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Abstract 

Turbidites deposited in confined mini-basins may demonstrate extremely complex 

stratigraphic architectures. We hypothesize that particulate organic matter preserved in 

turbidites will not be randomly distributed and may be used to assist the identification of 

architectural elements. An integrated sedimentological and palynological study was conducted 

on confined turbidites in the Peïra Cava sub-basin of the Eocene to Oligocene Grès d´Annot 

system, SE France; this provides a natural laboratory, where certainty in the stratigraphy allows 

confidence in sampling of sub-environments. Elements reflect deposits from high and low 

density flows including: thin-beds that onlap the basin margin and heterolithics spread across 

the basin; base of slope megabeds; and thick-beds that have a proximal to distal expression 

from south to north across the basin. One hundred samples were collected from logged sections 

across the basin, with 10 g of mudstone per sample being processed for a count of three hundred 

pieces of organic matter. Both allochthonous terrestrial and relatively autochthonous marine 

matter were recovered, with results showing a progressive fining of material from proximal to 

distal areas. Base of slope megabeds and proximal ponded thick beds are dominated by dense 

humic matter, medial areas become dominated by light plant material, and distal samples are 

dominated by amorphous matter, interpreted as a result of density sorting of organic matter in 

turbidity currents. Exploratory ordination analysis and fuzzy cluster analysis were used to 

examine these results. Based on this study, we provide evidence of density fractionation of 
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organics in turbidity currents, which is implied to be a major control on the distribution of 

particles in deep-marine depositional systems. This allows a palynofacies classification scheme 

to be developed to recognise architectural elements, which may be applied to sub-surface 

samples to assist the characterization of deep-water mini-basin architecture, understanding of 

which is crucial for hydrocarbon exploration and development.  

Keywords: deep-water, particulate organic matter, confined turbidites, outcrop analogue, 

reservoir architecture, Peïra Cava 

 

1. Introduction 

Intra-slope mini-basins host producing hydrocarbon fields and are exploration targets in areas 

such the Gulf of Mexico (Clemenceau et al., 2000; Salazar et al., 2014), West Africa (Pirmez 

et al., 2000), and SE Asia (Demyttenaere et al., 2000). Mini-basins are kilometres to tens of 

kilometres in length and their stratigraphic architecture is typically complex, with an evolution 

of basin fill and spill in a confined setting, which is difficult to constrain without high resolution 

data (Prather et al., 1998; Booth et al., 2003). Architectural elements, e.g. basin margin onlap 

vs basinal heterolithics, are difficult to distinguish in mini-basins (Bouma, 1997) and typically 

require extensive outcrop analogues to be identified (Kneller and McCaffrey, 1999; Sinclair 

and Cowie, 2003). Correct placement of hydrocarbon exploration and development wells in 

these complex systems is crucial (Demyttenaere et al., 2000; Pirmez et al., 2000; Moraes et al., 

2004; Madof et al., 2009; Salazar et al., 2014). As such, any tool that may be used to enhance 

the understanding of the distribution of architectural elements must be seen as an advantage. 

 

This study seeks to expand the understanding of the distribution of organic matter in deep-

water settings by examining turbidites confined in mini-basins. Study aims are 1) document 

reservoir scale architectural elements of structurally confined, deep-marine mini-basins; 2) 
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examine the type of particulate organic matter preserved in these turbidite systems; 3) develop 

a palynofacies classification scheme to assist in the interpretation of depositional sub-

environments in deep-water mini-basins. The goal is to provide a classification scheme 

applicable to sub-surface projects, to aid exploration and characterisation of sub-surface deep-

marine mini-basins, understanding of which is crucial for correct well planning and 

hydrocarbon field development. 

Palynofacies is the study of acid-resistant, microscopic particulate organic matter recovered 

from sediments (Combaz, 1964), and is regularly used in interpretations of terrestrial and 

shallow marine environments (Batten, 1982; Tyson, 1995; Batten, 1996; Batten and Stead, 

2005). As with siliciclastic particles, organic particles may be entrained by currents (Muller, 

1959; Stanley, 1986), to be deposited in turbidites. In this study we hypothesize that their 

distribution will not be random, but reflect transport and the environment of deposition 

(McArthur et al., 2016), with Tinterri et al. (2016) noting the importance of organic matter in 

recognising reflected beds in confined basins.  

In order to test this hypothesis we examined outcrops of the Grès d´Annot turbidite system, in 

the Alpes Maritime, SE France (Fig. 1). These classical deep-water outcrops provide the perfect 

setting to study confined mini-basins, with over 60 years of detailed work providing a rigorous 

stratigraphic framework (see Salles et al., 2014; Šimíček and Bábek, 2015; Tinterri et al., 2016 

and references within). Specifically, the Peïra Cava sub-basin provides excellent exposures 

through a fully confined mini-basin (Fig. 1; Kneller and McCaffrey, 1999; Amy et al., 2000; 

Kneller and McCaffrey, 2003; Amy et al., 2004; Lee et al., 2004; Amy et al., 2007; Aas et al., 

2010, 2014). 

 
2. Geological setting 
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The Eocene to Oligocene Grès d’Annot Formation of SE France comprises a deep-marine 

succession, preserved in Alpine synclines (Fig. 1; Bouma and Coleman, 1985; Sinclair, 1997; 

Sztrákos and du Fornel, 2003; Joseph and Lomas, 2004). Deposition occurred in a series of 

north–south orientated sub-basins, with a source area to the south in the Corsica–Sardinia 

massif (Stanley and Mutti, 1968; Ivaldi, 1974; Elliott et al., 1985; Ravenne et al., 1987; 

Sinclair, 2000; Apps et al., 2004).  

It is a sand-rich turbidite system deposited in a structurally confined setting, which had an 

irregular basin floor, and has a total thickness up to 1500 m, although sedimentation was not 

spatio-temporally uniform across the region (Kneller and McCaffrey, 1999; McCaffrey and 

Kneller, 2001; Sinclair and Cowie, 2003; Apps et al., 2004; Callec, 2004; du Fornel et al., 2004; 

Euzen et al., 2004). The turbidites onlap the underlying Marnes Bleues Formation (Riche et 

al., 1987). Some of the mini-basins were filled to their spill points, e.g. the Annot to Grand 

Coyer to Chalufy succession (Sinclair, 1993; Sinclair, 2000; Joseph and Lomas, 2004), while 

others, such as Peïra Cava were not filled to spill (Amy et al., 2007). Likely bathyal water 

depths with low oxygen levels were estimated based upon the in-situ benthonic foraminifera 

(Sztrákos and du Fornel, 2003). Sedimentation ceased as result of continued Alpine thrusting, 

with sediments to the east being unconformably truncated by the Schistes à Blocs (Ford and 

Lickorish, 2004).  

2.1. The Peïra Cava outlier 

The erosional remnant of one mini-basin outcrops around the village of Peïra Cava (Fig. 2), 

where road cuts and steep Alpine hillsides present excellent sections, which can be correlated 

across the basin (Amy et al., 2000, 2007). The Grès d´Annot Formation onlaps the Marnes 

Bleues Formation, with a basal thin-bedded unit (equivalent to the Marnes Brunes of Stanbrook 

and Clark, 2004) before developing into dominantly thick-bedded sandstones and mudstones, 
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interspersed with mass-transport deposits, in all totalling c.1200 m (Amy et al., 2007), 

representing c.3.3 Ma of deposition (Sztrákos and du Fornel, 2003). 

 

3. Methodology 

3.1 Palynological processing  

The stratigraphic framework of Amy et al. (2007) provided the basis for one hundred samples 

to be collected to cover each architectural element of the mini-basin. Samples were selected 

from clean, fresh outcrop of the darkest horizons of mudstone. Preservation of organics in 

coarse sediments is typically poor, with fluids free to move in coarse sediments and oxidise 

organic matter (Paropkari et al., 1992). Samples were taken at regular (c.10 m) intervals in 

logged sections to assess both lateral and vertical (temporal) variation.  

A standard processing technique was used to avoid any discrepancies induced by processing 

methods (Table 1). A minimum of three hundred counts of particulate organic matter were 

undertaken per slide, using a Leica DM2500 binocular biological microscope, with transmitted, 

differential interference contrast, and fluorescent light. The long axis length of the first forty 

equant opaque phytoclasts observed was recorded for each sample (Tyson and Follows, 2000), 

along with visual inspection of their degree of rounding and sphericity. The dominant 

morphological features of miospores and dinoflagellate cysts (e.g. ornamentation), level, and 

types of deterioration shown by material was observed. All slides, residues and samples are 

housed in the Marleni Marques Toigo Laboratory of Palynology at UFRGS, Porto Alegre, 

Brazil, with laboratory codes MP-P 10559 to 11939.  

3.2. Particulate organic matter categories 
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Sixteen categories were defined based upon their transmitted and fluorescent light properties 

(Fig. 3), grouping particles with similar characteristics to represent the total particulate organic 

matter assemblage (Fig. 3). Categories are based upon our observations of the organic matter, 

but largely agree with the categories of Boulter and Riddick (1986), van der Zwan (1990), 

Whitaker et al. (1992), Tyson (1995), and McArthur et al. (2016). Fungal material, mostly 

represented by fungal spores, was not sub-divided (sensu Boulter and Riddick, 1986) and well-

preserved wood was grouped with parenchyma (sensu van der Zwan, 1990). 

Particles can be separated into allochthonous terrestrial material inferred to have been 

transported a relatively long distance and marine debris (Fig. 3), which was likely transported, 

but relatively autochthonous. Groupings are sorted by their inferred density as documented by 

Muller (1959), Cross et al. (1966), Traverse and Ginsburg (1967), Chaloner and Muir (1968), 

Riley (1970), Davey (1971), Koreneva (1971), Davey and Rogers (1975), Batten (1982), Tyson 

(1984), Kohl (1985), Boulter and Riddick (1986), van der Zwan (1990), Whitaker et al. (1992), 

Tyson (1995), Hoorn (1997), Oboh-Ikuenobe et al. (1999), Beaudouin et al. (2004), Jäger and 

McLean (2008), and Baudin et al. (2010). 

3.3 Statistical analysis 

Multivariate statistical analysis of the palynofacies dataset was conducted with PAST3 

software (Hammer et al., 2001). Principle Components Analysis (PCA) and Detrended 

Correspondence Analysis (DCA) were performed. C-means Fuzzy Cluster (FCM) analysis 

(Gary et al., 2009) was conducted with the Technical Alliance for Computational Stratigraphy 

(TACSworks) software FCM module.  

DCA is a metric ordination technique, based upon reciprocal averaging of eigenvalues (Hill, 

1973), which highlights variations in the ecology that have the most influence on the data. 

Eigenvalues are determined for each variable, relating to their variation along an axis, therefore 
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presenting values for each axis in terms of its impact on ecological variation. The result is a 

cross-plot of the axes that exhibit the most variance. This visual representation allows clusters 

of related samples to be grouped and trends to be examined. DCA was chosen given its 

reputation with palynological datasets (Courtinat and David, 1984; Kovach and Batten, 1994; 

Jolley and Whitham, 2004). 

PCA determines theoretical variables (components) that account for as much variance as 

possible in the dataset, in order to display linear variations and reduce the dataset to the two 

most important variables, which it then displayed for visual analysis. PCA is commonly applied 

to palynological datasets (Oboh-Ikuenobe, 1996; Thomas et al., 2015). 

Fuzzy clustering is an investigative technique that enables the identification of samples with 

related configurations, which sub-divides datasets into a series of clusters (Zadeh, 1965). Fuzzy 

clusters have gradational relationships to one another, whereby each sample may belong to one 

or more cluster to a varying degree (membership) as opposed to hard clustering techniques 

such as DCA, where each sample is unequivocally grouped (Fig. 4). Although relatively new 

for palaeontological data analysis, FCM is ideal for analysing transitional datasets (Wakefield 

et al., 2001; Gary et al., 2009; Daly et al., 2011; Erbs-Hansen et al., 2011, 2012; Martin et al., 

2013). Every data point (sample) has the potential to belong to multiple clusters, therefore 

permitting representation of samples that are gradational between two or more clusters (Fig. 4) 

(Gary et al., 2009). Clusters are defined by an iterative process, fully explained by Gary et al. 

(2009), with cluster centroid values being used to define the dominant components of each 

cluster (Table 2). Once the clusters are defined, the membership of each sample to each cluster 

is expressed from 0 to 1, where 0 is no relation and 1 is the same. This output is best illustrated 

by histograms of each sample´s relation to each cluster, which can then be used to examine sets 

of samples with similar properties. FCM allows detailed investigations of ecosystem 

heterogeneity, which is not apparent in hard clustering methods such as PCA. 
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4. Sedimentology  

The sedimentological framework for this study is based upon a wealth of studies conducted on 

the Peïra Cava outcrops (Bouma, 1962; Stanley et al., 1978; Amy et al., 2000, McCaffrey and 

Kneller, 2001; Kneller and McCaffrey, 2003; Amy et al., 2004, Lee et al., 2004; Amy et al., 

2007). The stratigraphic framework used here is based on seven correlated logs by Amy et al. 

(2007) (Fig. 5 and 6). This allowed recognition of four key lithofacies associations, 

summarized in figure 7. Amy et al. (2007) also recognised mass-transport deposits; these were 

not taken into account in this study as they provide information regarding the remobilized 

material rather than the final environment of deposition.  

4.1 Architectural element A (Fig. 7A) 

Descriptions: Thin (<10 cm) to medium-bedded (max 20 cm), very fine to medium grained, 

well-sorted sandstones, with significant mudstone caps, typically at least the thickness of the 

underlying sandstone. Basal surfaces tend to be sharp, and may display groove and flute casts. 

Beds are typically laminated, cross-laminated or rippled, and normally graded. Ripples usually 

show different orientations in comparison to sole casts. Beds are observed to thin rapidly 

towards basin margins, where they truncate against the Marnes Bleues; the angle of dip is less 

inclined than the underlying marls. Deformation is commonly observed. Bioturbation is 

prevalent in both mud- and sandstone. 

Interpretations: Basin margin onlap turbidites. Laterally thinning and truncating thin-beds, 

with highly discordant palaeocurrents are interpreted as low density turbidity current deposits, 

onlapping or draping over older, tilted slope deposits. These features have previously been 

interpreted as the result of flows onlapping and reflecting against major basinal slope surfaces 

(Kneller and McCaffrey, 1999; McCaffrey and Kneller, 2001; Puigdefàbregas et al., 2004). 
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Deformation is inferred to be a product of slumping resulting from deposition on a relatively 

high angle slope (Stanbrook and Clark, 2004). These deposits have been described on the 

margins of the Peïra Cava mini-basin (Amy et al., 2004), likely representing the marginal 

equivalent of the thicker turbidites. 

 4.2 Architectural element B (Fig. 7B) 

Descriptions: 25 to 35 m thick-bedded, gravel to fine grained, poorly-sorted sandstones (Fig. 

5 and 6), with meters thick mudstone caps, and basal and internal mud-clast concentrations. 

Basal contacts are typically sharp and irregular, potentially truncating older beds, and show 

scour structures e.g. megaflutes. Bed bases may be gravel to coarse, but beds fine-up to fine 

and are typically capped by a meter or more silt- to mudstone cap. Rare internal chaotic 

horizons up to 3.5 m thick comprise a clast to matrix supported, clast-rich intervals, bearing 

mudstone, sandstone, and marl clasts up to 1.5 m long, set in an argillaceous matrix. Discrete 

pebble or mud-clast intervals may exist within otherwise structureless, massive, bodies. Mud-

caps may show laminations, irregular sandstone lenses and pipes and are rich in macroscopic 

organic debris. Beds are observed to thin rapidly over several hundred metres northwards 

(McCaffrey and Kneller, 2001). Bioturbation is commonly observed in the mud-cap and 

vertical burrows often extend into the underlying sandstone. 

Interpretations: Base of slope megabeds. These huge, structureless sandstones are interpreted 

as discontinuous base of slope megabeds infilling erosional scours (McCaffrey and Kneller, 

2001; Amy et al., 2007), and forming localized wedges along the confining slope (Amy et al., 

2007). These massive beds are interpreted to represent single events, though amalgamations 

may be inferred from pebble or mud-clast horizons. The  mud-clast rich horizons are debrites, 

interpreted as hybrid events (Patacci et al., 2014), genetically related to the subsequent turbidite 

deposit. Thick mudstone caps to these beds indicate that sediments were trapped in a closed 
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basin. Sandstone lenses and pipes within the mud-caps are interpreted as sand injectites, 

originating from the underlying sandstone. 

4.3 Architectural element C (Fig. 7C) 

Descriptions: Up to 5 m thick beds of poorly-sorted, very-coarse to fine grained, sandstones, 

with abrupt grain size breaks (Fig. 5 and 6). Bed bases are typically sharp and flat, but may 

show sole casts, e.g. flutes and grooves, and rare erosive surfaces. Beds may display a range of 

structures, typically with a massive basal interval, grading normally through trough cross-

stratification, planar stratification, and ripple lamination; although beds may also show 

convolute lamination, dish structures, flames, pipes, and loading structures. Typically non-

amalgamated, with silt- to mudstone caps up to 5 m thick (Fig. 6), which often show sandstone 

pipes and thin sandstones and siltstones. May exhibit basal or internal mud-clast rich intervals, 

which are typically clast-rich but supported by a sandstone matrix. Generally observed to thin 

and fine to the north (Amy et al. 2007), but to maintain continuous, tabular, sheet-like 

geometries over 10´s of km´s (Amy et al. 2000). Bioturbation is prevalent, particularly in 

mudstone caps. 

Interpretations: Ponded sheet turbidites. These laterally persistent, thick, tabular, sandstone 

rich beds are interpreted as the products of high and low density turbidity currents ponding in 

confined mini-basins. The limited accommodation space resulted in deposition as sheets across 

the basin, rather than discrete lobes. The excellent lateral continuity of these beds enables their 

use as marker beds in correlations across the basin, with Amy et al. (2007) defining 18 marked 

beds (Mu) to provide lateral and vertical stratigraphic control across the basin. Mud-clast trains 

and or grain size breaks are interpreted as amalgamation surfaces. Beds are generally capped 

by significant mudstone intervals, implying this was a fully confined basin (Amy et al., 2007). 
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Dewatering and injection of sandstone bodies implies rapid deposition and subsequent fluid 

escape (Tinterri et al., 2016).   

4.4 Architectural element D (Fig. 7D) 

Descriptions: Thin-bedded (<10 cm), coarse to fine grained sandstones, grading into silt- to 

mudstone caps that may be >1 m thick (Fig. 5), occurring in packages up to 50 m thick. 

Sandstones are often <1 cm, with sharp, flat bases, occasionally show planar lamination, but 

typically ripple lamination, which may be bi-directional and switching between planar to ripple 

to planar lamination is not uncommon, associated with sharp grain size breaks. Sole structures 

are rarely observed. Rarely, in southern sections coarse sandstones exhibit trough cross-

stratification and megaripple structures, immediately overlain by mudstone. Mudstone 

intervals also show internal variation, with variably laminated, fissile, dark grey, organic rich 

intervals with siltstone interbeds, and light grey-blue, massive, foraminifera rich, calcareous 

intervals, with conchoidal fracture. Bioturbation is variable, but often intensive and may 

homogenize structures.  

Interpretations: Heterolithic sheets. This association of thin, structured sandstones and thicker 

mudstones are interpreted as the products of low density turbidity currents. Organic rich, often 

laminated mudstones that directly overlie sandstones are interpreted as the mud rich portion of 

turbidites. Subsequent massive, calcareous intervals are interpreted as hemipelagic sediments. 

Turbidite mudstones may be differentiated sedimentologically from hemipelagic mudstones 

(Stow and Shanmugam, 1980; Talling et al., 2007). Turbidites may show very-thin, silty 

laminations, and are dark grey in colour. Lighter coloured, calcareous hemipelagites overly the 

turbidite mudstones. That mudstones are typically thicker than sandstones implies full 

confinement of the basin, with turbidity currents not over-spilling into other basins, however 

the presence of anti-dune structures in the southern end of the basin implies bypass (McCaffrey 
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and Kneller, 2001). Bi-directional ripple directions are interpreted to be the result of flow 

reflection against basin edges (Kneller and McCaffrey, 1999; Tinterri et al., 2016), with 

reflected flows being able to traverse the relatively small basin. These packages imply periods 

of relative starvation of sediment supply. 

4.5 Spatial distribution of lithofacies associations 

Of the recorded lithofacies, base of slope megabeds (element B) are only present in the lower 

50 m of southern sections, as the onlap is not preserved in higher parts of the succession 

(McCaffrey and Kneller, 2001). The basin margin onlap facies (element A) is only observed in 

the lower portions of logged sections, primarily exposed on the eastern margin of the basin, 

where lateral pinch-out of beds is apparent. The majority of the basin-fill is represented by 

sheet-like, typically non-amalgamated sandstones and mudstones of lithofacies C and D (Amy 

et al., 2000).  

Variation in the architectural elements can be observed in north-south transects of the basin 

(Fig. 5 and 6), leading to the interpretation of proximal to distal representations of the 

succession (Amy et al., 2000, 2007; Aas et al., 2010). Amy et al. (2007) provides a detailed 

analysis of the changes in the succession, which are summarized in figure 7. As such, ponded 

sheets (element C) can be sub-divided into proximal (C1) medial (C2) and distal (C3) 

expressions, and heterolithics sheets (element D) can be sub-divided into proximal (D1) medial 

(D2) and distal (D3) representations.  

4.5.1 The lower 700 m of the southern sections (1 and 2) demonstrate the thickest sandstone 

beds (up to 35 m) and coarsest grain size, with the majority of thick sandstone beds initiating 

as gravels (Fig. 5 and 6; Amy et al., 2007). Net- to-gross averages 90% in this interval (Amy 

et al., 2007).These intervals also display the megabeds (element B), which are not present 

further north (Fig. 5). Ponded sheets (element C1) show the highest internal variation in 
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southern sections, with higher levels of amalgamation and meter scale erosive surfaces. 

Mudstone rafts up to 1.5 m long occur in southern sections. Thin-bedded heterolithic units are 

relatively rare (Fig. 5 and 6) and display bypass structures (McCaffrey and Kneller, 2001).  The 

marker bed pictured in figure 7 (Mu10) is 480 cm thick, displays one distinct amalgamation 

surface, with coarse sandstone packages separated by a 50 cm thick mud-clast rich interval, its 

mudstone cap is 60 cm thick.  

Interpretation: Proximal slope influenced association. The thicknesses, coarse grain size and 

bypass structures in the southern outcrops are interpreted as the result of deposition near the 

base of slope, in the most proximal part of the preserved basin fill (Amy et al., 2007; Aas et al., 

2010). Megabeds (element B) and thick-bedded sandstones (element C1) are interpreted to be 

the result of 1-2 flows per event (McCaffrey and Kneller, 2001; Amy et al., 2007). The very 

coarse grain size, amalgamations, relatively thin mudstone caps, and thin-bed bypass structures 

indicate significant bypass of material down-system. 

4.5.2 The upper 200 m of sections 1 and 2 and medial sections (sections 3, 4, and 6) show 

laterally persistent thick sandstones (element C2) and thinner heterolithic units (element D2), 

without the megabeds seen in section 1 (Fig. 5 and 6). The general grain size, thickness and 

net-to-gross (50-70%) of the package is reduced when compared to the southern sections (Amy 

et al., 2007). Thin-bedded intervals (element D2) become more common than southern sections 

(Fig. 5), but do not show significant traction or bypass structures. Mud-clast concentrations are 

less common, with clasts reaching a maximum of 30 cm. By section 3 (4 km north of section 

1), Mu10 is represented by a 250 cm thick interval, with a lower 75 cm of coarse to medium 

sandstone seperated from an upper 150 cm of coarse to fine sandstone by a 25 cm thick mud-

clast horizon; its mud-cap is 100 cm thick (Fig. 7).    
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Interpretation: Proximal basin-plain. The relatively thick and continuous beds found in the 

upper portion of the southern sections and the whole of the medial sections are taken to 

represent deposition in the proximal basin-plain portion of the mini-basin (Amy et al., 2007). 

The transition from discontinuous megabeds and very-thick sandstones to thick sandstones in 

the upper parts of sections 1 and 2 are taken to represent a southwards shift in the depositional 

locus of the basin (Amy et al., 2007). 

4.5.3 Northern sections (5 & 7) display a dominance of thin-bedded intervals (element D3), 

with net-to-gross <60% (Fig. 5; Amy et al., 2007). Marker sandstones beds (element C3) are 

thinner than in sections to the south (Fig. 5 and 6) but demonstrate thicker mud-caps, e.g. the 

mud-cap to MU 5 is 2 m thick in section 2, but is 5 m thick in section 7. Although bed bases 

are typically coarse, gravels are very scarce, and mud-clast intervals are very rare (Fig. 5), 

however slumping of beds is evident. Thin-beds typically display a variety of palaeocurrent 

directions, typically directed northwards at the base but generally southerly higher in beds 

(Amy et al., 2007). Mudstones typically contain a significant hemipelagic component and 

bioturbation is rare. Mu10 is represented by a 175 cm thick interval of coarse to fine-grained 

sandstone, with a sharp grain size break separating the lower 50 cm of coarse to medium 

sandstone from an upper 125 cm coarse to fine sandstone; its mud-cap is 150 cm thick (Fig. 7).   

Interpretation: Distal basin-plain. These deposits are interpreted as being deposited at the distal 

end of the basin (Amy et al., 2007), given the dominance of thin-bedded packages (element 

D3) and thick mud-caps to relatively thinner marker beds (element C3), with the mud rich 

component of turbidity currents predominantly ponding down-dip. The variation in 

palaeocurrents is interpreted as reflection of currents off the northern basin margin (Amy et al., 

2007). This margin, although not preserved, is also postulated from the presence of slump units, 

interpreted to represent remobilisation of sediment deposited on a nearby slope.      
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5. Palynofacies of confined turbidites 

5.1. Palynofacies 

Study of the organic matter of the four architectural elements and their sub-divisions (A, B, 

C1, C2, C3, D1, D2, D3) provides eight palynofacies associations (Fig. 8, 9 and 10). Data are 

presented primarily in their raw format to view stratigraphic trends (Fig. 8), but also in 

percentages as box and whisker charts, demonstrating the relative proportions of particulate 

organic matter for each architectural element (Fig. 9). Below we describe the palynofacies 

associated with each architectural element. 

5.1.1. Element A, basin margin onlap (Fig. 10H) samples display a moderately poorly-sorted 

palynofacies association (Fig. 8 and 9), dominated by amorphous organic matter (AOM). There 

is terrestrial material, mostly palynowafers and degraded wood, however marine clasts are 

dominant, and this element records the highest numbers of dinoflagellate cysts (Fig. 8 and 9). 

Dinocysts are relatively diverse, showing both chorate and proximate forms, with cysts such 

as Nematosphaeropsis sp. implying a relatively deep-water setting (Pross and Brinkhuis, 2005). 

Phytoclasts are typically sub-rounded and elongate, with maximum phytoclast size of 34 µm, 

and average of 8.1 µm. 

5.1.2. Element B, base slope megabeds (Fig. 10A) exhibit very poorly-sorted assemblages, 

dominated by large fragments of degraded wood and palynowafers (Fig. 8 and 9), but are rich 

in AOM. Limited occurrences of opaque phytoclasts, well-preserved wood, miospores, and 

fungi make up the remainder of this palynofacies association. A wide diversity of miospores 

was observed, but dinocyst numbers are restricted. Spores may be large or small, but are 

typically spheroidal and evidence of reworked spores exists in the wide colour variation 
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observed, from pale orange to dark brown. Phytoclasts are generally sub-angular and sub-

elongate, reaching a maximum size of 1 mm, but averaging 15 µm.  

5.1.3. Element C1, proximal ponded sheets (Fig. 10B) show poorly-sorted assemblages 

dominated by degraded wood and palynowafers (Fig. 8 and 9). Miospores and dinocysts are 

more frequent when compared to the megabeds, but show low diversity, and less AOM (Fig. 8 

and 9). Spores tend to be small (<30 µm), simple, round specimens, while the dinocysts are 

predominantly simple proximate forms. Phytoclasts are sub-rounded, sub-elongate, generally 

smaller (<50 µm) when compared to the megabeds, averaging 10.4 µm.  

5.1.4. Element C2, medial ponded sheets (Fig. 10C) show moderately well-sorted assemblages 

dominated by palynowafers (Fig. 8 and 9), with less degraded wood and AOM recorded than 

in proximal areas (Fig. 8 and 9). Miospores and dinocysts are reduced in numbers and less 

diverse when compared to the proximal sections, but fungal spores are more abundant (Fig. 8 

and 9). Phytoclasts are typically sub-angular to rounded, sub-elongate, up to 30 µm, and 

average 9 µm.  

5.1.5. Element C3, distal ponded sheets (Fig. 10D) exhibit very poorly-sorted assemblages, 

dominated by palynowafers and AOM, with minor degraded wood and equant debris (Fig. 8 

and 9). The amount of preserved wood and miospores are reduced when compared to medial 

sheets, but bladed opaque debris is more abundant (Fig. 8 and 9) and dinocysts show higher 

diversity. Phytoclasts are typically small (<20 µm, average 7.8 µm), sub-angular, and elongate.  

The trends from proximal to distal can be highlighted when examining individual marker beds 

(Fig. 8). For example, the marker bed MU5 demonstrates abundant degraded wood in proximal 

sections; dominance of palynowafers in medial sections, and AOM in distal sections (Fig. 8). 

Heterolithic sheets (element D) show varied palynofacies across the element as a whole, but 
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differences are observed in their palynofacies when divided into proximal, medial and distal 

sections (Fig. 8 and 9). 

5.1.6. Element D1, proximal heterolithic sheets (Fig. 10E) demonstrate very poorly-sorted 

assemblages (Fig. 9), with palynowafers, degraded wood, and AOM being most common. 

Palynomorphs are relatively rare, but most abundant for this sub-environment (Fig. 8 and 9). 

Miospores and dinocysts show moderate diversity in forms. Phytoclasts are typically sub-

rounded and sub-spheroidal, ranging up to 31 µm in size and averaging 9 µm. 

5.1.7. Element D2, medial heterolithic sheets (Fig. 10F) are well-sorted, being dominated by 

palynowafers, with lesser counts of degraded wood (Fig. 8 and 9). AOM and palynomorphs 

and are very rare, with the lowest diversity of any sub-environment. Phytoclasts are typically 

sub-angular, sub-elongate, show a maximum size of 25 µm and average 10 µm. 

5.1.8. Element D3, distal heterolithic sheets (Fig. 10G) are moderately well-sorted, being 

dominated by AOM (Fig. 8 and 9). Palynowafers, degraded wood, and equant debris are all 

typically rare; palynomorphs are very rare, though more abundant and diverse than in the 

medial heterolithics (Fig. 8 and 9); only a few dinocysts were recorded and were exclusively 

simple proximate forms. Phytoclasts are typically rounded and spheroidal, up to 18 µm long 

and averaging 7.5 µm. 

5.2. Statistical analysis 

Results show proximal to distal regions of the basin to have distinct organic signatures (Fig. 8, 

9 and 10), indicating that variations in the observed particles may aid differentiation of 

architectural elements. The inherent variation in turbidity current competence (Kneller, 1995), 

particularly as flows passed from proximal to distal areas and experienced variation in 

confinement, leads to variation in both siliciclastic and organic particles within any one bed in 
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a sub-environment. Therefore, statistical examination of the dataset is appropriate to test the 

variability.  

5.2.1 DCA (Fig. 11) shows loosely constrained groupings, corresponding to proximal, medial 

and distal sections. The megabeds and most proximal thick-beds plot towards the top of the 

chart, whereas distal and onlap beds plot to the right. Medial beds cluster towards the bottom 

left, but also trend towards the centre. The primary axis exerts the principle control on the 

groupings (eigenvalue 0.22) and would appear to be a factor of marine influence on the 

samples. This is an empirical observation, given that samples with the highest proportion of 

marine material are grouped to the right side of the chart, while those with the least marine 

particles group to the left. Particle heterogeneity may be exerting the control on the second axis 

(eigenvalue 0.07), given that samples higher up the chart are the most poorly-sorted, whereas 

those at the bottom represent the best sorted. 

5.2.2 PCA (Fig. 12) corroborates the finding of the DCA, showing proximal samples towards 

the top of the diagram, medial to the bottom left, and distal to the right. The biplot allows the 

controls on this distribution to be analysed, with degraded wood plotting towards the top, 

palynowafers are the main particle type in medial samples, and AOM is dominant in distal 

samples (Fig. 12). The primary axis is inferred to be a factor of marine influence and to be 

controlling the distribution (accounting for 74% of the variance). The secondary axis 

(accounting for 21% of the variance) is probably a factor of sorting, given the spread of 

samples. 

5.2.3 C-means Fuzzy Cluster. Although able to distinguish proximal, medial and distal parts of 

the basin, multivariate analysis does not clearly distinguish between detailed elements. As such 

FCM analysis was performed on the dataset (Fig. 13). The fuzzy exponent was varied between 

1.1 (hard clusters) and 3.0 (highly gradational, soft clusters) in order to understand the data 
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structure and constrain the FCM parameters (Gary et al., 2009). The optimum number of 

clusters was defined by the degree of compaction and separation of the dataset (Gary et al., 

2009). Five clusters were the optimum, using a fuzzy exponent value of 1.5 (Table 2); various 

runs were made, but with more clusters their integrity was lost, with too much similarity 

between clusters; use of fewer clusters was insufficient to describe the observed variation. The 

five clusters are named for their primary and secondary representative matter type (Table 2; 

Fig. 13).  

Cluster 1 is dominated by palynowafers (cluster centroid value 64.8), with minor representation 

from degraded wood (cluster centroid value 16.5). Cluster 2 is dominated by degraded wood 

(cluster centroid value 35.2) and palynowafers (cluster centroid value 35.0). Cluster 3 is 

represented by AOM (cluster centroid value 40.6), with palynowafers (cluster centroid value 

25.5). Cluster 4 is represented by palynowafers (cluster centroid value 48.0), with minor AOM 

(cluster centroid value 20.6). Cluster 5 is dominated by AOM (cluster centroid value 62.2).  

FCM results corroborate the PCA biplot analysis, demonstrating the relative abundances of 

AOM, palynowafers, and degraded wood to be the main variables in the dataset (Fig. 13). 

However, FCM analysis allows a deeper investigation of the architectural elements, with 

separation of architectural elements based upon their cluster membership. Samples from the 

onlap (element A) are fully represented in clusters 3 and 5 (Fig. 13), being dominated by AOM. 

Megabed (element B) samples have an affinity with cluster 2 (Fig. 13), being poorly-sorted but 

rich in degraded wood. Proximal sheets (element C1) are also related to cluster 2 and to a lesser 

extent cluster 1 (Fig. 13). Proximal heterolithics (element D1) are dominated by cluster 2, but 

with minor membership of clusters 4 and 3 (Fig. 13) and, unlike the proximal sheets, 

heterolithic samples show no membership in cluster 1. The transition to medial elements is 

clearly marked by a shift towards dominance of cluster 1 (Fig. 13), with sheets (element C2) 

showing minor representation in clusters 4 and 2, while heterolithics (element D2) are also 
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represented in cluster 4 (Fig. 13). Distal samples show a shift towards cluster 4 for sheets 

(element C3) and 5 for heterolithics (element D3) (Fig. 13). Although onlap samples are similar 

to distal heterolithics (Fig. 13), onlap samples have no representation in clusters 1 and 2.  

 

6. Discussion  

6.1 Distribution of particulate organic matter in confined turbidite systems 

Despite the deep-marine setting of the Peïra Cava mini-basin, the abundance of terrestrially 

derived organic matter implies significant transport of material to the deep-water setting. 

Previous models have identified the system as being fed from fluvio-deltaic systems on the 

Corsica-Sardinia Massif (Hilton, 1995; Joseph et al., 2000; Sinclair, 2000; Joseph and Lomas, 

2004), which is consistent with our palynological investigation. It is recognised that marine 

currents may transport organic matter (Muller, 1959; Cross et al., 1966; Tyson, 1984; Boulter 

and Riddick, 1986; Stanley, 1986; Caratini, 1994; Tyson, 1995; Hoorn, 1997; Oboh-Ikuenobe 

and Yepes, 1997; Oboh-Ikuenobe et al., 1999; Beaudouin et al., 2004; Baudin et al., 2010; 

Schiøler et al., 2010; Biscara et al., 2011; Stetten et al., 2015), which accounts for the 

dominance of terrestrial material.  

A number of factors may contribute to the delivery and preservation of organic matter in the 

marine environment (Zonneveld et al., 2010). These include: sea-surface conditions; water 

depth; source and supply of organic matter; climate; sediment type and accumulation rates; 

bottom water oxygenation; productivity; hydrodynamic sorting and winnowing owing to the 

varying degrees of energy within the deep-marine system; tectonic setting; and diagenesis 

(Muller, 1959; Cross et al., 1966; Traverse and Ginsburg, 1967; Groot and Groot, 1971; 

Koreneva, 1971; Tyson, 1987, 1995; Oboh-Ikuenobe and Yepes, 1997; Thomas et al., 2015). 
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However, many of these factors are of limited importance in turbidity currents (Tyson, 1995) 

with currents, local vegetation, and oxygenation being the key factors in the supply of organic 

matter to turbidite systems (Caratini, 1994; Tyson, 1995; Jäger and McLean, 2008). 

Given that all our samples were taken from turbidites, deposited at a broadly similar water 

depth, show an abundance of well-preserved matter, uniform sediment colour, and ubiquitous 

bioturbation (Phillips et al., 2011), but exhibit variations in the proportion of different types of 

organic matter, implies that oxygenation was not a major factor here. The studied turbidites are 

also considered to have experienced rapid burial, which aids the preservation of organic matter 

(Stanley, 1986). The local vegetation type and distribution has a control on the type and 

abundance of organic matter delivered to a marine basin (Koreneva, 1971; Tyson, 1995; Oboh-

Ikuenobe et al., 1999; Baudin et al., 2010). However, no significant stratigraphic and therefore 

temporal variations were observed in the particulate organic matter, implying stable hinterland 

vegetation.  

This leaves currents as the main factor of control, given the material has been actively 

transported by turbidity currents. It is known that organic matter may be transported hundreds 

of kilometres by turbidity currents (Meiburg and Kneller, 2010), and that siliciclastic particles 

become differentially sorted during transport, with decelerating flows losing the competence 

to transport progressively smaller grains (Lowe, 1982; Postma et al., 1988; Mutti, 1992). 

Density sorting during transport would appear most likely to be the primary control on the 

distribution of organic matter in turbidite systems, with numerous studies citing hydrodynamics 

as the most important factor responsible for the distribution of organic matter in marine 

environments (Muller, 1959; Cross et al., 1966; Traverse and Ginsburg, 1967; Groot and Groot, 

1971; Koreneva, 1971; Tyson, 1984; Boulter and Riddick, 1986; van der Zwan, 1990; Whitaker 

et al., 1992; Caratini, 1994; Tyson, 1995; Tyson and Follows, 2000).  



 

22 
 

Once entrained in a turbidity current, organic particles will act as sedimentary particles, with 

settling velocity largely controlled by particle size, density, shape, and texture (Muller, 1959; 

Cross et al., 1966; Traverse and Ginsburg, 1967). Therefore a hydraulic fractionation of organic 

matter in a turbidity current may occur, with smaller, lighter material having the greatest 

potential for transportation (Tyson and Follows, 2000). Given that organic particles are 

generally less dense than siliciclastic particles, organic matter will be concentrated in the upper, 

mud rich portion of turbidites, which represent the low density fraction of flows; concentration 

of organic matter this is also seen in tops of reflected bores (Tinterri et al., 2016).  

6.2. Palynofacies classification of deep-marine confined mini-basin architectural elements 

The application of the palynofacies characteristics observed here allows the classification of 

architectural elements of the mini-basin (Table 3; Fig. 14). No sharp variations exist to separate 

the elements, with spatial variation in organic matter primarily dependant on the behaviour of 

turbidity currents as they passed down-stream or entered areas of greater confinement e.g. 

against the confining basin margin (Kneller, 1995).  

The highest energy and most proximal, slope influenced samples contain the largest and 

densest fraction of the organic matter (Fig. 14). As flows passed to more distal areas of the 

basin the ability of those flows to carry dense material decreased, leading to concentrations 

first of lighter terrestrial material, in the proximal basin plain and subsequently, lighter marine 

matter in distal areas (Fig. 14). Although marine AOM is common is shallow waters (Caratini, 

1994), where the turbidity currents may have originated (Sinclair, 2000; Joseph and Lomas, 

2004), it is likely that significant amounts of the AOM were entrained by turbidity currents as 

they passed through the basin. Entrainment of ambient seawater into turbidity currents is a 

recognised phenomenon on seafloor gradients in excess of 0.5 degrees (Ellison and Turner, 
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1959; Postma et al., 1988; Stacey and Bowen, 1988; Birman et al., 2009; Nakajima and Kneller, 

2013) and provides the most obvious means of increasing the proportion of AOM.  

Although sedimentologically similar, thin-beds of the basin margin onlap and distal 

heterolithics palynofacies signatures can be differentiated, particularly with the aid of FCM 

analysis (Fig. 13). Other factors such as the increased abundance and diversity of dinocysts in 

onlap sections when compared with basinal heterolithics, and the size and shape variation in 

phytoclasts, may be used to differentiate similar architectural elements (Table 3). 

6.3 Comparison with other studies 

The palynofacies associations described here are broadly similar to the upper slope channel-

levee example presented by McArthur et al. (2016), being either rich in terrestrial or marine 

matter or a combination (Fig. 14). However, there are significant differences in the proportions 

of organic matter, with the channel system presenting much higher proportions of the densest 

types of matter throughout. The slope channel architectural elements described by McArthur 

et al. (2016) present different depositional environments to the confined mini-basin described 

here, and whereas the channel-levee was point sourced, the Annot turbidites were fed by fluvio-

delatic systems (Joseph and Lomas, 2004).  

The channel-levee system contains channel and channel proximal sediments almost exclusively 

containing dense, opaque equant matter, with decay in the density of organic matter moving 

away from channels, but still with a dominantly terrestrial signature. Not until the outer portion 

of the levees was significant marine organic matter recorded. This clearly differs to our 

example, where the densest fraction of the terrestrial matter is never well-represented and 

marine organic matter is a common constituent in most architectural elements (Fig. 14). 
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These differences are likely due to the depositional setting of the different environments and it 

is inferred that the densest material was already largely dropped from flows before they entered 

the mini basin, which was surely fed by a channel system (Mutti and Normark, 1987; Reading 

and Richards, 1994; Joseph and Lomas, 2004). The result is a concentration of lighter organic 

fragments in relatively more distal deep-marine settings, as is typically the case with the 

siliciclastic fraction (Lowe, 1982; Postma et al., 1988; Mutti, 1992). The next step is to test this 

methodology in unconfined, basin floor submarine fans. 

6.4. Implications for petroleum systems in confined mini-basins 

The ability to determine the location in a basin from the palynofacies is clearly of interest to 

the petroleum geologist, when considering development plans for hydrocarbon fields in 

confined mini-basins. Any one sample may not clearly indicate a relationship with any one 

architectural element, particularly given the overlap between thick and thin-beds in similar 

environments, which may be explained as only the mudstone caps were sampled. Nevertheless, 

a series of samples over a short interval will provide a robust indication of the depositional 

environment, and may be used in conjunction with sedimentological criteria, or in sub-surface 

studies may be combined with geophysical and petrophysical methods to assist the 

interpretation. Therefore, confidence in determining the position in the basin is higher and more 

significant than differentiating whether a sample is from thick or thin-beds. Although 

confidence in interpretation of elements based upon palynofacies is moderate to high (Table 

3), it is not the intention that this tool be used in isolation, but that it should be integrated with 

all available data for the best interpretation.  

Although thick sandstone beds are still present in the distal areas of the basin (Fig. 4), vertical 

connectivity of these potential reservoir units is impaired by the thick mud-caps and intervening 

thin-bedded heterolithic packages. Whereas amalgamated megabeds and thick sandstones are 
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likely to have good horizontal and vertical connectivity in proximal settings. That thin-bedded 

turbidite elements can also be differentiated provide another powerful insight to the distribution 

of potential reservoir elements in confined mini-basins. The presence of onlap related thin-beds 

implies that thicker sandstones, with greater reservoir potential may be present in basinal areas 

(Kneller and McCaffrey, 1999; Sinclair, 2000; Patacci et al., 2014; Tinterri et al., 2016). Thin-

bedded turbidites may also present viable targets for gas reservoirs and correct identification 

of thin-bedded reservoirs may lead to improved calculations of recoverable reserves of a 

hydrocarbon field. 

7. Conclusions 

An integrated lithofacies and palynofacies study of a deep-marine, confined turbidite system 

has been conducted from outcrops, which have a well-documented stratigraphic architecture. 

This allowed certainty in sample placement to develop a methodology for the identification of 

architectural elements, based on their palynofacies.  

Seven sedimentary logs allowed the recognition of four key lithofacies associations, interpreted 

to represent architectural elements of the mini-basin fill. These comprised basin margin onlap; 

base of slope megabeds; ponded thick-bedded sheets and ponded heterolithics. These may be 

further divided based upon their proximal, medial, and distal position in the basin. Lithofacies 

associations provided the basis for sampling of turbidite mudstones at regular intervals. 

Samples were processed for palynofacies analysis and were found to contain sixteen types of 

particulate organic matter with terrestrial and marine origins. 

The type and proportions of organic matter was observed to vary between the architectural 

elements, and in their proximal to distal expressions. Although some elements provide a similar 

signature, statistical analysis, particularly C-means Fuzzy Cluster analysis provides confidence 

in the palynofacies differentiation of the architectural elements. Proximal elements are 
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typically dominated by dense terrestrial material, such as degraded wood; medial elements are 

dominated by light terrestrial material, particularly palynowafers; while distal elements are 

dominated by amorphous organic matter of marine origin. Further details such as the size of 

phytoclasts and diversity of palynomorphs may be used to provide further criteria for the 

palynological classification of architectural elements.  

Distribution of particulate organic matter in turbidite systems is not random, with 

hydrodynamic sorting of organic particles leading to differential deposition and proportions of 

particles in different areas of deep-marine systems. This study provides evidence of density 

fractionation of organic matter in turbidity currents. This allows a palynofacies classification 

scheme to be developed to assist the recognition of architectural elements in deep-marine mini-

basins. This tool may now be applied to sub-surface samples in conjunction with traditional 

datasets to improve interpretations of reservoir architecture.  
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10 g samples washed and disaggregated to fragments 1 cm3 
37% cold HCl for 2 hrs, dilute to neutral with distilled water 
48% cold HF for 24 hrs, dilute to neutral with distilled water 
37% cold HCl for 1 hr, dilute to neutral with distilled water 
10 μm sieve, palynofacies slide mounted with cellosize and entellan glue 

Table 1. Palynofacies slide preparation methods 
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Palynofacies type 
Cluster 1 

Equant   
Cluster 2 

Degraded wood 
Cluster 3 

AOM 
Cluster 4 

Wafers 
Cluster 5 

AOM 
Acritarchs 0.0077 0.0115 0.0367 0.0415 0.0274 

AOM                                                  12.1278 29.003 19.5099 8.5177 58.6559 

Bisaccates                                           0.0171 0.0282 0.092 0.073 0.0228 

Blades                                               4.2639 4.2735 2.1123 0.9517 2.7438 

DSOM                                                 9.0291 3.1887 1.7648 0.8692 0.9937 

Degraded wood                                        15.318 17.9668 25.0505 16.6205 10.6824 

Dinocysts                                            0.1408 0.3824 1.2262 0.5702 0.4093 

Equant debris                               50.1841 29.2913 8.7723 3.3807 13.6980 

Freshwater algae                                     0.0014 0.0172 0.0497 0.0283 0.0090 

Fungai                                               0.1118 0.7747 2.8221 2.0424 0.6434 

Marine algae                                         0.0704 0.0965 0.134 0.1268 0.1246 

Miospores                                            0.3637 1.0251 2.9319 1.5655 0.8091 

Resin                                                0.118 0.0731 0.0973 0.0701 0.0486 

Palynowafers                                              5.7974 11.682 32.751 62.5921 9.8173 

Wood                                                 2.4482 2.1787 2.6344 2.5504 1.3106 

Zoomorphs 0.0001 0.0071 0.0147 0.0001 0.0042 

Table 1. Centroid values for each palynofacies type in each of the five FCM clusters 
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Architectural 
element and 

main features 

Sorting Phytoclast size 
and shape 

Ranges of 
dominant 

matter 

Median of matter and 
(95% confidence) 

Confidence 
of ID 

asin margin 
nlap (A); 

AOM rich. 

Poorly 
sorted 

Max - 34 µm,  
Average – 8.1 µm 
Sub-rounded, 
elongate 

AOM 42-60% 
Wafers 12-30% 
Deg wood 10-
20% 

AOM 45% (40-56%) 
Wafers 20% (12-28%) 
Deg wood 16% (9-18%)  

 
High 

ase of slope 
megabeds (B); 
egraded wood, 
alynowafers. 

Very 
poorly 
sorted 

Max - 1000 µm,  
Average - 15 µm 
Sub-angular, sub-
elongate  

Deg wood 32-
35% 
Wafers 25-36% 
AOM 18-22% 

Deg wood 34% (31-
35%) 
Wafers 28% (17-38%) 
AOM 19% (16-23%) 

 
 

High 

roximal sheets 
C1); wafers 
nd degraded 

wood. 

Poorly 
sorted 

Max -  50 µm,  
Average – 10.4 
µm 
Sub-rounded and 
sub-elongate 

Wafers 33-49% 
Deg wood 26-
36% 
 

Wafers 42% (35-45%) 
Deg wood 31% (27-
34%)  
 

High 

roximal 
eterolithics 
D1); wafers 
nd degraded 

wood. 

Very 
poorly 
sorted  

Max – 31 µm, 
Average – 10 µm 
Sub-angular and 
sub-elongate 

Wafers 33-40% 
Deg wood 24-
35% 
AOM 16-26% 

Wafers 35% (32-42%) 
Deg wood 29% (22-
35%) 
AOM 21% (15-27%) 

 
Moderate 

Medial sheets 
C2); wafers 
ominated. 

M. well 
sorted  

Max – 30 µm, 
Average – 9 µm 
Sub-angular and 
sub-elongate 

Wafers 41-61% 
Deg wood 19-
27% 
AOM 10-20% 

Wafers 52% (43-60%) 
Deg wood 22% (18-
25%) 
AOM 11% (8-17%) 

 
Moderate 

Medial 
eterolithics 
D2); wafers 
ominated. 

Well 
sorted  

Max – 25 µm, 
Average – 10 µm 
Sub-angular and 
sub-elongate 

Wafers 39-72% 
Deg wood 10-
22% 
AOM 4-10% 

Wafers 65% (37-90) 
Deg wood 17% (6-24%) 
AOM 5% (1-10%) 

 
Moderate 

Distal sheets 
C3); wafers 
nd AOM. 

Very 
poorly 
sorted  

Max 20 µm, 
Average 7.8 µm 
Sub-angular and 
elongate 

Wafers 33-52% 
AOM 19-38% 
Deg wood 12-
16% 
 

Wafers 46% (38-51%) 
AOM 28% (22-35%) 
Deg wood 14% (13-
15%) 

 
Moderate 

Distal 
eterolithics 
D3); AOM 
ch 

M. well 
sorted 

Max 18 µm 
Average 7.5 µm 
Rounded and 
spheroid 

AOM 43-63% 
Wafers 11-19% 
Deg wood 9-
14% 
Equant 5-14% 

AOM 52% (43-62%) 
Wafers 17% (13-22%) 
Deg wood 12% (9-14%) 
Equant 10% (6-15%) 

High 

Table 3. Palynofacies classification parameters for deep-marine confined mini-basin elements 

 

 

Figure captions 

Fig. 1. Structural map of SE France, exhibiting the main mini-basins of the Grès d´Annot system and 
highlighted area for the location of figure 2. From Joseph and Lomas (2004).  

 

Fig. 2. Simplified geological map of the Peïra Cava outlier, illustrating the measured sections used to 
collect samples (after Amy et al., 2007). Developed from BRGM 1:50000 maps, 0947 (BRGM 
2001a) and 0973 (BRGM 2001b).   
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Fig. 3. Particulate organic matter encountered in this study, sorted by inferred buoyancy. Description 
based upon our observations and hydrodynamic properties based upon characteristics 
documented by previous workers (cf. McArthur et al., 2016). All scale bars 50 μm.  

 

Fig. 4. Graphic representation of dataset division for “hard” or non-fuzzy clustering vs. mixed division 
afforded by fuzzy clustering. From Wakefield et al. (2001). 

 

Fig. 5. Measured sections from the eastern extent of the Peïra Cava mini-basin, after Amy et al. 
(2007). Locations of the collected samples are indicated. 

 

Fig. 6. Measured sections from the western extent of the Peïra Cava mini-basin, after Amy et al. 
(2007). Locations of the collected samples are indicated. 

 

Fig. 7. Schematic spatial distribution of the lithofacies associations A-D of the Grès d’Annot 
Formation at Peïra Cava, with examples of each depositional element and south to north 
variations in lithofacies B, interpreted as proximal, medial and distal variations of marker units. 
Hammer for scale is 35 cm long.  

 

Fig. 8. Count data for each sample organized by architectural elements in stratigraphic order; Equant 
– equant opaque; DM – dark structureless organic matter; R – resin; Fun – fungi; FA – 
Freshwater Algae; Z – zoomorphs; Dino – dinocysts; A – acritarchs; BS – bisaccate pollen; MA – 
marine algae. Marker unit 5 (Mu5) is highlighted in the sheet samples.  

 

Fig. 9. Box and whisker charts of the percentage of particulate organic matter recorded for each 
sample from the studied architectural elements; DSOM – dark structureless organic matter; 
Degrade – degraded wood; Wood – well preserved wood; FWA – freshwater algae; Dinocysts – 
dinoflagellate cysts; Sacs – bisaccate pollen; MA – marine algae; AOM – amorphous organic 
matter. Boxes represent the 25th to 75th percentile, with notches indicating the 95% 
confidence interval of the median; whiskers represent the 25th percentile minus 1.5 times the 
range of the box and the 75th percentile plus 1.5 times the range of the box values 
(interquartile range); circles represent outliers. 

 

Fig. 10. Palynofacies assemblages recorded in A) megabed B), proximal sheet C) medial sheet, D) 
distal sheet, E) proximal heterolithics, F) medial heterolithics, G) distal heterolithics, H) onlap 
architectural elements palynofacies. All to the same scale. 

 

Fig. 11. Detrended correspondence analysis (DCA) cross-plot of the Peïra Cava dataset.  

 

Fig. 12. Principle components (PCA) cross-plot of the Peïra Cava dataset. 
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Fig. 13. Fuzzy-cluster (FCM) analysis plots of the Peïra Cava dataset. The membership of each sample 
is charted for each cluster, with average values for each architectural element shaded grey.  

 

Fig. 14. Schematic illustration of the distribution of particulate organic matter in a confined mini-
basin. See figure 3 for guide to organic matter types.  
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