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ABSTRACT 

Inflammatory bowel disease (IBD) describes chronic relapsing remitting inflammation of the 

gastrointestinal tract including ulcerative colitis and Crohn’s disease. The prevalence of IBD is 

rising across the globe. Despite a growing therapeutic arsenal, current medical treatments 

are not universally effective, do not induce lasting remission in all, or are accompanied by 

short and long-term adverse effects. Therefore, there is a clinical need for novel therapeutic 

strategies for IBD. Current treatments for IBD mainly manipulate the immune system for 

therapeutic gain by inhibiting pro-inflammatory activity. There is a robust endogenous 

immunoregulatory capacity within the repertoire of both innate and adaptive immune 

responses. An alternative treatment strategy for IBD is to hijack and bolster this endogenous 

capability for therapeutic gain. This review explores this hypothesis and presents current 

evidence for this therapeutic direction in immune cell function, cytokine biology, and 

alternative mechanisms of immunoregulation such as microRNA, oligonucleotides and the 

endocannabinoid system. 

 

 

Keywords: Inflammatory Bowel Disease, immunoregulation, cytokine, ulcerative colitis, 

Crohn’s disease, treatment. 
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INTRODUCTION  

Inflammatory bowel disease (IBD) describes relapsing, remitting chronic inflammation 

of the gastrointestinal tract. The main phenotypes are ulcerative colitis and Crohn’s disease. 

The prevalence of IBD remains highest in Europe and the United States, and continues to rise 

across the globe.1 The aetiology of IBD is complex and involves dynamic interplay between 

genetics, the immune system and environmental exposures including intestinal microbial 

dysbiosis.1 Advances in IBD research has widened therapeutic opportunities and impacted on 

disease treatment and natural progression.  

Current treatments for IBD aim to inhibit pro-inflammatory immune responses, 

targeting both inflammatory cells and cytokines. There are several agents available to achieve 

this including steroids, thiopurines and biologic anti-tumour necrosis factor (TNF) and anti-

integrin therapies. However, not all patients are responsive to these drugs.2 There are 

emerging novel biologics for IBD for example anti-p40 biologic targeting interleukin (IL)-12 

and IL-23 offering multiple cytokine inhibition. Trials have suggested that these new biologics 

are not globally effective across all IBD patient cohorts.3 Furthermore, currently available 

drugs are associated with serious adverse side effects including susceptibility to infection, 

bone marrow suppression, liver dysfunction and increased risk of malignancy.2 Therefore, 

there is a clinical need for newer, safer treatments for IBD.  

There is a robust endogenous immunoregulatory capacity within the repertoire of 

both innate and adaptive immune responses. An alternative treatment strategy for IBD could 

be to hijack and bolster this endogenous capability for therapeutic gain. This review explores 

this hypothesis and presents current evidence for this therapeutic direction. 
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IMMUNE CELL POPULATIONS 

Regulatory T-Cells 

Regulatory T cells (Tregs) are vital contributors to immune homeostasis. There are 

various subsets of Tregs, including IL-10 producing Tr1 cells, CD4+CD25+Foxp3+ or CD4+CD25-

Foxp3+ Tregs and IL-35 producing T-cells.4 Foxp3+ Tregs include thymic-derived Tregs (for 

central tolerance) and peripheral induced CD4+ T-cells (for local tolerance). Thymic-derived 

Tregs naturally express Foxp3 and peripheral CD4+ T-cells can upregulate Foxp3 under certain 

circumstances, such as in response to pro-inflammatory cytokines.4 

In the intestine, Tregs secrete anti-inflammatory cytokines and modulate T-cell 

function to exert immunosuppressive activity. Tregs also downregulate co-stimulatory 

molecules on antigen presenting cells to maintain immune tolerance through expression of 

T-cell receptors specific for enteric flora and dietary antigens. Imbalance between Treg and 

effector T-cell populations is an important mechanism underlying IBD pathogenesis.4,5 

IBD patients in remission express more CD4+CD25high and Foxp3+ Tregs in their 

peripheral bloodstream, compared to patients with active disease.6 These cells maintain their 

suppressive role, determined by proliferative suppression of CD4+C25- T-cells, correlated with 

disease activity and CRP levels.6,7 In the gastrointestinal mucosa, patients with IBD express 

more CD4+CD25high and Foxp3+ Tregs compared to non-inflamed mucosa.6 Compared to 

normal mucosa, patients with ulcerative colitis express more Foxp3+ Tregs in their inflamed 

and non-inflamed mucosa. Expression appears predominantly in the lamina propria.8 In 

mesenteric lymph nodes of patients with ulcerative colitis, CD4+CD25+ cells express Foxp3 and 

suppress the proliferation of autologous CD4+CD25+ cells.8 Overall, IBD is associated with 

reduced peripheral and modestly increased Tregs in the colonic mucosa. Whilst many 
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questions remain unanswered in Treg biology, the question relevant to this review is potential 

promotion of the potent anti-inflammatory activity of Tregs as a therapeutic strategy for IBD.  

Promotion of the anti-inflammatory functions of Tregs can be achieved indirectly 

through multiple diverse actions and there is a broad base of investigative work in the 

literature to this effect. Intestinal dysbiosis plays a pivotal role in IBD pathogenesis.1 Indeed, 

bacterial components are important for Treg function, for example, spore-forming clusters IV 

and XIVa of the Clostridium genus promote Treg accumulation in the colons of mice.9 Hence, 

manipulation of intestinal bacteria may bolster the mucosal Treg population and promote a 

tolerogenic microenvironment. Butyrate, an energy source for colonocytes, can promote Treg 

activity and suppress serum and colonic mucosal levels of IL-17, leading to amelioration of 

TBNS-induced colitis in rats.10 Lactoferrin, an endogenous pleiotropic protein secreted at 

mucosal sites, can modulate inflammation by shifting the phenotype of CD4+ T-cells away 

from Th17 and towards Tregs.11  

Oral immune therapies introduce low dose antigens to the gut to manipulate the local 

host immune system and this strategy can preferentially expand mucosal Treg populations to 

promote oral antigenic tolerance. There have been numerous promising pre-clinical studies 

and a few clinical trials that have suggested benefit in IBD, as comprehensively reviewed 

elsewhere.12 An example of this strategy is the oral administration of non-absorbable 

autologous colonic protein-derived antigens (Alequel). This ameliorated immune-mediated 

colitis in mice and induced remission in human Crohn’s disease in phase I and II trials.13–16 The 

mechanism is not fully understood but likely involves promotion of Treg cells, upregulation of 

IL-10, and an altered CD4+/CD8+ ratio.  

Another example of enhancing Treg responses as part of a wider immunosuppressive 

repertoire is the use of anti-CD3 monoclonal antibody biologics, such as otelixizumab. The 
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mechanism of action is multifactorial, including inhibition of antigenic stimulation by 

internalisation of the CD3/TCR complex inhibiting antigenic stimulation, promotion of 

effector T cell apoptosis, and amplification of TGFβ signalling to create a tolerogenic 

microenvironment via promotion of Treg and tolerogenic dendritic cell populations.17 These 

novel biologics have been assessed in different autoimmune conditions, with particular focus 

in Type 1 diabetes mellitus. In a murine model of IBD, use of an anti-CD3 antibody attenuated 

T cell transfer-induced enterocolitis.18 These agents have been trialled in humans in both 

acute severe ulcerative colitis19–21 and Crohns disease.22 Although initial small studies were 

optimistic, larger studies showed this agent was not effective in acute severe UC and was 

associated with an unacceptable toxicity profile. Different biologics to the CD3 receptor are 

in clinical development and emerging and this is likely to continue as a future area of 

therapeutic development in IBD.  

Can we use regulatory T cells directly as a therapy? Adoptive transfer of autologous 

Tregs has emerged as another promising therapeutic avenue in IBD. This strategy of 

enhancing endogenous cell based immunoregulation has been shown to be effective in pre-

clinical models.23–28 For example, adoptive transfer of CD4+CD25+ Tregs in a T cell transfer 

model of murine IBD significantly reversed clinical and histological markers of colitis by 

migrating to the intestine, proliferating and directly interacting with effector T cells.26 

Challenges in application of this treatment to humans include in vitro cell expansion to 

achieve an effective dose, potential plasticity of the expanded cells towards a pro-

inflammatory phenotype, and ensuring an effective and consistent homing to the GI tract on 

infusion. Canavan and colleagues published data to show successful isolation, 

characterisation and expansion of a specific Treg population deemed suitable for this 
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application.29 A clinical trial (TRIBUTE) to assess these cells in human Crohn’s disease is in the 

early stages of recruitment (UK Trials Gateway; ISRCTN97547683).  

Another group reported data from a 12-week, open-label, multi-centre phase 1/2a 

clinical trial to investigate the safety and efficacy of adoptive transfer of a different Treg 

subset, namely intravenous ovalbumin-specific Tr1 Tregs in humans, expanded from 

peripheral mononuclear blood cells, in refractory Crohn’s disease.30 This treatment was 

efficacious in 40% of patients, dose-dependent (lower dose was more efficacious) and was 

well tolerated with few adverse effects. A larger multi-centre international randomised 

placebo controlled study of this antigen specific Treg therapy (Ovasave) began but terminated 

early (NCT02327221). The early termination of this study was reportedly due to 

manufacturing difficulties and the trial is to recommence recruitment 

(https://www.biopharma-reporter.com/Article/2016/05/27). 

The therapeutic potential of this cell population may extend beyond quashing 

inflammation to hindering colitis-associated colon cancer, making further study of these 

populations paramount.35 

 

Immunoregulatory B-Cells 

B cells are an integral part of the adaptive immune system that produce antibodies, 

secrete cytokines, and can also communicate with other cells including Tregs to maintain gut 

homeostasis,.36 In humans, therapies that target B-cells, for example rituximab, are not 

effective in IBD and can clinically exacerbate, or even induce colitis.37 This observation affirms 

an important, protective role of B-cells in maintaining intestinal homeostasis.  

In recent years, interest has grown around a ‘regulatory’ phenotype that can secrete 

IL-10, IL-35 and transforming growth factor (TGF)-β to maintain peripheral tolerance.38 In this 
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review, IL-33 and IL-35 are latter discussed as anti-inflammatory cytokines with a therapeutic 

potential worth exploiting for therapeutic gain. IL-10-producing B cells are present in the 

gastrointestinal mucosa of patients with active Crohn’s disease and ulcerative colitis 

compared to healthy controls.39  

Sattler and colleagues reported that intraperitoneal IL-33 injection into IL10-/- mice 

exacerbated colitis whereas IL-33-treated wildtype mice (with intact IL-10 receptors) didn’t 

develop colitis.40 Upon investigating the underlying mechanism, there was no change in the 

frequency of CD25+ or Foxp3+ Tregs, but increased IL-10 producing B cells (BregIL-33) in 

wildtype, but not IL10-/- mice. Adoptive transfer of these BIL-33 cells transferred into IL-10-/- 

mice led to histological and clinical improvements in colitis. Taken together, this important 

study suggests that IL-10 deficiency reduces the function of this immunoregulatory cell 

population. 

In support of these findings, intravenous adoptive transfer of peritoneal cells into mice 

with DSS-induced colitis improved disease activity scores, mucosal recovery and survival 

rates.41 The mechanism is likely through dual activity of IL-10 and TGF-β secreted by natural 

regulatory B cells (and also macrophages).41 Adoptive transfer of these immunoregulatory B 

cells may therefore be an attractive treatment in the future but this needs further assessment 

in pre-clinical models of IBD alongside a greater understanding of the biological function of 

the cells in the human gastrointestinal tract.  

 

Tolerogenic Dendritic Cells 

Dendritic cells are professional antigen presenting cells that induce immune tolerance 

within the gastrointestinal mucosa to luminal contents.42  
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The mechanisms that underlie the anti-inflammatory role of dendritic cells is not fully 

defined. Their influence over pro-inflammatory T-cells and Treg development is likely vital to 

protective functions. For example, CD103+ dendritic cells isolated from mesenteric lymph 

nodes can induce the differentiation of naïve CD4+ T-cells into Foxp3+ Tregs.43 CD103+ 

dendritic cells are downregulated during experimental colitis and produce thymic stromal 

lymphopoietin in response to TLR activation, which suppresses the secretion of IL-17 from T-

cells and promotes Foxp3+ Treg development.44 In human IBD, patients with Crohn’s disease 

have more CD103+ lymphocytes in their lamina propria compared to patients with ulcerative 

colitis or healthy controls.45  

The anti-inflammatory capabilities of CD103+ dendritic cells are reduced in murine 

colitis models.46 The ability of CD103+ dendritic cells to promote the development of Foxp3+ 

Tregs is significantly impaired in T-cell induced colitis in RAG-/- mice and, instead, CD103+ 

dendritic cells appear to favour the development of interferon-γ-producing CD4+ T-cells in the 

inflammatory microenvironment.46 This is discouraging when considering the application of 

dendritic cells as cell therapy for IBD. Nonetheless, there have been some encouraging data. 

Vasoactive intestinal peptide-induced dendritic cells can induce Tregs, which show a 

protective and therapeutic value in trinitrobenzene sulfonic acid (TNBS)-induced murine 

colitis.47 Granulocyte-Colony Stimulating Factor (G-CSF) induces IL-10-secreting T-cells in the 

peripheral blood, as well as plasmacytoid dendritic cells in the lamina propria in human 

Crohn’s disease patients who clinically respond to G-CSF therapy.48  

Colonic microbiota play a role in the pathogenesis of IBD.1 These bacteria impact on 

mucosal dendritic cell function, and there is evidence that this interaction can lead to 

promotion of immunoregulatory mechanisms including oral tolerance.49 CD103+CD11b+ 

dendritic cells can recognise flagellin in the lamina propria and upregulate IL-23 which induces 
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epithelial cells to express RegIII-γ, a bactericidal c-type lectin, in response to TLR-5 

activation.50 Mice treated with caecal bacterial antigen-pulsed regulatory dendritic cells 

secrete high levels of IL-10 and ameliorate colitis in T-cell transfer-induced murine colitis.51 In 

the same study, regulatory dendritic cells also induced the differentiation of naive CD4+ T-

cells into CD4+CD25+Foxp3+ T-cells in vitro and in vivo. These findings support the growing 

hypothesis that the gut microbiota can shape dendritic cell populations. The question is 

whether this can be targeted for therapeutic gain in IBD.  

In keeping with this hypothesis, Bifidobacterium infantis increases CD103+ and retinoic 

acid metabolising dendritic cells that induce Foxp3+ Tregs and suppress Th17 cells.52 This 

partially explains why Bifidobacterium infantis can suppress IL-17 production in DSS-induced 

murine colitis and induce IL-10 in vitro.53 Taken together, it would appear that adoptively 

transferred tolerogenic dendritic cells could prove therapeutically beneficial for IBD and this 

continues to be explored in pre-clinical models. However, it is clear that dendritic cell 

plasticity and function in the gastrointestinal mucosa is complex with conflicting data and 

further work will be required to translate to human disease. In a single-centre, phase 1 trial, 

9 patients with treatment-refractory Crohn’s disease were treated with autologous transfer 

of tolerogenic dendritic cells. These cells were derived from blood monocytes in vitro and 

delivered by ultrasound guided intra-peritoneal injection. The treatment was well-tolerated, 

induced remission in 1 patient and a showed good clinical response in 2 patients.54 Additional 

clinical trials of this therapy are recruiting (Intralesional Tolerogenic Dendritic cells in Crohn’s 

Disease Treatment (TolDecCDintra), NCT02622763). 

Further mechanistic studies are required to better understand dendritic cell biology in 

the gastrointestinal tract and identify the target patient population most likely to benefit from 

this cell therapy. 
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Innate Lymphoid Cells 

Innate lymphoid cells (ILC) are a recently discovered population of immune cells.55 ILCs 

are sub-classified into type 1, type 2 and type 3, based on transcription factor association, cell 

surface marker expression and cytokine response.55 Unlike T-cells and B-cells ILCs do not 

express recombined antigen-specific receptors.56 The biology of ILCs has been summarised 

elsewhere.55–57 In summary, group 1 ILCs constitutively express transcription factor T-bet and 

are activated in response to IL-12 and IL-18. They secrete type 1 cytokines including 

interferon-γ. Their key role is to promote immunity to intracellular bacteria, viruses and 

parasites. Group 2 ILCs express GATA3 and ROR-α and are activated in response to alarmins 

such as IL-25, IL-33 and thymic stromal lymphopoietin. They secrete type 2 cytokines including 

IL-4, IL-5 and IL-13. Their key role is to promote immunity to helminths. Group 3 ILCs 

constitutively express ROR-γt and are activated in response to IL-23, IL-1α and IL-1β. They 

secrete IL-17, and IL-22. Their key role is to promote immunity to extracellular bacteria, 

especially to maintain tolerance to commensal gut microbiota.  

In IBD, patients with Crohn’s disease have an increased expression of intraepithelial 

type 1 ILCs within the colonic mucosa.58 These cells produce interferon-γ and worsen colitis 

in anti-CD40-induced murine colitis, so may be contributing to disease pathogenesis.58 

Suppressing the expression and function of such cells may be therapeutically advantageous. 

Group 3 ILCs play a role in maintaining intestinal homeostasis and could be a promising 

cellular target. Specifically, a subset termed IL-22 producing NCR+ (CD56NKp44) group 3 ILCs, 

make up around 5% of normal colonic lymphocytes, resist mucosal infection and promote 

epithelial barrier integrity.59 Although present in small numbers relative to other 

lymphocytes, ILCs exert a potent effect on immune responses.60 The NCR+ subtype confers 
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protection in DSS-induced and T-cell transfer murine colitis, through increased secretion of 

IL-22 resulting from retinoic acid signaling61 or expression of aryl hydrocarbon receptor 

(essential for the maintenance and function of type 3 innate lymphoid cells).62 

The emergence of this new cell type with a key role in the arena of gastrointestinal 

mucosal immunity offers a potential new therapeutic target in IBD. However, a significant 

amount of pre-clinical investigation and a better characterisation of their role in the human 

GI tract in health and disease is required before translational studies can be considered and 

developed. Caution is warranted as ILCs are central to the development of inflammation 

associated colonic cancer through IL-22 stimulation of epithelial cell proliferation.63 

 

ANTI-INFLAMMATORY CYTOKINES 

IL-10 

Therapeutically enhancing interleukin (IL)-10, the quintessential anti-inflammatory cytokine, 

showed promising efficacy in pre-clinical models of IBD, but unfortunately human trials to 

date have failed to show a direct translational benefit in human patients.64 This is likely to 

reflect the differences in biology from murine models to human disease alongside 

considerations in patient recruitment, disease characterisation and cytokine delivery. As such, 

there still is interest at progressing this therapeutic strategy forward. For example, a phase 1 

double-blind randomised control trial to assess safety, tolerability and pharmacology of IL-10 

was commenced, but prematurely terminated in 2016 due to potential risk of further dosing 

in healthy subjects (NCT02711462). Currently, a phase 2a double-blind randomised control 

trial is underway to assess IL-10 as an add-on therapy to infliximab in patients with active 

ulcerative colitis (NCT03269695).  
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Back in the laboratory, success of pre-clinical studies have fuelled the race to identify 

novel anti-inflammatory cytokines with translational capability to bolster the 

immunoregulatory capacity of the immune system to sequester inflammation, often by 

indirectly upregulating IL-10.  

 

IL-27 

The known biology of IL-27 has recently been reviewed.65 In brief, interleukin-27 (IL-

27) is a heterodimeric type-1 cytokine expressed by many cell types including dendritic cells, 

macrophages, plasma cells, epithelial cells and endothelial cells. IL-27 is composed of Epstein-

Barr virus-induced gene 3 and p28 subunits, and the IL-27 receptor is composed of two 

subunits, namely gp130 and IL27Rα. Upon receptor binding, Janus Kinase/STAT, PI3K/Akt or 

MAPK signalling pathways are activated. This results in phosphorylation of STAT1, STAT3, 

STAT5 and STAT6. The best known downstream effects of IL-27 involve regulating T-cell 

responses (for example, inhibition of the  lineage commitment of Th17 cells by blocking 

retinoic acid receptor-related orphan receptor (ROR)-γt, preventing Fas-mediated activation-

induced cell death, and inhibiting Th2 differentiation and cytokine expression through 

increasing T-bet and suppressing GATA-3 expression) and inducing IL-10 production from Tr1 

T regulatory cells.  

An observational, cross-sectional study of 54 IBD patients reported that IL-27 mRNA 

is increased in patients with active Crohn’s disease compared to inactive disease with higher 

mucosal IL-27 protein expression in patients with active ulcerative colitis, compared to tissue 

controls or active Crohn’s disease.66 The biological consequences of this expression profile in 

the inflamed mucosa is unclear, although a protective effect is suspected through 

extrapolation of IL-27 mediated immunosuppressive capabilities.65  
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There have been several murine studies investigating the role of IL-27 in different 

colitis models. In T-cell transfer models, IL-27 is essential for enhancing Treg function and 

enabling IL-10 secreting B-cells to attenuate colitis.67,68 In DSS models, colitis is more severe 

and survival reduced in IL-27-R-/- mice.69 IL27-R-/- in RAG-/- mice also suffer more severe colitis 

compared to RAG-/- mice with intact IL-27 receptors.69 Hanson and colleagues demonstrated 

that mucosal delivery of IL-27, by a Lactococcus lactis bacterial vector, is therapeutically 

beneficial in both T-cell transfer and DSS models of murine colitis, and is dependent upon 

increased IL-10 production by T-cells in the gastrointestinal mucosa.70 Mucosally delivered IL-

27 attenuated innate cell driven acute murine colitis through IL-10 dependent, T cell 

independent mechanisms including inhibition of chemokine gradient and neutrophil 

infiltration.71 These data suggest that IL-27 promotes immunosuppression through IL-10 

amplification. However, neutralisation of IL-27 worsens colitis in IL-10-/- mice indicating other 

mechanisms are also important.72 Furthermore, IL-27 can suppress Th17 and Th1 

differentiation independent of IL-10.72 Treating murine colitis (induced by both TNBS and DSS) 

with single-chain human IL-27, delivered by subcutaneous osmotic pumps, clinically improves 

colitis through suppression of IL-17 producing T-helper cells.73 Therefore, IL-27 appears 

capable of attenuating colitis by IL-10 dependent and independent mechanisms.  

However, there is conflicting murine data in the literature that require further 

consideration. It has been reported that IL-27 promotes colitis, enhancing IL-6 and IL-1β 

production and promoting Th17 differentiation; loss of IL27Rα has been associated with 

clinical improvements in murine colitis models.74  

Most of this data arises from preclinical models. The role of IL-27 in human IBD 

requires characterisation before IL-27 directed therapy for IBD can be further explored in the 

clinical arena.  
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IL-33 

Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines and is constitutively 

expressed in the nucleus of most epithelial, endothelial and stromal cells where it regulates 

gene expression through stability of chromatin structure.75 IL-33 can sequester NF-κB to 

dampen pro-inflammatory responses and can be released into the extracellular environment 

to function as an ‘alarmin’ or damage associated molecular pattern.75 Immune cells can 

actively secrete IL-33 in response to pro-inflammatory cytokines such as TNF, IL-1β, IL-3 and 

IL-4.75 Given the complexities of pro- versus anti-inflammatory effects, the role of IL-33 in IBD 

remains unclear. Again, most data have been derived from pre-clinical models of IBD and the 

translational impact of this to the human disease is not yet defined. 

In the gastrointestinal tract, from an anti-inflammatory perspective, IL-33 and its 

receptor ST2 are expressed on colonic Tregs.76 IL-33 promotes TGF-β1-medited Treg 

differentiation and the accumulation of Tregs in an inflammatory environment.76 IL-33 

promotes IgA production (important for maintaining gut-microbial homeostasis) and 

prevents IL-1α-dependent colitis and colitis-associated colon cancer.77 Intraperitoneal-

delivered recombinant IL-33 in DSS-induced murine colitis clinically, macroscopically and 

histologically improves inflammation through reducing Th17 and Th1 cell populations in the 

lamina propria, effectively switching from a Th1 to Th2-mediated response.78 Conversely, IL-

33 can drive eosinophilic infiltration and potent mucosal adaptive immune responses which 

lead to chronic ileitis.79 Genetic ablation of, or monoclonal antibodies against, ST2 can 

significantly improve colitis in murine models. Administration of IL-33 has also been shown to 

increase intestinal permeability.80  
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Is there any information from human studies? In a large paediatric and adult patient 

cohort, Latiano and colleagues reported that single nucleotide polymorphisms in the IL-33 

gene (such as rs3939286) are associated with IBD susceptibility.81 Paediatric carriers of the IL-

33 polymorphism were 44% more likely to respond to steroids compared to those who did 

not carry the risk allele. Adult patients carrying the risk allele were more likely to have 

extensive, severe disease. Patients with IBD also had increased IL-33 mRNA expression in 

inflamed mucosa.81 Studies have confirmed a significant relationship between increased IL-

33 expression, increased severity of disease and ulcerative colitis disease phenotype and, 

similar to IL-33, ST2 expression is increased in the intestinal mucosa in patients with UC and 

is positively associated with disease activity: ST2 has been proposed as an activity biomarker 

for predicting clinical outcomes in UC.82,83  

Although we know IL-33 is increased in human IBD, the biological consequence of this 

is unclear. It would appear that IL-33 plays an important role in IBD pathogenesis, although 

the underlying mechanisms are not yet characterised in vivo.  

 

IL-35 and IL-37 

Interleukin 35 (IL-35) and interleukin 37 (IL-37) are two recently discovered cytokines 

whose anti-inflammatory properties have attracted interest in IBD. IL-35 is a member of the 

IL-12 family and is produced by CD4+Foxp3+ Tregs, activated B-cells and likely tolerogenic 

dendritic cells. IL-35 regulates IL-10 producing B cells and suppresses Th17 responses in 

vitro.84 IL-37 is a member of the IL-1 cytokine family and, although cytokines in this family 

tend to be pro-inflammatory, IL-37 can function as part of a negative feedback mechanism to 

limit inflammation in an IL-10-independent fashion.85 
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Gene and protein expression of IL-35 is higher in colonic mucosa from adult patients 

with IBD, compared to healthy controls.86 IL-37 expression in infiltrating immune cells and 

intestinal epithelial cells is also increased.87 Although reduced levels of the cytokines 

themselves have been reported in the peripheral blood of IBD patients compared to healthy 

controls,86 other studies reveal an increased presence of circulating IL-35-expressing CD4+ and 

CD8+ T-cells, and increased IL-37-producing CD14+ monocytes, -CD56+ natural killer cells and 

-CD19+ B-cells in patients with IBD, compared to healthy controls or patients with inactive 

disease.39 

Gene expression of major splice variant IL-37b is increased in the inflamed mucosa in 

patients with ulcerative colitis and Crohn’s disease, and is undetectable in normal colonic 

mucosa.88 Expression is predominantly in the epithelia and infiltrating immune cells of the 

inflamed mucosa.89 The consequence of this is not clear but a clue may come from a study 

where IL-37b gene transfer enhanced the therapeutic effects of mesenchymal stromal cells 

in the resolution of DSS-induced murine colitis.89 In DSS-induced colitis in a transgenic mouse 

expressing human IL-37 under a CMV promoter, IL-37 expression was only detectable in the 

colon when the epithelial barrier had been disrupted.90 Although IL-37 increases IL-10, the 

protective effects of IL-37 do not disappear upon blocking IL-10R in IL-37 transgenic mice – 

the protective effects are not dependent upon IL-10 production and are yet uncharacterised.  

There is limited data on the biological function of IL-35 in the gastrointestinal tract. 

Collison and colleagues reported that IL-35 can induce the generation of a unique 

subpopulation of Tregs, - IL-35 producing Tregs - in vitro and in vivo, that can function 

independent of IL-10 and TGF-β.91 Both IL-35 and IL-27 belong to the IL-12 family of 

heterodimeric cytokines, share the Epstein-Barr virus induced gene protein 3 subunit, and are 

upregulated in IBD.65,84 In this regard, Wirtz and colleagues investigated the differential role 
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of these two cytokines through DSS-induced colitis, TNBS-induced colitis, T-cell transfer and 

spontaneous colitis models in IL-27p28-/- and EB13-/- mice.92 The study found IL-27p28 (the 

unique subunit of IL-27)-deficient mice were similar to wild-type mice whereas Epstein-Barr 

virus induced gene protein 3 (shared subunit)-deficient mice developed severe or worsened 

colitis, with decreased survival. In addition, the administration of single chain IL-35 prevented 

the development of colitis through suppressing Th1 and Th17 responses.92 

IL-37 and IL-35 thus offer promising therapeutic potential in modulating inflammation 

in IBD, independent of IL-10. Again, the role of these cytokines in human IBD requires 

characterisation before the therapeutic potential can be fully understood. Perhaps these 

cytokines will offer the greatest efficacy in patients with an IL-10 high expression phenotype.  

 

ENDOGENOUS MOLECULAR TARGETS TO REGULATE IMMUNE RESPONSES 

miRNA 

A micro RNA (miRNA) is a small, single-stranded, non-coding, hairpin ribonucleic acid 

(RNA) approximately 22 nucleotides long. Transcribed miRNA binds to a specific mRNA and 

induces its degradation. One of the first microarray-based studies in this field found that 

patients with ulcerative colitis had a differential expression of miRNAs, distinct from those 

expressed in patients with irritable bowel syndrome, Crohn’s disease, microscopic colitis or 

infectious colitis.93 There was also differential expression of miRNAs in patients with active 

ulcerative colitis compared to latent disease. Specifically, miRNA-192 was reduced during 

active ulcerative colitis. Subsequently, a differential expression of miRNA between ileal and 

colonic Crohn’s disease has been reported.94 This endogenous method of post-

transcriptional gene regulation is therefore of interest in IBD pathogenesis and possibly 

highlights an opportunity to finely tune inflammatory activity. 
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miR-192 targets the chemokine macrophage-inflammatory peptide 2α, which 

increases the migration of neutrophils and lymphocytes to the intestinal mucosa.93 miR-141 

can suppress expression of the chemokine CXCL12β and thus CXCL12β-mediated T-cell, 

neutrophil and macrophage migration to the inflamed gut.95 Therapeutic upregulation of 

miRNA-141 in TNBS-induced murine colitis reduces leukocyte recruitment to inflamed 

intestinal mucosa.95 miR-146 is upregulated upon TLR activation and targets the IL-1 receptor 

associated kinase and TNF receptor-associated factor 6, upstream of NF-κB, to limit 

inflammation in a negative feedback fashion.96  

Upregulation of certain miRNAs may limit inflammation. For example, miR-155 is 

thought essential for Treg development and, whilst insufficient to independently control Treg 

function, it can augment other miRNAs in doing so.97 

miR-10a suppresses Th17 and Th1 responses and downregulates the expression of IL-

12/IL-23p40 and NOD2 on dendritic cells. This reduces the secretion of IL-12 and IL-23.98 

Interestingly, miRNA-10a is decreased in the inflamed colonic mucosa and peripheral blood 

mononuclear cells in patients with IBD, and is later upregulated following anti-TNF-α 

treatment.98 This observation may partly explain the therapeutic mechanism of anti-TNF 

biologic therapy.  

NOD2 plays a critical role in modulating a protective inflammatory response and in 

maintaining intestinal homeostasis.99 NOD2 polymorphisms in Crohn’s disease commonly 

lead to epithelial barrier dysfunction, chronic inflammation and likely impact microbial 

dysbiosis.99 miR-146a is a nitrous oxide-triggered, downstream messenger of NOD2 signalling 

that promotes pro-inflammatory responses, through sonic hedgehog signalling, and 

expression of the transcription factor NUMB.100 miRNA-192, 495, 512 and 671 were found to 

decrease NOD2, downregulate NF-κB and inhibit IL-8 and CXCL3 mRNA in colonic epithelial 
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HCT116 cells.101 However, miR-192 was not associated with NOD2 regulation in a paediatric 

cohort.102 Nonetheless, further characterisation is required and miRNA may be a therapeutic 

target for patients with NOD2 mutation phenotypes of IBD.  

miRNAs also offer an opportunity to therapeutically target the intestinal epithelium 

directly. In human ulcerative colitis and DSS-induced murine colitis, miR-150 targets the 

transcription factor c-Myb which, leads to decreased apoptosis,103 suggesting that 

upregulation of miR-150 may be therapeutic to protect the epithelial barrier.  

miRNAs with a pro-inflammatory role also exist, including miRNA-301a which 

increases TNF-α production and Th17 cell differentiation.104 In these circumstances, an anti-

sense miRNA may have therapeutic benefit. Proposed RNA interference targets are 

summarised in Table 1.  

Clinical studies exploring this treatment strategy are lacking for now. A phase 1 trial 

examining miRNA-RX34 in liver cancer was prematurely terminated after 5 immune-related 

serious events were reported (NCT01829971). A better understanding of the clinical safety 

and utility, along with identification of miRNAs that upregulate immunosuppressive host 

responses, will be of future interest as a novel future therapy in IBD. 

 

Oligonucleotides 

 An oligonucleotide describes a short, synthetic DNA or RNA molecule. The therapeutic 

rationale is similar to miRNA – mucosal delivery binds to target nucleotide sequences and 

stimulates or inhibits effector pathway gene expression. The most successful studies to date 

using this strategy in IBD have exploited the TGFβ pathway. TGFβ is a multi-functional 

cytokine with immunosuppressive effects, produced by many immune and non-immune 

cells.105 TGFβ is important in controlling many cellular functions, including proliferation, 



Can we target endogenous anti-inflammatory responses as a therapeutic strategy for 
inflammatory bowel disease? 

22 
 

differentiation, cell-cycle regulation, wound healing and angiogenesis. Loss of the TGFβ-

signalling pathway is associated with IBD.106,107 The endogenous regulatory protein SMAD7 

blocks TGFβ-mediated inhibition of NF-κB, through activating NF-κB inhibitor-α.108,109 In 

Crohn’s disease, TGFβ signalling is inhibited by high levels of SMAD7 protein, resulting in 

unregulated production of pro-inflammatory cytokines.109 Anti-sense SMAD7 oligonucleotide 

(Mongersen) has been developed as a therapeutic agent for use in IBD, blocking mRNA of 

SMAD7, inhibiting protein production and removing mucosal presence of this endogenous 

regulator of TGFβ signalling. Mongersen appeared safe and capable of improving endoscopic 

and clinical markers of colitis, as well as inducing remission in patients with active Crohn’s 

disease in Phase II trials.109–111 Following this, a phase 3 double-blind randomised control trial 

commenced, investigating the efficacy of Mongersen as a maintenance therapy in Crohn’s 

disease (NCT02641392). However, this was prematurely discontinued based on lack of 

emerging benefit and further developments are awaited.  

 Toll-like receptor 9 (TLR9) is expressed in numerous antigen presenting cells including 

dendritic cells, B-cells and macrophages.112 Activation of TLR9 occurs upon binding of 

cytosine-guanine nucleotide sequences present on microbial DNA fragments and synthetic 

oligonucleotides. In intestinal epithelial cells, if the apical surface is stimulated, the non-

canonical NF-κB pathway is activated, resulting in release of anti-inflammatory molecules 

such as IL-10.113–115 In the laboratory, the anti-microbial peptide cathelicidin and synthetic 

oligonucleotides are capable of inducing this pathway.116 While both show translational 

potential, human studies concentrate on synthetic oligonucleotides. A double-blind placebo-

controlled randomised control trial of a TLR9 agonist in 131 patients with moderate to severe 

ulcerative colitis was performed.114 While not sufficient to induce clinical remission compared 

with placebo, TLR9 oligonucleotide DIMS0150 induced symptomatic remission, mucosal 
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healing and histological improvement in colitis at 4 weeks. A previous open-label phase 2a 

trial showed that, of the 22 patients enrolled, oral administration of TLR9 oligonucleotide BL-

7040 induced remission in 2 patients and mucosal healing in 8 patients. Mucosal neutrophil 

and IL-6 levels were also reduced.115 While these findings are modest, additional trials are 

required.  

Therefore, oligonucleotides can inhibit (SMAD7) or stimulate (TLR9) critical pathways 

to bolster immunoregulatory capability for therapeutic gain in IBD.   

 

The Endocannabinoid System 

This system involves multiple endogenous ligands, enzymes and molecules 

responsible for, cannabinoid biosynthesis and cellular uptake.117 ∆9-tetrahydrocannabinol 

signals through two G-protein coupled cannabinoid receptors, namely CB1 and CB2.  

CB1 and CB2 signalling pathways reduce intestinal inflammation.117 Inflammation can 

upregulate endogenous cannabinoid levels which impact intestinal motility. Although both 

receptors seem to be important, they are differentially expressed in both normal and 

inflamed intestinal mucosa.118,119 In healthy colon, CB1 receptors are expressed on the 

epithelium, smooth muscle and submucosal myenteric plexus where they contribute to 

wound healing. Both CB1 and CB2 receptors are expressed on plasma cells in the lamina 

propria. In IBD, patients have increased expression of colonic epithelial CB2 receptors.118 CB2 

receptors are expressed on macrophages and the immune cell infiltrate during colitis whereas 

CB1 receptors are upregulated in enteric neurons and endothelium.118–120 Clearly, regulating 

intestinal motility is not the only important function of this system, there is also 

immunoregulatory capability.  
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CB2 agonists can ameliorate cytokine-mediated colonic inflammation in explant 

tissue, without affecting epithelial permeability.121 They can also reduce reactive oxidative 

species production within intestinal epithelial cells and ameliorate murine experimental 

colitis.122 Central cannabinoid receptors have a greater intestinal anti-inflammatory effect 

compared to peripheral receptors.123  

CB2 agonism could be a new therapeutic direction for IBD. Activation of the CB2 

receptor doesn’t trigger the psychotropic side effects associated with cannabinoids, making 

this a clinically attractive therapeutic target.124  

There are several ways to bolster the endogenous endocannabinoid system including 

promoting biosynthetic enzymes and inhibiting CB1 and CB2 ligand degradation pathways. 

For example, blocking cellular uptake and intracellular degradation pathways through VDM11 

(an endocannabinoid membrane transport inhibitor), a fatty acid amide hydrolase inhibitor, 

or a combination of these reduces intestinal inflammation through increasing the 

concentration of anandamide, a fatty-acid neurotransmitter degraded by fatty acid amide 

hydrolase inhibitors.125,126  

N-acylethanolamine-hydrolysing acid amidase inhibitors increase an endogenous anti-

inflammatory fatty acid known as N-palmitoylethanolamine. N-palmitoylethanolamine has a 

high affinity for the endocannabinoid receptors and can subsequently reduce colonic 

inflammation and improve colitis through targeting the S100B/TLR-4 axis on enteric glial cells, 

reducing the downstream inflammatory effects of NF- κB.127 Enteric glial cells are astrocyte-

like cells found in enteric ganglia of the submucosal and myenteric plexus that promote 

epithelial barrier repair.128 Glial regulation of epithelial barrier function can become disrupted 

in IBD and cannabidiol has been shown to restore glial-immune homeostasis to ameliorate 

inflammation.129 This therapeutic strategy is summarised in Figure 1.  
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Translating endocannabinoid in vitro and in vivo studies into clinical practice is 

controversial given associations with cannabis misuse. The efficacy of cannabis cigarettes on 

patients with treatment-refractory Crohn’s disease has been assessed in a small randomised 

trial and did not induce remission.130 A more recent randomised control trial of oral canabidiol 

was safe in Crohn’s disease, but with no statistical efficacy demonstrated.131 A double-blind 

randomised control trial of 36 patients with Crohn’s disease is planned for July 2018 to 

determine whether oral cannabidiol is a safe and effective adjunct therapy for symptomatic 

relief in Crohn’s disease (NCT03467620). The intestinal endocannabinoid system offers 

promise as a therapeutic target in IBD.  

 

WHERE DO WE GO FROM HERE? 

Our understanding of the immune system has advanced considerably over the past 

few years, providing insight into ways we may be able to harness its endogenous checks and 

balances for therapeutic gain (Figure 2). However, these mechanisms are complex and 

potential adverse effects must be considered.  

There are several novel treatments to bolster the endogenous anti-inflammatory 

activity close to or recruiting to clinical trials currently and these agents may enter the future 

therapeutic arena for IBD if shown to be efficacious with a satisfactory side effect profile.  

In addition, there are other novel strategies to treat IBD emerging that may exert 

effect through partial enhancement of the endogenous immunosuppressive mechanisms and 

not discussed here. An example of this is mesenchymal stem cell therapy that is mainly 

immunosuppressive through inhibition of many pro-inflammatory cells types, such as 

dendritic cells, B cells, effector T cells and NK cells. They also act however to promote Treg 

and immunoregulatory macrophage subsets, enhancing immunosuppressive capability.132 
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There is significant variability at an individual patient level in IBD disease activity, 

progression over time and response to treatment. Better characterisation of disease 

phenotypes will better inform research and treatment decisions in the era of personalised 

medicine.  
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Table 1: miRNA manipulation for therapeutic consideration. 

miRNA Proposed Direction of 

modulation 

Potential Therapeutic Effect 

miR-192 Increase Decreases migration of neutrophils and 

lymphocytes to the intestinal mucosa 

miR-141 Increase Reduce CXCL12β-mediated T-cell, neutrophil 

and macrophage migration to the inflamed 

bowel 

miR-146 Increase Reduce inflammation, downstream of IL-1 

receptor, through blocking NF-kB pathway 

miR-146a Decrease Decrease inflammation downstream of 

NOD2 

miR-155 Increase Promote Treg function 

miR-10a Increase Reduced inflammation by suppressing Th17 

and Th1 responses and secretion of IL-12 and 

IL-23 

miR-192 

miR-495 

miR-512 

miR-671 

Increase Downregulate NF-κB and inhibit IL-8 and 

CXCL3 

miR-150 Increase Decreases apoptosis 

miR-301a Decrease Reduce TNF-a production and Th17 cell 

differentiation  
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FIGURE LEGENDS  

 

Figure 1 - Targeting the endocannabinoid system in IBD. A - In the non-inflamed colon, CB1 

is expressed on colonic epithelial cells, smooth muscle cells and the submucosal myenteric 

plexus. CB1 and CB2 are expressed on plasma cells in the lamina propria. B – In IBD, CB1 is 

upregulated on enteric neurons and endothelium whereas CB2 is expressed on the 

inflammatory cell infiltrate and is upregulated on colonic epithelial cells. C - CB1 and CB2 

ligand degradation pathways can be inhibit by VDM11 or a fatty acid amide hydrolase 

inhibitor which increases the concentration of anandamide, which helps ameliorate 

inflammation in the gut. N-palmitoylethanolamine can also inhibit inflammation by 

sequestering NF- kB by targeting the S100B/TLR-4 axis on enteric glial cells.  

 

Figure 2 - Strategies to promote endogenous immune-mediated anti-inflammatory activity  

in IBD. 
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