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We study the stability of deterministic systems, given sequences of large, jump-like perturbations.

Our main result is the derivation of a lower bound for the probability of the system to remain in the

basin, given that perturbations are rare enough. This bound is efficient to evaluate numerically. To

quantify rare enough, we define the notion of the independence time of such a system. This is the

time after which a perturbed state has probably returned close to the attractor, meaning that subse-

quent perturbations can be considered separately. The effect of jump-like perturbations that occur

at least the independence time apart is thus well described by a fixed probability to exit the basin at

each jump, allowing us to obtain the bound. To determine the independence time, we introduce the

concept of finite-time basin stability, which corresponds to the probability that a perturbed trajec-

tory returns to an attractor within a given time. The independence time can then be determined as

the time scale at which the finite-time basin stability reaches its asymptotic value. Besides that,

finite-time basin stability is a novel probabilistic stability measure on its own, with potential broad

applications in complex systems. Published by AIP Publishing. https://doi.org/10.1063/1.5013127

A central problem in the study of dynamical systems is

quantifying the stability of an attractor. Looking at small

perturbations leads to linear stability and Lyapunov

exponents. Many applications instead require us to con-

sider the chance that a large perturbation will not kick

the system out of the basin of attraction called basin sta-

bility.1 If we add noise to the system, we can further ask

about the expected time it takes for the system to first

exit the basin.

In this work, we show how to use ideas from basin

stability to study first exit times, if the noise is a sequence

of large, but sufficiently rare jumps. We quantify pre-

cisely what sufficiently rare means and derive a bound

for the first exit time distribution. Crucially, this bound is

expressed in terms of quantities that can be evaluated

efficiently for high-dimensional systems.

Thus, the results of this paper will have wide applica-

tions to high-dimensional systems with noise that can be

approximated in the above way, e.g. power grids sub-

jected to intermittent wind and solar power, neuronal

networks, or ecosystems.

I. INTRODUCTION

A typical problem in the study of multi-stable dynamical

systems is the stability of an attractor against perturbations.

Especially finite perturbations potentially alter the time-

asymptotic behaviour of a dynamical system and its

macroscopic behaviour and explosive synchronisation transi-

tions in networks of coupled oscillators2–4 may be mentioned

exemplary. The various consequences of such phenomena

for multistable biological systems are studied, for instance,

in the field of network physiology5–7 but also find their appli-

cation in technical fields like power system research.8–10

For small perturbations, stability can be assessed in

terms of asymptotic stability theory for linear systems,11

e.g., by calculating Lyapunov exponents.

On the other hand, for large perturbations, a typical

approach is to assess stability by properties of the basin of

attraction, for instance, their size.12–14 For this, several direct

and sampling-based methods are available.

In particular, Lyapunov functions15–17 and related concepts

like non-equilibrium potentials18,19 are powerful tools for study-

ing basins of attraction. The existence of a global Lyapunov

function ensures global stability against all perturbations.

The explicit construction of Lyapunov functions for a

given system is a difficult problem in general. However, several

numerical approaches for the computation of Lyapunov func-

tions have been developed, including the SOS (sums of squares)

method,20 the CPA (continuous piece-wise affine) method,21

radial basis functions,22 and the numerical solution of Zubov’s

equation.23 For a survey of these methods, see Ref. 17.

Direct methods, however, are typically not efficient for

high-dimensional systems and yield conservative bounds on

the attraction basin.24,25

Basin stability b1,26,27 instead considers the probability

that a system will return to an attractor following a large,

jump-like perturbation. As other measures designed this waya)Electronic mail: pschultz@pik-potsdam.de

1054-1500/2018/28(4)/043102/8/$30.00 Published by AIP Publishing.28, 043102-1

CHAOS 28, 043102 (2018)

https://doi.org/10.1063/1.5013127
https://doi.org/10.1063/1.5013127
https://doi.org/10.1063/1.5013127
mailto:pschultz@pik-potsdam.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5013127&domain=pdf&date_stamp=2018-04-04


(e.g., Refs. 28 and 29), it has the advantage of allowing for

efficient estimators by sampling the phase space and the tra-

jectories directly. These estimators have a sampling error

that is independent of the system dimension. Thus b can be

efficiently evaluated for high-dimensional systems and for

dynamics where no analytic Lyapunov functions are

known.26

In this paper, we study the behaviour of systems under

repeated large perturbations. We answer the question of how

rare perturbations need to be for basin stability to predict its

probability to remain in the basin indefinitely.

To do so, we introduce the notion of the independence

time of a system subject to a random perturbation. This cap-

tures the time the system takes to return to the attractor fol-

lowing a perturbation. An inescapable problem when

studying the return of a system to an attractor lies in the fact

that this return typically takes infinitely long and requires

regularisation.30,31 Here we make use of the repeated pertur-

bations to provide us with a meaningful regulator. We con-

sider the system to have returned if the dynamics have

erased the memory of the previous perturbation. More for-

mally, the system has returned if its distribution following a

perturbation is approximately equal to its distribution after a

perturbation centered on the attractor. If this is the case, the

states after subsequent perturbations, considered as random

variables, are approximately statistically independent, and

the probability to exit the basin factorizes.

To efficiently evaluate the independence time, we intro-

duce the notion of finite-time basin stability bðTÞ. This is a

finite-time horizon version of basin stability, corresponding

to the probability that a system has returned to the attractor

(according to a chosen criterion) in time T. By combining

this with the return criterion required for independence time,

we can give a lower bound for the independence time as the

time when the finite-time basin stability approaches its

asymptotic value. Furthermore, this enables us to derive an

efficient estimator for a lower bound on the independence

time for high-dimensional systems.

Given a set of perturbations that occur less frequently

than the independence time, the probability to exit the basin

of attraction is simply given in terms of the basin stability

and the frequency of perturbations. This is particularly of

interest if the asymptotic basin stability is close to unity for a

given set of perturbations. Then, the independence time is

the time interval that has to pass between perturbations to

ensure that a sequence of such perturbations cannot destabi-

lise the system.

II. DEFINITIONS

A. The system

We will consider an autonomous multi-stable dynamical

system for which we can describe the dynamical evolution

with a system of first-order ordinary differential equations, i.e.,

_x ¼ f xð Þ ; (1)

with states x living in a phase space X � Rn. We are inter-

ested in the case that the system has at least one stable fixed

point, which, without loss of generality, we assume to be at

the origin x� ¼ 0, such that f ðx�Þ ¼ 0. We denote the basin

of attraction of the origin as B � X. Accordingly, the basin
stability1 of the fixed point x* with respect to a probability

density q of perturbations is given by

b :¼
ð
X

1B xð Þq xð Þ dx; b 2 ð0; 1Þ : (2)

b corresponds to the probability that the system—

initially at x*—returns to the fixed point for a perturbation

drawn from q. It is proportional to the basin volume if q is

chosen as a uniform probability density with large enough

support.

We now subject the system of Eq. (1) to a possibly infi-

nite sequence of jump perturbations, with magnitude Dxi

drawn at random from a probability density qðDxÞ and start-

ing at time t¼ 0. We do not further specify the discrete times

ti at which these perturbations occur, i.e., perturbations might

appear regularly or according to some distribution. The mini-

mum difference between subsequent perturbations will be

denoted by Dt ¼ miniðti � tiþ1Þ. Initialising the system at the

attractor, this setup leads to the stochastic integral equation

xðtÞ ¼
ðt

0

dt0f x t0ð Þ½ � þ
ðt

0

dt0
X1
i¼0

Dxid t0 � tið Þ : (3)

For convenience, we introduce the number of jumps n(t)
that have happened at a time t

nðtÞ ¼
ðt

0

dt
X1
i¼0

d t� tið Þ : (4)

We will be concerned with the remain probability

Premain t; xð0Þð Þ :¼ P 8 0 � t0 � t : x t0ð Þ 2 B
� �

: (5)

That is, the probability for the system to continuously remain

within the basin of attraction. This is the cumulative proba-

bility of the complement of the distribution of the time of the

first exit from the basin pfeðtÞ of the system

Premain t; xð0Þð Þ ¼ 1�
ðt

0

pfeðt0Þdt0 : (6)

Hence, all information about the exit times, including

escape rates, is captured by it.

If the jumps in the system are sufficiently rare, we

expect that the probability for a solution xðt0Þ to Eq. (3) to

continuously remain in the basin of attraction up to time t to

be given by

Premain t; xð0Þð Þ � bnðtÞ ; (7)

that is, every perturbation counted by n(t) has an equal and

constant probability to leave the system within the basin of

attraction (or for pushing it out).

In Sec. III, we will quantify what sufficiently rare means

to achieve such a formula. Before, as an additional prerequi-

site, we turn to the definition of finite-time basin stability.
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B. Finite-time basin stability

Our analysis is based on the return times of perturbed

states within the basin of attraction B to the original attractor,

i.e., to the fixed point x*, defined through a time-tracking

Lyapunov function. A Lyapunov function is a function V(x)

with negative orbital derivative, i.e., it decreases along tra-

jectories of Eq. (1) and has a minimum or diverges to �1 at

the fixed point x*.11,15,16 Further, the fixed point is the only

point in the basin for which it is minimal or negatively diver-

gent. Given that such a function exists and f(x) is sufficiently

smooth, x* is asymptotically stable. A time-tracking
Lyapunov function V is defined on B and satisfies the differ-

ential equation

d

dt
V xðtÞð Þ ¼ �1 ; (8)

i.e., it strictly decreases along any trajectory of Eq. (3). It is

straightforward to see that the values of such Lyapunov func-

tions track the time. If x(t) and xðt0Þ are two points on the

same trajectory, then by integrating the defining equation

above we have

V xðtÞð Þ � V xðt0Þ
� �

¼ t� t0 : (9)

To fully determine such a Lyapunov function we need

to specify boundary conditions on a transverse surface S
(more precisely we require the surface to be non-

characteristic, see, e.g., Ref. 22). If we set V(S)¼ 0, the time-

tracking Lyapunov function measures how long it has been

since, or will be until the system crosses the surface S. We

denote this Lyapunov function as VS. We further assume that

S lies in B entirely and set VSðxÞ ¼ 1 for states x 2 XnB out-

side the basin of attraction.

The set S defines our return condition and the finite-time
basin stability, given q and S, is defined as

bSðTÞ :¼
ð
X

1B xð ÞH T � VSðxÞð Þq xð Þ dx 2 ð0; 1Þ : (10)

H denotes the Heaviside step-function. This is the prob-

ability that a trajectory, following a perturbation drawn from

qðxÞ, will return to within S around the attractor x� ¼ 0

within time T. For well-behaved vector fields f(x), one

expects that limT!1 bSðTÞ ¼ b. Note that the latter does not

assume S to be small but holds for all S 2 B even if they

enclose almost the whole basin.

III. APPROXIMATE INDEPENDENCE OF POST-
PERTURBATION STATES

We now turn to the key question: When do we consider
the system to have returned? As noted above, we want

“returned” to imply that, from the current position, the state

following a perturbation of the system is statistically inde-

pendent of the state after the preceding perturbation.

Therefore, we will consider the shifted perturbation dis-

tributions. Let us define a distance function iðx; x0Þ on the

phase space as the L1 norm of the difference of the shifted
probability distributions qxð	Þ ¼ qð	 � xÞ

i x; x0ð Þ ¼
ð
X

jqx uð Þ � qx0 uð Þjdu : (11)

This is visualised in Fig. 1, where the distance between

x and the fixed point x* is given by iðx; x�Þ as indicated by

the shaded area. Note that for an arbitrary state vector y,

iðy; xÞ is a subadditive, symmetric, non-negative function of

x and vanishes for x¼ y; hence, it is a pseudometric on X.

We will use the shorthand iðxÞ ¼ iðx; x�Þ for the distance to

the fixed point.

The expectation value of some observable vðxÞ satisfy-

ing jvðxÞj � 1 with respect to the two distributions q and qx

differs at most by iðxÞ����
ð
X

v uð Þq uð Þ du�
ð
X

v uð Þqx uð Þ du

����
�
ð
X

jv uð Þjjq uð Þ � qx uð Þj du

�
ð
X

jq uð Þ � qx uð Þj du ¼ i xð Þ: (12)

The probability to remain in the fixed point’s basin of

attraction after a perturbation originating at x is given by the

basin stability bx of the shifted probability density qx

bx :¼
ð
X

1B uð Þqx uð Þ du 2 ½0; 1�: (13)

Both basin stability and finite-time basin stability are

defined as the expectation value of the basin indicator func-

tion 1B. Thus, in particular, we have that

jb� bxj � i xð Þ and jb Tð Þ � bxðTÞj � i xð Þ : (14)

For a system Eq. (3) at a jump event ti, the distribution

of the state after the perturbation, which we denote xðtþi Þ,
given the state before the jump xðt�i Þ is given by qxðt�i Þ. Thus

the difference in the probability to exit the basin from xðt�i Þ
as opposed to x� is bounded by iðxðt�i ÞÞ. The distance to the

attractor in our metric i is a meaningful measure for the

return to the attractor. If it is small, the distribution after two

different jump events, ti and tj, is similar, and the jumps are

approximately independent in the sense we require.

FIG. 1. Schematic representation of iðx; x�Þ: Imagine a one-dimensional sys-

tem Eq. (1) with a fixed point x*. The difference between the probability

density q centred at x* and the shifted density qx is then given by iðx; x�Þ
(shaded green area) as defined in Eq. (11).
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IV. INDEPENDENCE TIMES

To illustrate how independence can fail, consider Fig.

2(a). The figure shows the phase space of a damped driven

pendulum, described by phase and frequency x ¼ ð/;xÞ.
The shaded region is the basin of attraction of the fixed point

x* at the origin. The shown trajectory is an example realisa-

tion of the deterministic dynamics being subject to jump per-

turbations [Eq. (3)] with Dt chosen to be comparatively

short. The perturbations are bounded in size, and the basin

stability of the system is one. However, as they occur fre-

quently, the system has no time to return to the attractor,

leading to an eventual escape from the basin. After several

jumps, bx starts being considerably smaller than b.

We can now combine the concepts introduced above to

define a time that has to pass between subsequent perturba-

tions, in order to prevent such a buildup.

For our definition of finite-time basin stability [cf. Eq.

(10)], we have to specify a transverse surface S for the time-

tracking Lyapunov function VS. In particular, given an � > 0,

we choose S such that iðxÞ < � for all x enclosed by S.

Perturbations starting from the interior of S are almost identi-

cal, with a deviation bounded by �.
The fact that S is transverse, and its interior points sat-

isfy iðxÞ < �, means that after the system enters S, iðxðtÞÞ
will never be larger than � in the future.

Now given a threshold d> 0, we define the indepen-
dence time of a dynamical system as the time Tindð�; dÞ such

that

Tind �; dð Þ :¼ inf T > 0j b� bS Tð Þ � d
� �

: (15)

That this time scale accurately quantifies independence

of subsequent perturbations for system Eq. (3) is shown by

the following result.

A. Main result

Given a sequence of perturbations drawn from q,

occurring at times ti with minimum interval Dt larger than

the independence time Dt > Tindð�; dÞ, the probability to

remain within the basin of attraction, given that xð0Þ 2 S, is

bounded by

Premain t; xð0Þð Þ 
 b� d� �ð ÞnðtÞ (16)

for all times t> 0.

To show this, let us consider the perturbed system Eq.

(3). At each jump event ti, the conditional probability to not
exit the basin of attraction is given by the shifted basin sta-

bility evaluated at the left limit xi of the trajectory before the

jump

P xðtþi Þ 2 Bj xðt�i Þ ¼ xi 2 B
� �

¼ bxi
; (17)

where tþi and t�i denote the right, respectively, left limit of t
to the jump time ti. Therefore, if we ensure that bxi

is close

to b, we will also ensure that the perturbations are indepen-

dent of each other in the sense we defined above.

Now given that the process is in S before the jump at ti,
we want to understand what the probability is that it will

return to S before the next jump at ti. If we started at the

attractor rather than in S, this would be given by bðDtÞ. The

probability with respect to the shifted probability density

thus differs from this at most by �. Assuming further that Dt
is larger than the independence time Tind, Eq. (15) yields the

lower bound

P xðt�i Þ 2 S j xðt�i�1Þ 2 S
� �


 b Dtð Þ � �

 b� d� � : (18)

Thus, for a sequence of consecutive jumps counted by

nðtÞ, we find

Premain t; xð0Þð Þ 

YnðtÞ
i¼1

P xðt�i Þ 2 S jxðt�i�1Þ 2 S
� �



YnðtÞ
i¼1

b� d� �

¼ b� d� �ð ÞnðtÞ : (19)

The above formula applies as soon as the system enters

the region bounded by S once. Hence, if the stochastic pro-

cess conditioned on staying in the basin of attraction has

probability 1 of hitting S, Eq. (16) will also be the asymptotic

form of the remain probability. Note also that the remain

probability considers entire trajectories in the basin, not the

probability to return there after having left.

The bound is necessarily not tight as it only considers

trajectories that remain in the basin by returning to within S
before the next perturbation. We expect that for indepen-

dence times corresponding to small d, this will be the domi-

nant mechanism. For smaller times, there will be a non-

negligible contribution to the remain probability from jumps

that cancel each other out.

V. A PRACTICAL ESTIMATOR

The above arguments establish a lower bound for the

remain probability, but they do not provide an effective way

to evaluate the quantities involved. The main difficulty in con-

structing an efficient estimator lies in evaluating the metric

iðxÞ and constructing a transverse return surface S given an �.

FIG. 2. (a) Example realisation of a swing equation [Eq. (27)] describing the

evolution of phase / and frequency x dynamics of damped driven pendu-

lum, discussed further in Sec. VI, subject to frequent, bounded jumps. The

jump intervals are chosen to be comparatively short (T¼ 0.1); hence, the tra-

jectory quickly escapes the corresponding basin of attraction (orange area).

(b) Schematic picture of the basin of attraction B with boundary @B of the

fixed point x* in a phase space X, visualising the relation of the sets U� and

S� defined in Sec. V. In a multistable system, trajectories either approach the

fixed point or other attractors, for instance, a limit cycle c.
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This problem simplifies considerably in the important special

case that � is chosen small enough that we only need to evalu-

ate iðxÞ close to the attractor. We now give an explicit formula

based on the linearised dynamics for this case.

First let us consider iðxÞ. We Taylor expand q around

the origin to first order, and we find

i xð Þ ’ jjxjj
ð
X

jjrq x0ð Þjjdx0 ¼ jjxjj
Cq

; (20)

defining a constant Cq which is independent of the dynamics.

It can be evaluated analytically for some common q, like

uniform or Gaussian distributions, and numerically in

general.

Thus, all points inside the sphere U� ¼ fxj jj xjj ¼ �Cqg
satisfy iðxÞ � �. This sphere might not be transverse; hence,

we are looking for a transverse surface S� of the time-

tracking Lyapunov function entirely contained within U�.

This is schematically illustrated in Fig. 2(b), where the rela-

tion between U� and S� is indicated for a fictional multistable

system with a fixed point x* and corresponding basin B.

As we are in a neighbourhood of the fixed point, we can

consider the linearised system associated with Eq. (1) given by

_xðtÞ ¼ JxðtÞ : (21)

If the Jacobian matrix J is symmetric, then U� is trans-

verse; we can choose S� ¼ U� and are done. To account for

the general case, we can make use of quadratic Lyapunov

functions WðxÞ ¼ x†Lx for the linear system Eq. (21), satis-

fying _WðxÞ ¼ x†Qx with Q symmetric and negative definite.

Given J and a choice of Q, we can find a Lyapunov function

by solving the matrix equation

J†Lþ LJ ¼ Q : (22)

To find the maximum j xj reached on the level set of

WðxÞ, we differentiate x2 in the direction parallel to the level

set and look for extrema. Take a derivative @v ¼ v 	 @. Then

we require @vWðxÞ ¼ 0 for the derivative to be tangential to

the level set. An extremum on the level set thus satisfies the

following set of equations:

@vx
2 ¼ 2v†x ¼ 0

8v; s:t: : v†Lxþ x†Lv ¼ 2v†Lx ¼ 0 ; (23)

where we have used that L is symmetric. We immediately

see that for L¼ 1, when our level sets are spheres, every

point is an extremum. In general, it follows that as x is

orthogonal to all v, and the v span the space orthogonal to

Lx, x and Lx need to be parallel. Thus, the extrema are in the

eigendirections of L. The maximum x2
max for a given level set

is achieved in the eigendirection to the smallest eigenvalue

k; thus, the level set value is given by WðxmaxÞ ¼ kx†
maxxmax

¼ k½CqiðxmaxÞ�2. The largest level set contained in U� is thus

given by x†Lx ¼ kð�CqÞ2.

Therefore, the transverse surface S� is defined as

S� ¼ xj x†Lx ¼ kð�CqÞ2
n o

: (24)

The fact that we have L on the left and k on the right

shows that this relation does not depend on an overall scaling

factor of the Lyapunov function. To make S� as large as pos-

sible, we want to make the ratios of the smallest eigenvalue

of L to the other ones, ki

k , small. We leave the question, how

to choose Q such as to achieve this, open.

While direct Monte Carlo estimation of finite-time basin

stability with the specified S� will lead to a valid indepen-

dence time, the surface chosen will typically be far from

optimal. The optimal surface Sopt
� can be defined by taking

the surface S� and evolving every point on it backwards in

time until its i distance to the attractor crosses �.
While this surface cannot be constructed explicitly in

general, if iðxÞ can be evaluated efficiently, we can evaluate

the finite-time basin stability with respect to Sopt
� by back-

tracking along the trajectories. In practice this means we start

by generating trajectories that run until they hit S�, guaran-

teeing that the iðxÞ will never grow larger than � again at

later times, and then backtracking along the trajectory to find

the first time where iðxÞ > �.

VI. A CONCRETE EXAMPLE

In the following, we demonstrate the effective estimator

for independence times, as well as the main result on remain

probabilities, in a benchmark dynamical system.

For higher-dimensional systems, evaluating the

Lyapunov function explicitly is not feasible. However, a

sampling-based approach, analogous to basin stability esti-

mations (e.g., Ref. 1), can be applied here.

The Monte-Carlo sampling procedure is as follows:

• Given a distribution q and a tolerance �, determine S�, for

instance, using the method described in Sec. V.
• Sampling iteration:

1. Draw a random initial condition from qx� centred at the

fixed point.

2. Integrate the unperturbed system [Eq. (1)] until either it

reaches S� or a cutoff time Tc is reached. If it crosses

S�, record the time at which it does.

3. (optional) Backtrack along the trajectory to record the

time at which iðxÞ last crosses �.
The sampling step should be repeated for a sufficient

ensemble of initial conditions to get significant statistics.

Denote by MT the number of trajectories returning to S�
within time T or less and by N the total number of trajecto-

ries sampled. Then, an estimator for the finite-time basin sta-

bility b̂ðTÞ for T < Tc is given by

b̂ Tð Þ ¼ MT

N
; (25)

with a standard error eb̂ðTÞ as

eb̂ Tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂ Tð Þ 1� b̂ Tð Þ

� �
N

s
; (26)

since for a fixed T we can regard this as a Bernoulli experi-

ment, because trajectories either return or not. Note that if
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b̂ðTÞ � 1 or b̂ðTÞ � 0, more robust estimators are

available.32

Note that while the error decreases with the number of

samples and does not depend on the dimensionality of the

system, the time taken to evaluate a sample does depend on

the system dimension at least linearly.

We will illustrate the numerical procedure by using the

damped-driven pendulum as a benchmark system

_/ ¼ x

_x ¼ p� ax� k sin /þ arcsin
p

k

� 	
;

(27)

with p¼ 1, a ¼ 0:1, and k¼ 8. For this set of parameters, the

system has two attractors, namely, a limit cycle and a fixed

point x� ¼ ð/�;x�Þ ¼ ð0; 0Þ at the origin.33

For illustrative purposes, we choose a distribution qðxÞ
to draw uniformly distributed perturbations at a point x
¼ ð/;xÞ from the box Rð/;xÞ ¼ ½/� p=3; /þ p=3� � ½x
�5; xþ 5�. This way, R is almost entirely overlapping with

the bulk of the basin of attraction of x* [cf. Fig. 2(a) for a

schematic], such that we can expect b to be close to 1. Still,

as we will see below, bðTÞ can deviate strongly from b, espe-

cially for small T. To ensure sufficient statistics, we use a

sample size of N¼ 20 000 points.

For this specific choice of q, we determine S� using Eq.

(24) to be

S� ¼ fxj x†L0x ¼ �2g; (28)

where L0 ¼ L
kC2

q
is given by

L0 ¼ 5:95152498 0:00838866

0:00838866 0:74971598

� 	
: (29)

Figure 3(a) summarises the results for the system Eq.

(27). The horizontal blue line denotes the basin stability esti-

mation b̂ ¼ 0:987360:0025 which is close to one as

expected due to our choice of R. Indeed, beyond a certain

time scale that depends on �, we observe that the finite-time

basin stability curves approach the value of b̂. From these

points, we estimate the independence times T̂ indð�; dÞ
depicted in Fig. 3(b) using Eq. (15). As indicated by Fig.

3(b), our results suggest that there is no significant depen-

dence on the tolerance parameter d for this particular system.

Apparently, there is a rather sudden transition towards the

value of b̂ that cannot be resolved by the numerical differ-

ences of T-values. The crucial parameter here is � determin-

ing the extent of the return set S�. The logarithmic scale in

Fig. 3(b) underlines that the independence time depends

exponentially on the tolerance � as the corresponding S� enc-

loses the asymptotically stable fixed point x* even closer.

Hence, the scaling T̂ indð�; dÞ � ek� seems to be determined

by the real part k ¼ �0:05 of the two conjugate Jacobian

eigenvalues of Eq. (27) linearised at x*. This is indicated by

the solid black line in Fig. 3(b) which has a slope of k.

For comparison, Fig. 3(a) also depicts estimated bðTÞ
curves for the simulation of a high-dimensional system,

namely, the Scandinavian power grid. The model details are

outlined in Appendix A, see also the discussion in Hellmann

et al.29 The dynamical system resembles a network of second-

order Kuramoto oscillators34 [Eq. (A1)], analogous to the

damped-driven pendulum in Eq. (27). Our numerical approach

is as follows. First, we determine the synchronous phases [cor-

responding to a fixed point x* of Eq. (A1)] numerically and

transform the coordinates such that x* is at the origin. We

again choose a uniform distribution q, now with support

Rð/;xÞ ¼ ½/� 0:1; /þ 0:1� � ½x� 0:1; xþ 0:1�, encod-

ing finite perturbations in any direction. This time, we

resort to step 3 of the sampling iteration and evaluate

i directly along every trajectory to determine the return

time to U�. Note that this corresponds to calculate the over-

lap of two shifted hypercubes. We observe that the asymp-

totic basin stability b is estimated to b̂ ¼ 0:430 6 0:007 for

the above choice of R. Besides that, the estimated bðTÞ
curves of the high-dimensional system are qualitatively

similar to the single pendulum. For smaller return sets, e.g.,

� ¼ 10�6, there is further structure immanent to the bðTÞ
curve in the form of several plateaus for large return times.

They correspond to steep transitions between the return

times from different sets of initial conditions. Whether

these features depend on the system size and how they

relate to the network structure need to be further investi-

gated in the future. Nevertheless, this example shows that

the applicability of our approach is not restricted to low-

dimensional systems. As we observed no qualitative differ-

ences between the model results, we however base the fol-

lowing discussion on the less complex pendulum model.

FIG. 3. (a) Estimated finite time basin stability b̂ðTÞ curves [Eq. (10)] for

selected �, simulated both for the pendulum model [Eq. (27)] and the

Scandinavian power grid (prefix “Sc.,” see also Appendix A). The value of �
is indicated in the legend. The solid blue lines give the respective basin sta-

bility [Eq. (2)] estimations b̂. (b) The independence time Tind for various d
as a function of � for the example of the pendulum model [Eq. (27)].
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We can now illustrate our result Eq. (16) for the proba-

bility to remain within the basin of attraction up to a certain

time, given that we start in S� near the origin. For this, we

simulate an ensemble of random processes by adding a jump

process to the dynamics Eq. (27) [cf. Eq. (3)]. Explicitly, we

choose 100 different time intervals T between 10 and 400

time units such that after each interval a deviation is ran-

domly selected according to a uniform distribution qx0 cen-

tred at the current state x0 with a shifted domain R as above.

For each choice of T, we estimate the escape time distribu-

tion by recording the first time a trajectory jumps outside the

origin’s basin of attraction using an ensemble size of

N¼ 1000 trajectories. Denoting the number of trajectories

with an escape time larger than t by N>ðtÞ, we estimate the

remain probability as P̂remain ¼ N>ðtÞ=N. Then rewriting Eq.

(16) as a per jump probability yields the following relation:

p tð Þ ¼ P̂
1

n tð Þ
remain 
 b̂ � �� d ; (30)

which we expect to hold if T is larger than the corresponding

independence time. For the system Eq. (27), the indepen-

dence time for � ¼ 10�1 is given by �60, and for � ¼ 10�2 it

is �100. We see in Fig. 4 that perturbations spaced 60 apart

cannot destabilise the system at a rate greater than (b� 0:1),

and after T¼ 100 we are within 0.01 of the basin stability

asymptotic estimate (and thus close to its sampling error), as

predicted. Further, by plotting the lower bound (for fixed

d ¼ 10�8) as a function of the independence time it is associ-

ated with, we see that our bound is satisfied across all times.

VII. DISCUSSION

Just as for asymptotic basin stability, finite-time basin

stability admits a simple and efficient sampling-based esti-

mator that works for systems with a high number of dimen-

sions. If the asymptotic basin stability is equal to one, this

allows us to effectively guarantee, up to specified errors, that

perturbations that occur at least the independence time apart

cannot destabilise a system. We expect there to be a wide

array of applications to the question, how rare large events

have to be to not destabilise the system, which we intend to

explore in future work.

We have also seen that the lower bound for which we

developed the estimator is not sharp. This is entirely due to

the estimate in Eq. (14), which bounds the shifted basin sta-

bility through the distance measure i. One challenge for

future work is to develop and prove an effective estimator

that can sidestep the use of i and directly assess the escape

probability.

More generally, we see under which conditions basin

stability can be seen as the remain probability in the basin of

attraction for systems subject to rare, strong events. Given

the frequency of perturbations, basin stability completely

determines the escape rate from the basin in this case.

One interesting analogue to our work is the study of the

exit time distribution for basin escapes in systems subject to

Levy noise.35,36 The type of stochastic process studied here,

deterministic with interspersed jumps, can be used to approx-

imate such L�evy processes in some asymptotic regime.37–39

We expect that the results of this paper can be used to

develop estimators that can quantify when this asymptotic

regime is reached. Consequently, it should lead to more effi-

cient ways to perform an analysis as in Ref. 36.

An open question for future work is to extend the

notions discussed here to non-fixed point attractors. The

main challenge here will lie in building a practical estimator

that works.
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FIG. 4. In both figures, the horizontal blue line shows the estimate for the

basin stability, and the shading indicates one standard error. (a) The solid

line is the numerically determined asymptotic remain probability per jump

event, limt!1 pðtÞ for perturbations that are at least T apart, and the dashed-

dotted line shows the lower bound b� �ðTindÞ � d associated with an inde-

pendence time Tind, with d ¼ 10�8. The function �ðTindÞ is the inverse of the

estimated T̂ indð�; dÞ at fixed d. As the dependence on d is negligible [Fig.

3(b)], we only depict the bound for d ¼ 10�8. (b) The picture shows the

remain probability p(t) as a function of time t given a particular perturbation

interval T. Each curve corresponds to the fraction of trajectories that remain

in the basin, perturbed at an interval T which is indicated by the color pro-

gressing from grey to orange.
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APPENDIX A: THE SCANDINAVIAN POWER GRID
MODEL

The Scandinavian dataset has been originally published

in Menck et al.8 The (extra-)high voltage network contains

n¼ 236 nodes (plants, substations) and 320 links (transmis-

sion lines) which corresponds to an average node degree �k of
�k ¼ 2:7, characterising the sparse network structure.40

Commonly, the synchronisation dynamics are modelled by a

network of coupled second-order Kuramoto oscillators34

characterised by their phase hk and instantaneous frequency

xk. The fixed point is shifted to the origin by defining the

phases relative to x� ¼ ð/�1;…;/�n;x
�
1;…;x�nÞ.

The dynamical system reads

_hk ¼ xk

_xk ¼ Pk � axk �
Xn

j¼1

Akj sin hk þ /�k � hj � /�j
� �

:
(A1)

Here, each node represents a region of net power input

(positive natural frequency Pk¼ 1) or net consumption

(Pk ¼ �1). The input powers are randomly assigned to the

nodes. The network topology is encoded by a weighted adja-

cency matrix with entries Akj according to the transmission

capacities. The link weights are functions of the link length;

in our dimensionless units their average is hAkjikj ¼ 6. The

damping parameter a is taken to be a ¼ 0:1.

1P. J. Menck, J. Heitzig, N. Marwan, and J. Kurths, “How basin stability

complements the linear-stability paradigm,” Nat. Phys. 9, 89–92 (2013).
2J. G�omez-Garde~nes, S. G�omez, A. Arenas, and Y. Moreno, “Explosive

synchronization transitions in scale-free networks,” Phys. Rev. Lett. 106,

128701 (2011).
3X. Zhang, X. Hu, J. Kurths, and Z. Liu, “Explosive synchronization in a

general complex network,” Phys. Rev. E 88, 010802(R) (2013).
4X. Zhang, A. Pikovsky, and Z. Liu, “Dynamics of oscillators globally cou-

pled via two mean fields,” Sci. Rep. 7, 2104 (2017).
5A. Bashan, R. P. Bartsch, J. W. Kantelhardt, S. Havlin, and P. C. Ivanov,

“Network physiology reveals relations between network topology and

physiological function,” Nat. Commun. 3, 702 (2012).
6R. P. Bartsch, K. K. L. Liu, A. Bashan, and P. C. Ivanov, “Network physi-

ology: How organ systems dynamically interact,” PLoS One 10, e0142143

(2015).
7K. K. L. Liu, R. P. Bartsch, A. Lin, R. N. Mantegna, and P. C. Ivanov,

“Plasticity of brain wave network interactions and evolution across physio-

logic states,” Front. Neural Circuits 9, 62 (2015).
8P. J. Menck, J. Heitzig, J. Kurths, and H.-J. Schellnhuber, “How dead ends

undermine power grid stability,” Nat. Commun. 5, 3969 (2014).
9K. Schmietendorf, J. Peinke, R. Friedrich, and O. Kamps, “Self-organized

synchronization and voltage stability in networks of synchronous

machines,” Eur. Phys. J.: Spec. Top. 223(12), 1–9 (2014).
10H. Kim, S. H. Lee, and P. Holme, “Building blocks of the basin stability of

power grids,” Phys. Rev. E 93, 062318 (2016).
11A. M. Lyapunov, “Problème G�en�eral de la Stabilit�e du Mouvement,” Ann.

Fac. Sci. Toulouse: Math. 2, 203–474 (1907).
12D. A. Wiley, S. H. Strogatz, and M. Girvan, “The size of the sync basin,”

Chaos 16, 015103 (2006).
13V. V. Klinshov, V. I. Nekorkin, and J. Kurths, “Stability threshold

approach for complex dynamical systems,” New J. Phys. 18, 013004

(2015).

14C. Mitra, J. Kurths, and R. V. Donner, “An integrative quantifier of multi-

stability in complex systems based on ecological resilience,” Sci. Rep. 5,

16196 (2015).
15W. Hahn, “€Uber die Anwendung der Methode von Ljapunov auf

Differenzengleichungen,” Math. Ann. 136, 430–441 (1958).
16M. Malisoff and F. Mazenc, Constructions of Strict Lyapunov Functions,

Communications and Control Engineering, 1st ed. (Springer, London,

2009), p. XVI, 386.
17P. Giesl and S. Hafstein, “Review on computational methods for

Lyapunov functions,” Discrete Contin. Dyn. Syst., Ser. B 20, 2291–2331

(2015).
18R. Graham and T. T�el, “Existence of a potential for dissipative dynamical

systems,” Phys. Rev. Lett. 52, 9–12 (1984).
19R. Graham, A. Hamm, and T. T�el, “Nonequilibrium potentials for dynami-

cal systems with fractal attractors or repellers,” Phys. Rev. Lett. 66,

3089–3092 (1991).
20P. Parrilo, “Structured semidefinite programs and semialgebraic geometry

methods in robustness and optimization,” Ph.D. thesis (California Institute

of Technology, Pasadena, CA, 2000).
21S. Hafstein, “A constructive converse Lyapunov theorem on exponential

stability,” Discrete Contin. Dyn. Syst. 10, 657–678 (2004).
22P. Giesl, Construction of Global Lyapunov Functions Using Radial Basis

Functions, Lecture Notes in Mathematics Vol. 1904 (Springer, Berlin,

2007).
23F. Camilli, L. Gr€une, and F. Wirth, “A generalization of Zubov’s method

to perturbed systems,” SIAM J. Control Optim. 40, 496–515 (2001).
24H.-D. Chiang, Direct Methods for Stability Analysis of Electric Power

Systems (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2010).
25A. Gajduk, M. Todorovski, and L. Kocarev, “Stability of power grids: An

overview,” Eur. Phys. J.: Spec. Top. 223, 2387–2409 (2014).
26P. Schultz, P. J. Menck, J. Heitzig, and J. Kurths, “Potentials and limits to

basin stability estimation,” New J. Phys. 19, 023005 (2017).
27C. Mitra, A. Choudhary, S. Sinha, J. Kurths, and R. V. Donner, “Multiple-

node basin stability in complex dynamical networks,” Phys. Rev. E 95,

032317 (2017).
28G. Rega and S. Lenci, “Identifying, evaluating, and controlling dynamical

integrity measures in non-linear mechanical oscillators,” Nonlinear Anal.:

Theory, Methods Appl. 63, 902–914 (2005).
29F. Hellmann, P. Schultz, C. Grabow, J. Heitzig, and J. Kurths,

“Survivability of deterministic dynamical systems,” Sci. Rep. 6, 29654

(2016).
30T. Kittel, J. Heitzig, K. Webster, and J. Kurths, “Timing of transients:

Quantifying reaching times and transient behavior in complex systems,”

New J. Phys. 19, 083005 (2017).
31C. Mitra, T. Kittel, A. Choudhary, J. Kurths, and R. V. Donner, “Recovery

time after localized perturbations in complex dynamical networks,” New

J. Phys. 19, 103004 (2017).
32A. Agresti and B. A. Coull, “Approximate is better than “exact” for inter-

val estimation of binomial proportion,” Am. Stat. 52, 119–126 (1998).
33Note that we applied a phase shift of arcsinðp=kÞ to set the fix point to the

origin.
34F. A. Rodrigues, T. K. D. Peron, P. Ji, and J. Kurths, “The Kuramoto

model in complex networks,” Phys. Rep. 610, 1–98 (2016).
35L. Serdukova, Y. Zheng, J. Duan, and J. Kurths, “Stochastic basins of

attraction for metastable states,” Chaos 26, 073117 (2016).
36L. Serdukova, Y. Zheng, J. Duan, and J. Kurths, “Metastability for discon-

tinuous dynamical systems under L�evy noise: Case study on Amazonian

vegetation,” Sci. Rep. 7, 9336 (2017).
37P. Imkeller and I. Pavlyukevich, “L�evy flights: Transitions and meta-

stability,” J. Phys. A: Math. Gen. 39, L237–L246 (2006).
38I. Pavlyukevich, “L�evy flights, non-local search and simulated annealing,”

J. Comput. Phys. 226, 1830–1844 (2007).
39I. Pavlyukevich, “Cooling down L�evy flights,” J. Phys. A: Math. Theor.

40, 12299–12313 (2007).
40P. Schultz, J. Heitzig, and J. Kurths, “A random growth model for power

grids and other spatially embedded infrastructure networks,” Eur. Phys. J.:

Spec. Top. 223, 2593–2610 (2014).

043102-8 Schultz et al. Chaos 28, 043102 (2018)

https://doi.org/10.1038/nphys2516
https://doi.org/10.1103/PhysRevLett.106.128701
https://doi.org/10.1103/PhysRevE.88.010802
https://doi.org/10.1038/s41598-017-02283-1
https://doi.org/10.1038/ncomms1705
https://doi.org/10.1371/journal.pone.0142143
https://doi.org/10.3389/fncir.2015.00062
https://doi.org/10.1038/ncomms4969
https://doi.org/10.1103/PhysRevE.93.062318
https://doi.org/10.5802/afst.246
https://doi.org/10.5802/afst.246
https://doi.org/10.1063/1.2165594
https://doi.org/10.1088/1367-2630/18/1/013004
https://doi.org/10.1038/srep16196
https://doi.org/10.1007/BF01347793
https://doi.org/10.3934/dcdsb.2015.20.2291
https://doi.org/10.1103/PhysRevLett.52.9
https://doi.org/10.1103/PhysRevLett.66.3089
https://doi.org/10.3934/dcds.2004.10.657
https://doi.org/10.1137/S036301299936316X
https://doi.org/10.1140/epjst/e2014-02212-1
https://doi.org/10.1088/1367-2630/aa5a7b
https://doi.org/10.1103/PhysRevE.95.032317
https://doi.org/10.1016/j.na.2005.01.084
https://doi.org/10.1016/j.na.2005.01.084
https://doi.org/10.1038/srep29654
https://doi.org/10.1088/1367-2630/aa7b61
https://doi.org/10.1088/1367-2630/aa7fab
https://doi.org/10.1088/1367-2630/aa7fab
https://doi.org/10.2307/2685469
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1063/1.4959146
https://doi.org/10.1038/s41598-017-07686-8
https://doi.org/10.1088/0305-4470/39/15/L01
https://doi.org/10.1016/j.jcp.2007.06.008
https://doi.org/10.1088/1751-8113/40/41/003
https://doi.org/10.1140/epjst/e2014-02279-6
https://doi.org/10.1140/epjst/e2014-02279-6

	s1
	l
	n1
	s2
	s2A
	d1
	d2
	d3
	d4
	d5
	d6
	d7
	s2B
	d8
	d9
	d10
	s3
	d11
	d12
	d13
	d14
	f1
	s4
	d15
	s4A
	d16
	d17
	d18
	d19
	s5
	f2
	d20
	d21
	d22
	d23
	d24
	s6
	d25
	d26
	d27
	d28
	d29
	f3
	d30
	s7
	f4
	app1
	dA1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40

