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Abstract

This paper proposes a new measure for the evaluation of financial market efficiency,

the so-called intermittency coefficient. This is a multifractality measure that can quantify

the deviation from a random walk within the framework of the multifractal random walk

model by Bacry et al. (2001b). While the random walk corresponds to the most genuine

form of market efficiency, the larger the value of the intermittency coefficient is, the more

inefficient a market would be. In contrast to commonly used methods based on Hurst

exponents, the intermittency coefficient is a more powerful tool due to its well-established

inference apparatus based on the generalised method of moments estimation technique. In

an empirical application using data from the largest currently existing market for tradable

pollution permits, the European Union Emissions Trading Scheme, we show that this market

becomes more efficient over time. In addition, the degree of market efficiency is overall

similar to that for the US stock market; for one sub-period, the market efficiency is found

to be higher. While the first finding is anticipated, the second finding is noteworthy, as

various observers expressed concerns with regard to the information efficiency of this newly

established artificial market.
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1 Introduction

Ever since Maurice Kendall presented, back in 1953, his finding that economic time series appear

to “be wandering” rather than show some predictable pattern (see Kendall (1953)), attempts

have been made to either make sense of this feature or exploit it. The most famous attempt

is certainly the establishment of a link between a virtually unpredictable random walk - the

precise way of describing the feature of “wandering” - and the notion of efficient markets. Even

though empirical tests for market efficiency based on this notion appear to be straightforward,

these procedures are more complex than they might appear. First, testing for efficiency neces-

sarily assumes some equilibrium model that defines normal behaviour. Second, the alternative

hypothesis is vague; the mere finding that a particular market is inefficient does not reveal

much about this market (see Fama (1998)). Third, due to the non-availability of corresponding

empirical techniques, the vast majority of papers that study financial market efficiency employ

qualitative measures of market efficiency; the most common approach is the variance ratio test

originally developed by Lo and MacKinlay (1988). In addition, basic procedures, such as unit

root tests and serial correlation tests, are also used. These methods only allow one to test

whether a certain market is efficient or not efficient in a certain period.

Instead, Campbell et al. (1997) proposed the integrative use of different efficiency concepts

or degrees (stages) of market efficiency. The benefit of this approach is that it allows one to

compare financial markets with regard to their relative efficiency. The price of a security traded

on an efficient financial market incorporates at all times all the relevant information relating to

it; no information is disregarded on the market (Fama, 1965). At the heart of this definition is

the notion that price movements in efficient markets are random and unpredictable, making it

impossible to predict prices (or, equivalently, price changes) due to an information advantage.

Once properly adjusted for risk, successive price changes are uncorrelated; however, they can

satisfy certain nonlinear patterns of dependency. This is the martingale property of financial

prices traded on an efficient market (Samuelson, 1965).

The martingale property is consistent with time-varying higher order return moments (e.g.,

volatility), which are predictable based on past information. In this paper, we focus on the weak

form of market efficiency, capturing moments’ predictability from past price changes. Campbell
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et al. (1997) differentiate between different types of martingale efficiency, including the most

genuine form of market efficiency, which is given by the random walk hypothesis. In this case,

prices follow a random walk with i.i.d. returns, i.e., returns that lack any form of dependence.

Recent methodological advancements now make it possible to walk this path and compare

different markets (either geographically separated markets or non-overlapping sub-periods of

trading on the same market) with respect to their relative degree of efficiency. In this context,

we call market A more efficient than market B if the dependence form of price changes generated

on market A is weaker than that on market B. The underlying idea is to measure the intensity

of dependence patterns present in the data by means of a comparison with the random walk

case.1

This paper combines two topics of relevance for the modelling of financial markets – the

evaluation of nonlinear patterns of dependence between returns and the multifractal property

of returns – and notes the implications of multifractality for the efficiency of financial markets.

The multifractal property was first confirmed in a financial context by Vassilicos et al. (1993) for

quotation times and by Ghashghaie et al. (1996) and Vandewalle and Ausloos (1998) for price

changes. It is a special type of nonlinear dependence manifested between returns with different

return periods / along different time scales (minute, daily, monthly returns, etc.). We can

also speak of scale-invariant returns. The presence of multifractality contravenes the random

walk hypothesis, whereas the degree of multifractality can be used as a proxy for the degree of

financial market efficiency.

In this paper, we formalise a new method for the evaluation of financial market efficiency

based on the degree of nonlinear departure from the random walk benchmark using a mul-

tifractality measure, the so-called intermittency coefficient λ2. Whereas alternative efficiency

measures are computed model free, the measure introduced in this paper offers the advantage of

a comprehensive model framework for financial volatility, the multifractal random walk (MRW)

model by Bacry et al. (2001b), which makes forecast applications possible. Until now, numerous

studies reported outstanding results for the multifractal modelling and forecasting of financial

1In some recent publications, the deviation from a random walk is “quantified” by means of the value of the
test statistic or the corresponding p-value for conventional random walk tests, such as the autocorrelation test
and the variance ratio test. In this sense, the tests are applied in a quantitative way, but strictly speaking, these
tests are nevertheless qualitative tests for market efficiency.
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volatility (Calvet and Fisher, 2004; Lux, 2008; Bacry et al., 2008; Lux and Morales-Arias, 2010;

Bacry et al., 2013; Lux et al., 2014), with recent applications for energy markets (Wang et al.,

2016; Lux et al., 2016; Segnon et al., 2017) outperforming the widespread generalised autore-

gressive conditional heteroscedasticity (GARCH) class of models and stochastic volatility (SV)

models.2 The MRW model with λ2 = 0 corresponds to Brownian motion, which is the con-

tinuous time counterpart of random walk behaviour. In this case, the MRW increments are

(identically and) independently distributed, which corresponds to the most genuine form of

market efficiency. By contrast, positive values of λ2 correspond to a martingale form of effi-

ciency with multifractal volatility. In this connection, the parameter λ2 measures the deviation

from the case of Brownian motion, i.e., the loss of financial market efficiency.

An empirical analysis of price data from the currently largest existing market for tradable

pollution permits, the European Union Emission Trading Scheme (EU ETS), forms the second

contribution of this paper. The permits are referred to as European Union Allowances (EUAs),

the price of which is referred to as EUA price. Given the particularly short data samples avail-

able on this market we compute the empirical distribution function of the estimator for λ2 and

corresponding confidence intervals by means of Monte Carlo simulations. We test hypotheses

about the value of λ2 at the significance level of 5%. The main benefit of analysing the EU ETS

market is that a clear ex ante expectation can be formulated with regard to the efficiency of

this market and its development. This market is artificial in the sense that it has been designed

by politicians and regulators based on economic reasoning. In one way or another, all financial

markets are subject to regulatory interventions. This market, however, was developed from

scratch; it did not evolve over time, and no formal or informal predecessors exist. In addition,

participants in this market are mainly larger businesses from energy-intensive and energy pro-

ducing sectors as well as financial institutions that represent smaller businesses covered by the

market. Thus, the market participants should generally be experienced with financial trading.

At the same time, there has been the opinion that the market participants would have to fa-

miliarise themselves with this market – for this very reason, the first phase of trading served as

a so-called trial period. In light of these features, the public expectation is that the degree of

2Another pertinent model of multifractal volatility is the Markov-switching multifractal model by Calvet and
Fisher (2001).
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efficiency of this market is generally increasing over time, as the market develops from a new to a

more mature state. Several existing empirical studies have already come to this very conclusion:

Charles et al. (2011), Niblock and Harrison (2013), Daskalakis (2013) and Ibikunle et al. (2013).

This expectation is useful for the validation of our newly proposed method. The employment

of additional data from US stock markets forms another benchmark for this empirical analysis.

The results obtained in this application can be summarised as follows. First, we can reject

the random walk hypothesis λ2 = 0 in favour of the alternative hypothesis of a martingale

model with multifractal volatility at very small significance levels. Thus, the EU ETS is not

perfectly efficient, which was obvious from the start, if we consider that i.i.d. returns consti-

tute a theoretical model that cannot be satisfied in practice. Second, we find evidence of an

improvement in informational efficiency of this market in the period 2013-2017 compared to

2008-2012. This finding is adequate for the general expectation about this market and confirms

empirical findings obtained elsewhere; in addition, the estimated values for λ2 are plausible, as

they are generally in the range obtained for other financial markets. Third, we draw a parallel

between the EU ETS and the US stock market, as represented by the Dow Jones Industrial

Average stock market index, showing that these two markets are generally comparable in terms

of informational efficiency. Our estimation results suggest that for one time period under con-

sideration, the EU ETS is even more efficient than the US stock market. In light of the fact

that the EU ETS is a newly established, artificial market, this result is worth highlighting.

A more conventional measure of multifractality is given by the so-called Hurst exponents. In

contrast to this measure, the intermittency coefficient offers the advantage of an inference appa-

ratus based on the generalised method of moments estimation technique with a well-established

asymptotic theory. This is a very promising tool, all the more so considering that the present

study is the first application with respect to the evaluation of financial market efficiency. More-

over, using a significance test for λ2 makes it possible to test the null hypothesis of a perfectly

efficient data-generating process (Brownian motion). By contrast, the evaluation of Hurst ex-

ponents is genuinely prone to errors due to its restricted estimation performance. To the best of

our knowledge, financial market applications based on Hurst exponents disregard the exposition

of significance levels, being of poor statistical relevance.
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The remainder of this paper is organised as follows. Following a short presentation of the

EU ETS in Section 2, Section 3 discusses methodological issues such as the intermittency co-

efficient, the Hurst exponents, the multifractal random walk model as well as the estimation

procedures and several issues of statistical inference related to λ2. Section 4 presents the em-

pirical application; finally, Section 5 concludes this paper.

2 The European Union Emissions Trading Scheme

The EU ETS is, by far, the largest currently existing trading scheme for carbon emissions

permits. Moreover, it is also the only existing multi-national scheme; other existing schemes are

either on the national or regional level. Finally, this scheme has been in existence since 2005.

Trading in this scheme is organised into so-called phases: 2005-2007 (Phase I), 2008-2012 (Phase

II), and 2013-2020 (Phase III). Figure 1 displays price developments in Phase II and Phase III.

Power generation and certain energy-intensive sectors from all EU countries as well as Norway,

Iceland and Lichtenstein are covered by the scheme. The annual cap is approximately 2 billion

tons of CO2; this cap is “melting” at an annual rate of 1.74% until 2030.3

Ever since trading in this scheme began, it has been subject to critical evaluations. Con-

siderable attention has been focused on understanding the behaviour of prices for the pollution

permits. The first studies appeared as early as 2008 and 2009; see Paolella and Taschini (2008) as

well as Benz and Trueck (2009). Hintermann (2010) analyses the prices from a more structural

point of view.

A number of more recent contributions compare price behaviour across the Phases; Creti

et al. (2014) epitomise these research efforts.4 It comes as no surprise that the informational

efficiency of this market has also been analysed. Overall, this literature, of high relevance for

this paper, finds that the EU ETS is becoming more efficient over time. Charles et al. (2011), for

instance, find prices during Phase I to be predictable; in Phase II, however, the market is weak-

form efficient, a conclusion also drawn by Montagnoli and de Vries (2011). Niblock and Harrison

3A discussion of this system in detail is outside the scope of this paper. Interested readers are referred to
overview articles such as Ellerman et al. (2015) and Hintermann and Gronwald (2016). Ellerman et al. (2010)
provide a comprehensive discussion of carbon pricing in general.

4For an excellent literature overview, see Hintermann et al. (2016).

6



Figure 1: Permit prices in the EU ETS
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(2013) offer some more refined insights: the authors only use Phase II data, but they split the

sample into an early period (February 2008 - February 2010) and a late period (February 2010 -

February 2012). They find that the early period is still characterised by predictability, while for

the late period, no evidence of predictability is found. Daskalakis (2013) confirms these results

overall; from 2010, the European carbon market is found to be weakly efficient.

These results are not just consistent, they are also in line with a plausible general expecta-

tion: the EU ETS is a newly established market. It can therefore be expected that this market

was initially immature but that it would mature over time. The papers share another feature:

they all apply qualitative tests for market efficiency. Montagnoli and de Vries (2011), Charles

et al. (2011) and Niblock and Harrison (2013) use variance ratio tests, either the original pro-

cedure developed by Lo and MacKinlay (1988) or variants thereof; in addition, Niblock and

Harrison (2013) use other conventional methods, such as standard unit root tests and serial cor-

relation tests. Finally, Niblock and Harrison (2013) and Daskalakis (2013) employ trading rule

profitability tests. A common feature of these procedures is that the null of market efficiency is

tested against the unspecified alternative of market inefficiency. To the best of our knowledge,

there are no quantitative studies on the efficiency of the carbon market. Zhuang et al. (2014)

analyse the multifractality of carbon data with the Hurst exponents, but without any examina-

tion of market efficiency. Instead, the authors focus on the interplay between carbon and crude

oil markets by using the multifractal detrended cross-correlation analysis (MF-DCCA) method.

3 Methodology

In this section the methodology used in this paper will be discussed in detail. Following an

exposition of the concept of multifractality, the so-called multifractal random walk model is

presented; this is followed by a discussion of estimation methods and performance issues.

3.1 Two measures of multifractality: Hurst exponents and the intermittency

coefficient

Scale-invariant processes are stochastic processes with stationary increments, characterised by

a “universal law”, which holds in distribution and, under an appropriate transformation, over
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different time scales, i.e., for different sampling intervals. For example, in the case of financial

returns, the universal law would hold for different return periods (minute, daily, monthly returns,

etc.). More precisely, the moments of a scale-invariant process X(t), e.g., the moments of some

logarithmic financial price, satisfy

E [|X (t)−X (t−∆t)|q] = cq∆t
ζ(q) (1)

for various sampling intervals ∆t and moment orders q, with X (t)−X (t−∆t) the stationary

process increments (fluctuations) and cq constant. It is important to note that return powers

|X (t)−X (t−∆t)|q are measures of the extent of return fluctuations or volatility, which also

allow us to speak of multifractal volatility. We refer readers to Bacry et al. (2008) for a detailed

exposition on multifractality.

The function ζ(q), the so-called multifractal exponent, describes the complexity of the uni-

versal law expressed in Equation (1). According to the shape of ζ(q), we can distinguish between

two types of scale-invariant processes. Fractal (uni-fractal, uni-scaling) processes display a lin-

ear multifractal exponent ζ(q) = Hq with constant Hurst exponent H. Correspondingly, the

scaling property (1) is preserved under a unique transformation for all moment orders q, i.e.,

for all relevant magnitudes of fluctuations. This unique transformation is given by the constant

H.

For example, fractional Brownian motion is a fractal process. For the case H = 0.5, this

corresponds to Brownian motion with Gaussian increments. At the same time, this particular

case represents the most genuine form of market efficiency, characterised by independent returns.

Whereas H is bounded between 0 and 1, values H > 0.5 are generated by persistent behaviours,

with positive correlations. In this case, a positive or negative trend would be carried forward

into the next period. Values H < 0.5 are related to an anti-persistent process, with trend

reversals. Both cases describe an underlying structure in the data and are evidence of a smaller

degree of market efficiency compared to the Brownian motion case.

Based on the evaluation of the Hurst exponent H, inference regarding market characteristics

can be made. This was first proposed by Peters (1989), who estimated the Hurst exponent for

S&P 500 monthly returns and 30-year treasury-bond returns, separately, using rescaled range
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(R/S) analysis. Peters (1989) reported values H > 0.5 for these markets, suggesting persistent

market behaviour, the so-called “memory effect”. The author attributes this behaviour to

investors’ market sentiment, which is not immediately reflected in market prices but influences

markets over the longer term.

However, empirical studies note that the behaviour of financial prices is more complex

than the behaviour of fractal processes. Whereas (uni-)fractal processes are governed by a

unique Hurst exponent H, the scaling property of financial returns holds for every moment

q under a different transformation H(q), i.e., financial returns are characterised by different

transformations H(q) as a function of their magnitude. This allows us to determine a nonlinear

multifractal exponent ζ(q) = H(q)q with a generalised family of Hurst exponents H(q). In

this case, we speak of multifractality (multi-scaling, anomalous scaling). More precisely, the

multifractal exponent ζ(q) is strictly concave for multifractal processes (Lux and Segnon, 2013).

A significant number of publications have evaluated the degree of stock price deviations

from a random walk using Hurst exponents (see, for example, Zhou et al. (2013); Rizvi et al.

(2014); Arshad and Rizvi (2015); Anagnostidis et al. (2016)). Zunino et al. (2008) estimate the

generalized Hurst exponents for 32 international stock market indices by means of multifractal

detrended fluctuation analysis (MF-DFA). This method performs better than R/S analysis on

small samples. They report higher multifractality degrees in emerging stock markets compared

with developed stock markets. The MF-DFA has been also employed to evaluate the infor-

mational efficiency of foreign exchange markets (Ning et al., 2017) and of energy markets, in

particular for oil trading (Jiang et al., 2014; Khediri and Charfeddine, 2015).5

An alternative measure of multifractality is the intermittency coefficient λ2,

λ2 := −ζ ′′(0).

The intermittency coefficient is typically non-negative, λ2 ≥ 0, and increases with the degree

5Khediri and Charfeddine (2015) use the DFA technique in a rolling window setting and find strong evidence
of time-varying market efficiency in important energy markets. Other rolling window estimation approaches
investigating the dynamic evolution of Hurst measures in time include Wang et al. (2010); Gu et al. (2013);
Zhuang et al. (2015) and Anagnostidis et al. (2016). Additionally the Hurst method has been employed to identify
the sources of multifractality in data (Gu et al., 2010; Plesoianu et al., 2012) or to investigate cross-correlations
by means of MF-DCCA (Zhuang et al., 2014). Sukpitak and Hengpunya (2016) analyse the correlation between
dynamic Hurst exponents and trading volume.
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of multifractality, i.e., as the variation of dependence patterns in the volatility process becomes

more pronounced. In the trivial case λ2 = 0, multifractality disappears, and the process is

fractal (cf. Bacry et al. (2008)).

The conventional evaluation of market efficiency focuses on the comparison between the

estimated values of the Hurst exponents H(q) for various q and 0.5, the reference value in the

random walk case. Moreover, one can determine the so-called degree of multifractality by the

magnitude of the variation of H(q) values as follows:

∆H = H (qmin)−H (qmax) .

A high degree of multifractality ∆H is related to a rich (nonlinear) dependence structure and

accounts for market inefficiency (Zunino et al., 2008; Gu et al., 2010; Wang and Wu, 2013).

This paper proposes a new method for the evaluation of market efficiency using the inter-

mittency coefficient λ2. We quantify the deviation of a price process from the random walk case

by means of the deviation of the intermittency coefficient from the trivial case λ2 = 0. This

procedure is based on the so-called multifractal random walk model. The following subsection

explains this model in greater detail.

3.2 The multifractal random walk model

Volatility models are martingale models capturing the dependence pattern in the volatility

process for the purpose of volatility forecasts. Classic volatility models consider risk adjusted

(zero mean) returns

rt = [ln (pt)− ln (pt−1)]− µt,

with µt = Et−1 [ln (pt)− ln (pt−1)] the conditional mean of the return series given the public

information available at time t − 1. The focus is on the modelling of financial volatility σ2
t =

Et−1

[
r2
t

]
according to various specifications (e.g., GARCH, SV) within the following general

framework:

rt = σtut, (2)
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where ut is Gaussian white noise of mean 0 and variance σ2
u (Andersen et al., 2006). This

construction reflects the economic ideas behind the efficient market hypothesis: the return

fraction µt constitutes the fair payment expected in t, whereas rt is the supernormal profit or

loss in t, which is impossible to predict systematically by market participants (cf. Fama (1965)).

Multifractal volatility models exploit the scaling properties of generalised volatility measures

according to (1). For this purpose, they employ an additional variable, ∆t, the sampling interval,

which models the investment horizon. At the same time, the sampling interval ∆t is a measure

of the representation accuracy. Accordingly, we construct the returns r (t,∆t) between time t−1

and t, with sampling interval ∆t, using only sampling intervals (time discretisation steps) not

less than ∆t. In other words, r (t,∆t) takes into consideration only those investment decisions

with investment horizons not less than ∆t. Clearly, representation accuracy increases as the

sampling interval ∆t decreases.

Multifractal returns r (t) are defined as the limit process when ∆t→ 0+,

r (t) = lim
∆t→0+

r (t,∆t) r (t,∆t) =

[ t
∆t ]∑

i=[ t−1
∆t ]+1

σ∆t (i∆t)u∆t (i∆t) ,

where σ∆t (t) constitutes the volatility process with sampling interval ∆t and u∆t (t) is Gaussian

white noise with mean zero and variance ∆t (cf. Bacry et al. (2001a)). This discrete represen-

tation was generalised by Emmanuel Bacry and Jean-Francois Muzy in continuous time in a

number of papers (Muzy and Bacry, 2002; Bacry and Muzy, 2003) generating the (log-normal)

MRW returns in the limit of small sampling intervals ∆t→ 0+,

r (t) = lim
∆t→0+

t∫
t−1

σ∆t (u) dB (u) , (3)

with σ∆t (u) the volatility process

σ∆t (u) = eω∆t(u) (4)

and dB (u) Gaussian white noise with mean 0 and variance σ2
dB(u).

The definition of the MRW volatility process in (4) is based on an auxiliary stationary
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Gaussian process ω∆t (t) independent of dB (u) with mean

E [ω∆t (t)] = −λ2

(
ln

(
T

∆t

)
+ 1

)

and autocovariance function

γω∆t (h) := Cov [ω∆t (t) , ω∆t (t+ h)] , γω∆t (h) =


λ2
(
ln
(
T
∆t

)
+ 1− h

∆t

)
, 0 ≤ h < ∆t

λ2 ln
(
T
h

)
, ∆t ≤ h < T

0, h ≥ T

,

with 0 ≤ λ2 < 1
2 and T > 0.

The MRW model provides a particularly parsimonious framework with only three param-

eters: the intermittency coefficient λ2, the correlation length T and the error term variance

σ2
dB(u) (in short σ2). Estimation of the MRW parameters can be done with the generalised

method of moments (GMM) estimation technique using the mean and some various lags of the

autocovariance function of the logarithmic absolute returns together with the return variance

condition (Bacry et al., 2008, 2013; Sattarhoff, 2011).

In this paper, we employ the intermittency coefficient λ2 as a measure of the efficiency of

the market, which we use to analyse the EU ETS.

3.3 Estimation methods and performance issues

3.3.1 Hurst exponents

Both the Hurst exponents H(q) and the intermittency coefficient λ2 describe the shape of the

multifractal exponent function ζ(q). Thus, they both quantify the degree of multifractality of

a scale-invariant process. However, in practice, the estimation of Hurst exponents has proven

unsatisfactory in finite samples. This can lead to erroneous results. In this sense, it is more

convenient to employ the intermittency coefficient λ2, which can be estimated robustly via

GMM.

Typically, the estimation of both H(q) and λ2 can be accomplished from the estimation of

the function ζ(q) in (1). Another popular approach for the estimation of H(q) is R/S analysis,
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which was introduced by Hurst (1951). A more robust generalised version of the latter method

is given by the MF-DFA introduced by Kantelhardt et al. (2002). Each of these three methods

is based on the fitting of a power law to the data. This is the so-called scaling estimation

approach.

For this purpose, it is important to employ a loglinear transformation of the power law. For

example, when using (1), we obtain the loglinear form

ln (E [|X (t)−X (t−∆t)|q]) = ln (cq) + ζ (q) ln (∆t) . (5)

Then, one can fit (5) to the behaviour of the corresponding empirical moments and compute

the least squares estimator Ĥ(q), i.e., the scaling estimator for H(q).

Numerous studies have proven the unreliability of scaling estimators for financial applica-

tions due to their high variance in finite samples. Lux (2004) computed scaling estimators

from randomised financial data, which typically lack any temporal structure, including any

multifractal characteristics. Nevertheless, the estimated values from randomised data are indis-

tinguishable from those that come from genuine multifractal data. This result indicates the high

fluctuation of small sample scaling estimates, leading to spurious detection of multifractality in

the absence of true scaling. Gu et al. (2010) perform a similar exercise in order to determine

the so-called “sources of multifractality”. The authors construct shuffled data, which lack any

temporal structure, and surrogate data, which are Gaussian distributed. The difference between

the multifractality degrees of the original and transformed series is then used to quantify the

influence of temporal patterns and fat tails on multifractality. However, the high multifractality

degrees reported for the transformed data are doubtful and provide evidence of the unreliability

of this estimation method. Ludescher et al. (2011) showed that additive noise, short-term cor-

relations and periodicities, typically found in financial data, lead to considerable biases in the

estimation of Hurst exponents. One can consult Lux and Segnon (2013) for a comprehensive

survey on this subject.

A typical exercise in empirical applications is the comparison between the estimated value

Ĥ(q) and the reference value of 0.5 that characterises the random walk market hypothesis

(Zunino et al., 2008; Gu et al., 2010; Wang and Wu, 2013). This is then interpreted as a “test”
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for the type of market efficiency, with estimated values different from 0.5 being interpreted

as evidence for inefficient market structures, thus pointing to a rejection of the random walk

hypothesis. Unfortunately, these kinds of studies are generally useless from a statistical point of

view, as they do not provide any theoretical results on the distribution of the scaling estimator

Ĥ(q) and they do not investigate whether the Hurst exponents H(q) of the data are significantly

different from 0.5.

3.3.2 The intermittency coefficient

In this paper, we estimate the intermittency coefficient based on a well-established inference

tool, the GMM technique. Under some regularity conditions, the GMM estimator for the

MRW model is consistent and asymptotically normally distributed; see Bacry et al. (2013).

Moreover Bacry et al. (2013) show within the framework of a Monte Carlo simulation study

that the estimation of the intermittency coefficient λ2 has very small bias and mean squared

error (MSE) values, being also reliable in finite samples. Unfortunately, the normality of this

estimator can be reached only for very large datasets with at least 16,000 points. In this paper,

we employ the GMM estimation procedure in Sattarhoff (2011) using an additional moment

condition. In this case, the asymptotic properties deliver a better approximation for the finite

sample behaviour, with normally distributed estimates starting with approximately 2,000 data

points.

However, given the short datasets on the relatively recently established EU ETS, we cannot

employ the normal approximation for the scope of this paper. Instead, we compute the empirical

distribution function of the estimator for λ2 and corresponding confidence intervals by means

of Monte Carlo simulations (cf. Bacry et al. (2013)).

By contrast, there are no theoretical results on the asymptotic properties (consistency,

asymptotic distribution) of scaling estimators. Thomas Lux compares the scaling estimator

and the GMM estimator in finite samples within the scope of a Monte Carlo simulation study

and reports bias and MSE values for the estimation problem of the multifractal model of asset

returns and the Markov-switching multifractal model of asset returns, respectively (Lux, 2003,

2008). This comparison shows that the GMM estimator significantly outperforms the scaling
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procedure in finite samples.

The following significance (multifractality) test by Sattarhoff (2011) with the hypotheses

H0 : λ2 = 0 vs. H1 : λ2 > 0 (6)

can also be interpreted as a test on the form of market efficiency. The test was designed

for the MRW model, where r (k) denote the MRW returns. Under the null hypothesis, the

data-generating process is Brownian motion, i.e., the market is perfectly efficient, with the

alternative being a martingale model with multifractal volatility. Sattarhoff (2011) shows that

the test statistic M ,

M :=
√
N · 2

√
2√

π2 − 4
·
(

ln (mσ)

2
−mµ −

γ + ln (2)

2

)
,

with

mσ :=
1

N

N∑
k=1

r (k)2 and mµ :=
1

N

N∑
k=1

ln (|r (k)|) ,

converges in distribution to a standard normal variable under the null hypothesis.

4 Empirical application

Our dataset comprises approximately 9.5 years of daily EUA prices from January 2008 until

May 2017. US stock market data (Dow Jones Industrial Average, DJIA), used as a benchmark,

are taken from the identical period.6 We computed the continuously compounded returns

rt = ln (pt)− ln (pt−1) .

We use the full sample as well as two subsamples: 2008-2012 (Phase II of the EU ETS) and

2013-2017 (currently running Phase III). Table 1 reports some descriptive statistics of returns,

absolute returns and squared returns. We could reject the null hypothesis of no serial correlation

using the Ljung-Box-Pierce statistic for each data series (significance level of 5%). For absolute

6Source: For reasons of continuity, we use a linked data series consisting of the series ECBCS00 and ECFCS00
from Datastream. The DJIA data have been obtained from the Federal Reserve Bank of St. Louis.
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and squared returns, this result is reinforced by the significant positive values over long lags of

their empirical autocorrelation functions (see Figure 2). However, in the case of raw returns, the

autocorrelations, although existent, are much less pronounced. According to the Shapiro-Wilk

normality test (significance level of 5%) as well as the high kurtosis values, the distribution of

our data deviates from normal. These findings are in line with the behaviour of the DJIA (see

Table 1 and Figure 2).

EUA 2008-2017 DJIA 2008-2017

Returns Absolute Squared Returns Absolute Squared

Minimum -0.422 0 0 -0.082 0 0
Maximum 0.235 0.422 0.178 0.105 0.105 0.011
Mean -5.944 ·10−4 0.02 9.655 ·10−4 1.956 ·10−4 0.008 1.479 ·10−4

St. dev. 0.031 0.023 0.004 0.012 0.009 5.182 ·10−4

Skewness -0.886 4.144 29.688 -0.072 3.387 11.665
Kurtosis 21.099 46.799 1159 13.278 22.490 193.636
Shapiro-Wilk 0.899* 0.721* 0.15* 0.885* 0.702* 0.253*
Q(12) 43.224* 1047.725* 109.189* 57.351* 3518.909* 2722.756*
Q(20) 60.091* 1617.392* 249.602* 100.984* 5087.237* 3739.199*

Table 1: Descriptive statistics (significance level: ∗ =< 3 · 10−5)

We estimated the MRW model for the EUA prices as well as for the DJIA reference data

via GMM based on the moment conditions in Sattarhoff (2011). Table 2 displays our results.

For both markets, the intermittency coefficient is found to differ significantly from zero at very

small significance levels in all samples under consideration. At the same time, this implies that

we could reject the null hypothesis of a perfectly efficient market with i.i.d. returns in favour of

multifractal martingale prices. This result is obvious if we consider that i.i.d. returns constitute

a theoretical model that cannot be satisfied in practice.

The results can be summarised as follows. For the full sample, we computed the estimated

λ2 value of 0.0415. The results for the two subsamples are worth noting: The estimated λ2 value

for the sample 2008-2012 is greater than the estimate for 2013-2017.7 These point estimates

suggest that our findings are in line with the literature on market efficiency of the EU ETS.

7It is important to note that the value of the intermittency coefficient λ2 is not necessarily related to the
sample length. The intermittency coefficient captures the complexity of dependency patterns in the data, which
can be, but does not necessarily have to be, a function of the sample length. Hence, both cases, in which the full
sample estimate is larger or smaller than the subsample estimate, are possible without contradiction.

17



20 40 60 80 100

−
0.

2
0.

0
0.

2

Lag

A
C

F

EUA Returns

20 40 60 80 100

−
0.

2
0.

0
0.

2
Lag

A
C

F

DJIA Returns

20 40 60 80 100

−
0.

05
0.

10
0.

25

Lag

A
C

F

EUA Absolute Returns

20 40 60 80 100

0.
0

0.
2

0.
4

Lag

A
C

F

DJIA Absolute Returns

20 40 60 80 100

−
0.

05
0.

10
0.

25

Lag

A
C

F

EUA Squared Returns

20 40 60 80 100

0.
0

0.
2

0.
4

Lag

A
C

F

DJIA Squared Returns

Figure 2: Autocorrelation functions for the EUA as well as the DJIA full sample data
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EUA DJIA

2008-2017 2008-2012 2013-2017 2008-2017 2008-2012 2013-2017

no. of data points no. of data points

2,454 1,305 1,149 2,368 1,259 1,109

λ2 estimates λ2 estimates

0.0415* 0.0362* 0.03* 0.0439* 0.0492* 0.0316*

Monte Carlo c.i. (α = 0.1) Monte Carlo c.i. (α = 0.1)

λ2 = 0.02 [0.005, 0.028] [0.004, 0.029] [0.005, 0.028] [0.004, 0.029]
λ2 = 0.025 [0.009, 0.034] [0.008, 0.034] [0.009, 0.034] [0.007, 0.035]
λ2 = 0.03 [0.013, 0.039] [0.011, 0.04] [0.012, 0.04] [0.01, 0.04]
λ2 = 0.04 [0.019, 0.051] [0.018, 0.051] [0.019, 0.051] [0.017, 0.052]

Table 2: Estimation results (significance level: ∗ =< 0.001) and approximate confidence inter-
vals (c.i.) from Monte Carlo simulations. (For each parameter value λ2 ∈ {0.02, 0.025, 0.03, 0.04} and
each sample length N ∈ {1305, 1149, 1259, 1109}, we generated 10,000 MRW series.)

To analyse this further, we will test in the following several hypotheses about the value of the

parameter λ2. Given the relatively short data samples, the normal asymptotics of the GMM

estimator for λ2 have not yet been reached. On account of this, we compute the empirical

distributions of the GMM estimator from Monte Carlo simulations.

The estimated value of the intermittency coefficient reported in finance applications would

typically vary in λ2 ∈ [0.01, 0.06] (Duchon et al., 2012). In the present study, we considered four

parameter values λ2 ∈ {0.02, 0.025, 0.03, 0.04}. For each data sample (2008-2012, 2013-2017)

and for each value of λ2 ∈ {0.02, 0.025, 0.03, 0.04}, we simulated 10,000 MRW series of the

length of the sample and estimated the MRW.8

Based on the empirical distributions of the GMM estimator for λ2 (see Figure A1), we

computed approximate confidence intervals (Table 2). This allows us to test hypotheses of the

form

H0 : λ2 ≤ a vs. H1 : λ2 > a

with a ∈ {0.02, 0.025, 0.03, 0.04}. If a = 0.025, we may reject the null hypothesis for the data

sample 2008-2012 at the significance level of 5% (λ2 estimate 0.0362 /∈ (0, 0.034)). This suggests

8In the simulations we set the error term variance σ2 equal to its GMM estimate from the real data and chose
a fairly large value for the correlation length T of 20 years (Muzy et al., 2013).
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Figure 3: Permit prices in the EU ETS and the estimated values for λ2

that the value of λ2 is greater than 0.025 in the first period. For 2013-2017, we could only reject

the null hypothesis in the case a = 0.02 (significance level of 5%, confidence interval of (0, 0.029)),

suggesting that λ2 is greater than 0.02 in the second period. It is important to note that we

could not reject the null hypothesis λ2 ≤ 0.025, i.e., the second data sample is consistent with

values not greater than 0.025. In sum, these results indicate a presumably smaller value of λ2

for the second time sample, which implies a higher degree of market efficiency during Phase

III. Figure 3 further illustrates these results, with the higher multifractality degree in the years

2008-2012 capturing precisely the more pronounced “spikiness” in the data during this period.

To facilitate the understanding of these results, we undertake this exercise again using data

from the DJIA stock market index. These findings can be summarised as follows: If a = 0.03,

we may reject the null hypothesis for the data sample 2008-2012 at the significance level of

5% (λ2 estimate 0.0492 /∈ (0, 0.04)). This suggests that the value of λ2 is greater than 0.03 in

the first period. For 2013-2017, we could only reject the null hypothesis in the case a = 0.02
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(significance level of 5%, confidence interval of (0, 0.029)), suggesting that λ2 is greater than

0.02 in the second period. It is important to note that we could not reject the null hypothesis

λ2 ≤ 0.03, i.e., the second data sample is consistent with values not greater than 0.03, altogether

we obtain a similar message: a presumable smaller value of λ2 and, therefore, a higher degree

of market efficiency during the second time sample.

Thus, our results indicate that the informational efficiency in the EU ETS and in the US

stock market is similar overall. Our results for the first data sample 2008-2012 are certainly

worth highlighting: in the case of the DJIA, we can reject the null hypothesis λ2 ≤ 0.03 at the

significance level of 5%. However, for the EUA prices, we could not reject the null hypothesis

λ2 ≤ 0.03, i.e., the EUA price data are consistent with values not greater than 0.03. This

suggests that the EU ETS is more efficient than the US stock market during the first subsample

2008-2012.

In light of the fact that various observers have expressed concerns with regard to the infor-

mational efficiency of a newly established market such as the EU ETS, this result is remarkable.

Among the possible explanations for this finding are, first, that the US stock market has been

affected by the financial crisis of 2007-2008 to a larger extent than the EU ETS. Second, a mar-

ket such as the US stock market is generally more exposed to external shocks, as it is affected

by global macroeconomic and financial developments. By contrast, prices for pollution permits

in the EU ETS are mainly determined by supply decisions for this market; these decisions,

however, are made in advance by the European Commission. The demand for pollution permits

is largely influenced by economic activity in the European Union. Some researchers also find

that the EU ETS is a particularly political market; however, important political or regulatory

decisions are made very infrequently; see, e.g., Sanin et al. (2015).

5 Conclusion

The question of whether financial markets are efficient has been addressed in a vast number of

empirical studies. These concerted research efforts are more than justified, as financial markets

provide essential information for investors and corporations. The notion of financial market

efficiency employed today goes back to Fama (1965) and reflects the idea that all available
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information is included in the observed prices and that there is no information left that could

be used for the purpose of some systematic prediction. On the supposition of financial market

efficiency, prices in financial markets should be a reliable indicator for company valuations,

to name just one implication. Empirical procedures for testing financial market efficiency are

usually focused on testing for non-predictability. At the same time the large majority of them

show a considerable technical limitation: they are qualitative. In other words, for the most part,

the empirical procedures only allow one to test whether a certain financial market is efficient

or not efficient.

The recent history of financial markets includes various episodes of dramatic changes. One

example is the emergence of automatic and high-frequency trading systems in financial markets.

In addition, the behaviour of financial prices changes over time, often sparked by events such

as the recent financial crisis of 2007-2008. Moreover, the market for crude oil is subject to the

so-called financialisation, a considerable increase in liquidity in the oil futures market. Finally,

new markets are emerging; examples include newly created markets for pollution permits such

as the EU ETS as well as markets for newly created entities such as cryptocurrencies. It seems

obvious that in relation to these changes, the distinction between efficient/inefficient is obsolete.

Instead, it would be important to analyse whether stock markets are more or less efficient during

a financial crisis, if the crude oil market is more efficient due to the financialisation and if newly

emerged markets become more efficient over time.

This paper remedies this issue by proposing a quantitative measure for financial market

efficiency. This measure is referred to as the intermittency coefficient and is based on the MRW

model proposed by Bacry et al. (2001b). The intermittency coefficient allows one to measure the

distance to a random walk, which represents a perfectly efficient market. It is worth highlighting

that we provide a novel interpretation of this parameter with respect to the efficiency of financial

markets, which forms the main contribution of this paper. The main advantage of this approach

over commonly used methods based on Hurst exponents is that the intermittency coefficient is a

more reliable tool due to its well-established inference apparatus based on the GMM estimation

technique.

In an empirical application, we use data from the largest currently existing market for trad-
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able pollution permits, the EU ETS. This market has been selected because a clear expectation

can be formulated with regard to the results: it is a newly established market; thus, efficiency

is expected to be low initially but would increase over time – a result confirmed in a number

of papers. This paper’s empirical application overall reconfirms these results, showing that the

EU ETS becomes more efficient over time.

This clearly illustrates that our newly proposed method is reliable. However, our analysis

yields additional detailed insights. In addition to studying whether a market becomes more

efficient over time, our method also allows us to compare efficiency across markets. We find the

degree of market efficiency of the EU ETS to be similar overall to that of the US stock market;

for one sub-period, the efficiency of the EU ETS is even found to be more pronounced than that

of the US stock market. These findings are noteworthy, as various observers have expressed

concerns with regard to the informational efficiency of this newly established artificial market.

It is obvious that ample opportunities exist for future applications of our method, e.g.,

with respect to the effect of the financialisation mentioned above on the efficiency of oil futures

markets, to name just one. In addition, a growing literature is analysing the efficiency of

markets for cryptocurrencies such as Bitcoin. Finally, it is also possible to estimate intermittency

coefficients from high frequency data (Duchon et al., 2012). It would be very interesting to

investigate whether this estimation technique can improve the accuracy of financial market

evaluations regarding efficiency.
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A Appendix

Figure A1 displays the histograms of the λ2 estimates from the simulated data. We scaled the

histogram values so that the histogram area adds up to 1. This way, the histograms deliver

empirical approximations for the density functions of the GMM estimator for λ2. For reasons of

comparison, we also plotted the normal distributions with the mean and the standard deviation

of the λ2 estimates. The empirical distributions deviate from normal.9

9We could reject the null hypothesis of normal data with the Shapiro-Wilk normality test at the 5% significance
level.
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