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Abstract. This paper seeks to better understand the links between hu-
man reasoning and preferred extensions as found within formal argumen-
tation, especially in the context of uncertainty. The degree of believability
of a conclusion may be associated with the number of preferred exten-
sions in which the conclusion is credulously accepted. We are interested
in whether people agree with this evaluation. A set of experiments with
human participants is presented to investigate the validity of such an as-
sociation. Our results show that people tend to agree with the outcome
of the probabilistic semantics in purely qualitative domains as well as in
domains in which conclusions express event likelihood. Furthermore, we
are able to characterise this behaviour: the heuristics employed by people
in understanding preferred extensions are similar to those employed in
understanding probabilities.
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1 Introduction

One of the strengths of argumentation theory is its qualitative nature. For exam-
ple, in Dung’s theory, arguments are either within, or outside an extension, and
no notion of argument strength is required in order to obtain desirable features
— such as reinstatement — from the system. More recently, researchers have
begun considering more quantitative frameworks, particularly in the context
of probabilistic argumentation (e.g., [8, 10, 11, 18]), through weighted argumen-
tation systems [2, 7] and graduality within argumentation [4]. The immediate
question then arises as to whether such quantitative representations appropri-
ately capture human reasoning and intuitions, as well as questions regarding the
relationship between formal qualitative representations and human quantitative
(or semi-quantitative) reasoning. As a concrete example — which we focus on in
this paper — one could view multiple extension semantics, such as the preferred
semantics, as capturing different possible worlds. This would then suggest that
even qualitative argumentation can capture some notion of uncertainty.

This view can be further extended by considering situations where the ar-
guments within an extension are themselves about uncertain facts, effectively
changing the likelihood of each extension. If this is the case, then even in
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purely qualitative domains (represented through logical argumentation), where
no quantified information exists, the degree of acceptability of a conclusion is
associated with the number of preferred extensions in which the conclusion is
credulously accepted. This paper investigates the validity of this claim, by means
of an experiment with human participants.

The remainder of the paper is structured as follows. In Section 2, we expand
the motivations of this work. In Section 3, we introduce an ASPIC-like argu-
mentation framework followed by an overview of its use and key assumptions
underpinning our experiments (Section 4). Section 5 details our experimental
settings. In Section 6, methodology, hypotheses and results are discussed. We
present our conclusions in Section 7.

2 Background and motivation

Haenni [8] considers uncertainty as being an evaluation of probability on the
premises which propagates throughout the argumentation system. Similarly,
other studies such as [18] and [15] model uncertainty on the premises as be-
ing associated with the uncertainty of the sources, in the latter case due to the
different degrees of trustworthiness of the sources themselves. Li et al [11] con-
sider a different take on probability, namely that the probability of an argument
represents a prediction on how likely it is that the argument is justified.

In this work, we are interested in studying the links between the preferred
extensions as used in argumentation, and how these are interpreted as proba-
bilities by people with regards to the acceptability of a conclusion. Let us con-
sider a conclusion of an argument within a structured argumentation framework.
Generally, argumentation frameworks presented in the literature use extensions
to decide whether a conclusion is accepted. In purely qualitative argumentation
frameworks, this acceptance is either credulous (when there is at least one exten-
sion in which the argument under consideration is accepted), or sceptical (when
the argument is accepted in all extensions) [13]. As dictated by the nature of
qualitative frameworks, the enumeration of extensions in which a conclusion is
accepted does not influence the decision as to whether a conclusion is accepted.
However, here we claim that the number of extensions in which a conclusion is
accepted has an effect on deciding whether the conclusion is to be considered
justified, even if the argumentation framework is fully qualitative4.

The problem of understanding the role of enumeration of extensions has been
studied by Thimm [16] in abstract argumentation. Thimm presents a novel ar-
gumentation framework in which a probabilistic semantics is used to associate
an argument with a degree of belief. This belief is computed as function of the
number of extensions in which the argument appears to be justified. In our
work, we use a similar approach where we consider the enumeration of preferred

4 Note that we use the terms argument and conclusion somewhat interchangeably as
in the work we describe, a specific conclusion was the result of a unique argument.
As future work, we will consider situations where multiple arguments may lead to
the same conclusion, c.f., the so called universal semantics [6].
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extensions in evaluating the believability of a conclusion. Thimm claims that
this assessment provides a degree of confidence when selecting an option. Here
we want to understand whether this is the case, i.e., whether people do use a
similar heuristic to make a decision on what conclusions are the most believ-
able. In Thimm’s work, a probability is associated with each extension, and this
influences the degree of belief placed in an argument. In our study we want to
understand whether doing so is comparable to human reasoning with probability.

Unlike Thimm’s work, we use structured argumentation frameworks, as we
are interested in the believability of conclusions rather than arguments. Our
core research question is then as follows: do people agree with the evaluation
given by probabilistic interpretation of argumentation semantics? To address this
question, we define an ASPIC-like structured argumentation framework from
which we can formalise the problem.

3 An ASPIC-like framework with probabilistic semantics

In order to identify plausible conclusions, we use a simplified ASPIC-like ar-
gumentation framework with ordinary premises and defeasible rules without
preferences or undercuts [13, 14]. We derive the degree of belief in a conclu-
sion obtained by applying argumentation semantics to arguments obtained from
the framework, and considering a probabilistic interpretation of the results.

3.1 Argumentation framework

Definition 1. An argumentation system AS is a tuple 〈L,̄ ,R〉 where L is a
logical language, ¯ is a contrariness function, and R is a set of defeasible rules.
The contrariness function¯ is defined from L to 2L, such that given ϕ ∈ φ̄ with
ϕ, φ ∈ L, if φ 6∈ ϕ̄, ϕ is called the contrary of φ, otherwise if φ ∈ ϕ̄ they are
contradictory (including classical negation ¬). A defeasible rule is ϕ0, . . . , ϕj ⇒
ϕn where ϕi ∈ L.

Definition 2. A knowledge-base K in AS is a subset of the language L. An
argumentation theory is a pair AT = 〈K,AS〉.

An argument A is derived from K of theory AT . Let Prem(A) indicate the
premises of A, Conc(A) the conclusion, and Sub(A) the subarguments:

Definition 3. Given a set of arguments Arg, argument A ∈ Arg is defined as:

– A = {ϕ} with ϕ ∈ K where Prem(A) ={ϕ}, Conc(A) =ϕ, Sub(A) ={ϕ}.
– A = {A1 , . . . ,An ⇒ φ} if there exists a defeasible rule in AS s.t. Conc(A1 ),
. . . ,Conc(An)⇒ φ ∈ R with Prem(A) = Prem(A1 ) ∪ · · · ∪ Prem(An),
Conc(A) = φ and Sub(A) = Sub(A1 ) ∪ · · · ∪ Sub(An) ∪A.

Attacks are defined as those arguments that challenge others, while defeats are
those attacks that succeed:

Definition 4. Given two arguments AA and AB :
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– AA rebuts AB on ArgB ′ iff Conc(AA) ∈ ϕ̄ for AB ′ ∈ Sub(AB ) such that
AB ′ = {AB1”, . . . ,ABn” ⇒ ϕ}.

– AA undermines AB on ϕ iff Conc(AA) ∈ ϕ̄ such that ϕ ∈ Prem(AB ).

Definition 5. Defeat is a binary relationship Def : Arg ×Arg where a defeat is
represented as (AA,AB ) ∈ Def . An argument AA defeats an argument AB iff:
i) AA rebuts AB on AB ′ ; or ii) AA undermines AB on ϕ.

Definition 6. An abstract argumentation framework AF = (Arg ,Def ) corre-
sponding to an AT contains the set of arguments Arg as defined in Definition 3
and a set of defeats Def as in Definition 5.

Sets of acceptable arguments (i.e., extensions ξ) in an AF can be computed
according to a semantics. Here we use the preferred semantics. The set of cred-
ulous preferred extensions is ξ̂P = {ξ1, ..., ξn}, where every ξi is a maximal set
of arguments (with respect to set inclusion) that is conflict free and admissible.

Definition 7. Given an abstract argumentation framework AF = (Arg ,Def ),
a set of arguments S ⊆ Arg is conflict-free iff there is no AA, AB ∈ S such that
(AA, AB) ∈ Def . An argument AA ∈ S is admissible iff for every AB such that
(AB , AA) ∈ Def , there is a AC ∈ S such that (AC , AB) ∈ Def .

3.2 Probabilistic semantics for an argument theory

Having described a simple ASPIC-like framework, we now describe how Thimm’s
probabilistic semantics [16] is used to associate probabilities with conclusions.

The set of all possible sets of arguments is referred to as K = 2Arg , and the
set of preferred extensions ξ̂P is a subset of K. A probability function of the form
P : 2K → [0, 1] assigns to each set of possible extensions of AF a probability.
For ξ ∈ K, P (ξ) is the probability that ξ is an extension. For now, we make the
assumption that extensions are equiprobable. Then the probability of ξ is:

P (ξ) =

{
1/|ξ̂P | ξ ∈ ξ̂P

0 ξ 6∈ ξ̂P
(1)

For P (ξ) and argument A ∈ Arg:

P̂ (A) =
∑

A∈ξ⊆Arg

P (ξ) (2)

Given the probability function P , P̂ (A) represents the degree of belief that an
argument A is in an extension according to P .

As Thimm suggests we now have an indication of the degree of belief of each
argument that gives a characterisation of the uncertainty which is inherent in
the AF. We must define several additional concepts in order to describe the
acceptability of conclusions within the argumentation framework.

From [13] we know that a wff ϕ ∈ L is sceptically justified if ϕ is the con-
clusion of a sceptically justified argument, and credulously justified if ϕ is not
sceptically justified and is the conclusion of a credulously justified argument.
Hence we define a justification ratio µ of a conclusion ϕ as follows.
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K = {r1; r2; r3; r4} R = {r4 ⇒ r5}

¯= {(r2, r3); (r3, r2); (r2, r1); (r3, p1); (r5, r1)}

Arguments:

A1 : r4 A2 : r2 A3 : r3 A4 : r1 A5 : A1 ⇒ r5

Preferred extensions: ξ1 = {A1 ,A3 ,A5} ξ2 = {A1 ,A2 ,A5}

A3

A2

A4

A5A1

Fig. 1. Example of argumentation theory

Definition 8. Given a set of arguments A = {A1, . . . , An} such that for any
Ai, Conc(Ai) = ϕ, we define the justification ratio as µ(ϕ) =

∑
Ai∈A P̂ (Ai).

The justification ratio µ(φ) captures the probability of a conclusion being jus-
tified based on the likelihood of the arguments which justify it. If equiprobable
extensions are assumed, then we obtain:

µ(ϕ) = P̂ (A) =
∑

A∈ξ⊆Arg

1/|ξ̂P | where ϕ ∈ Conc(A)

Example 1. We now illustrate the framework with the following example. Con-
sider the AT presented in Figure 1. We obtain two preferred extensions ξ1, ξ2
with P (ξ1) = P (ξ2) = 0.5. The justification ratios are then as follows:

µ(r1) = 0 µ(r2) = µ(r3) = 0.5 µ(r4) = µ(r5) = 1

4 Characterising reasoning with extensions

In the previous section, we explored a method to assign a degree of belief to
a conclusion (which we denoted as the justification ratio) in relation to the
enumeration of extensions by adapting Thimm’s probabilistic semantics. Our
main objective is to determine whether people agree with these probabilistic
semantics; i.e., whether the justification ratio has a correlation with people’s
opinion of the believability of a conclusion. We believe that this is the case
on the basis of the assumption that people’s reasoning with extensions may be
understood in relation to reasoning with the rules of classical probability. This
assumption serves us as second objective, i.e., that of characterising how people
rate the believability of a conclusion.

We now discuss the observations underpinning our assumption. Consider as
a domain the scenario of social inferences — inferences drawn from social media
information and corroborated with background knowledge to draw potentially
unwanted conclusions [12]. Assume that an argumentation framework is used
to decide whether some conclusions can be inferred from a set of information
previously shared within a social network. If these conclusions are justified within
one or all of the extensions, these can be considered more likely to be inferred
(and hence known) by users of the social network. Similarly consider a set of
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information and associated likelihood of this information being shared in the
social network. The more likely it is that a piece of information is shared, the
more likely is that this will be known by some users in the network.

In more formal terms, our analysis is based on the following observations:

– Classical probability assigns the likelihood to a piece of information ϕ on
the basis of the ratio of the number of cases favourable to an event to un-
favourable cases. In the above example, the event may be considered as that
of the information being shared. Hence, consider a set of possible worlds W
and a subset of the worlds V ⊂ W in which a proposition ri ∈ L holds, the
probability of ri is as follows.

p(ri) =
# of worlds where ri holds

total # possible worlds
=
|V |
|W |

– Similarly, if we consider the set of preferred extensions ξ̂P as the set of
possible explanations of a world, and the degree of belief of a conclusion ri is
given by the justification ratio µ(ri). Let us refer to the subset of extensions

in which ri is acceptable as ξ̂riP . From Definition 8 we obtain the following.

µ(ri) =
∑

A∈ξ⊆Arg

1/|ξ̂P | =
# extensions in which ri is acceptable

total # extensions
=
|ξ̂riP |
|ξ̂P |

In the above situation, we assume that the information is purely qualitative.
However, the information may refer to the likelihood of an event or a fact [1].
For example, an event E described in ri can be subject of a proposition rj=“there
is a ω chance that event E may occur”. Continuing with the similarity between
reasoning with extensions and reasoning with probability, we also seek to under-
stand the behaviour in the case in which the user is presented with information
that is about the likelihood of events, as well as the uncertainty introduced via
the possibility of some information being or not being inferred. In this case, the
believability of a conclusion may be explained by two heuristics depending on
whether people consider these as dependent or independent events. The similar-
ity with an argumentation framework outcome can then be established in the
former case through the use of conditional probability, or in the latter by us-
ing the multiplication law of probability. For this research, we assume that the
second heuristic is adopted, resulting in the following observations:

– ω indicates the probability of the event p(E). Given p(ri), the probability of
rj using the multiplication law for independent events is: p(rj) = ω ∗ p(ri)

– Similarly, in an argumentation framework with probabilistic semantics, given
the justification ratio µ(ri), the justification ratio of rj is: µ(rj) = ω ∗ µ(ri)

We are now in a position to describe our experiments, designed to determine
(1) whether the probabilistic interpretation described above represents human
reasoning, and (2) whether the similarities observed between probabilistic and
argument based reasoning are valid.
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5 Experiment Design

Our overall objective is to understand whether people agree with the outcome of
probabilistic semantics. In our experiments, we asked a participant to rate the
believability of a propositions under different experimental conditions α. While
considering different experimental conditions, we posed the following question
to our subjects: “Given the condition α, how likely is that you believe ri”? The
subjects were asked to respond on a 5-points Likert scale, a commonly used
scale for user studies, recorded as user evaluation u(ri) of a conclusion ri (with
1: Extremely Unlikely – 5: Extremely Likely). Our hypothesis is that there is
a positive correlation between the user rating uµ(ri) and the justification ratio
µ(ri). We also hypothesise that there is a positive correlation between the user
evaluation of the likelihood of a piece of information ri — up(ri) — and its
associated probability p(ri). Finally, we intend to show that there is a similarity
between the two ratings up(ri) and uµ(ri).

Definition 9. An experimental condition α can is a tuple α = 〈 Domain, Sce-
nario, Proposition, Interpretation, Percentage, Fraction, Ratio〉.

We now define the components of an experimental condition α.

5.1 Two Types of Information

As discussed in Section 4, information — represented via propositions — can be
classified into two categories, or domain types in the context of the experiment.

Domain 1: Purely qualitative propositions ri ∈ L in which the text is about a
piece of information.

Domain 2: Propositions rj ∈ L in which the text is about a piece of information
and its probability of occurring.

In the former, we want to demonstrate that even in purely qualitative scenarios,
people agree with the outcome of the probabilistic semantics: the believability
of a conclusion is related to the number of extensions in which that conclusion
is accepted. With the latter, we want to demonstrate that in scenarios in which
conclusions are about the probability of some information, the outcome of the
probabilistic semantics is still an important factor in assessing the believability
of a conclusion. The two types of propositions lead to two sets of experiments.

5.2 Scenarios and Propositions

In the experiments we use seven scenarios within the social inference domain.
While our work is generalisable to other domains, this seemed to lend itself well
to the design of the experiments. The scenarios are derived from reported inci-
dents in the context of sharing political views [9], and location data or temporal
information [12]. These scenarios are built using a combination of arguments
from position to know and cause to effect [17].
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Each scenario is referred to as Xi with i = 1–7 and designed as a set of
propositions ri ∈ L. In order to collect a relatively large amount of data with
less cognitive effort for the user, two propositions per scenario are chosen as
tested propositions subjects of our experiments. We combine proposition and
scenario using the same notation, writing Xi j, where j = 0, 1 refers to the
proposition being tested. For convenience, we call Xi j a scenario. Given 7 base
scenarios and 2 propositions, we obtain a total of 14 scenarios.

5.3 Interpretations

For each scenario, two interpretations can be made:

At: An interpretation building on the number of extensions in which the conclu-
sion is acceptable, and which considers the total number of extensions (via
an argument theory AT , with rules and contraries between propositions), in
which a justification ratio µ(ri) is associated with each proposition ri.

Pt: A possible worlds based probabilistic interpretation, in which each proposi-
tion ri is associated with a probability p(ri) of its information being verified.

We associate the justification ratio of a conclusion ri as the outcome of the prob-
ability semantics, with the likelihood that that piece of information is verified
(e.g., is shared). Given that both interpretations are based on the same set of
propositions, the key design link is such that the justification ratio of ri within At
is the same as the probability of ri in Pt, referred to as a ratio τ = µ(ri) = p(ri).
With two interpretations per scenario, we obtain 28 experimental conditions α.

5.4 Fractions, Percentages, and Ratios

In Domain 1, the ratio τ of a proposition is an irreducible fraction varied be-
tween 1/6 and 2/3. That is, we ensured that the conclusion occurred in τ of
the extensions. Besides the main objectives of the experiments, we want to show
two further properties: that the scenario has limited influence on the results, and
that the ratio — rather than the number of extensions — is the key factor that
influences user believability ratings. For demonstrating the latter, we introduce
redundant equivalent fractions γ (e.g., 1/2, 2/4, 3/6) corresponding to the ratios
τ using experimental conditions with 2,3,4, or 6 extensions. Each scenario Xi j
is associated with a fraction γ.

In Domain 2, we maintain the same fractions γ but also introduce another
value, ω, representing the likelihood of the event described within the content
of a proposition. For example, a proposition ra=“Joe is a Republican” becomes
rb=“There is 70% chance that Joe is a Republican”. We vary ω between 20% and
80% percent and the overall ratio is given by the product τ = γ ∗ ω. Fractions
γ and percentages ω in a scenario are associated using different combinations of
both low or high ω and γ, or high ω and low γ and vice-versa.

Example 2. To obtain an argument theory based interpretation, one of our sce-
narios presented the user with a set of premises, and grounded defeasible rules
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from which arguments can be formed. We then only presented the conclusions
of arguments from the preferred extensions which result from our framework. In
this scenario, 6 preferred extensions existed referred to as possible worlds, and
the conclusion ra =“Joe is a Republican” was valid in two of these extensions5.
The user’s response to the question Given the 6 stated possible worlds, how likely
is that you would believe that “Joe is a Republican”? then represented uµ(ra).

To obtain a probabilistic interpretation, we presented the set of propositions
to the user as a list of hypothetical messages, which included both premises and
conclusions of the above argumentation framework with no particular order.
We informed the users that 2 out of the 6 messages reported that “Joe is a
Republican”. To determine up(ra), the user was asked the question If 6 messages
are released, how likely is that a message would state that “Joe is a Republican”?

For these scenarios, τ = 1/3, and γ = 2/6. The justification ratio of a
proposition in At corresponds to the probability in Pt in Domain 1 such that
p(ra) = µ(ra) = γ = τ . In Domain 2, rb is used instead, with ω = 0.7 in both
interpretations and ω ∗ p(ra) = ω ∗ µ(ra) = ω ∗ γ = τ .

6 Methodology and results

We ran our experiments using Amazon Mechanical Turk6, a web service that
recruits participants to complete tasks. We recruited 420 participants for the
experiment from the USA7. Data collection was performed with a questionnaire
including four experimental conditions, such that a participant would see two
different scenarios, respond to questions of both problems and interpretations.
Initially participants were shown a training example for the argumentation the-
ory to provide them with a basic understanding of argumentation. Each partic-
ipant was then asked to respond to four combinations of different experimental
conditions (α as described in Section 5).

– Domain 1: two questions within a scenario Xi, related to conditions Xi 0
and Xi 1 and an interpretation At (or Pt).

– Domain 2: two questions within a scenario Xj, where i 6= j, related to
conditions Xj 0 and Xj 1, and an interpretation Pt (or At respectively).

Hence, no user would respond to an interpretation At and its corresponding
interpretation Pt, and each user would see two different domains. We obtained
30 responses per condition α. In the remainder of the section, we detail they
hypotheses associated with each type of problem, and describe our results.

6.1 Domain 1: Hypotheses

The aim of the first set of experiments is to understand whether people agree
with the outcome of the probabilistic semantics when the propositions are purely

5 A complete experiment example can be found at http://tinyurl.com/mtck246
6 Amazon Mechanical Turk: https://www.mturk.com/
7 Ethical approval for these experiments was granted by the College Ethics Review

Board of the University of Aberdeen on 10/08/2016
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qualitative. We study the believability rating of a proposition ri in interpretation
At as the outcome of the probabilistic semantics uµ(ri), and in the corresponding
probabilistic interpretation Pt, up(ri). Our hypotheses are as follows.

H1.1: There is a correlation between the believability rating of At, uµ(ri), and the
justification ratio of the conclusions, µ(ri), obtained via the outcome of the
probabilistic semantics.

H1.2: There is a correlation between the believability rating of Pt, up(ri), and the
probability of the information being verified p(ri).

H1.3: The two correlations in At and Pt are similar.

We also test the following secondary hypotheses:

H1.4: The scenario does not influence the results: for any two scenarios with the
same fraction γ there is no difference in the believability rating.

H1.5: The number of extensions does not influence the results: for any two scenarios
with same τ but different γ there is no difference in the believability rating.

6.2 Domain 1: Results

Figure 2 presents the believability ratings uµ(ri) and up(ri) recorded for Domain
1. The horizontal axis is ordered according to the fraction γ associated with the
experimental conditions. We also report the ratio τ corresponding to the fraction.
For each scenario, uµ(ri) of At is shown besides up(ri) of Pt. The graph uses
a divergent colour palette; the neutral rating is associated with the brightest
colour, ratings below correspond to participants who consider the proposition
unlikely, ratings above correspond to those who consider the conclusion likely.
Moving from lower to higher γ (left to right), we observe that the darker area
above the neutral bars increases for both At and Pt interpretations. Within
each scenario, the neutral bar is approximately within the same range, with
some exceptions. This provides some initial evidence that there is a correlation
between the believability ratings and fractions γ.

A Spearman’s rank-order correlation was run for each scenario Xi j to de-
termine the relationship between the believability ratings uµ(ri) in At and the
justification ratios µ(ri) = γ, the outcome of the probabilistic semantics. This
non-parametric test is used since the results are not normally distributed. The
test showed a positive correlation value, rs, which was statistically significant
(rs(418) = .288, p� 0.001). This provides evidence for hypothesis H1.1 — that
there is a correlation between the probabilistic semantics and the user believabil-
ity rating of a conclusion. A similar test determined that there is a statistically
significant positive correlation between the believability ratings up(ri) in Pt and
the probabilities p(ri) = γ (rs(418) = .280, p� 0.001). This validates hypothe-
sis H1.2; i.e., there is a correlation between the believability rating of a piece of
information and its probability. A comparison between the two correlations was
examined using a Fisher’s r-to-z transformation. The overall z-score value (based
on the difference between the correlations and their variance) was observed to
be z = 0.13 with p = 0.448. Here, we accept the null hypotheses that the two
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Fig. 2. Believability ratings uµ(ri) and up(ri) - Domain 1

Table 1. Mann-Whitney U tests on uµ(ri) vs. up(ri) within scenarios

Scenario X6 0 X3 1 X4 1 X1 1 X2 0 X7 0 X5 0
p-value 0.824 0.516 0.010* 0.265 0.888 0.247 0.744

Scenario X5 1 X3 0 X4 0 X6 1 X1 0 X2 1 X7 1
p-value 0.005* 0.015* 0.254 0.710 0.771 0.357 0.014*

correlations are not significantly different. This confirms hypothesis H1.3, and
characterises how people interpret the outcome of the probabilistic semantics.

There are, however, some outliers that can be noticed in Figure 2. This was
investigated with a post-hoc analysis using a series of Mann-Whitney U tests
for each scenario Xi j comparing uµ(ri) and up(ri). Table 1 reports only the
p-values, where we consider significance at p < 0.001. None of the comparisons
shows a significant difference, however, for the three scenarios marked with a
star, the p-value tends to be low indicating the outliers.

Similar tests are used for the two secondary hypotheses. H1.4 seeks to prove
that given the same fraction γ (e.g. 1/3), there is no difference between the
believability rate of different scenarios associated to that fraction (e.g. X1 1
vs. X2 0). In Table 2 we report the p-values of comparisons between different
conditions, where significant values are highlighted in bold. Hypothesis H1.4 is
only partially supported: the scenario tends not to influence the results in Pt,
however, in At, the hypothesis is only supported in 3 out of 5 conditions.

Hypothesis H1.5 focussed on understanding the believability ratings in ex-
perimental conditions associated with different fractions γ but same ratio τ (e.g.
1/2 for X5 0 vs. 3/6 for X6 1). In Table 3 we report the p-values for comparisons
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Table 2. Mann-Whitney U tests on At and Pt between scenarios with similar γ

Fraction γ Xa Xb uµ(ri) vs. µ(ri) up(ri) vs. p(ri)

1/4 X3 1 X4 1 0.403 0.000
1/3 X1 1 X2 0 0.407 0.660
1/2 X5 0 X5 1 0.259 0.000
2/4 X3 0 X4 0 0.669 0.208
2/3 X1 0 X2 1 0.147 0.056

Table 3. Mann-Whitney U tests on At and Pt between scenarios with similar τ

Ratio τ Xa Xb uµ(ri) vs. µ(ri) up(ri) vs. p(ri)

1/3 X1 1 X7 0 0.201 0.187
1/3 X2 0 X7 0 0.629 0.579
1/2 X5 0 X3 0 0.147 0.001
1/2 X5 0 X4 0 0.068 0.006
1/2 X5 0 X6 1 0.417 0.526
1/2 X5 1 X3 0 0.932 0.370
1/2 X5 1 X4 0 0.677 0.016
1/2 X5 1 X6 1 0.574 0.000
1/2 X3 0 X6 1 0.353 0.003
1/2 X4 0 X6 1 0.147 0.035
2/3 X1 0 X7 1 0.244 0.169
2/3 X2 1 X7 1 0.799 0.001

between these conditions. H1.5 is mainly supported, with the exception of three
cases in At. This provides partial evidence that it is the ratio rather than the
fraction that influences the believability ratings among different conditions.

6.3 Domain 2: Hypotheses

The second problem focusses on understanding whether the outcome of the prob-
abilistic semantics is a factor in assessing the believability of conclusions that
are about event likelihood. We hypothesised that the product between the jus-
tification ratio of a conclusion and its likelihood influences people’s believability
ratings in the At interpretation and is comparable with the multiplication law in
the probability interpretation Pt. We consider similar hypotheses as in Domain
1, with the difference that the believability ratings is now tested for correlation
with the product of the fraction γ and the likelihood ω expressed within the
content of a proposition (τ = γ ∗ω). Hypothesis H2.1 tests for correlation in the
interpretation At where µ(rj) = τ . Hypothesis H2.2 tests for correlation in Pt
where p(rj) = τ and H2.3 tests for similarity between the two correlations.

6.4 Domain 2: Results

Our initial tests study the correlation between the believability ratings and the
fractions γ or the likelihood ω alone. Statistical tests were performed using the
Spearman’s rank-order correlation, and similarity is tested using the Fisher’s
r-to-z transformation, with significance at p < 0.001. We observed no correla-
tion for fraction γ in both interpretations At (rs(418) = .59, p = 0.228) and
Pt (rs(418) = .26, p = 0.596). There is, instead, a low correlation with ω in
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Fig. 3. Believability rating uµ(ri) and up(ri) - Domain 2

both At (rs(418) = .193, p � 0.001) and Pt (rs(418) = .184, p � 0.001) with
high similarity (z = 0.13, p = 0.448). More interestingly, we found a correlation
between the product of γ and ω reflecting the multiplication law of probability
in both At (rs(418) = .293, p� 0.001) and Pt (rs(418) = .250, p� 0.001) with
similar behaviour (z = 0.67, p = 0.251). We now focus on this last result.

In Figure 3, we present the believability rating uµ(ri) and up(ri) recorded
for Domain 2. The horizontal axis is ordered according to τ = γ ∗ω. The results
support hypothesis H2.1 for At: there is a positive correlation between the be-
lievability rating and the product of the likelihood expressed within a conclusion
and the justification ratio due to the probabilistic semantics. The outcome of the
probabilistic semantics is a factor required to interpret the believability ratings:
the correlation with the likelihood expressed within a conclusion alone is low
(rs = .193) and moderately improves when the product is used (rs = .293). A
similar behaviour is observed in Pt supporting H2.2: there is a correlation be-
tween the believability rating and the product of the likelihood expressed within
the proposition and its probability of occurring. This is stronger than the corre-
lation with the former only (rs = .250 vs. rs = .184). Finally, H2.3 is supported
as no significant difference between the two correlations values is observed.

6.5 Discussion

We have demonstrated that the outcome of the probabilistic semantics is an
important factor in understanding the believability ratings of the conclusions,
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even in the case in which a proposition is about the likelihood of an event. The
results indicate that people tend to agree with the outcome of the probabilistic
semantics. Furthermore, our results confirm that the outcome of the probability
semantics may be understood by people in a way similar to the understanding
of probability. In the second problem, we showed that this similarity is due to
a heuristic associating the product of probabilities to the believability of con-
clusions. Note that as discussed in Section 4, the multiplication law assumes
that there is independence between the event reported by the proposition and
it being inferred. We also tested for τ representing dependent events, using the
law of conditional probability. The results showed no correlation with the be-
lievability ratings. Due to space constraints, we have omitted these results. The
results presented here are — in a sense — preliminary. There are many aspects
of this research that need further investigation. To name some, both correlation
coefficients are significantly positive but show a moderate correlation between
the degree of believability and the justification ratio or associated probability.
This suggests that other factors need to be investigated further in the future.
One of these aspects is the role of the domains used within the scenarios as we
have shown that in the argumentation interpretation this has a more significant
role than in the probabilistic view. From an argumentation perspective, further
studies should focus on considering other semantics, such as the ranking-based
semantics [3]. Further studies should also focus on understanding how people
combine probabilities and on analysing human factors, for example, by consid-
ering the background of participants involved.

7 Conclusions

We investigated whether qualitative argumentation captures some notion of un-
certainty by associating a degree of believability of conclusions with the number
of preferred extensions. To do so, we examined whether people agree with the
outcome of the probabilistic semantics. More broadly, our work can be seen to
follow a strand of research similar to that of Cerutti et al. [5], aiming to study the
alignment between argumentation semantics and human intuition. The novelty
of our work is in that we focus on the particular role that multiple extensions
play in evaluating the believability of a conclusion.

In this paper, we designed our experiments with a two-fold objective: to
determine whether our claim was valid; and to investigate whether there is a
similarity between probabilistic and argumentation-based reasoning. Our results
showed that people tend to agree with the outcome of the probabilistic seman-
tics and that people employ a similar heuristic in understanding both preferred
extensions and probabilities. Through our experiments, we obtained some initial
promising insights into the use of probability within argumentation frameworks
that may guide researchers in better supporting human reasoning in their work.
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