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Abstract

In this paper we provide detailed insight into the electronic-crystallographic-structural

relationship for Ti0.909W0.091O2Nx semiconductor nanoparticles, explaining the mutual

electronic and magnetic influence of the photo-induced, stable N- and W-based para-

magnetic centres, their involvement in the photo-induced charge carriers trapping and

their role in improving the nitrate selectivity of the photocatalytic oxidation of NOx

to nitrates. In particular, reduced tungsten species in various crystallographic envi-

ronments within the anatase host lattice were observed to play a fundamental role in

storing and stabilising photo-generated electrons. Here we show how these reduced cen-

tres can catalyse multi-electron transfer events without the need for rare and expensive

platinum group metals (PGMs). This allows for a versatile and elegant design of redox

potentials. As a result, electron transfer processes that are kinetically inaccessible with

metal oxides such as TiO2 can now be accessed, enabling dramatic improvements in

reaction selectivity. The photocatalytic abatement of NOx towards non-toxic prod-

ucts is exemplified here and is shown to pivot on multiple routes for molecular oxygen

reduction. The same rationale can furthermore be applied to other photocatalytic pro-

cesses. The observations described in this work could open new exciting avenues in

semiconductor photocatalysis for environmental remediation technologies, where the

optimisation of molecular oxygen reduction, together with the pollutant species to be

oxidised, becomes a central element of the catalyst design, without relying on the use

of rare and expensive PGMs.

KEYWORDS: Photocatalysis, nitrate, nitric oxide, nitrogen dioxide, visible light, ORR,

EPR.

1 Introduction

Since the first reports of photocatalytic water splitting were published in the 1970s,1 semi-

conductor photocatalysis has attracted increasing interest for wastewater remediation,2–5
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removal of air pollutants,5–13 self-cleaning surfaces3,4,11,14 and solar fuels.1,5,15–22 Much less

use of this technology was made in synthetic chemistry as semiconductor photocatalysis is

very often non-selective (TiO2 being, by far, the most used photocatalyst). Furthermore,

for the many applications that, in the absence of artificial light sources, are reliant on the

Sun for irradiation, photocatalysis only works during the daytime when sufficient sunlight

intensity is present (seasons and latitude also play a major role23). For environmental reme-

diation applications, the persistance of toxic pollutants due to the temporary unavailability

of the remediation technology can cause severe problems for the environment or people’s

health. Photocatalysts consisting of TiO2-WO3 mixed oxides and TiO2-WO3 heterojunc-

tion films where electron storage and slow electron discharge in the absence of irradiation

allow sustained photocatalytic activity in the darkness, have been reported by a few re-

search groups24–30 and also tested for anticorrosion25 or VOC removal applications.27 The

common understanding is that photo-generated electrons can be stored in WO3 due to a

typical tungsten bronze chemistry mediated by proton intercalation,25 and is supported by

clear electrochemical evidence.25 Very recently however, Sotelo-Vazquez et al.30 observed

an unusual electron transfer process in WO3-TiO2 heterojunction films composed of verti-

cally aligned nanostructured WO3 nanorods coated with a conformal layer of TiO2, in which

photo-generated electrons would move from the WO3 layer into TiO2. Despite the great

interest for these mixed oxides as systems where charge recombination processes are inhib-

ited resulting in performance enhancements beyond the individual components, a structural

“picture” of the reduced centres associated with the electron transfer and trapping is often

missing.

Here we show that reduced W centres can be used to rationally design multiple routes

for molecular oxygen reduction, leading to a significant improvement of selectivity in photo-

catalysis, exemplified in this work by the NOx oxidation to nitrate. The same rationale can

furthermore be applied to other oxide photocatalysts. Using Ti0.909W0.091O2Nx semiconduct-

ing nanoparticles, we provide an in-depth account of the electronic-structural relationship
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of their stable W paramagnetic reduced centres, whether associated with isolated W atoms

substituting for Ti in the TiO2 lattice or in surface localised Magneli phase-like W clusters;

their magnetic influence on the spin density associated with N-doping; the overall photo-

chemical response and their involvement in the photocatalytic DeNOx process, showing how

the W species may influence the selectivity of the oxidation of NO to NO –
3 .

2 Results and Discussion

2.1 Characterisation

Representative high resolution neutron diffraction (154° 2θ detector bank) pattern is shown

in Figure 1 and Table 1, for a sample containing 9.1 at.% of W. The Rietveld refinement

fit31 showed that this material is single phase and crystallises with the anatase I41/amd

space group and has the formula Ti0.909W0.091O2, indicating 9.1 at.% substitution of W for

Ti. Other materials synthesised with different amounts of W higher than 0.15 at.%, were

also found to crystallise with the same anatase I41/amd space group.32 The lack of peak

splitting or superstructure peaks would exclude a change in symmetry upon substituting W

for Ti, Figure 2. Rietveld refinement of the model did not show any evidence for an increase

in the fractional occupancy of the bulk oxygen (i.e., the oxygen fractional occupancy was

refined to within ±1% of the full occupancy and fixed at 1.0). Therefore the average bulk

oxygen molar content is 2 although this may be different locally within the structure and

is likely to be different at the surface. Structural refinement of the neutron diffraction data

also showed no evidence of bulk nitrogen, either at the oxygen positions or at interstitial

sites.

X-Ray Photoelectron Spectroscopy (XPS) spectra are presented in Figure 3a-d for the

O(1s), Ti(2p), N(1s) and W(4d) core-levels respectively; the W(4d) region was analysed

over the more common W(4f) region due to the overlap of the W(4f) and Ti(3p) core-levels.

Spectra were calibrated to the C(1s) signal at 284.8 eV. Fitting of the O(1s) core-level

4
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spectra (Figure 3a) reveals the presence of lattice Ti-O, 530.3 eV,33 with shoulders at 531.0

and 532.6 eV, indictive of surface hydroxide34,35 and carbonate respectively (arising from

the handling of samples in air). The Ti 2p3/2 and 2p1/2 peaks at 459.0 eV and 465.0 eV

respectively (doublet separation of about 6 eV) together with the satellite peak at 472.5 eV

shifted by about 13.5 eV from the main Ti 2p3/2 peak (Figure 3b), are typical of Ti(IV)

in TiO2.
36 Comparison of the corrected oxygen and titanium core levels give a O/Ti ratio

of 1.97. The N(1s) region (Figure 3c) clearly reveals two species, with binding energies

of 400.2 eV and 401.9 eV. The lower binding energy species can be attributed to surface

NHx species, likely to remain from the synthesis procedure where (NH4)6H2W12O40 ·xH2O

served as a source for both N and W dopants, whereas the higher binding energy species is

attributed to N-O bonds,37 the photochemistry of which will be discussed later through a

combination of UV-vis diffuse reflectance spectroscopy and electron paramagnetic resonance

(EPR) spectroscopy. No peaks at 396.0 to 397.0 eV indicative of substitutional N doping37

were observed. Quantification of the N doping by XPS gave a total N content of 0.38 at.%.

The fact that N was detected by XPS and not by neutron diffraction could be explained

with N being present almost entirely in the surface region of the nanoparticles.

Observation of W 4d5/2 peak at 247.5 eV and 4d3/2 peak 260.0 eV are indicative of W(VI)

oxidation state; however, lower binding energy shoulders are noted at 241.8 eV and 254.3 eV

respectively (arrows in Figure 3d), both shifted by exactly 5.7 eV from their main peaks, and

are evidence of W in a reduced state. Further explanation of these reduced W species will

be provided by EPR spectroscopy. XPS quantification for W showed a total W content of

3.9 at.% with ca. 6 % of the total W content present in the reduced state. The discrepancy of

the total W content measured by XPS from that of 9.1 at.% indicated by neutron diffraction

is attributed to a low dispersion or larger W-containing clusters at the nanoparticle surface,

resulting in an apparent decrease in the surface concentration detectable by XPS. To further

verify the overall amount of W in the nanoparticles, we performed elemental analysis which

gave a total mass content of 20 to 25 % of equivalent WO3, corresponding to a loading of 8.3
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to 10.4 at.%, confirming the 9.1 at.% aimed during the synthesis and therefore the presence

of larger W-containing clusters at the nanoparticle surface.

Figure 1: Fitted powder neutron diffraction pattern collected at 303 K from Ti0.909W0.091O2Nx

in the GEM backscattering detector bank (average 2θ = 154°). The figure shows the Rietveld
fit (red +) to the experimental pattern (black trace), the theoretical reflection positions
(small blue vertical lines) and the residual (obs-calc) profile (green trace).

Representative high angle annular dark field (HAADF) aberration corrected scanning

transmission electron microscope (STEM) images of the Ti0.909W0.091O2Nx sample are shown

in Figure 4a and b, in which the W component is readily visible via the mass contrast

afforded by this technique. W has a tendency to incorporate substitutionally into the Ti

cation sub-lattice sites, in good agreement with the neutron diffraction results. At this high

concentration however, W also forms discrete clusters on the surface of the nanoparticles

6
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Figure 2: (a) Representation of a W substitution of a Ti site in an anatase unit cell based
on the neutron diffraction refined parameters in Table 1. In Ti0.909W0.091O2Nx nanoparticles,
W substitution occurs, on average, once per 2.74 unit cells. Lattice Ti and O are shown
in blue and red respectively. The substitutional W ion is shown in green. (b) Electron
density distribution for a W substitution determined by Maximum Entropy Method (MEM)
based pattern fitting from neutron powder diffraction data at a resolution of 0.02a−1

0 and
drawn as cumulative [1 0 0] planes between 0.25a and 0.75a, using as a centre of projection
x=0, y=z=0.5. MEM electron density bulk contours were drawn using a F (N) = ABN/step

function, with A = 1, B = 10, step = 3, between Nmin = −2 and Nmax = +2. The plot
shows the greater polarising power of the substitutional W6+ ions on the O2– electron density
when compared to Ti4+. The 2D plot was obtained using the VESTA visualisation software
for electronic and structural analysis.38
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Figure 3: XPS spectra of the (a) O(1s), (b) Ti(2p), (c) N(1s) and (d) W(4d) core-levels
for Ti0.909W0.091O2Nx nanoparticles. Spectra were charge corrected to the C(1s) peak at
284.8 eV.
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Table 1: Refined structural parameters for Ti0.909W0.091O2Nx in the space group I41/amd
from neutron diffraction data.

a=b c Volume Rwp Rp χ2

/ �A / �A / �A
3

/ % / % -

3.7899(1) 9.4801(5) 136.16(2) 2.45 2.12 1.47

Atom Wyckoff site Occupancy x y z U11=U22 U33

- - - - - - / �A
2

/ �A
2

Ti 4b 0.909(2) 0.0 0.25 0.375 0.0006(4) 0.0053(6)
W 4b 0.091(2) 0.0 0.25 0.375 0.0006(4) 0.0053(6)
O 8e 1.0 0.0 0.25 0.16522(6) 0.0032(3) 0.0088(3)

(bright areas in Figure 4b), corroborating the results from our XPS spectroscopy for this

sample. These clusters are not crystalline WO3.

The diffuse reflectance UV-vis spectrum (Figure 5a) of the Ti0.909W0.091O2Nx sample

exhibits the typical profile corresponding to the band-gap transition of anatase overlapped

with an edge in the visible field from 400 to 550 nm. The absorption edge of undoped

anatase is included for reference (Figure 5a). The corresponding Tauc plot (in the form

useful for indirect band gap semiconductors) for the Ti0.909W0.091O2Nx sample (Figure 5b)

shows that the portion of the optical absorption profile in the UV corresponds to an optical

band gap of 3.17± 0.01 eV. This can be attributed to the electronic transition (Ti 3d ←

O 2p) of anatase and represents the intrinsic band gap of the semiconductor. The portion

of the absorption edge in the visible field corresponds to a photon energy of 2.38± 0.02 eV,

attributable to an electronic transition from an intraband gap state, due to the presence

of interstitial N doping37,39 to the CB. This is responsible for the pale yellow colour of the

sample. In the case of undoped anatase, the optical absorption profile in the UV corresponds

to an optical band gap of 3.27± 0.03 eV, without any other optical absorption features, as

9
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expected. The full band structure determination, obtained by optical spectroscopic methods

plus electrochemical impedance spectroscopy and Mott-Schottky analysis, was reported in

one of our recent works32 to which the reader should refer.

N2 adsorption isotherms (not reported here) and subsequent BET analysis on the Ti0.909W0.091O2Nx

sample, revealed a specific surface area of 86.9 m2 g−1 corresponding to a primary particle

size of about 20 nm, in line with Rietveld refinement results of 20 to 30 nm (from the observed

broadened peak profiles).

Analysis and simulation of the continuous wave (CW) EPR spectra in the free spin

region, i.e. g ≈ 2.0 (Figure 6) revealed the presence of three distinctive N-O paramagnetic

centres, deconvoluted in the figure as signals N1, N2 and N3 respectively. The centre N1

can be attributed to the paramagnetic molecule of nitric oxide, NO,37,40 showing the typical

spectrum of an 11 electrons π radical in the adsorbed form, characterised by: i. an anisotropic

EPR profile with gx ≈ gy ≈ 2.0 and gz < 2.0 (Table 2) and ii. anisotropic hyperfine structure

arising from the coupling of the unpaired electron with the non-zero nuclear spin 14N nucleus

(natural abundance 99.63 % and I (14N)=1 hence signal multiplicity 2I +1=3) (Table 2). The

EPR spectrum of NO in the gas phase is generally not observable in the free spin region;

however, it becomes visible when the molecule is weakly adsorbed and polarized on a cationic

surface centre at T <170 K.41 The fact that the EPR profile is present after each sample was

evacuated for at least 12 hours at 393 K and under dynamic vacuum, ca. 10−4 bar, signifies

that this NO is not adsorbed on the exposed surface of the sample, rather it is encapsulated in

bulk and sub-surface microvoids (or closed pores) generated during the synthetic process, as

proved by previous studies on similar systems.40 The paramagnetic center N2 consists of an

interstitial N chemically bound to a lattice O ion forming a NiO group42 carrying one electron

in the π* antibonding37 singly occupied molecular orbital (SOMO). NiO is effectively an

intraband gap NO2– state also exhibiting an anisotropic EPR profile. g- and A-values are

listed in Table 2. Finally, N3 is again a NiO group similar to N2 but influenced by a close-

range interaction with a lattice W6+ ion. Within this W-O-N close-range arrangement, the

10
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highly polarising W6+ ion pulls electron density away from the lattice oxygen, which in turn

causes an increase in the N 2p character of the π* antibonding SOMO of the NiO unit. In

other words, the spin density associated with the unpaired electron is more localised on the

N atom when compared to the case of the N2 centre.43 As a result, the g-values decrease

(smaller g iso) and A-values increase (greater a iso) in comparison to the N2 centre (Table 2).

The EPR signal of the N3 centre is also characterised by super-hyperfine splitting (Table 2)

arising from magnetic interaction with the 183W nucleus (natural abundance 14.31 % and

I (183W)=1/2). N1 and N2 centres are well known and characterised32,37,40,42–46 while N3

was first reported in one of our previous works43 and was here confirmed. EPR signals

associated with the reduced W species detected in our XPS spectra were observable at much

larger magnetic field positions (Figure 7). The g-values (Table 3) match previously reported

EPR signals of W5+ species in different surface crystallographic environments.47–49 The signal

W1 can be associated with coordinatively unsaturated W5+ species in WxOy clusters strongly

anchored to the surface of the host crystal whilst W2 corresponds to W5+ in tungsten bronze-

like superstructures, weakly bound to the surface of the host crystal. This is in line with the

presence of surface clusters identified by our HAADF aberration corrected-STEM (Figure 4).

The very low g-values are expected given: i. the very large spin-orbit coupling in the 5d

orbitals of W5+ (ζ=2700 cm−1)50 which causes a large variation from the free spin g-value

of 2.0023 (i.e. the unpaired electron is highly “bound” to its nucleus), and ii. W5+ is a d1

ion (ions with a number of d electrons < 5 exhibit negative variation of the g-values from

free spin). EPR investigation was inconclusive as for the presence of W4+ and/or W3+ high

spin states in the as-synthesised nanoparticles.

.

.

.

.
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Figure 4: (a), (b) Representative high angle annular dark field (HAADF)-STEM images of
Ti0.909W0.091O2Nx. The presence of both substitutional W and W-containing surface clusters are evident in
the images. A comparison is made with (c), (d) and (e) showing high angle annular dark field (HAADF)-
STEM images of a sample with much lower W content, i.e. Ti0.999W0.001O2Nx, where only substitutional W
(arrows indicating brighter spots) is present.
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Figure 5: (a) UV-vis optical absorption spectra for the Ti0.909W0.091O2Nx sample (red) and undoped
anatase TiO2 (black) as a reference. (b) Tauc plot used to derive the optical intrinsic and extrinsic band gap
values for the Ti0.909W0.091O2Nx sample (red). The Tauc plot of undoped anatase TiO2 (black) is reported
as a reference.
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Figure 6: Experimental (black) and simulated (red) X-band CW EPR spectra of the Ti0.909W0.091O2Nx

nanoparticles measured at 50 K around the free spin region. The simulated spectrum is deconvoluted into
its three components N1 (green), N2 (blue) and N3 (magenta). The relative spectral contributions are also
reported in the Figure. The experimental spectrum was recorded at 100 kHz field modulation frequency;
0.2 mT field modulation amplitude; 2µW microwave power and 72 dB receiver gain. g and A values are
listed in Table 2.
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Figure 7: Experimental (black) and simulated (red) X-band CW EPR spectra of the Ti0.909W0.091O2Nx

nanoparticles measured at 50 K at high fields. The simulated spectrum is deconvoluted into its two com-
ponents W1 (green), W2 (blue). The relative spectral contributions are also reported in the Figure. The
experimental spectrum was recorded at 100 kHz field modulation frequency; 0.2 mT field modulation ampli-
tude; 2 µW microwave power and 72 dB receiver gain. g and A values are listed in Table 3.
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Table 2: Spin Hamiltonian parameters of the NO centres.

Species Temp. g1 g2 g3 |A14N
1 | |A14N

2 | |A14N
3 | |A183W

1 | |A183W
2 | |A183W

3 | Rel. Cont. Ref.

/ K / MHz / MHz / MHz / MHz / MHz / MHz %

N1 ads NO 50 2.001a 1.998a 1.921a <2.8b 89.7c 26.9c 99.56 (95.24)d Present work
77 2.003 1.998 1.927 <2.8 89.7 26.9 43

77 2.001 1.998 1.927 <2.8 90.2 26.9 40

N2 NO2– 50 2.005a 2.004a 2.003a 6.5c 15.7c 89.7c 0.40 (3.81)d Present work
77 2.005 2.004 2.003 6.5 15.7 89.7 43

77 2.005 2.004 2.003 6.5 12.3 90.2 40

N3 W-NO2– 50 2.001a 2.000a 1.999a 42.0c 22.4c 140.1c 44.8c <2.8b 154.1c <0.1 (0.95)d Present work
77 2.002 2.001 2.000 22.4 22.4 140.1 44.8 <2.8 61.7 43

a ± 0.001; b not accurately measured; c ± 2.8MHz; d values in brackets refer to the relative contribution under light irradiation.
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Table 3: Spin Hamiltonian parameters of the W5+ centres.

Species Temp. g⊥ g‖ |A183W
⊥ | |A183W

‖ | Rel. Cont. Ref.

/ K / MHz / MHz %

W1 W5+ in WxOy on Ti0.909W0.091O2Nx 50 1.85e 1.50e not observed not observed 66.66 Present work
W5+ in WxOy on ZrO2 77 1.85 1.51 not observed not observed 48,49

W2 W5+ in bronze struct. on Ti0.909W0.091O2Nx 50 1.80e 1.64e not observed not observed 33.33 Present work
W5+ in bronze struct. on ZrO2 77 1.82 1.58 not observed not observed 48,49

W5+ in (NH4)0.27WO3 77 1.80 1.56 not observed not observed 48,49

e ± 0.01.
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2.2 Photochemical response

The spectral contributions of the N2 and N3 centres to the overall EPR spectrum of the as

synthesised Ti0.909W0.091O2Nx nanoparticles (Figure 6) is very low since a great majority of

the NiO species are diamagnetic (2 paired electrons in the highest occupied π* antibonding

orbital) before irradiation.37,42 They can be seen as a NiO
– species, i.e. intraband gap

NO3– states, and were proved to be energetically favourable over NiO in the absence of

irradiation.37,42 The dark spectrum is therefore dominated by the signal of the encapsulated

adsorbed molecular NO (N1 center). Upon irradiation with light having energy - at least

- equal to the extrinsic band gap of 2.38± 0.02 eV, electron transitions CB←NO3– occur,

generating a much larger amount of paramagnetic NO2– states, as indicated by the increase in

signal amplitude associated with the N2 and N3 centres in Figure 8b (main features indicated

by arrows). These spectral changes match what has been previously reported for similar N-

doped TiO2 samples.37,40,42,43,46 The EPR spectrum recorded under light irradiation is also

reported in the SI at higher resolution with overall simulation; deconvolution of the N1, N2

and N3 signals and their relative spectral contributions. Our findings here reported also

show that the N1 centre signal amplitude decreases upon light irradiation. This evidence is

not completely understood yet and this phenomenon is currently under further investigation

in our laboratories. A possible explanation could be that if the encapsulated molecular NO is

adsorbed on a subsurface oxygen vacancy (i.e. a cationic crystal defect and therefore allowing

molecular NO to show the g-values reported in (Table 2)) and the oxygen vacancy acts as

an electron trapping centre for conduction band electrons formed upon light irradiation,

reduction of NO could occur:40

NO + VO + 2e–→ NO2– (1)

resulting in a NO2– radical anion occupying the volume of an oxygen vacancy. Its elec-

tronic configuration would be that of a 13 electrons 2Π3/2 radical anion with the unpaired
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electron in a π* antibonding orbital,40 i.e. a π system completely indistinguishable from the

NO2– discussed previously (N2 and N3 centres) and formed upon electron transitions from

an NO3–. Around the free spin region, there was no evidence on the formation of a detectable

amount of Ti3+ upon light irradiation.

Figure 8: Experimental (black) and simulated (red) X-band CW EPR spectra of the Ti0.909W0.091O2Nx

nanoparticles measured at 50 K around the free spin region (a) before and (b) during irradiation with a
455 nm LED light source. The experimental spectra were recorded at 100 kHz field modulation frequency;
0.2 mT field modulation amplitude; 2µW microwave power and 72 dB receiver gain.

.

.

At higher fields, the EPR signal of the surface W5+ centres was found to increase in

intensity following visible light irradiation at 455 nm (Figure 9). This could be explained

by electron transition from the mid-gap N-doping donor level to the conduction band of

the semiconductor (as seen above) followed by electron trapping in the form of W5+. Elec-

19

Page 19 of 38

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 9: Experimental (black) and simulated (red) X-band CW EPR spectra of the Ti0.909W0.091O2Nx

nanoparticles measured at 50 K at high fields (a) before and (b) during irradiation with a 455 nm LED
light source. The experimental spectra were recorded at 100 kHz field modulation frequency; 0.2 mT field
modulation amplitude; 2µW microwave power and 72 dB receiver gain.
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tron transitions from the valence band of the semiconductor nanoparticles to a W5+ level

cannot be excluded at this stage. Contrary to the case of pristine TiO2 (in particular the

anatase and brookite polymorphs) where shallow trapped electrons in the form of surface

Ti3+ readily reduce molecular oxygen to superoxide anions, O –
2 , trapped electrons in these

W containing nanoparticles were found to be highly stable at room temperature even in

the presence of molecular oxygen, as suggested by photo-charging events (Figure 10a and

b) followed by measuring the absorbance at 800 nm exhibited by the nanoparticles in the

presence of molecular oxygen and under light irradiation. W bronzes/W5+ polarons show

broad absorption from the red into the near-IR, and that this is why absorption increases at

800 nm when W5+ centres are formed upon photo-irradiation of the sample with broad band

light (300 to 2000 nm). Photo-generated electrons in undoped TiO2 also absorb at 800 nm,

and more strongly so in the presence of an alcohol hole scavenger.51 Nevertheless, taken into

consideration the difference in molar extinction coefficients at 800 nm, ε800
λ , between trapped

electrons in TiO2, estimated in the range 500 to 600 L mol−1 cm−1,52,53 and trapped electrons

in WO3 (W5+→W6+ intervalence charge-transfer (IVCT), also applicable to our nanoparti-

cles), of 7300 L mol−1 cm−1,54 the 50 times larger absorbance at 800 nm for Ti0.909W0.091O2Nx

nanoparticles compared to undoped TiO2, corresponds to 3.4 to 4.1 times larger stored elec-

trons concentration. The direct involvement of W-oxo species in the electron storage was

proved by diminishing the amount of W in the nanoparticles, which resulted in a lower stored

electron concentration (Figure 10a and b). These observations are in agreement with results

obtained by other researchers on TiO2/WO3 mixed oxide systems.24–29 The presence of W

in oxidation states lower than 6 would make the oxide quasi-metallic or metallic55,56 which

could be an independent confirmation of bronze-like chemistry. Indeed, EPR spectra at low

magnetic fields (Figure 11) exhibited a broad, asymmetric signal, typical of a dysonian line57

which is symptomatic of conduction electrons diffusing through a skin depth layer.57
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Figure 10: (a) Electron storage ability of the Ti1–yWyO2Nx powder nanoparticles in air measured as
absorbance profiles at 800 nm upon charging with a broad band (ca. 300 to 2000 nm) light source, in the
presence of a hole scavenger (isopropanol), and during discharging (i.e. after turning the light off). The
dependency of the amount of electrons stored on the W content in the nanoparticles is highlighted in (b),
showing an increase of the absorbances after 5 minutes of irradiation as a function of the W loading.
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Figure 11: Representative X-band CW EPR spectra at 50 K of Ti0.909W0.091O2Nx at low field showing
the broad, asymmetric dysonian line-shaped signal associated with the presence of conduction electrons
diffusing through a layer of particles dependent on the skin depth of the microwave radiation. The spectrum
was simulated using the Dyson function and analysis reported in the SI, which led to the following optimised
parameters: asymmetry parameter α = 2.7, position of the resonance line, H0 =165 mT and width of the
resonance line, ∆H =190 to 200 mT. The experimental spectrum was recorded at 100 kHz field modulation
frequency; 0.2 mT field modulation amplitude; 2µW microwave power and 72 dB receiver gain.
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2.3 Electrochemical Oxygen Reduction Reaction (ORR)

Undoped TiO2 is known for showing almost negligible oxygen reduction current at positive

potentials with measurable current only at potentials vs. RHE lower than +0.3 V;58 this was

here proved again (black current profile in Figure 12). The accepted view is that undoped

TiO2 mainly promotes a single electron transfer (SET) to molecular oxygen generating su-

peroxide radical, O –
2 . On the contrary, electrochemical characterisation of the Ti1–yWyO2Nx

powder nanoparticles (red current profile in Figure 12 exemplifies the case of ca. 5 at.% W

loading corresponding to the threshold above which the absorbance at 800 nm in Figure 10b

and the nitrate selectivity in Figure 14b approach limiting and maximum values), showed

current at potentials as high as +0.6 V vs. RHE. This indicates at least a two electron reduc-

tion process (the standard redox potential for two electron reduction of oxygen to peroxide

is +0.695 V vs. RHE). However, a two electron transfer normally proceeds with much slower

kinetics compared to SET. This could explain the very slow discharging profile evident in

Figure 10, which facilitates the storage of electrons for long periods of time (more than 12

hours were needed to completely discharge the material in air at ambient conditions). Ne-

glecting the case of W3+ (EPR spectra were inconclusive as to the presence or absence of

such reduced species), two electron transfer can mechanistically occur from either a W4+

centre or two neighbouring W5+ centres simultaneously transferring one electron each, in

perfect agreement with the EPR data described above. At the present stage, we cannot

completely exclude a potential role of the N centres too, given that N-doped TiO2 had

been previously reported in the literature as an oxide capable of two-electron transfer in the

ORR;59,60 although, the N doping was substitutional rather than interstitial like in our case.

Further investigations are currently being conducted to decouple the actual contributions of

the two dopants using electrochemical and spectroscopic methods combined with theoretical

calculations. Nevertheless, and as far as the purpose of the present work is concerned, it is

clear that Ti1–yWyO2Nx powder nanoparticles provide oxygen reduction routes that are not

accessible by undoped TiO2.
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Figure 12: Oxygen reduction currents versus applied potential for undoped anatase TiO2 nanoparticles
(black trace) and Ti0.952W0.048O2Nx (red trace). For Ti0.952W0.048O2Nx, the potential at which ORR starts
(ca. 0.6 V vs RHE) and the Tafel slope of the current profile are indicative of a two electron reduction
process.
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2.4 Photocatalytic NOx abatement (DeNOx)

When Ti1–yWyO2Nx nanomaterials were employed as photocatalysts for the oxidation of

nitric oxide, NO, to nitrates, NO –
3 , Figure 13, the undesired formation of the toxic NO2 by-

product dropped by a factor of up to 106, Figure 14a, when compared to anatase TiO2. As

a result, the nitrate selectivity increased from ca. 29 % for pristine anatase TiO2 to ca. 90 %

for Ti0.909W0.091O2Nx, Figure 14b. The remarkable increase in selectivity is accompanied by

a decrease in photonic efficiency of NOx removal by a factor of about 3, Figure 14c. Amongst

the possible reasons for this drop in photonic efficiency are: i. loss in potential energy of

photo-generated electrons when they relax from the conduction band of TiO2 into localised

W5+ states; ii. positive holes localised in the N intraband gap states not possessing a redox

potential high enough to generate OH from water.32,43 However, the overall DeNOx index

representing the relative change in nitrogen oxide-associated air toxicity combining photonic

efficiency, selectivity and relative toxicity in one single parameter,7 showed improvement of

air quality (i.e. positive DeNOx index) for samples with W content higher than 5 at.%. This

is in contrast to the case of undoped TiO2, where the very high activity but inadequate

selectivity (<50 %) could potentially increase rather than decrease the air toxicity, due to

predominant formation of undesired and toxic NO2
32,61 (see also7 for comparison of W and

N containing TiO2 with benchmark TiO2 photocatalyst P25 and other commonly used com-

mercially available TiO2 photocatalysts). An ideal photocatalyst for DeNOx processes would

have the valence band photo-generated holes driving the one electron stepwise oxidation of

NO to NO –
3

62,63 and the conduction band electrons scavenged by molecular oxygen. How-

ever, nitrate ions that are formed are not just a non-reactive end-product but lead to nitrate

poisoning of the catalyst, resulting in lower activity but more significantly, in greatly reduced

selectivity as nitrates can scavenge conduction band electrons resulting in a back-reduction

of NO –
3 to NO2; i.e. a SET process that on undoped TiO2 is in competition with SET re-

duction of molecular oxygen to superoxide radical. Selectivity can also be compromised by

NO –
3 scavenging a valence band photo-generated hole generating a NO3 species that subse-
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quently reacts with NO forming 2NO2 as shown by Ohko et al.64 Whilst our rational design

was not intended to act upon this latter process, we focused on the former back-reaction for-

mation of NO2 from NO –
3 . Specifically, we observed that enabling electron transfer processes

that are kinetically inaccessible with undoped TiO2, like a two electron reduction of molec-

ular oxygen at potentials vs. RHE as high as + 0.5-0.6 V, through the co-catalysing oxygen

reduction abilities of W and N in Ti0.909W0.091O2Nx nanoparticles, seems to have a beneficial

effect on the selectivity given that the effective difference in reduction potentials of molec-

ular oxygen and nitrate on the catalyst is significantly reduced and the relative reduction

rates therefore greatly shifted towards the desired photo-generated electrons scavenging by

molecular oxygen. This rationale was also confirmed by one of our recent studies involving

simulations of NO –
3 and O2 reduction kinetics on TiO2.

61 Interestingly, when we evaluated

catalysts which only had tungsten and no nitrogen, the nitrate selectivity was similar as for

the case of the codoped catalysts,7 which was not true for catalysts containing solely N and

no W, which on the other hand exhibited selectivity similar to undoped TiO2.
7 Accordingly,

if the recent results by Yuan et al. and Seifitokaldani59,60 about substitutional N-doped TiO2

capable to catalyse multi-electron transfer to molecular oxygen are proven correct, it will

stand to reason that either interstitial N doping cannot promote multiple electron transfer

and/or new fundamental aspects of the co-catalytic mechanisms of W and N in TiO2 have

yet to be uncovered. Further investigations (including a series of other transition metal

co-catalysts) are currently being performed in order to try to answer these still outstanding

questions.

.

.
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Figure 13: NO (and NO2) photocatalytic oxidation/reduction pathways. The subscripts g and ads indicate
species in the gas phase and adsorbed on the catalyst surface respectively.
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Figure 14: (a) Photonic efficiency of NO2 formation vs W content y in Ti1–yWyO2Nx nanomaterials. (b)
Selectivity of NO photocatalytic oxidation with respect to nitrate (i.e. desired product) formation vs W
content y in Ti1–yWyO2Nx. (c) Photonic efficiency of overall NOx removal vs W content y in Ti1–yWyO2Nx.
(d) DeNOx index vs W content y in Ti1–yWyO2Nx; positive values indicate improvement of air quality while
negative values indicate deterioration of air quality.
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3 Conclusions

In conclusion, in Ti0.909W0.091O2Nx semiconductor nanoparticles an extrinsic optical band gap

of 2.38± 0.02 eV, due to the presence of intra-band gap NO states, was observed together

with an intrinsic optical band gap of 3.17± 0.01 eV typical of TiO2. Upon light irradiation,

NO2– states are generated by electronic transitions from the intra-band gap NO3– to the

CB, with spin density associated with NO2– states polarised by the presence of close range

interactions with polarising W ions, potentially affecting the reactivity/electrochemistry of

NO2– states when compared to the case of solely N doped TiO2. Photo-generated conduction

band electrons were also observed to be trapped in W5+ states, which were found to be more

stable compared to Ti3+ states in undoped TiO2, and can therefore be linked to the higher

electron storage ability at ambient conditions, often exhibited by TiO2/WO3 mixed oxides

over undoped TiO2. Electrons stored in these semiconductor nanoparticles were shown here

to be discharged to molecular oxygen via a two electron transfer event at redox potentials

much higher than the typical superoxide formation via SET reaction, even in the absence of

light. The fact that the two electron reduction of molecular oxygen is kinetically accessible for

Ti0.909W0.091O2Nx (it is not in the case of undoped TiO2) shifts the competition for scavenging

electrons towards the desired oxygen reduction rather than nitrate reduction to NO2, which

could help to explain why Ti0.909W0.091O2Nx exhibits such a higher nitrate selectivity when

compared to undoped TiO2.

Together with providing a clear electronic-crystallographic-structural relationship for

Ti1–yWyO2Nx semiconductor nanoparticles, explaining the mutual electronic and magnetic

influence of the photo-induced, stable N- and W-based paramagnetic centres, this research

provides some new fundamental insight and understanding of the association between im-

proved oxygen reduction and improved nitrate selectivity in the photocatalytic DeNOx pro-

cess of removal of harmful nitrogen oxides. Further effort should therefore be spent to

fully comprehend the extent of benefits coming from multiple oxygen reduction pathways

and how to finely tune them, with catalyst modifications that improve selectivity without
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compromising overall activity.

4 Materials and Methods

Synthesis

For a typical preparation of the Ti1–yWyO2Nx nanoarchitectures, 10 mL of titanium isopropoxide (≥97 %, Sigma-Aldrich), were

dissolved in 10 mL of anhydrous ethanol. After thoroughly mixing the solution, 5 mL of deionised water (18 MΩ cm) were slowly

added to the solution. The resulting white precipitate formed a well dispersed, white sol upon further stirring. Ammonium

tungstate (BDH Chemicals), in the necessary amount to achieve a 10 at.% substitution for Ti (or lower loadings as for other

samples reported in this work), was then dissolved in 10 mL of warm deionised water and subsequently added to the solution.

After thorough stirring for at least 4 h, the solution was filtered. The solid was washed with deionised water and then dried at

373 K for at least 4 h. The dry powders were ground in an agate mortar and then transferred into a crucible for calcination.

The samples were calcined at 873 K for 4 h and ground again after calcination.

Neutron Diffraction

Neutron powder diffraction data were collected on the General Materials Diffractometer (GEM) at the ISIS pulsed spallation

neutron source, Rutherford Appleton Laboratory, UK. Neutron diffraction patterns were measured at 303 K from a 5 g sample

loaded in an 8 mm diameter thin-walled vanadium sample can for 225 µA h proton beam current to the ISIS target (corresponding

to ca. 1.5 h collection time). The crystal structure was refined by the Rietveld method from data collected in the low angle,

90° and backscattering detector banks, average 2θ = 63°, 92° and 154° respectively, and covering a d-spacing range from 0.42

to 4�A. The GSAS program with the EXPGUI interface65 was used for the refinement.

X-Ray Photoelectron Spectroscopy (XPS)

A Kratos Axis Ultra DLD system was used to collect XPS spectra using monochromatic Al Kα X-ray source operating at 140 W

(10 mA x 14 kV). Data was collected with pass energies of 80 eV for survey spectra, and 40 eV for the high-resolution scans

with step sizes of 1 eV and 0.1 eV respectively. The system was operated in the Hybrid mode, using a combination of magnetic

immersion and electrostatic lenses and acquired over an area approximately 300 x 700 µm2. A magnetically confined charge

compensation system was used to minimize charging of the sample surface; all spectra were calibrated to the C(1s) line for

adventitious carbon taken to be 284.8 eV. A base pressure of ca. 10−9 torr was maintained during collection of the spectra. Data

was analysed using CasaXPS (v2.3.19rev1.2) after subtraction of a Shirley background and using modified Wagner sensitivity

factors as supplied by the manufacturer.

Scanning Transmission Electron Microscopy (STEM)

Samples for examination by scanning transmission electron microscopy (STEM) were prepared by dispersing the dry catalyst

powder onto a holey carbon film supported by a 300 mesh copper TEM grid. STEM high angle annular dark field (HAADF)

images of the samples were obtained using an aberration corrected JEM ARM-200CF STEM operating at 200 kV.

UV-vis Diffuse Reflectance Spectroscopy

UV-vis diffuse reflectance spectra were collected on a StellarNet EPP2000 spectrophotometer with barium sulfate as a reference

in the range of 350 to 650 nm. The resulting reflectance spectra were transformed into apparent absorption spectra by using

the Kubelka-Munk function (Equation 2).

F (R∞) =
(1−R∞)2

2R∞
(2)
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The apparent absorption spectra were subsequently used to determine the optical band gap of the materials by constructing

Tauc plots for indirect band gap semiconductors, by plotting (F (R∞)hν)1/2 against hν. The indirect optical band gaps were

obtained by extrapolating the linear part of these plots to the x-axis (i.e. photon energy).

Electron Paramagnetic Resonance Spectroscopy (EPR)

The X-band CW-EPR spectra were recorded on a Bruker Elexsys E500 spectrometer equipped with an Oxford Instruments

liquid-helium cryostat and a Bruker ER4122 SHQE-W1 super high Q resonator, operating at 50 K. Before each measurement,

the samples were evacuated for at least 12 hours at 393 K and under dynamic vacuum, ca. 10−4 bar. Spectra were recorded in

darkness and after in situ irradiation (in the spectrometer cavity) with a Labino Nova Torch 455 nm LED light source (20 nm

bandwidth centred around the main wavelength). Experimental spectra were simulated using the EasySpin package66 operating

within the Mathworks Matlab environment.

Electrochemical oxygen reduction reaction

Electrochemical oxygen reduction reaction (ORR) measurements required the fabrication of electrodes from the semiconducting

material prior to the experiment. The electrodes were prepared by electrophoretic deposition of the semiconducting solid on

conductive glass (fluorine-doped tin oxide, FTO). Square slides (25 x 25 mm2) of FTO (Sigma-Aldrich, 7 Ω/�) were ultra-

sonically cleaned in acetone and water and then dried at ambient conditions. A coating ink was prepared by ultrasonically

dispersing 100 mg of the sample in 100 mL of a 0.1 mmol L−1 ammonia solution. The FTO glass slides were coated by using

electrophoretic deposition, in a cell where the FTO glass was used as anode and a platinum mesh as cathode. The deposition

was performed at a potential of +15 V for 10 minutes. After deposition, the coated electrode was very carefully washed with

deionised water and annealed at 673 K for 1 hour. The ORR measurements were performed in a 3-electrode cell with the

coated FTO-Glass as a working electrode, a coiled platinum wire as a counter electrode, and a Ag/AgCl reference electrode

(3 mol L−1 NaCl, +205 mV vs SHE). The electrodes were placed in the measurement cell making sure that in the case of the

working electrode only the coated part of the FTO-Glass would be in contact with the 0.1 mol L−1 KOH electrolyte. O2 was

continuously bubbled in the electrolyte solution during the measurement.

Electron storage performance

For the electron storage experiment in air and ambient condition, 0.05 mL of isopropyl alcohol (hole scavenger) and 80 mg of

catalyst were mixed and kept in air and darkness for 10 min to ensure adsorption of isopropyl alcohol on the surface of the

photocatalyst. The wet powder was then placed on a plate and irradiated using a UV-A lamp (Osram Ultra-Vitalux) with

a photon flux at the level of the powder sample equal to 5.268× 10−5 mol s−1 m−2. The change in the optical absorption of

the photocatalytic powder was monitored using a Perkin Elmer Lambda 750 UV/Vis/NIR spectrophotometer in the diffuse

reflectance mode.

DeNOx performance

Measurements of the photonic efficiency/selectivity of the oxidation of nitric oxide were carried out in a glass flow-through

reactor63 with the powder sample placed on a glass grit inside the reactor (allowing the pollutant gas to pass through) and

irradiated from the top through an optical window. An Ultra-Vitalux 300 W (Osram, Germany) light source was employed

as the light source for irradiation with a photon flux at the position of the powder sample equal to 5.268× 10−5 mol s−1 m−2

determined using ferrioxalate actinometry.67–69 0.3 g of the sample was uniformly distributed on the circular glass grit with

an area of 8.042× 10−4 m2 inside the reactor. The pollutant gas, i.e. synthetic air containing 8 ppm of NO (volumetric flow

rate 8.33× 10−7 m3 s−1) was then flowed through the reactor. The temperature was controlled using a water jacked around

the reactor connected to thermostat and was monitored and kept constant at 300 K. Prior to entering the reactor, the air
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was humidified and kept at a constant 42 % relative humidity. The concentrations of NO, NO2 and total NOx in the outlet

gas flow were monitored using a Thermo Scientific Model 42i-HL High Level NO-NO2-NOX Analyzer (Air Monitors Ltd.,

United Kingdom). Measurements were conducted in the dark until equilibrium concentration was reached and subsequently

under irradiation until steady state concentrations were observed (normally after ca. 20 h). The photonic efficiency ξ was

calculated according to eq. 3, where cd is the concentration under dark conditions, ci the concentration under illumination,

V̇ the volumetric flow rate, p the pressure, A the irradiated area, R the gas constant, T the absolute temperature and Φ the

photon flux impinging the photocatalyst surface as determined by actinometry. Photonic efficiencies for NO, NO2 and total

NOx were determined separately.

ξ =
(cd − ci) · V̇ · p

Φ ·A ·R · T
(3)

The nitrate selectivity (i.e. the amount of NO effectively converted to nitrate rather than nitrogen dioxide) was derived

according to eq. 4.

S =
ξNOx

ξNO
(4)

Finally, the DeNOx index7 was calculated according to eq. 5, where ξNO and ξNO2 represent the photonic efficiencies of

NO removal and NO2 formation, respectively, and S the selectivity towards nitrate formation according to eq. 4:

ξDeNOx = ξNO − 3 · ξNO2 (5)

5 Supporting Information

The Supporting Information is available free of charge on the ACS Publications website. X-band CW EPR spectra under

irradiation. Dyson line simulation and analysis.
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