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Abstract: Carboniferous coals of the Ayrshire Coalfield are enriched in selenium (Se) relative to average UK and world
compositions, substituting for sulphur in pyrite. Greenburn surface mine coals are characterized by syngenetic concretionary
pyrite (c. 15% total area), occurring as bedding-parallel banding, and later-formed (epigenetic) cross-cutting pyrite in cleats
(c. 9% total area). In these, sulphur isotope compositions for both syngenetic and epigenetic pyrite include isotopically light and
heavy variants, suggesting diagenetic and hydrothermal fluid formation. Late/post-Visean cleat-filling pyrite is enriched in Se
(up to 266 ppm) compared to the earlier-formed material (Se up to 181 ppm).

Anomalous Se may have been sourced from near-by sulphidic Dalradian metamorphic rocks. Initial Se sequestration is
associated with syngenetic pyrite mineralization, absorbed from seawater and pore waters, with additional Se introduced from
fluids mobilized during epigenetic pyrite formation. Cleats from local brittle fracturing provided channels for fluid flow and a
locus for precipitation of comparatively high-Se pyrite. Permian dolerite intrusions may have provided an enrichment source
and/or fluid distribution mechanism. The Se concentrations of the Greenburn coals relate to multi-stage mineralization, with
cleat-filling pyrite showing the highest Se content, and highlight the potential for high Se in similarly altered and fractured coal
deposits worldwide.

Supplementary material: LA-ICP-MS maps for Fe, Se, Ag, As, Cu, Hg, Pb and Te for Greenburn coal samples from seams
9300 Lime and 6900 Burnfoot Bridge are available at https://doi.org/10.6084/m9.figshare.c.3967860

Received 29 July 2017; revised 17 October 2017; accepted 27 October 2017

The Ayrshire Coalfield, of Carboniferous age, is exposed
across the county in SW Scotland and in surface coal mines,
such as the Greenburn Mine Complex (operated by Kier
Group; Figs 1–2), and hosts coals with a range of sulphur (S)
and pyrite contents across a number of seams. Opencast coal
sites in East Ayrshire allow for exceptional exposure and
sampling of seams and strata (BGS online 2017). Seams that
contain high pyrite content host strategic trace elements such
as selenium (Se), important for developing low-carbon
technologies such as photovoltaic solar cells (Talens Peiró
et al. 2011; Ayres & Talens Peiró 2013; STDA 2013;
Woodhouse et al. 2013; Lusty & Gunn 2014). Due to
increasing demand and improved recovery worldwide, coal
deposits have been identified as a potential resource for
Se (UKERC 2012). Worldwide, coals generally contain
1.6–3 ppm Se (Bragg et al. 1998; Yudovich & Ketris 2006),
although pyritic coals may host notably higher concentra-
tions. In coals here, Se values in excess of the UK and Irish
averages (3.9 ppm calculated from measurements by Bragg
et al. (1998) and Spears (2015)) are considered high, and
concentrations only slightly higher than this have important
environmental implications (e.g. 4.2 ppm average Se in
Chinese coals; Su et al. 1990; Bragg et al. 1998; Zheng et al.
1999; Zhu et al. 2012) relating to their mobility and release

by natural weathering. Coal combustion has been damaging
in coal mining regions, such as British Columbia, Canada
(McDonald & Strosher 1998; Lemly 2004; Hendry et al.
2015), through the release of Se into the environment.
Because Se can substitute for S and thus concentrate in
pyrite, an understanding of the origins of pyrite in coals is
important for the light it sheds on processes of Se
enrichment. The pyritic coals of the Greenburn surface
mine show evidence of multiple stages of pyrite formation,
including banded syngenetic and cleat-filling pyrite hosted in
systematic fractures in coal (Dron 1925; Laubach et al. 1998;
Rippon et al. 2006). The aims of this study are: (1) to identify
the origin of the pyrite in Greenburn coals; (2) to examine
how the Se content relates to pyrite genesis, i.e. the
relationship between syngenetic/epigenetic pyrite para-
genesis and high Se concentrations; (3) to identify the
potential sources and processes of Se enrichment in the
Greenburn coals; and (4) to recognize any potential
economic or environmental implications.
In addition to Se, a suite of other trace elements chemically

related to Se, and elements associated with pyrite mineral-
ization (e.g. As, Cd, Co, Fe, Hg, Mo, S, Ta, Te and Tl) were
measured in whole-rock pyritic coal samples from the
Greenburn mine. Variations in the S isotopic composition of
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pyrite were measured in order to provide insights into their
origin. Light and variable S isotope compositions in pyrite
have been used to infer the influence of sulphate-reducing
bacteria (and subsequent Se precipitation by sulphate-
reducing microbes in sampled coals), whereas heavier S
isotope compositions indicate a non-biological origin (i.e.
physical and chemical diagenesis). Laser ablation elemental
mapping and line transect techniques have been applied to
highlight significant Se concentrations, including zonation
and higher content in syngenetic or epigenetic pyrite
formation. Correlations between Se concentrations in
different stages of formation provide insights into the
mechanisms of preferential trace element accumulations in
coal, important for assessment of the resource potential,
environmental impact and detection of similar trace element-
rich pyritic coal deposits.

Regional geology

The Ayrshire Coalfield forms part of the Coal Measures
Supergroup, Carboniferous in age, which extends from the
Midland Valley of Scotland, across the north of England to
the English Midlands, South Wales and Kent. Ayrshire coals
are generally classified as Lower, Middle and Upper Scottish
Coal Measures (upper Westphalian A at the base,
Westphalian B to Lower C; Figs 1–2) to the base of the
Limestone Coal Formation (Pendleian, part of the
Clackmannan Group) (Fielding 1982; Waters et al. 2007;
Spears 2015). These rocks formed in a range of fluvial
coastal plains, swamps, estuaries and deltas, with local
environments including alluvial and lacustrine deposits,
wetland forests and soils. Coals were typically formed in
marginal coastal plains with lakes, swamps and deltas
periodically inundated by the sea. Coal seams at the
Greenburn mine comprise Lower and Middle Coal

Measures, with some Upper Coal Measures, and form a
broad synclinal basin, locally affected by fold and thrust
faults with variable styles of displacement, as well as
numerous Permian alkali dolerite sills (Fig. 1) (Tyrrell 1928;
Walker & Patterson 1959; Smith et al. 2008). The Ayrshire
Coalfield has a long history of deep and opencast coal
mining, and was regarded as an important asset in South
Ayrshire in the early twentieth century (Richey et al. 1925;
Lebon 1933). Deep mining ceased in the 1980s, with
opencast extraction continuing into the twenty-first century
(Smith et al. 2008).

Methods

Coal samples (n = 8) span Westphalian A (Lower Coal
Measures), B (Middle Coal Measures) and C (Upper Coal
Measures), taken from exposures at Braehead Farm and
Dalgig (Fig. 2). Sampled seams include, in stratigraphically
descending order, 9600 Burnfoot Bridge, 9400 Little Cannel,
9450 Little Cannel Upper, 9300 Lime, 1940 Little Cannel
Stringer, 1930 Lime Lower, 8700 Five Foot Lower, 8650
Eight Foot Upper, 8600 Eight Foot Lower and 6900
Knockshinnock (K.) Main Rider. (Fig. 2). The Se and
associated trace element contents of samples of coal seams
spanning theUpper,Middle and Lower CoalMeasures (n = 5)
were determined as part of a suite of 51 elements using
inductively coupled plasma mass spectrometry (ICP-MS) at
ALS Minerals (Loughrea, Ireland). Samples were milled and
homogenized, and 0.25 g digested with aqua regia in a
graphite heating block. The residue was diluted with
deionized water, mixed and analysed using a Varian 725
instrument (Method code: ME-MS41). Results were cor-
rected for spectral inter-element interferences. Measurement
of four standards fell within pre-defined targets, and
duplicate analyses for blanks, standards and repeat samples

Fig. 1. (a) Southern Scotland and northern England coalfield exposure and locality of the Greenburn surface mine and (b) regional mineral resource
geology of the Greenburn surface mine area (Smith et al. 2008). Qt, Quaternary deposits; Cbf, Carboniferous deposits; E-Perm, Early Permian deposits.
House of Water opencast coal surface (OCCS) mine also shown on map.
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were all within 1% of each other. Sulphur and total organic
carbon (TOC) content of select coal seams (n = 7) was
measured using a LECO CS225 elemental analyser to a
precision of ±0.05% based on two runs per sample. Analyses
were run concurrently with C and S standards 501-024 (Leco
Instruments, 3.23 ± 0.03% C, 0.047 ± 0.003% S, instrument
uncertainty ± 0.05% C, ±0.002% S) and BCS-CRM 362
(Bureau of Analysed Samples Ltd, 1.48% S). The repeat-
ability (based on three repeats of standards and blanks) of
samples was consistently within 1%.
Pyrite samples (n = 21) from selected Greenburn coal

seams (n = 8) were prepared for conventional S isotopic
analysis by hand picking. Pyrite samples were combusted
with excess Cu2O at 1075°C in order to liberate the SO2 gas
under vacuum conditions. Liberated SO2 gases were
analysed on a VG Isotech SIRA II mass spectrometer, with
standard corrections applied to raw δ66SO2 values to produce
True δ34S. Sulphur has five naturally occurring isotopes, four
of which are stable (32S [95% terrestrial abundance], 33S, 34S
and 36S) whereas 35S is radiogenic. Stable isotope geochem-
istry is concerned primarily with the relative partitioning
of isotopes among substances (i.e. changes in the ratios of
isotopes), rather than their absolute abundances. The

principal ratio of concern in sulphides is 34S/32S, i.e. in the
δ34S notation, with parts per thousand or per mille (‰)
variations from the V-CDT standard (Bottrell et al. 1994;
Seal 2006). The standards employed were internationally
certified reference materials NBS-123 and IAEA-S-3
(supplied by the IAEA) and Scottish Universities
Environment Research Centre (SUERC) laboratory standard
CP-1. These gave δ34S values of +17.1‰, −31.2‰ and
−4.6‰, respectively, with 1σ reproducibility, based on
repeat analyses of the standards, better than ±0.2‰.
For laser ablation (LA-ICP-MS) mapping, transecting and

quantification of pyrite in coal (n = 2), trace element analysis
was performed using a New Wave Research laser ablation
system UP 213 nm coupled to an ICP-MS Agilent 7900.
Sample mapping was performed at a 10 Hz repetition rate, a
spot size of 100 μm and an ablation speed of 50 μm s−1. Each
ablation was preceded by 15 s warm up, with a delay of 15 s
applied between each ablation. The following isotopes were
monitored (dwell time): 57Fe (0.001 s), 65Cu (0.001 s) 75As
(0.05 s), 78Se (0.1 s), 82Se (0.1 s), 107Ag (0.1 s), 125Te
(0.1 s), 126Te (0.1 s), 197Au (0.1 s), 202Hg (0.1 s), 208Pb
(0.05 s) and 209Bi (0.1 s). NIST Glass 612 (NIST
Gaithersburg MD) was used to optimize the ICP-MS
parameters in order to reach the maximum sensitivity and
to guarantee a low oxide formation. For that, the ratio
232Th16O+/232Th+ (as 248/232) was monitored and main-
tained below 0.3%. Hydrogen (3.5 ml min−1) was used in the
reaction cell to ensure that no interference could affect the Se
measurement. Quantification was performed using the
reference material MASS-1 Synthetic Polymetal Sulfide
(USGS, Reston, VA). The ratio concentration (μg g−1)/
counts per second was calculated from the standard MASS-1
and multiplied by the sample counts.

Results

Sample description and geochemistry

Greenburn coals are predominantly bituminous, and samples
from seams 6900 K. Main Rider, 9300 Lime and 8700 Five
Foot Lower contain abundant pyrite of two varieties: (1)
disseminated and concretionary banded (bedding-parallel)
pyrite and (2) discordant, typically vertical, cross-cutting
pyrite (i.e. cleat-filling pyrite concentrated within small
fractures; Fig. 3). The total proportional area of bedding-
parallel pyrite in 9300 Lime and 6900 K. Main Rider pyritic
coal samples is c. 13–15% (calculated from digitized images
in Fig. 3 using ImageJ software), comprising c. 60–65% of
total pyrite area. Cleat-filling pyrite comprises c. 6–9% of the
total sample area and c. 30–35% of the total pyrite area.
The coals analysed exhibit a whole-rock range in Se

content of 4.1–15.8 ppm (n = 5), with an average Se content
of 9 ppm (Table 1). All samples show higher Se than UK and
world averages (1.8 and 1.3 ppm, respectively; Spears &
Zheng 1999; Ketris & Yudovich 2009; Yudovich & Ketris
2015). The higher pyrite content of samples is reflected in a
higher S content (Table 2), with an average of 17.5% across
samples (n = 7; average S content for seams also shown).
Lower S coals show higher TOC (average 35.5%, maximum
71.8%), while more pyritic samples such as 8700 have the
highest S content (33.9%). The more pyritic coals also show
higher Se concentrations (seam 6900 = 15.4 ppm and seam

Fig. 2. Generalized stratigraphical section and sampled coal seams across
three localities of the Greenburn surface mine (after Kier Mining 2009).
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8700 = 15.8 ppm), together with elevated As (seam 6900 =
860 ppm and seam 8700 = 1700 ppm). The maximum Te
value is 0.07 ppm, with other samples showing less than
0.02 ppm. Anomalous Pb (up to 1430 ppm) is evident in the
Greenburn 9300 Lime coal seam. There are positive Se
whole-rock correlations with As, Cd, Co, Hg, Ta and Tl (R2

correlation values >0.8 for 5 samples, calculated by
Microsoft Excel), typically associated with pyrite formation.
Oxyanionic elements such as Se and As are common in
pyrite, with heavy metals such as Co and Tl (Swaine 1990;
Finkelman et al. 1999; Large et al. 2014). Trace elements,
such as As, Hg, Co and Cd, are incorporated into the
precursor iron monosulphide at an early stage (Large et al.
2014). As and Se readily substitute for S in pyrite, while Hg
occurs as micro-inclusions, and may be introduced through
hydrothermal fluids, or scavenged from gases by pyrite
(Yudovich & Ketris 2006). Though Ta is more commonly
associated with elements such titanium, or zirconium or with
phosphates in coals, it may also substitute for Fe.

Trace element LA-ICP-MS mapping

Laser ablation ICP-MS maps (covering both banded and
cleat-filling pyrite) show that trace elements concentrate in
pyrite, with Se in greater abundance in cleat-filling pyrite
(Figs 4–6). Trace element concentrations are generally low in
the background coal matrix and high in the pyrite phases (see
Supplementary material). Line transect profiles across pyrite
types highlight the Se enrichment in cleat-filling pyrite

(Fig. 5). The banded pyrite as a whole shows Se enrichment
relative to the coal matrix, and cleats show higher intensity
peaks. Fe is also high across cleats, and As replicates Se.
Conversely, Te is low in both pyrite types, with lower peak
intensities in pyrite compared to the coal matrix. With the
exception of Bi and Te, cleat-filling pyrite generally contains
higher trace element concentrations than banded pyrite that,
in turn, contains higher trace elements than the background
coal (Table 3). Quantification of LA-ICP-MS mapping
reveals that cross-cutting cleats of the 9300 Lime coal contain
a maximum Se content of up to 266 ppm, with typical
concentrations of 157 ppm (Table 3; Fig. 6). Banded pyrite
of the 9300 Lime coal commonly contains 60 ppm Se
(maximum of 181 ppm), whereas the coal matrix contains
only 15 ppm Se (Table 3), consistent with coal matrix whole
rock concentrations. Of the two types of pyrite in the 6900 K.
Main Rider coal, the banded pyrite contains 25 ppm Se
(maximum 71 ppm), whereas cleat-filling pyrite contains up
to 190 ppm Se (average 84 ppm Se; Table 3; Fig. 6). The coal
matrix in these typically contains only 9 ppm Se (Table 3;
Fig. 6). High Pb occurs in coal matrices associated with both
syngenetic and epigenetic pyrite (see Supplementary mater-
ial), typically concentrating in cleat-filling pyrite (averaging
638.5 ppm in 6900 Burnfoot Bridge cleat-filling pyrite).

Sulphur isotope compositions

The δ34S values of Greenburn coal samples vary vertically,
ranging from −26.3 to +18.4‰ (n = 21); Table 4 and Fig. 7).

Fig. 3. Photographs and schematics of banded (yellow) and cleat-filling (orange) pyrite in Greenburn coals.
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The overall average δ34S composition is +2.7‰, with banded
pyrite showing a slightly heavier average composition
(+3.4‰; n = 12) compared to cleat-filling pyrite (+1.8‰;
n = 9). Although samples are predominantly isotopically
heavy (34S-enriched), five of those analysed are isotopically
light (32S-enriched). These are concentrated within the
Middle Coal Measures (Westphalian B), and occur in both
banded and cleat-filling phases. Isotopic compositions
become progressively heavier with depth across the
Westphalian A and B coals. The lightest S isotope
composition is from banded pyrite of the 1940 Little
Cannel Stringer (Westphalian B), whereas the heaviest is
from banded pyrite of the 6900 K. Main Rider seam
(Westphalian A).

Discussion

Source of selenium

During the Carboniferous period, groundwaters drained
through Dalradian metamorphic rocks. Dalradian rocks north
of Ayrshire host pyritic and pyrrhotitic mineralization.
Argyll Group sulphide mineralization at McPhun’s Cairn
shows Se content of up to 360 ppm in pyrite, and up to
790 ppm in chalcopyrite (Willan & Hall 1979; Willan 1980).
The high Se content and susceptibility for mobility and
fixation during the Carboniferous make the Dalradian rocks
the most probable source of Se for Greenburn coals.
There are, however, several other potential sources in the

Ayrshire region for the Se. These include deep and shallow
igneous intrusions of the Midland Valley, including
Ordovician volcanic rocks and selenide-bearing Devonian
and Carboniferous sedimentary strata. Locally, East Ayrshire
hosts a Devonian granodiorite (the Polshill Pluton), Late
Silurian to Early Devonian granite and a Carboniferous to
Permian gabbro. High-Se soils have been identified in the
Midland Valley of western Scotland, the products of
weathering of basaltic rocks and of Devonian Lower Old
Red Sandstone (Shand et al. 2012). The Ordovician
Marchburn Formation comprises basalt and microgabbro,
and the Siluro-Devonian lavas of western Scotland (derived
from enriched sub-continental mantle) contain up to
22.2 ppm Se (Thirlwall 1986). Basanitic and foiditic plugs
and vents are also exposed in East Ayrshire, and localized
sills from a volcanic plug may be responsible for the
de-volatilization, destruction and fluid flow effects onT
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Table 2. S and TOC content (%) from selected Greenburn surface mine
pyritic coal samples, and overall S content average (%) for sampled seams

Sample S
(%)

Overall seam average
S (%)

Sample TOC
(%)

6900 K. Main Rider 20.6 1.0 43.7
1940 Little Cannel
Stringer

8.4 6.7 50.5

8700 Five Foot
Lower

33.9 4.0 15.9

8650 Eight Foot
Upper

29.2 1.3 14.0

9300 Lime 28.7 3.7 13.9
9400 Little Cannel 1.7 4.0 71.8
9700 Lower Rigfoot 0.3 1.1 38.6
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Fig. 4. Fe and Se laser ablation mapping of banded and cleat-filling pyrite in two Greenburn coal samples (map area depicted in schematic by red box). High Fe content defines all pyrite phases, while high Se concentrates in
cleat-filling pyrite.
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Greenburn coals (David Richardson, pers. comm. 2017). Old
Red Sandstone sedimentary rocks contain reduction
spheroids that include selenide phases (Spinks et al. 2014).
Selenide mineralization may have resulted from meteoric
waters descending through fault planes into underlying
sandstones in which microbially-induced reducing condi-
tions prevailed. Reddening of coal beds in Ayrshire and NE
Arran has been recognized previously (Bailey 1926; Mykura
1960; Wang 1992; Spinks et al. 2014), and attributed to
mobilization of a fluid which also contains Se, with
subsequent migration and mineralization in a reducing
environment (Spinks et al. 2014). Total S content in
Westphalian Coal Measures is largely reflected in pyrite
content as opposed to the organic S content (e.g.Westphalian
A and B Coal Measures of the Northumberland Coalfield;
Turner & Richardson 2004). Variations in Se content may be
linked to changes in the depositional environment, e.g.

variable marine influence, with more marine-influenced
coalfields showing higher S content (Turner & Richardson
2004), and therefore higher Se content.

Pyrite genesis

Variations in pyrite morphology (e.g. euhedral, massive
banded and cleat-hosted pyrite) and S isotope compositions
have previously been shown to reflect several generations of
pyrite in coal formations (Dai et al. 2002; Turner &
Richardson 2004). Cleats can also form at multiple stages
as early- and late-cutting fracture sets and partings (Laubach
et al. 1998; Rippon et al. 2006). Samples from the Greenburn
mine show multiple generations of pyrite formation-banded
syngenetic pyrite and epigenetic cleat-filling pyrite. Sulphur
in coal may be derived from source plant material or from the
bacterial reduction of aqueous sulphate.

Fig. 5. Se LA-ICP-MS maps and corresponding line scan transects showing Se peak intensity. Large Se peaks correspond to cleat-filling pyrite
perpendicular and parallel to banded pyrite.
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Sulphur isotope compositions can help to decipher
whether pyrite generation (and resultant Se accumulation)
is microbially-mediated (relating to syngenetic pyrite
formation), and/or other mechanisms related to diagenesis
and catagenesis (syngenetic to epigenetic pyrite; Claypool
et al. 1980; Dai et al. 2002; McKay & Longstaffe 2003;
Parnell et al. 2013). There is a high variation in δ34S
composition in Greenburn samples, with similar variability
in the Northumberland Coalfield (−5.4 to +32.8‰ with an
average of +5.1‰; Turner & Richardson 2004). One

measured sample (from 6900 K. Main Rider) is in excess
of +18‰, consistent with post-depositional addition of S
(McKay & Longstaffe 2003; Turner & Richardson 2004).
The range in S isotopic compositions indicates that pyrite
may have formed by both microbial sulphate reduction
(indicated by isotopically light compositions), and diagen-
etic fluids (heavier compositions), and therefore Se was also
concentrated at multiple stages of pyrite generation.
Syngenetic pyrite may have formed from microbial

sulphate reduction, as suggested by negative δ34S

Fig. 6. Semi-quantification of Se content
of pyrite and coal in (a) 9300 Lime and
(b) 6900 K. Main Rider coals by LA-ICP-
MS.
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compositions, but also from precipitation of Fe. Syngenetic
pyrite formation may be multi-stage, due to variations in the
availability and mobility of Fe in pore solutions during early
diagenesis (Spears & Amin 1981; Spears & Caswell 1986).
If reduced sulphur speciation activity and Fe mobility are low
in pore solutions, sulphides may precipitate upon encounter-
ing reduced sulphur species, with some Fe2+ remaining in the
system, depending upon HCO3− availability (Spears &Amin
1981; Spears & Caswell 1986). Therefore, coupled with
microbial sulphate reduction, Fe precipitation may form
bedding-parallel bands and concretions over a period of time,
resulting in multiple phases of syngenetic pyrite formation.
Table 4 and Figure 7 show no clear pattern between δ34S
values and syngenetic or epigenetic pyrite. It may be
anticipated that syngenetic pyrite would show lighter
compositions and negative δ34S values, indicating a bacterial
origin, whereas epigenetic pyrite would show heavier
compositions and positive δ34S values. However, this is
not observed, and the majority of samples for both
syngenetic and epigenetic pyrite show positive δ34S values.
This suggests that most of the pyrite is unlikely to have been
bacterial, and later pyrite is the result of hydrothermal
mobilization and redeposition of earlier-formed pyrite, or
that the syngenetic pyrite δ34S signature was overprinted by
later hydrothermal fluids. Vertical variation and an overall
decrease in δ34S-values from Lower to Middle (and, to a
lesser extent, Upper) Coal Measures may relate to proximity
to overlying rocks or changing environmental conditions
during deposition. The opposite trend has been noticed in
low-sulphur Danville coals of Indiana, with δ34S-values
progressively increasing upwards (Jiang et al. 2008). This
progression was attributed to a closed system with limited
sulphate supply and limited influence by seawater (Hoefs
2004; Jiang et al. 2008). The trend of decreasing δ34S-values
in Greenburn coals may suggest an increasing seawater
influence and sulphate supply.

Cleat formation and Se enrichment

LA-ICP-MS mapping reveals that although Se (and other
trace elements; see Supplementary material) is concentrated
in syngenetic pyrite, there is a distinction in trace element

content between syngenetic and epigenetic pyrite. Although
Se (along with other redox-sensitive trace elements) is
commonly associated with syngenetic pyrite (absorbed
from seawater and local pore waters), mapping reveals that
there is a greater concentration in epigenetic cleat-filling
pyrite (up to 266 ppm compared to 181 ppm in syngenetic
pyrite, an average of 35% higher). This suggests that
additional Se was mobilized during the later stages of pyrite
formation, and that catagenetic fluids were responsible for
high concentrations of Se and other trace elements in some
coals. During the Late Visean, Namurian and Westphalian
stages, syn-sedimentary tectonic movements and regional-
scale dextral strike, oblique-slip movements were common
(Browne & Monro 1989; Ritchie et al. 2003; Underhill
et al. 2008; Leslie et al. 2016), with deformation in
Ayrshire associated with ENE-trending faults (Leslie et al.
2016). Coal Measures were also affected by extensive post-

Table 3. Average (and maximum) sulphophile trace element content (ppm, Fe –%) of background coal, banded pyrite and cleat-filling pyrite for two Greenburn
coal seams, analysed by LA-ICP-MS

Sample Ag As Bi Cu Fe Hg Pb Se Te

9300 Lime
Background coal (n = 4656) 6.0 170.3 0.1 41.6 6.4 2.2 123.0 15.0 1.3

(157.7) (1428.0) (7.5) (692.0) (41.9) (14.4) (2421.3) (85.4) (9.4)
Banded pyrite (n = 3277) 7.8 697.2 0.1 102.5 16.7 4.9 500.1 59.8 1.3

(67.7) (2002.2) (10.6) (394.7) (76.6) (15.0) (1959.3) (180.7) (11.6)
Cleat pyrite (n = 385) 10.2 1750.5 0.1 191.7 28.9 10.0 979.2 157.0 0.8

(39.3) (3258.7) (0.9) (385.2) (51.4) (18.1) (2432.7) (266.0) (2.9)
6900 Burnfoot Bridge
Background coal (n = 4068) 2.8 56.0 0.1 18.3 3.7 1.4 94.3 8.6 1.7

(96.0) (590.0) (3.0) (290.8) (40.2) (14.6) (1570.0) (44.8) (38.1)
Banded pyrite (n = 1748) 4.6 288.1 0.1 47.8 13.7 2.5 243.5 24.8 2.2

(44.7) (1532.3) (3.1) (313.1) (57.8) (13.9) (2704.1) (70.7) (71.3)
Cleat pyrite (n = 604) 6.7 460.2 0.2 76.7 22.5 3.5 638.5 83.9 1.9

(31.6) (1397.4) (18.4) (209.3) (43.2) (26.3) (2578.7) (190.0) (58.9)

Averages calculated from raw data points from each sample. n, Number of analyses.

Table 4. S isotope composition (δ34S) of pyrite from sampled Greenburn
coal seams (stage of pyrite genesis also shown)

Sampled seam Pyrite genesis δ34S (‰)

6900 K. Main Rider Syngenetic 9.0
Epigenetic 9.9
Syngenetic 8.9
Syngenetic 18.4
Syngenetic 7.1
Syngenetic 7.6
Syngenetic 7.4

8650 Eight Foot Upper Syngenetic 3.8
Epigenetic 6.1

8700 Five Foot Lower Syngenetic 5.5
Epigenetic 5.2

9300 Lime Syngenetic 1.0
Syngenetic −4.0
Epigenetic −9.3
Epigenetic −11.1

9400 Little Cannel Epigenetic 4.8
Epigenetic 11.6

9450 Little Cannel Upper Syngenetic 2.5
Epigenetic 0.0

9600 Burnfoot Bridge Epigenetic −1.3
1940 Little Cannel Stringer Syngenetic −26.3
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Carboniferous, pre-Hercynian, deformation, resulting in
further folding and fault development (Picken 1988). This
resulted in a set of superimposed tectonic fractures in the
coals, including the cleat fracture system. Cleats provide
channels for fluid flow, and the host coal offers a source of
S resulting from bacterial sulphate reduction (Hatch et al.
1976). The development of cleats therefore provides a locus
for epigenetic pyrite precipitation and associated higher Se
concentrations.
The concentrations of Se in epigenetic cleat-filling pyrite

demonstrate that this element was freely available (at least
on a regional scale) from mobile fluids during much of the
Carboniferous Period. A high Pb content, associated with
epigenetic cleat-filling pyrite precipitation, also relates to
later deformation and fluid mobility, consistent with Pb-
rich pyrite and Pb vein mineralization in Carboniferous
rocks of SW Scotland (Pattrick 1985; Pattrick & Russell
1989). A number of factors are pivotal in the development
of cleats and subsequent trace element concentrations in
epigenetic pyrite. In the Midland Valley of Scotland, cleats
result from both local structural developments during basin
evolution, and differing phases of igneous activity (Rippon
et al. 2006). The complex fault architecture of the Ayrshire
region (particularly in close vicinity to Braehead and the
Greenburn mine) are likely responsible for the local
discordant brittle fracturing and high strain imposed on
the Carboniferous rocks. Alteration and de-volatilization of
the coals, as well as continued thermal maturation during
burial, may also have helped to develop fractures in the
coals and impact on preferential accumulation of elements,
such as Se, in pyrite. A potential source and fluid
distribution mechanism for enriched levels of Se, compared
to UK and worldwide concentrations in coals, may have
been in the Permian dolerite sills that intruded the
sequence.

Comparison of associated trace elements to other coal-
bearing sequences
Previous studies have highlighted higher trace element
concentrations resulting from late stage catagenetic/
epigenetic fluids in coals (Gayer et al. 1999; Goldhaber
et al. 2000; Dai et al. 2005, 2006; Yudovich & Ketris
2005a; Hower et al. 2007; Spears & Tewalt 2009). The
enrichment of trace elements in the later cleat-filling
pyrites of Ayrshire demonstrated in this study agrees with
these observations.
In previous studies of UK coals, trace element concentra-

tions have been shown to increase in the later stages of cleat
infill (Spears & Amin 1981; Spears & Caswell 1986; White
et al. 1989; Spears & Tewalt 2009). This has been attributed
to possible time-dependent increases in concentrations, and a
larger grain size in cleats providing a greater opportunity for
element segregation compared to the early diagenetic pyrite.
For instance, Spears & Caswell (1986) showed that Co,
Cu, Ni, Pb and Zn are higher in later pyrite cleats than
in earlier pyritic nodules (Lea Hall and Littleton
collieries, Staffordshire). Here, earlier-formed pyrite
contained 35–150 ppm Cu and 25–30 ppm Pb, and later
cleat-filling pyrite contained 685–1815 ppm Cu and
425–665 ppm Pb (Spears & Caswell 1986). By comparison,
pyrite from the coals in this study contains higher
concentrations of Cu and Pb. Syngenetic pyrite in Ayrshire
coals contains c. 48–102 ppm Cu and c. 243–500 ppm Pb,
whereas epigenetic cleat-filling pyrite contains c. 76–191 ppm
Cu and c. 425–665 ppm Pb.
Pyrite is the main carrier of As in coals (Bayet & Slosse

1919; Spears & Zheng 1999) and has previously been shown
to be enriched in later-formed pyrite (e.g. Bayet & Slosse
1919; Finkelman 1980; Spears & Zheng 1999; Goldhaber
et al. 2000; Ding et al. 2001; Diehl et al. 2004; Yudovich &
Ketris 2005a) as a result of catagenetic hydrothermal fluids

Fig. 7. S isotopic compositions of pyrite from sampled Greenburn coals, showing that pyrite predominantly formed by diagenetic processes, but some may
also have formed due to microbial sulphate reduction, particularly in Westphalian B (Middle Coal Measures) coal seams.
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or As-bearing groundwaters (Goldhaber et al. 2000;
Yudovich & Ketris 2005a). For instance, Yudovich &
Ketris (2005a) described coarse, later-formed massive pyrite
bands of eastern Kentucky coals containing higher As than
earlier-formed euhedral and framboidal pyrite generations.
Trace element concentrations in pyrite of Pennsylvanian
coals in the Appalachian Basin showed depletion of As and
Hg and enrichment of Pb and Ni in earlier-formed compared
to later-formed pyrite (Diehl et al. 2004). Pyrite in late-stage
veins was shown to contain As-rich growth zones, attributed
to a probable epigenetic hydrothermal origin (Diehl et al.
2004). In samples of West Virginia massive pyrite, As
averaged 1700 ppm (n = 24), while Alabama pyrite veins
contained the highest concentrations of Hg (Diehl et al.
2004). Although Hg has a strong affinity for humic matter
and may accumulate in peats and lignites, and therefore
early-formed diagenetic pyrite, Hg enrichment in coals is
typically a catagenetic hydrothermal process, e.g. the
Nikitovka (Ukraine), Warrior (USA) and Guizhou (China)
basins (Yudovich & Ketris 2005b). By comparison, pyrite in
Ayrshire coals shows enriched concentrations of As in
epigenetic cleat-filling pyrite (average concentrations of
c. 460–1750 ppm, similar to concentrations in West Virginia
coal massive pyrite; Diehl et al. 2004), where concentrations
of Hg are also higher.

Economic and environmental implications

Whole-rock concentrations of Se, up to 15.8 ppm, and pyrite
content of up to 200 ppm are not high enough to be
considered economically viable for extraction. However, the
concentrations of Se and other trace elements in cleat-filling
pyrite, and the relationship of these to brittle deformation and
intrusive activity, mean that other areas of the world, such as
the coalfields of Australia, USA, Russia and China, may also
host high Se content. Seleniferous coals have been shown to
cause environmental issues in countries such as China
(Cheng 1980; Mao et al. 1988; Su et al. 1990; Zheng et al.
1992, 1999; Finkelman et al. 2002; He et al. 2002; Lei 2012;
Zhu et al. 2012) and elsewhere. The Se values for Chinese
coals are, on average, 4.2 ppm, with a maximum of 30 ppm
(Bragg et al. 1998). The environmental ramifications of high
Se in Chinese coals draw attention to areas that show similar
or higher concentrations in coals worldwide, including the
Greenburn coals. The main environmental issue associated
with Se that might threaten the Ayrshire region is elevated
levels in groundwater and streams (e.g. coal mine drainage
and ochre development) in the vicinity of both current
and former coal workings. However, a study of Se
concentrations in Scottish soils conducted from 2007 to
2009 by Shand et al. (2012) suggests that this threat is
negligible. Shand et al. (2012) sampled 688 soils and,
although the distribution of Se showed a propensity for
higher concentrations in the west of Scotland, these were
more commonly associated with mixed metamorphic and
igneous rocks. The Greenburn mine is centred on a soil
association derived from Carboniferous sandstones, shales,
coals and limestones, with Se soil content below the limit of
detection (<0.06 ppm). In the larger exposed Ayrshire
coalfield Se content in soils reaches a maximum of
2.93 ppm (Shand et al. 2012).

Conclusions

Our results indicate that the high Se content of Greenburn
coals relates to the evolution of a multi-stage pyrite
mineralization, including deposition, diagenesis and cata-
genesis of the host rocks, intrusive igneous activity,
deformation and fluid mobilization. Selenium may have
been sourced from sulphidic Dalradian rocks that have been
reported to contain high trace element concentrations.
Greenburn surface mine coals are characterized by syngen-
etic concretionary pyrite and later-formed, epigenetic cleat-
filling pyrite. Sulphur isotope compositions indicate that
pyrite may have formed by microbial sulphate reduction,
diagenetic processes and/or hydrothermal fluids. Initial Se
sequestration is associated with syngenetic mineralization,
with additional Se from fluids mobilized during later
epigenetic pyrite formation. Cleats in local fractures provided
channels for later fluid flow and precipitation of compara-
tively high-Se pyrite. Understanding the processes respon-
sible for the development of Se-rich pyritic coals in Ayrshire
may help to identify similar processes concentrating strategic
elements in coal worldwide, important both for identifying
potentially exploitable resources and predicting the environ-
mental impact of weathering and processing in coal.
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