. The ability of these diverse materials to support 

growth despite differences in surface roughness is consistent with reports for TiO2 and IrOx-

based materials, where surface chemistry, rather than texture, was key for neuron growth.[6,17] 

We found no direct correlation between neuron growth and surface hydrophilicity, suggesting 

that some other aspect of surface chemistry dominated. Failure to grow on ITO (Supplemental 

Information, Figures S1 and S2) was unexpected because transparent ITO films have been 

used as recording electrodes for mammalian neurons in vitro.[28] However, there ITO was 

coated with an attachment factor to support mammalian neuron growth but here it was 

uncoated, suggesting that the surface chemistry of pristine ITO was incompatible with neuron 

growth.  

A limitation of existing indwelling stimulating electrodes is that they are hardwired to 

a power source. In principle, this can be overcome by inducing an electric dipole in 

conductive implanted materials remotely (wirelessly). This emerging concept, called bipolar 

electrochemistry, has important practical implications but is largely unappreciated by 

biologists.[13,29] Electrodes wired to a power source deliver a potential to an electrolyte 
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solution (e.g. culture medium or body fluid) in contact with the conductive material. The 

electrochemical consequence is the creation of an anode and cathode at the material and 

consequent faradaic reactions, with the induced dipole having the opposite polarity to the field 

imposed in the electrolyte (Figure 5). Several observations indicated that these reactions 

occurred in our materials: above a threshold potential the material delamination proceeded 

with a front moving toward the centre of the material, electrolysis bubbles formed at the 

material poles, and the pH increased at the induced cathode (and decreased at the anode).  

We demonstrate here for the first time that the dipole induced within the material was 

sufficient to control neuron growth, with distinct responses on different materials. This may 

be attributable to competition between the opposing polarities of the imposed electric field in 

the culture medium and the induced dipole in the material; or to the influence of varied 

surface charge and substratum adhesivity,[9] but we propose that it relates to the varied 

electrochemistries of materials during stimulation. In metals (gold and platinum) hydrolytic 

O2 and H2 gas production would occur at certain potentials, in mixed valence systems (IrOx, 

PEDOT) cation intercalation (negative pole) and deintercalation (positive pole) would also 

occur, creating an ionic gradient within the material (Figure 5), and in titanium TiO2 may 

form (with delamination). Simultaneously, ionic gradients of opposing polarity would form in 

the electrolyte very near the material-electrolyte interface. Intercalation processes have lower 

potentials than hydrolytic reactions, and with a three electrode configuration and an electric 

field similar to that used here we measured oxidation potentials versus reference at 0.4 V for 

IrOx, at 0.6 to 0.8 V for gold and at 0.8 V for PEDOT-PSS.[6,8,14,23] The ionic gradients may 

therefore explain the observed differences in cell behaviour. The dipole in PEDOT-PSS 

materials influenced the direction (not speed) of neurite advance but in IrOx and (Ir-Ti-)Ox it 

increased the speed (not direction) of growth, suggesting targeted clinical uses for the 

materials. IrOx coatings are particularly attractive because they are reproducible and IrOx-

based materials supported growth well with and without electrical stimulation. We recently 
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developed hybrid materials based on IrOx and carbon nanotubes or graphene that offer 

promise for nervous system repair based on in vitro experiments using a mammalian nervous 

system wound model and direct electric stimulation (wired to power supply). [18,37,38] 

Metallic substrates of gold and platinum supported growth well, even during electrical 

stimulation, provided a low potential was used. This was not surprising given the established 

use of these metals as electrodes and the known adverse consequences of using metallic 

stimulation electrodes at high potentials, but our data indicate a safe limit for their use (≤ 50 

mV mm-1) to prevent delamination (Figure 5) and tissue necrosis. The distinct neuron 

behaviors during stimulation on gold and platinum were unexpected. The direction of neurite 

growth was steered by the electric field on glass but not on platinum (Figure 7). Our work 

therefore suggests new therapeutic possibilities, stimulating implanted gold arrays remotely to 

steer nerve growth, without a directly wired connection. 

To avoid the limitations of noble metals we assessed metal oxides and conducting 

polymers. IrOx in pure form or as part of a nanocarbon hybrid (coated with polylysine), which 

supports mammalian neuron growth has superior faradaic (pseudo-capacitive) charge-

injection properties.[6,31] XPS analysis indicated that the amount of oxygen bound to gold 

surfaces changes during electric stimulation. The growth promoting properties of gold and 

IrOx may be related to a similar surface electrochemistry because they are both based on 

noble metals and both have oxide-like chemistries. However, not all oxides support growth, 

emphasising the particular benefit of IrOx. Although disks of pristine TiO2 (rutile) supported 

X laevis neuron growth during stimulation at 150 mV mm-1, X laevis neurons did not grow on 

pristine films of TiO2 (anatase), even without stimulation (Supporting Information, Figures S1 

and S2).[16] Since they grew well on IrOx during stimulation we prepared composites of Ir-Ti 

in differing ratios (Supporting Information Table S1). Mixed (Ir-Ti)Ox oxides performed well, 

but changing the ratio of Ir:Ti from 1:10 (Ir-Ti)Ox to 2:10 (Ir-Ti)Ox improved growth. 
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Grazing angle diffraction analysis of Ir-Ti mixed oxides showed a graded composition, with 

more IrOx near the surface, meaning the surface would resemble IrOx.[14] 

Inherently conducting polymer films, such as polypyrrole (PPY) and PEDOT, are 

promising materials because they promote neuron growth during electrical stimulation, they 

can be functionalised for spatially and temporally controlled delivery of growth promoting 

compounds for nervous system repair, and PEDOT can be synthesised in the nervous system 

in vivo.[32] Materials were deposited in a thin layer to allow live cell imaging, but this limited 

the global charge capacity and restricted the upper level of safe electrical stimulation. Low 

potentials (50 mV mm-1) had no apparent effect on material integrity and neurons grew on 

gold, PEDOT-PSS, IrOx and (Ir-Ti)Ox, but at higher electric fields (100 or 150 mV mm-1) 

growth was generally poor, with some materials delaminating from the glass support or the 

underlying titanium adhesion layer. We suggest that at low potentials redox changes were 

induced by faradaic processes only at the extremes of the induced dipole, but at higher 

potentials the changes gradually proceeded beyond these margins, oxidizing the underlying 

adhesion layer (Figure 5). Our two electrode set up for low potential stimulation required 1.0 

V across the sample, which might exceed the oxidation potential of some materials. Here, we 

may have changed the oxidation state of all materials, with corresponding intercalation of ions 

(Figure 5), even at low potentials but only higher potentials ≥ 2.0 V were sufficient to oxidize 

both the material and the adjacent water, yielding oxygen radical formation, H2 and O2 gas 

production, pH changes and delamination of the underlying titanium support layer (Figure 5).  

Conclusion: implications for implant materials 

Our data demonstrate for the first time that thin conductive, transparent, materials can deliver 

electrical stimulation wirelessly to neurons and suggest a safe potential limit for stimulation. 

Different materials yield different neuron growth responses, which may relate to the 

material’s surface chemistry and conductive properties, suggesting that they can be tuned for 

specific purposes. The ability to implant 3D arrays of materials will open exciting new 
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possibilities to stimulate multiple electrode arrays remotely using a single external power 

source.  
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Supporting Information is available from the Wiley Online Library or from the author. 
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Figure 1. Experimental scheme. A and B) Transparency of materials (blue) electrodeposited 

onto glass. C) IrOx material during an electric field experiment. The end of an agar bridge is 

visible (asterisk) and the microscope objective turret can be seen through the material. D) The 

electric field set up. Control (no electric field) and electric field conditions were run in 

parallel. Materials were not ‘wired’ directly to the power supply. Arrows indicate the imposed 

external electric field (solid red arrow) in the culture medium and the dipole (dotted red 

arrow) of opposite polarity induced within the materials on which the neurons grew. For some 

experiments the cells grew directly on the plastic and the materials were omitted.[10,16]  
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Figure 2. Neuron growth during 3 hours without electrical stimulation. A) The number of 

growth cones per dish. B) The percentage that advanced continuously. C) The rate of growth 

cone advance (mean + SEM). The numbers above each bar represent (A) the total number of 

dishes, (B) the total number of experiments and (C) the number of growth cones measured. 

Statistics compare to glass: * p < 0.05, ** p < 0.005, *** p < 0.001, **** p < 0.0001, ns = no 

significant difference. D test (A and B) and unpaired 2-tailed Student’s t test (C). 
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Figure 3. Surface characteristics. A) Roughness; the average distance between topographic 

features. B) The peak to valley distance; the height the features. C) Atomic force microscopy 

images of a 1 µm2 area. Pixel intensity indicates surface feature height where the 0 to 50 nm 

scale bar applies to glass, Au and (Ir-Ti)Ox and the 0 to 200 nm scale bar applies to IrOx and 

both PEDOT-PSS materials. D) Surface hydrophilicity from contact angle measurements (n = 

20; mean + SD) of water droplets. *p < 0.001 compared to glass. Errors are too small to be 

visible on most bars. 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



     

27 

 

 
Figure 4. Growth on a plastic (insulating) substratum. A) Angle of deflection with no electric 

field (EF 0 mV mm-1) or when stimulated using 50 mV mm-1, 100 mV mm-1 or 150 mV mm-1. 

Negative values indicate cathodal deflection. B) Rate of growth cone advance. Numbers 

indicate the number of growth cones measured. C) A neuron with 4 growth cones (asterisks) 

at the start and after 3h at 150 mV mm-1. Scale 50 µm. D) Composite drawings of cells after 

3h without an electric field or at 50 mV mm-1. Cell bodies of many neurons were 

superimposed and their neurites were traced. Scale 100 µm. Student’s 2 tailed t-test relative to 

no electric field: * p < 0.05; **p < 0.005. 
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Figure 5. Electrochemical processes in conductive materials. The solid arrows represent the 

external electric field imposed in the culture medium and the dotted arrows represent the 

electric dipole induced indirectly within the conductive substrate material. The likely  

electrochemical processes at the polar edges of the materials are shown. A) At low potentials 

(50 mV mm-1) a dipole is created in IrOx or PEDOT-PSS, resulting in a cation (M+) gradient 

within the material. B) At high (≥100 mV mm-1) potentials the underlying titanium adhesion 

layer oxidizes and breaks down, initiating hydrolysis at the material margins. C) H2 and O2 

bubbles (white arrows) near materials (white brackets) stimulated at 100 mV mm-1 for 3h. D) 

The gold layer remained intact after 3h at 50 mV mm-1 (low potential) but it delaminated at 

100 mV mm-1 (high potential) as the titanium adhesion layer broke down, causing gold 

delamination, hydrolytic bubbles, and pH changes (pink indicates pH increase at induced 

cathode; yellow indicates pH decrease at induced anode). 
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Figure 6. Neuron growth during exposure to an external electric field of 50 mV mm-1. A) 

Frequency of growth cones that advance continuously during the experiment. The number of 

dishes is shown. B) Mean rate of growth cone advance (+ SEM) (Student’s 2 tailed t). 

Statistics compared to glass: * p < 0.05, ** p < 0.005, *** p < 0.001, ns = not significant.  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



     

30 

 

 
Figure 7. Neuron growth during 50 mV mm-1 external electric field (EF) stimulation. A) The 

angle of growth cone migration. Negative values indicate migration toward the external 

cathode; zero indicates randomly directed migration. Statistics compare to the same substrates 

but without an EF (Student’s 2-tailed t). *p < 0.05, **p < 0.005, ns = no significant difference. 

N numbers are as in Figure 6. B) Composite drawings made by superimposing the cell bodies 

and tracing each neurite. Scale 100 µm. The electric field vector represents the external field 

imposed within the culture medium. C) A neuron growing on PEDOT-PSS(galvanostatic). 

Scale 50 µm. 
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Table 1. Qualitative summary of neuron growth on materials compared to glass 
Material Sproutinga) Electric Fieldb) Dynamic Behavior 

 Growth 
cones dish-1 

 
 

Sustained 
migrationc) 

Migration 
speedc) 

Directed 
to 

cathoded) 

platinum ↔ no ↑ ↔  

 yes ↔ ↔ ↔ 

gold ↑ no ↔ ↑  

 yes ↓ ↔ ↑ 

PEDOT-PSS 
(potentiostatic) 

↑ no ↔ ↑  

 yes ↓ ↔ ↑ 

PEDOT-PSS 
(galvanostatic) 

↑ no ↑ ↑  

 yes ↓ ↔ ↑ 

IrOx ↔ no ↔ ↑  

 yes ↓ ↑ ↔ 

(Ir-Ti)Ox ↑ no ↔ ↑  

 yes ↔ ↑ ↔ 

Key: ↑ significantly better; ↓ significantly worse; ↔ no change. a)Sprouting was 

quantified only for no electric field conditions and compared to glass. b)External imposed 

field of 50 mV mm-1. c)Compared to responses on glass under the same electric field 

condition. d)Compared to glass during electric field stimulation. 
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Synthesis of transparent conductive materials 

 

Materials, prepared as transparent thin films on glass or quartz are summarised in 

Table S1. Soda lime glass slides (25mm x 60mm) coated with a 300 nm layer of indium tin 

oxide (ITO) (Solems YSUB/ITOSOL) were used for deposition of TiO2. For deposition of 

IrOx and polymers soda lime glass slides (AFORA KN26X76TB; 24mm x 70mm) were 

coated by thermal evaporation with a 5 nm thick adhesion layer of Ti followed by either Au 

(15 nm) or Pt (12 nm). 

Glass, TiO2 and (Ir-Ti)Ox materials classify as insulators. Au and Pt materials are 

metallic, with only electronic conduction behaviour. IrOx, polypyrrole-PPY based and 

PEDOT based materials are conducting, with mixed ionic-electronic conductivity and 

intercalation properties. PPY and PEDOT may have various counterions. A summary of 
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previously tested charge storage capacities (injection capacity) in DC electric fields is 

included in Table S1. Impedance values are discussed in Lichtensein et al., 2017.[7] 

References in the main paper refer to the electrostimulation applications tested in the case of 

metals and mixed ionic-electronic conductors. The larger charge capacity in mixed ionic-

electronic conductors offers a longer and safer stimulation process.  

IrOx thin films were prepared using a novel dynamic electrodeposition procedure 

modified to optimise adhesion.[1] Briefly, 50 ml of solution (pH 10) was prepared by 

dissolving sequentially, 2·10-4 moles of IrCl3.H2O (Aldrich 99.9%), 1·10-3 moles of oxalic 

acid, H2C2O4.2H2O (Aldrich 99%) and 5·10-3 moles of K2CO3 (Aldrich, 99%) in water. The 

solution was kept at 37ºC for 4 days and then at 4ºC until use. Aging changes the colour of the 

solution, indicating a change in the Ir ion coordination sphere. Electrodeposition used a VMP 

potentiostat (Bio-logic). A three-electrode cell system consisted of a Pt counter electrode and 

a working electrode with the same dimensions and a Pt quasi-reference electrode with a 

potential equal to that versus Ag/AgCl. This pseudo-reference Pt is stable versus Ag/AgCl 

during CV, possibly due to the formation of an oxide on the surface.[2]. Positive and negative 

electrodes were separated by 1cm using Teflon. 

TiO2 coatings (anatase) on ITO coated glass were obtained by spin coating ethanol 

solutions of 0.7 M titanium isopropoxide (Ti(OiPr)4 99.9%, Aldrich) and 1.4 M acetylacetone 

(99%, Aldrich) aged for 1 day and then 0.2 µm filtered.[3] Spin coating was done in three 

layers using a spin processor (Laurell Technologies Corporation) at 3000 rpm. Films were 

annealed for 2h at 350oC after each layer. 

Ir-Ti mixed oxides were prepared on quartz slides (VWR International) following 

thermal evaporation with a 5 nm Ti adhesion layer followed by 12 nm of Pt. (Ir-Ti)Ox films 

were prepared by spin coating ethanol solutions of titanium (IV) and iridium (III) salts.[4] The 

Ir-Ti solution was prepared by mixing equal volumes of Ti and Ir solutions. The 0.21 M Ti 

solution (50 ml final volume) made as Titanium isopropoxide (Ti(OiPr)4 99.99%, Aldrich 
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0.011 M) dissolved in ethanol in the presence of acetylacetone (99+%, Aldrich 0.024 M) and 

aged for one day. 0.024 M iridium (III) chloride solutions (1.2·10-3 M of IrCl3·xH2O 99.9%, 

Aldrich) were prepared at Ir:Ti 1:10 and in 0.048 M concentration to achieve final ratios Ir:Ti 

2:10. Both contained acetic acid (CH3COOH 99% Aldrich) in six fold excess with respect to 

Ir. The solutions were mixed and filtered (0.2 µm) prior to spin coating at 3000 rpm using a 

spin processor (Laurell Technologies Corporation). Monolayers with a Ir:Ti ratio 1:10 were 

annealed at 600oC during 4 h or 6 h and at 650oC for 4 h or 6 h. Three layer coatings with the 

Ir:Ti ratio 1:10 and 2:10 were prepared and annealed at 600oC for 6 h.[4] 

PEDOT-based materials poly(3,4-ethylenedioxythiophene) (PEDOT) were prepared 

from the monomer 3,4-(ethylenedioxy)thiophene (EDOT) (Sigma-Aldrich, 97%) stored at 4ºC 

until use.[5] Before use, the 0.01 M EDOT solution mixed with the different counterions was 

deoxygenated under argon for 30 min. Polymerization of PEDOT was performed using a 

potentiostat/galvanostat (Bio-logic Science Instruments) in a three-electrode configuration; 

with a Pt sheet (Good Fellow 99.9%) as the counter electrode and a Pt wire as a quasi-

reference electrode. The working electrode was a 5 nm Ti/12 nm Pt film deposited on a soda-

lime glass slide. For PEDOT-PSS synthesis the electropolymerization solution contained 0.1 

M Poly(3,4-sodium styrene sulfonate) (PSS). PEDOT-PSS films were synthesized 

potentiostatically at 0.9 V versus reference (PEDOT-PSSa) and galvanostatically with a 

current of 1.25 mA (PEDOT-PSSb). The reaction was stopped when a charge of 900 mC was 

reached over an area of 10 cm2. For PEDOT-PSSc the reaction was stopped at 4000 mC. For 

PEDOT-glutamine synthesis films were synthesized as above but with 0.1 M phosphate buffer 

with 0.1 M L-glutamine (Sigma) replacing PSS in the electropolymerization solution. The 

working electrode for polymerization was a 5 nm Ti/12 nm Pt film deposited on a soda lime 

glass. PEDOT-glutamine films were synthesized dynamically from open circuit potential 

(OCP) until 0.9 V versus reference at 5 m V/s, reaching 1000 mC.[5,6] 
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Polypyrrole (PPY)-based coatings were prepared from pyrrole (Sigma-Aldrich, 98%) 

vacuum-distilled until colourless and stored at -10 ºC then deoxygenated under argon for 30 

min prior to polymerization. The potentiostat/galvanostat three electrode configuration for 

electropolymerization was as described for PEDOT materials. PPY- dodecylbenzene 

sulfonate (DBS) or PPY-Poly(3,4-sodium styrene sulfonate) (PPY-PSS) synthesis was 

performed from 0.1 M sodium dodecylbenzene sulfonate (or Poly(3,4-sodium styrene 

sulfonate)) and 0.1M pyrrole. The working electrode was a 5 nm Ti/15 nm Au film deposited 

on soda-lime glass (for DBS) or Pt (for PSS. PPY-DBS). Films were synthesized by a 

dynamic electrodeposition method that cycled the potential from the open circuit voltage to 

0.6 V vs reference at a rate of 5 mV/s, while PPY-PSS films were deposited potentiostatically 

at 0.6V vs Pt reference. PPY-perchlorate was prepared in the same way from solutions of 0.1 

M pyrrole and 0.1 M sodium perchlorate (Riedel-de-Haën, pure) using acetonitrile (Aldrich, 

99%) as a solvent instead of water. The substrate electrode was a 5 nm Ti/12 nm Pt film on 

soda lime glass. The initial sweep was from open circuit to 0.75 V versus reference.[5,6] Before 

use slides were rinsed with Milli Q water and secured material side u) in the electric field 

chamber (Figure 1). Neurons were plated onto prepared materials without further surface 

treatment.  
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Table S1 Summary of material synthesis and chare storage capacity 

Material Substrate Preparationa) Material 
Thickness (nm) 

Charge Storage 
Capacityb) 

Soda lime 
glass 

 none  - 

ITO glass As purchased (Solemns) 300  - 

Pt Soda lime 
glass 

Thermal evaporation of 5 nm Ti then 
thermal evaporation of 12 nm Pt  

12 (transparency 
limit) 

≈ µC/cm2 [1,7] 

Au Soda lime 
glass 

Thermal evaporation of 5 nm Ti then 
thermal evaporation of 15 nm Au 

15 (transparency 
limit) 

≈ µC/cm2 [1] 

PPY-DBS Au-coated 
glass 

Dynamic potential electrodeposition 0 
to 0.6 V 

570  5-10 mC/cm2 [5,6] 

PPY-
perchlorate  

Pt- coated 
glass 

Dynamic potential electrodeposition 250  5-10 mC/cm2 [5,6] 

PPY-PSS Pt-coated 
glass 

Dynamic potential electrodeposition up 
to 0.6 V, 1200 mC total charge 

290  5-10 mC/cm2 [5,6] 

PEDOT-
PSSa 

Pt-coated 
glass 

0.6 V potentiostatic, 900 mC total 
charge 

350  7 mC/cm2 [5,6,7] 

PEDOT-
PSSb 

Pt-coated 
glass 

1.25 mA galvanostatic control, 900 mC 
total charge 

335  5-7 mC/cm2 
[5,6,7] 

PEDOT-
PSSc 

Pt-coated 
glass 

0.6 V potentiostatic, 4000 mC total 
charge 

1550 5-7mC/cm2 [5,6,7] 

PEDOT-
glutamine 

PT-coated 
glass 

30 cycles, dynamic deposition, 1000 
mC 

90 10 mC/cm2 [5,6,7] 

TiO2 

(anatase) 
ITO-coated 
glass 

Spin coating of propoxide precursor 
solutions then heating at 350 oC, 2h, 3 
layers 

90 - 

IrOx Pt-coated 
glass 

Dynamic potential electrodeposition, 
50 cycles, 0 to 0.55 V, 10 mV/s50 
cycles, 0.55 V, 10 mV/s 

170 20 mC/cm2 [1,7] 

(Ir-Ti)Oxd Pt-coated 
quartz 

Spin coating of Ti (IV) propoxide and Ir 
(III) chloride precursor solutions then 
heating at 600oC 6 h, 1 layer (Ti:Ir = 
10:1) 

60 - 

(Ir-Ti)Oxe Pt-coated 
quartz 

Spin-coating of propoxide precursor 
solutions then heating at 600oC, 6 h, 1 
layer (Ti:Ir = 10:2) 

60 - 

(Ir-Ti)Oxf Pt-coated 
quartz 

Spin-coating of propoxide precursor 
solutions then heating at 600 oC, 6 h, 3 
layers (Ti:Ir = 10:2) 

180 - 

(Ir-Ti)Oxg Pt-coated 
quartz 

Spin-coating of propoxide precursor 
solutions then heating at 600 oC, 6 h, 3 
layers (Ti:Ir = 10:1) 

180 - 

a) Charge is stated only if thickness was controlled during synthesis 
b) For transparent materials in pH 7 phosphate buffer. Cathodic charge storage capacity range. 

Insulating materials, such as glass, TiO2 and (Ir-Ti)Ox have no conductivity or charge 

storage capacity. ITO redox processes decompose the phase so its characterization is not 

included. Order of Impedance at low frequencies[7]: IrOx < PEDOT -PSS< PEDOT-PPY-

amino acids < Pt. Order of impedance at high frequencies[7]: PEDOT-PPY-amino acids < 

PEDOT-PSS < IrOx < Pt. 
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Neuron growth and behaviour on prepared materials 

 

The neuronal growth and behavioural growth cone responses are summarised for 

conditions without electrical stimulation (Figure S1) and with stimulation at 50 mV mm-1 

(Figure S2). Methods for growth and assessment were identical to those described in the main 

paper. 

 
Figure S1. Neuron growth without stimulation. A) Number of growth cones per dish 6h after 

plating. Number of dishes is shown. B) The percentage of growth cones that advanced 

continuously during 3h. Number of days experiment was repeated is shown. C) Rates of 

growth cone advance ± SEM (Student’s 2-tailed t). Number of growth cones is shown. 

Statistics compare to glass: * p < 0.05, ** p < 0.005, *** p < 0.001, **** p < 0.0001, ns = no 
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significant difference, ND = not determined due to poor growth. The data presented in the 

main paper (arrows) are repeated here for ease of comparison.  

 
Figure S2. Neuron growth during 3h of exposure to an imposed electric field of 50 mV mm-1. 

A) Frequency of growth cones that advance. Number of dishes is shown. B) Growth rate 

(±sem) (Student’s 2 tailed t). Statistics compare to glass: * p < 0.05, ** p < 0.005, *** p < 

0.001, ns = no significant difference, ND = not determined due to poor growth. The data for 

substrates presented in the main paper are repeated here for ease of comparison (arrows). 
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