- Molecular-Level Insight into Selective Catalytic
- 2 Reduction of NO_x with NH_3 to N_2 over Highly
- Efficient Bifunctional V*a*-MnO*^x* Catalyst at Low

Temperature

- *Ying Xin, † Hao Li, † Nana Zhang, † Qian Li, † Zhaoliang Zhang,*,† Xiaoming Cao,*,‡ P. Hu, ‡*
- *Lirong Zheng, § and James A. Anderson*,*‖
- [†] 7 [†] School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan 250022, China ¹ [‡] Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China [§] 12[§] Sumstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China ¹³ Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, University of
- Aberdeen, AB24 3UE, United Kingdom
-
-

 ABSTRACT: Selective catalytic reduction of NO*^x* with ammonia (SCR) is not only an important model catalytic reaction, but also significant in terms of improving environmental air quality and 19 human health. However, SCR catalysts suffer from the low activity and selectivity to N_2 at low temperature, which in part may be attributed to our limited understanding of the reaction mechanism. Here, an unambiguous molecular-level mechanism is presented for an improved low-temperature SCR activity using the bifunctional catalysts composed of highly active oxides 23 (Mn₂O₃) for NH₃ activation and highly selective vanadates (Mn₂V₂O₇) which promote N₂ 24 formation. NH₃ is initially activated by Mn_2O_3 to form an NH₂ intermediate. Transfer of NH₂ to Mn₂V₂O₇ then takes place which facilitates the capture of gaseous NO leading to the formation 26 of NH₂NO over Mn₂V₂O₇, whereafter NH₂NO is efficiently converted to the preferred N₂ rather than the undesired by-product, N2O. The proximity of the two components achieved *via* sol-gel preparation plays a crucial role in the transfer of active intermediates.

 KEYWORDS: Nitrogen oxides; Selective catalytic reduction; Bifunctional catalyst; Density functional theory; Mechanism

1. INTRODUCTION

 As one of the main fields of interest in environmental catalysis, nitrogen oxides (NO*x*) removal 35 using catalytic technologies has always received significant attention from researchers.¹ Selective catalytic reduction (SCR) of NO*^x* with ammonia (NH3) is considered as the most efficient and widely used technology, however, developing the low-temperature active catalyst

38 (< 200°C) with high N₂ selectivity still remains a challenge.^{2,3} In general, the adsorption and 39 activation of NH3 on the acid sites of the catalysts is regarded as a key step in SCR reaction to 40 enable NO_x conversion at low temperatures.^{4,5} Furthermore, the activation of adsorbed NH_3 41 relies on an oxidizing component such as a transition metal oxide.⁶⁻⁸ However, N_2 selectivity is 42 exceptionally low while employing catalysts with adequate oxidation capability, such as Mn 43 oxides $(MnO_x)^{2,3,9}$ MnO_x catalysts permit the high NO_x conversion at low temperature, while the 44 selectivity to N_2 decreases due to the excessive activation of N-H bond and the resultant 45 oxidation of NH₃ by NO, gaseous O₂ and bulk $O^{(3,10)}$ Although the activity of MnO_x catalysts can 46 be modified by changing the Mn oxidation state,¹¹ crystallinity,^{3,12} as well as the surface area and 47 morphology,¹³ the low N₂ selectivity is still an inevitable drawback which must be overcome for 48 the practical applications.^{2,9,10}

49 In general, two plausible strategies have been adopted to enhance the low-temperature SCR 50 performance of MnO_x catalysts.^{2,9,10,14} One strategy is to synthesize bi- or multi-metal oxide 51 catalysts to construct specific active sites which combine MnO_x with other metal oxides (Fe,¹⁵) 52 Ce,¹⁶⁻¹⁸ Ni,¹⁹ Nb,²⁰ Cr,²¹ Zr,²² etc.), or supported MnO_x on TiO₂,²³⁻²⁶ SiO₂,^{25,27} Al₂O₃,^{25,28,29} 53 zeolites³⁰⁻³², and carbon-based materials.³³⁻³⁶ The improved activity and N₂ selectivity were thus 54 achieved. The second approach is to prepare materials to develop the bifunctional catalysts, 55 which involve the cooperation of two types of active sites with specific properties.³⁷⁻⁴¹ Several 56 bifunctional catalysts that consist of an oxidation component (such as Mn, Mn-Ce, Mn-Cr, Mn-57 Cu, Mn/Ce-Zr oxides, $38,39,42$ CoO_x-CuO_x/TiO₂, 43 etc.) and an SCR-active component (such as Fe-58 ZSM-5,^{38,39} V₂O₅-WO₃/TiO₂,³⁹ Fe-beta,⁴² NiMn₂O₄,⁴³ etc.) have received attention, in which V-59 based oxides possess high N_2 selectivity and resistance to sulfur oxide poisoning.^{44,45} 60 Specifically, vanadates attract intensive attention due to the higher thermal stability than V_2O_5 .⁴⁶⁻

 $50⁵⁰$ However, vanadates have not been exploited to date as an active component of a bifunctional 62 SCR catalyst.^{46,47,49,51,52} Furthermore, the deceptively simple synergism between the oxidation 63 component and the SCR-active component for the bifunctional catalysts still remains elusive at a 64 molecular level.⁵³ For instance, Salazar et al. found that such a synergy completely vanished 65 when the two components present as separate beds of an oxidation catalyst and an SCR catalyst. 66 On this basis, they challenged the so-called "fast SCR" route and proposed a possible HNO2 67 intermediate which may be formed over the oxidation component and proceeds to the SCR sites 68 for further reaction. However, no spectroscopic or simulated/computed evidence was 69 presented.³⁹

70 In the present work, a Mn-V composite oxide (V*a*-MnO*x*) composed of NH3 activation 71 component (Mn₂O₃) and N₂ formation component (Mn₂V₂O₇) was prepared to probe the intrinsic 72 SCR mechanism at low temperature from both an experimental and theoretical basis. Mn₂O₃ was 73 confirmed to activate adsorbed NH_3 into a weakly adsorbed intermediate, NH_2 , which can be 74 transferred to $Mn_2V_2O_7$, where it reacts with the gaseous NO to form NH₂NO. The selective 75 decomposition of NH₂NO into N₂ is far more favorable over $Mn_2V_2O_7$ than on Mn_2O_3 . As a 76 result, both the high activity and high N_2 selectivity are achieved over the bifunctional V_a -MnO_x 77 catalyst at low temperature. This demonstrates a significant progress in balancing activity and 78 selectivity of the two aspects of MnO*x*-based SCR catalysts.

79

80 **2. EXPERIMENTAL SECTION**

81 **Catalyst preparation.** A series of V_a-MnO_x catalysts were prepared by a sol-gel method. A 82 known amount of NH_4VO_3 , $Mn(CH_3COO)_2$ and citric acid (CA) were mixed together in a

83 specific order with designated molar ratios. NH4VO3 was dissolved in 30 mL purified water at 84 70° C in a water bath under vigorous stirring, until the NH₄VO₃ had been fully dissolved and then 85 held there for about 30 min. The corresponding quantity of CA was then slowly added to the 86 solution and held for 30 min. The molar ratio of citric acid to the metal components (the total 87 moles of vanadium and manganese) was fixed at 1.0. After that, the $Mn(CH_3COO)_2$ was added to 88 the solution and stirred for 2 h. The suspension obtained was transferred to an evaporating dish 89 and oven dried at 110° C overnight. The resulting materials were calcinated at 450 $^{\circ}$ C for 5 h in 90 muffle furnace in static air. The mixed oxides were denoted as V*a*-MnO*x*, where *a* represents the 91 molar ratios of V/(V+Mn). Pure manganese oxide and vanadium-based oxide were synthesized 92 using a similar procedure. For comparison and further investigation, oxidation phase $(Mn₂O₃)$ 93 and reactive phase $(Mn_2V_2O_7)$ components were mechanically mixed with the $Mn_2V_2O_7$ to yield 94 a materials consistent with $V_{0.05}$ -MnO_x, and denoted as Mn₂O₃+Mn₂V₂O₇. Another reference 95 sample denoted as $MoO₃+Mn₂V₂O₇$ was also synthesized by a similar procedure. Before SCR 96 activity tests, the catalysts were pressed, crushed and sieved to 40-60 mesh.

97 **Catalyst characterization.** X-ray diffraction (XRD) patterns of the samples were recorded on 98 a Bruker D8-FOCUS X-ray diffractometer using Cu Kα radiation (λ = 1.5418 Å) at 50 kV and 30 mA. Intensity data were collected over a 2θ range of $10{\text -}80^{\circ}$ with a 0.03° step size and a 100 counting time of 0.3 s per point. The relative amount of various components in V_a -MnO_x can be 101 obtained using the quantitative XRD analysis by the reference intensity ratio (RIR) method.⁵⁴ 102 Inductively coupled plasma-atomic emission spectrometer (ICP-AES) experiments were carried 103 out on the IRIS Intrepid IIXSP instrument from Thermo elemental. Transmission electron 104 microscopy (TEM) was conducted using a JEOL JEM-2010 microscope at an accelerating 105 voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) data were obtained on an Escalab 250Xi instrument from Thermo Fisher Scientific using monochromatic Al Kα radiation. To compensate for surface charging effects, the binding energies were calibrated using the C 1s hydrocarbon peak at 284.80 eV. X-ray absorption fine structure (XAFS) measurements at the Mn and V K-edges were performed in the transmission and fluorescence modes, respectively, at room temperature on the XAFS station of the 1W1B beam line of Beijing Synchrotron Radiation Facility (BSRF, Beijing, China), respectively. XAFS data were analyzed using the IFEFFIT 112 software package.⁵⁵ Brunauer-Emmett-Teller (BET) surface areas were determined from N₂ adsorption/desorption isotherms using a Micromeritics ASAP2020M instrument. Before 114 exposure to N_2 , samples were outgassed at 300°C for 5 h. Raman spectroscopy was obtained using a RM2000 (RENISHAW) with the 532 nm laser line. H2-temperature programmed reduction (H2-TPR) experiments were carried out on a TP-5000 Multifunctional Adsorption 117 Instrument with a thermal conductivity detector (TCD) to monitor H_2 consumption. Before 118 testing, 50 mg of sample was sieved to 40-60 mesh and pretreated at 400° C for 30 minutes in a 30 mL/min flow of pure O2, then cooled to room temperature in the same atmosphere. The 120 reduction temperature was raised at 10°C/min from 30 to 800°C in a 30 mL/min flow of 5 vol.% 121 H₂ in N₂. In order to quantify the total amount of H₂ consumed, a CuO standard was used for calibration purposes. NH3-temperature programmed desorption (NH3-TPD) experiments were 123 performed in a quartz reactor using 50 mg of catalyst. NH₃ (m/z=16) was monitored using a quadrupole Mass Spectrometer (OmniStar 200, Balzers). Prior to experiment, the samples were 125 pretreated at 400°C for 30 min in 10 vol.% O₂/He (50 mL/min) and then cooled to 30°C. NH₃ adsorption was performed in 4000 ppm NH3 (50 mL/min) until the outlet NH3 concentration remained constant. Samples were then purged with pure He for 1 h to remove weakly bound 128 NH₃. Finally, the samples were heated to 500°C at 10°C/min. *In situ* infrared (IR) spectra were

129 recorded using a Bruker Tensor 27 spectrometer over the range $4000-400$ cm⁻¹, with 16 scans, at 130 a resolution of 4 cm⁻¹. Self-supporting wafers were pretreated in the cell at 400° C in a flow of He 131 for 30 min to remove any adsorbed species. After cooling to ambient temperature, a background 132 spectrum was recorded. The IR spectra were recorded at room temperature in a flow of 500 ppm 133 NH₃+He balance or 500 ppm NH₃+500 ppm NO+5.3 vol.% O₂+He balance (150 mL/min). The 134 samples were then heated to 250° C at 10° C/min.

135 **Catalytic activity.** The steady state SCR activity over V_a -MnO_x catalysts and the reference 136 samples were tested in a fixed-bed quartz tube reactor (6.0 mm i.d.) with a thermocouple placed 137 inside the catalyst bed in the temperature range $150-450^{\circ}$ C. In SCR reactions, the model flue gas 138 consisted of 500 ppm NO, 500 ppm NH3, 5.3 vol.% O2 and He balance. The total flow rate was 139 maintained at 300 mL/min corresponding to a gas hourly space velocity (GHSV) of 50 000 h^{-1} . 140 Concentrations of NO and NO2 were monitored by a chemiluminiscence NO*^x* analyzer (42*i*-HL, 141 Thermo). N₂O and NH₃ were determined by quadrupole mass spectrometer (MS, OmniStar 200, 142 Balzers) using the m/z of 44 for N₂O, and 17 for NH₃. The data for steady-state activity of 143 catalysts were collected after about 1 h on stream. From the concentration of the gases at steady 144 state, the NO_x conversion and $N₂$ selectivity were calculated according to the following 145 equations:

146 NO_x conversion (%) =
$$
\frac{[NO_x]_{in} - [NO_x]_{out}}{[NO_x]_{in}} \times 100\%
$$

147
$$
N_2 \text{ selectivity } (\%) = \frac{[NO_x]_{in} + [NH_3]_{in} - [NO_x]_{out} - [NH_3]_{out} - 2[N_2O]}{[NO_x]_{in} + [NH_3]_{in} - [NO_x]_{out} - [NH_3]_{out}} \times 100\%
$$

148 By assuming conditions free from diffusion limitations were met, the SCR reaction rates 149 normalized by sample mass and BET surface area of the catalyst can be calculated according to 150 the following equation: 4

151
$$
Rate = \frac{X_{\text{NO}}QC_{\text{f}}}{V_{\text{m}}W(S_{\text{BET}})}
$$

152 where X_{NO} is the NO conversion at a steady SCR reaction temperature (100 °C) (%), Q is the 153 volumetric flow rate (300 mL/min) and C_f is the feeding concentration of NO (500 ppm). V_m is 154 the molar volume of gas (22.4 mL/mol), *W* is the sample weight (g) and *S*_{BET} is the BET surface 155 area of the catalyst (m^2/g) .

156

157 **3. THEORETICAL CALCULATIONS**

158 To understand the relevant structural and electronic properties of Mn_2O_3 and $Mn_2V_2O_7$ 159 materials and the SCR network occurring on their surfaces at a molecular level, the spin 160 polarized first-principles calculations based on density functional theory (DFT) implemented in 161 the Vienna *ab initio* Software Package (VASP)^{56,57} were performed with a plane-wave kinetic 162 energy cutoff of 500 eV. The projector augmented wave (PAW) pseudo potentials⁵⁸ were utilized 163 to describe the valence-core interactions. The exchange-correlated term was described utilizing 164 generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhoff (PBE).⁵⁹ The PBE+*U* 165 approach was also used to address the on-site Coulomb interactions in the localized d orbitals of 166 Mn and V cations through an additional Hubbard-type *U* term.

167 For Mn2O3, since it will be converted from orthorhombic structure (space group *Pcab*) to 168 cubic structure (space group *Ia3*) in the form of α phase once the temperature is above 308 K⁶⁰

169 which is lower than the SCR reaction temperature, a cubic conventional unit cell of α -Mn₂O₃ 170 containing 16 units of Mn_2O_3 with the equilibrium lattice constant of 9.658 Å was investigated. The effective $U = 4.0$ eV fitted according to its oxidation energy⁶¹ was utilized for the Mn cation 172 at α-Mn₂O₃. The exposed Mn₂O₃(202) surface found by TEM was modeled by a 4-layer $p(1\times1)$ 173 slab of 8.364 Å \times 8.364 Å separated by a ~10 Å vacuum in Z direction utilizing 4 \times 4 \times 1 k-point 174 mesh for Brillouin integration.

175 Mn₂V₂O₇ exists in the form of β-Mn₂V₂O₇ with a thortveitite-like structure in a monoclinic 176 system of space group $C2/m$ at the reaction temperature.⁶² Hence, the bulk β-Mn₂V₂O₇ 177 containing 2 Mn₂V₂O₇ units within a unit cell of 6.710 Å \times 8.726 Å \times 4.970 Å was modeled as 178 the most stable ferromagnetic (FM) states.⁶³ The effective $U = 4.0$ and 3.1 eV as reported for 179 isovalent binary metal oxides⁶¹ were utilized for Mn and V, respectively. For the exposed 180 Mn₂V₂O₇($\overline{2}$ 01) surface, there are two possible terminations. The only difference between 181 Mn₂V₂O₇($\overline{2}$ 01)-A and Mn₂V₂O₇($\overline{2}$ 01)-B terminals is the existence of the exposed one-fold 182 coordinated oxygen anion (O_{1c}). The more stable $Mn_2V_2O_7(\overline{2}01)$ -A terminal with O_{1c} was 183 studied during this reaction. We refer to $Mn_2V_2O_7(\overline{2}01)$ -A as $Mn_2V_2O_7(\overline{2}01)$ hereinafter. The 184 stoichiometric exposed β-Mn₂V₂O₇(201) surface was modeled by a 6-layer $p(1\times1)$ slab of 6.868 185 Å \times 6.868 Å separated by a ~10 Å vacuum in Z direction utilizing 4 \times 4 \times 1 k-point mesh for 186 Brillouin integration.

187 For both $Mn_2O_3(202)$ and $Mn_2V_2O_7(\overline{2}01)$ surfaces, during the geometry optimization, the 188 bottom two layers were fixed while the adsorbates and the other layers were relaxed until the 189 force of each atom was lower than $0.05 \frac{eV}{\text{A}}$. The transition states (TSs) were determined within 190 a constrained minimization scheme with the same force convergence criterion.⁶⁴⁻⁶⁶ Each TS was 191 further verified as the first-order saddle with only one imaginary vibrational frequency and the 192 corresponding vibrational mode along the reaction coordination based on the numerical 193 vibrational frequency analysis.

194 The adsorption energies of reactants were calculated following:

195
$$
E_{\text{ad}}(x) = E(\text{slab}) + E(x) - E(x/\text{slab})
$$

196 where *E*(*slab*), *E*(*x*) and *E*(*x*/slab) are the total energies of the catalyst surface, *x* in the gas phase 197 and *x* adsorbed on the catalyst surface, respectively. The more positive $E_{ad}(x)$ is, the more 198 strongly the species *x* binds with the surface. The adsorption energies were also checked utilizing 199 the screened hybrid functional of Heyd-Scuseria-Ernzerhoff functional $(HSE06)^{67}$ at the 200 optimized structure obtained from PBE+*U* level.

201

202 **4. RESULTS AND DISCUSSION**

203 **4.1 Structural characterization and catalytic activity**

205 **Figure 1.** XRD patterns of V_a -MnO_x, Mn₂O₃, Mn₂V₂O₇ and reference samples.

206

207 **Table 1.** ICP, XRD, XPS, surface areas, H2-TPR, and NH3 desorption data for V*a*-MnO*x*.

208

209 XRD patterns show that V_a -MnO_x composite oxides contain Mn₂O₃ (JCPDS No. 73-1826, 210 orthorhombic) and $Mn_2V_2O_7$ (JCPSD No. 73-1806, monoclinic) phases (Figure 1). The contents 211 of $Mn_2V_2O_7$ from the quantitative XRD analysis coincide with the theoretical values and ICP 212 data, indicating that the doped V might exist in the form of $Mn_2V_2O_7$ (Table 1). On the basis of 213 the similar Mn K-edge X-ray absorption near edge structure (XANES) spectra and radial 214 structure function (RSF) curves for Mn_2O_3 and V_a-MnO_x (Figure S1), most of the Mn atoms in 215 V_a-MnO_x are trivalent and in octahedral coordination, and others are in the form of Mn₂V₂O₇ 216 according to XRD (Figure 1). On the other hand, two peaks are recognized at ~1.7 Å and ~3.1 Å 217 in the RSF curves of $Mn_2V_2O_7$, corresponding to the Mn^{2+} -O and Mn^{2+} -V shells, respectively. In 218 the case of the V K-edge, the peak position and shape of the normalized XANES and RSF 219 (Figure 2) curves for V_a -MnO_x correspond well with those of Mn₂V₂O₇ and Mn₂O₃+Mn₂V₂O₇, 220 consistent with the XRD patterns (Figure 1 and Table 1) confirming that all of the V atoms in 221 V_a-MnO_x exist in the same tetrahedral coordination environment as in Mn₂V₂O₇.⁶⁸ Raman 222 spectra also show the $Mn_2V_2O_7$ phase for $V_{0.07}$ -MnO_x (Figure S2).

223

224

226 **Figure 2.** Normalized XANES spectra (a) and the RSF curves (b) of V K-edge for V*a*-MnO*^x* and 227 the reference samples.

228

229 XPS was further used to characterize the surfaces of V_a -MnO_x. For Mn₂O₃ and V_a -MnO_x, no 230 obvious change in binding energies of Mn 2p was observed due to the excess Mn_2O_3 in V_a -MnO_x 231 (Figure S3a). As for $Mn_2V_2O_7$, the Mn $2p_{3/2}$ binding energy was located at 640.8 eV, which is 232 attributed to Mn^{2+ 7} Compared with those of Mn₂V₂O₇ and Mn₂O₃+Mn₂V₂O₇, the binding 233 energies of V 2p for V*a*-MnO*^x* show an obvious shift toward lower values, indicating a reduction 234 in the oxidation state of $V₁$,^{69,70} probably due to the the strong interaction between Mn₂O₃ and 235 Mn₂V₂O₇ (Figure S3b). The O 1s peaks can be fitted using two oxygen species, the lattice 236 oxygen at ~529.9 eV (Oβ) and the chemisorbed surface oxygen at ~531.1 eV (Oα) (Figure S3c).⁷ 237 The close values of $[O_{\alpha}/(O_{\alpha}+O_{\beta})]$ for V_a -MnO_x to Mn₂O₃, which are much higher than those in 238 Mn₂V₂O₇ and Mn₂O₃+Mn₂V₂O₇, guarantee the activition of NH₃ on V_a-MnO_{*x*}. The approximate 239 V/Mn atomic ratio of V_a -MnO_x to ICP and theoretical values also suggest that V is not enriched 240 on the surface.

242

244 **Figure 3.** (a) NO_x conversion and (b) N₂ selectivity for V_a -MnO_x, Mn₂O₃, Mn₂V₂O₇ and 245 reference samples.

246

247 NO conversion and selectivity to N_2 are shown in Figure 3. Mn₂O₃ is active in SCR reaction 248 over the whole temperature range, however, N_2 selectivity decreases significantly with 249 increasing temperature. In contrast, $Mn_2V_2O_7$ exhibits much lower activity with excellent N_2 250 selectivity. Evidently, both NO_x conversion and N_2 selectivity were improved for V_a -MnO_x. In 251 particular, $V_{0.05}$ -MnO_x shows NO_x conversions above 90% between 120 and 240^oC, and the N₂ 252 selectivity was always above 80%. Furthermore, NO_x conversion to N_2 for $V_{0.05}$ -MnO_x is higher

253 than that of the $Mn_2O_3+Mn_2V_2O_7$ sample, which constitutes the arithmetic sum of individual 254 components with the same component content as $V_{0.05}$ -MnO_x, at measured temperatures, 255 suggesting the existence of synergism between Mn_2O_3 and $Mn_2V_2O_7$ in $V_{0.05}$ -MnO_x. However, if 256 Mn₂O₃ is replaced by an equivalent non-oxidant M_oO₃, NO_x conversion is even lower than that 257 of Mn₂V₂O₇, confirming that the presence of Mn₂O₃ is indispensable for the reaction. Moreover, 258 the samples did not undergo structural modifications during the SCR reactions (Figure S4).

259

260

Figure 4. Reaction rates at 100° C for V_a -MnO_x, Mn₂O₃, Mn₂V₂O₇ and reference samples.

Figure 4 shows the reaction rates for NO_x conversion to N_2 in the kinetic regime at 100^oC. The 264 activity for N₂ production is improved over V_a -MnO_x on the basis of the specific rate per gram 265 and per surface area, and $V_{0.05}$ -MnO_x is the most active for N₂ production. Furthermore, the 266 Mn₂O₃+Mn₂V₂O₇ sample shows similar behavioral trends but to a less extent than V_{0.05}-MnO_x.

267 This again indicates that the improved activity of V_a -MnO_x has a basis in the synergism between

268 Mn₂O₃ and Mn₂V₂O₇.

269

270 **4.2 Redox and acid properties**

271

272

274 **Figure 5.** (a) H₂-TPR profiles for Mn_2O_3 , $Mn_2V_2O_7$, V_a - MnO_x and reference samples, and (b)

273

275 NH₃-TPD profiles of Mn₂O₃, Mn₂V₂O₇, and V_a-MnO_x.

277 Mn-based catalysts have been reported to show the improved SCR activity due to their strong 278 redox properties.¹⁰ Hence, H₂-TPR patterns of V_a -MnO_x (and references) were performed 279 (Figure 5a). Based on the XRD patterns of the samples after SCR reactions (Figure S5), the 280 reduction products of Mn_2O_3 and $Mn_2V_2O_7$ are MnO and Mn_2O_4 , respectively. Mn_2O_3 shows 281 peaks at 328 and 440°C, which are assigned to the reduction of Mn_2O_3 to Mn_3O_4 and Mn_3O_4 to 282 MnO, respectively. Mn₂V₂O₇ shows only a high-temperature reduction peak above 500^oC, 283 corresponding to the transformation, V^{5+} (Mn₂V₂O₇) to V^{3+} (MnV₂O₄). The low-temperature 284 redox peaks of V_a -MnO_x could be attributed to the reduction of Mn species. However, compared 285 with pure Mn_2O_3 and $Mn_2V_2O_7$, the Mn^{3+} reduction to Mn^{2+} is shifted to higher temperature 286 while the reduction of V^{5+} into V^{3+} starts at a lower temperature in V_a -MnO_x, suggesting 287 synergistic effects between Mn_2O_3 and $Mn_2V_2O_7$ in V_a-MnO_x possibly involving H spillover 288 from Mn₂O₃ to Mn₂V₂O₇, which results in the simultaneously suppression of Mn³⁺ reduction and 289 promotion of the V^{5+} reduction. In addition, the primarily quantitive H₂ consumption is very 290 close (Table 1).

291 Acidity is another crucial factor in SCR reactions.⁷¹ To determine this aspect of these samples, 292 NH3-TPD was carried out (Figure 5b) and the corresponding desorption quantities were 293 calculated (Table 1). More NH₃ was desorbed from V_a -MnO_x compared with Mn₂O₃, Mn₂V₂O₇, 294 and the theoretical mass-weighted arithmetic values calculated from the corresponding weight 295 ratio of Mn_2O_3 and $Mn_2V_2O_7$ in V_a-MnO_x , which would be consistent with synergistic effects 296 arising between Mn_2O_3 and $Mn_2V_2O_7$ for the V_a -MnO_x samples. In addition, the temperature 297 range of NH₃ desorption is consistent with the active temperature window for SCR of V_a -MnO_x. 298 The maximum NH₃ desorption per gram sample was obtained for $V_{0.05}$ -MnO_x which also shows 299 the highest reaction rate (Table 1 and Figure 4). However, the NH3 desorption amount per unit

300 surface area of V*a*-MnO*^x* was nearly identical (Table 1), suggesting that the promoted SCR 301 performance of V_a -MnO_x originate from the increased acid amounts in despite of their various 302 compositions.

303

304 **4.3** *In situ* **IR spectra of NH3 adsorption**

305

306 **Figure 6.** *In situ* IR spectra of (a-c), NH3 adsorption at steady-state and (d) during SCR reaction 307 over (a) Mn_2O_3 , (b) $Mn_2V_2O_7$ and (c, d) $V_{0.05}$ - MnO_x .

308

309 To investigate the nature of the adsorbed NH3 species and potential reaction intermediates, *in* 310 *situ* IR spectra were collected of NH3 adsorption at room temperature and subsequent desorption 311 with increasing temperature (Figure 6a-c). Only ammonia adsorption at Lewis acid sites was

312 observed for Mn_2O_3 (Figure 6a), which is supported by the absence of negative bands about 3600 313 cm⁻¹ (Figure S6a).^{45,71-73} Bands at ~1209 and ~1607 cm⁻¹ are attributed to the symmetric and 314 asymmetric bending modes of NH₃ coordinately linked to Lewis acid sites, respectively.⁷² The 315 weak band at 1410 cm^{-1} disappears completely after He purging at room temperature, which is 316 derived from the protonation of weakly adsorbed NH_3 ²⁹ Notably, a band at 1538 cm⁻¹ was 317 observed for Mn₂O₃, which is attributed to the scissoring vibration mode of weakly adsorbed 318 NH₂ (amide) species arising from the partial oxidation of NH₃ (H-abstraction),⁷⁴ because it 319 disappears after the He purge at room temperature.⁷²

320 In addition, for $Mn_2V_2O_7$, evidence for both Brønsted and Lewis acid sites was observed from 321 Figure 6b, while the IR spectra of $V_{0.05}$ -MnO_x exhibits the combined characteristics of Mn₂O₃ 322 and $Mn_2V_2O_7$ (Figure S6b and 6c). The bands at 3353-3028 cm⁻¹ arise from N-H stretching 323 vibrations of NH3 adsorbed on Lewis sites (Figure S6b). The corresponding bending vibrations 324 are observed at 1170/1178 cm⁻¹(Figure 6c).⁷⁵⁻⁷⁷ The characteristic bands for NH₄⁺ formed by the 325 interaction of NH₃ with Brønsted sites around 1440 cm⁻¹ (Figure 6c) are also supported by the 326 negative band at $3660-3670$ cm⁻¹ (Figure S6b), which indicates the consumption of the -OH. The 327 enhanced quantities of Lewis and Brønsted acidity in $V_{0.05}$ -MnO_x compared with those of Mn₂O₃ 328 and Mn₂V₂O₇ are again potentially indicative of synergistic effects between the components, in 329 accordance with the NH3-TPD results (Figure 5b and Table 1). In addition, NH3 bound to Lewis 330 acid sites were more strongly adsorbed,⁷² because the intensity of bands due to Brønsted acid 331 sites decreased noticeably with the increasing temperature, while those due to adsorption at 232 Lewis acid sites still remained. Importantly, the NH_2 species at 1538 cm⁻¹ was still detected in 333 V_{0.05}-MnO_x. In comparison with *in situ* IR spectra of the MoO₃+Mn₂V₂O₇ sample (which lacks 334 redox properties at low temperature) (Figure S7), it is concluded that the NH2 species arose from

335 the activation of the adsorbed NH3 on Mn2O3. Moreover, despite the high amount of Brønsted 336 acidity in the MoO₃+Mn₂V₂O₇ sample, its poor SCR activity may indicate that the Lewis acidity 337 may play a crucial role in the SCR reaction at low temperature (Figure 3 and Figure S7).²⁴

339

340 **Figure 7.** TEM and HRTEM images of (a) Mn_2O_3 , (b) $Mn_2V_2O_7$, (c, d) $V_{0.05}$ - MnO_x .

341

342 TEM characterization reveals that the nanoparticles are aggregated together with ~20 (Figure 343 7a) and ~80 nm in diameter (Figure 7b) for Mn_2O_3 and $Mn_2V_2O_7$, respectively. The close 344 proximity of Mn_2O_3 and $Mn_2V_2O_7$ particles in V_a -MnO_x is demonstrated in the example of $V_{0.05}$ -345 MnO_x (Figure 7c and d). This again may be seen as evidence that the higher activity of V_a -MnO_x 346 compared with Mn₂O₃ which contributes to the synergism between Mn₂O₃ and Mn₂V₂O₇. It is

347 likely that the NH₂ intermediate from NH₃ partial oxidation on Mn₂O₃ transfers to Mn₂V₂O₇ 348 where the further reactions of NH₂ with gaseous NO ultimately produce N₂ rather than N₂O over 349 Mn₂O₃. Following this assumption, it could be the case that $V_{0.05}$ -MnO_x, which shows the 350 maximum activity, exhibits the optimal contact between Mn_2O_3 and $Mn_2V_2O_7$, thus facilitating 351 transfer of intermediates. According to the physical dimensions of Mn_2O_3 and $Mn_2V_2O_7$ 352 nanoparticles in V_a -MnO_x, the optimal ratio of Mn₂O₃ and Mn₂V₂O₇ is calculated by assuming 353 that the particles are spherical and tangentially contacted (Figure 8). At most, one hundred 354 Mn₂O₃ spherical particles are at a tangent with the surface of one Mn₂V₂O₇ particle, while for 355 one Mn_2O_3 spherical particle, only 6.25 $\text{Mn}_2\text{V}_2\text{O}_7$ particles are located at its external surface 356 tangentially. Therefore, the calculated optimal matching value for the molar ratio between 357 Mn₂O₃ and Mn₂V₂O₇ is 16, which is very close to those of the calculated molar ratios from 358 theoretical values and quantitative XRD analysis for $V_{0.05}$ -MnO_x (Table 1). This confirms that 359 the optimal activity of $V_{0.05}$ -MnO_x is a consequence of the optimal contact arising between the 360 two components which facilitate the transfer of the active intermediates. Anyway, the transfer 361 process will be corroborated by the following DFT calculations.

362

 Figure 8. The simulated geometric configuration and calculation formulas for the optimal contact between the two different phases.

 $\frac{1}{2}$ Mn₂O₃

 $Mn_2V_2O_7$

 (a)

370 **Figure 9.** (a) Photographs and schematic graphs of Mode 1 and 2, (b) NO*^x* conversion and (c) N2 371 selectivity of the Mode 1 and 2 samples. Dual-bed configuration with Mn_2O_3 packed above

372 (Mode 1) or below (Mode 2) $Mn_2V_2O_7$ and separated by a layer of quartz sand.

373

 To further demonstrate the transfer of the reactive intermediate, SCR reactions over the catalysts with the two functionalities packed in different modes under the same conditions were performed (Figure 9a). Irrespective of Mode 1 or 2, the negligible improvement in activity was 377 observed compared with Mn_2O_3 (Figure 9b and c) indicating that even though the active intermediates are generated over Mn_2O_3 , transfer cannot proceed (Mode 1) due to the long-379 distance between the two components. In addition, the activity of the $Mn_2O_3+Mn_2V_2O_7$ sample is higher than those of Mode 1 and 2 (Figure 9b and c), confirming that tight contact is 381 indispensable, as in the case of V_a -MnO_x.

382 Further investigation of the transferred NH₂ from Mn₂O₃ with gaseous NO on Mn₂V₂O₇ was 383 conducted using *in situ* IR spectra of the SCR reaction over $V_{0.05}$ -MnO_x (Figure 6d). In 384 comparison with Figure 6c, a unique band at \sim 1325 cm⁻¹ which was not found over pure Mn₂O₃ 385 and $\text{Mn}_2\text{V}_2\text{O}_7$ samples could be attributed to N=O stretching vibration. However, in the surface 386 reactions on $V_{0.05}$ -MnO_x between not only NO+O₂ and pre-adsorbing NH₃ (Figure S8a) but also 387 NH₃ and pre-adsorbed NO+O₂ (Figure S8b), the ~1325 cm⁻¹ band is similarly present, suggesting 388 that it is correlated with both N=O and N-H moieties, most likely due to the NH₂NO species,⁷⁸ 389 arising from the combination of the NH_2 species and gaseous NO.⁷² This assignment will be 390 shown reasonable by DFT calculations. Thus, the V_a -MnO_x system works as a bifunctional 391 catalyst, in which Mn_2O_3 is responsible for NH₃ activation while $Mn_2V_2O_7$ participates in N₂ 392 production whilst the transfer of the NH2 intermediate occurs between the two components. 393 Without NH₂ migration from Mn_2O_3 to $Mn_2V_2O_7$, this NH₂ intermediate would be further 394 oxidized to N₂O over the Mn₂O₃. Once NH₂ intermediate is transferred to Mn₂V₂O₇, the NH₂NO 395 formed over $Mn_2V_2O_7$ is converted to N_2 rather than N_2O at lower temperature. To verify the 396 above hypothesis, DFT calculations were performed.

397 **4.5 DFT calculations**

398 As displayed in HRTEM images (the insets of Figure 7a and b), the (202) and (201) surfaces 399 were exposed for Mn_2O_3 and $Mn_2V_2O_7$, respectively. Consequently, DFT calculation was carried 400 out on $Mn_2O_3(202)$ (Figure S9) and $Mn_2V_2O_7(\overline{2}01)$ (Figure S10). Other considerations for 401 choosing the two facets are provided in Supporting Information.

402 Firstly, the calculations of NH3 adsorption were conducted and the corresponding adsorption 403 energies of the most stable configuration (Figure S11) on $Mn_2O_3(202)$ and $Mn_2V_2O_7(201)$ are 404 listed in Table S1. The adsorption energies were calculated on the basis of PBE+*U* and checked 405 by HSE06 calculations. As listed in Table S1, PBE+*U* and HSE06 results are qualitatively 406 consistent. In the case of Mn₂O₃, NH₃ tends to adsorb atop at the Lewis acid sites of Mn_{4c} (4-fold 407 coordinated Mn cation) rather than at the Brønsted site of HO_{2c}^{I} (two-fold coordinated oxygen 408 anion) over $Mn_2O_3(202)$. Moreover, the adsorption energy of NH₃ is evidently stronger than that 409 of NO over $Mn_2O_3(202)$, suggesting that the Lewis acid site of Mn would be occupied by NH₃ 410 while NO is difficult to adsorb on the surface. In the case of $Mn_2V_2O_7$, NH₃ also preferentially 411 adsorbs at the Lewis acid site of Mn_{5c}^{I} (Mn_{5c}^{I} 5-fold coordinated Mn cation) rather than at the 412 Brønsted site of HO_{1c} (one-fold coordinated oxygen anion) over Mn₂V₂O₇(201). Nevertheless, 413 the adsorption strength of NH₃ over Mn₂V₂O₇(201) is weaker than that over Mn₂O₃(202) at 414 Lewis acid sites while the order of NH3 binding strength is reversed at Brønsted site due to the 415 existence of one-fold coordinated oxygen at $Mn_2V_2O_7(\overline{2}01)$. These facts imply a stronger Lewis 416 acidity of Mn cations at the Mn₂O₃(202) surface compared with those in the Mn₂V₂O₇(201) 417 surface. In addition, NO barely adsorbs over $Mn_2V_2O_7(\overline{2}01)$, which suggests that the Lewis acid 418 sites would also be occupied by NH₃ on the Mn₂V₂O₇(201) surface. The above results are all in 419 good agreement with the *in situ* IR characterization.

420

421

422 **Figure 10.** Energy profiles of NH3 adsorption and its oxidative dehydrogenation over $\text{Mn}_2\text{O}_3(202)$ and $\text{Mn}_2\text{V}_2\text{O}_7(\bar{2}01)$ considering the large entropy of gaseous NH₃ (*T* = 400 K, *TS* = 424 0.80 eV and the corresponding transition state structures of TS1a^{*} and TS1b^{*} and final states of 425 adsorbed NH₃^{*} oxidative dehydrogenation over these two surfaces, respectively.

427 Since NH₃ exposure prior to NO adsorbs at Lewis acid sites over both $Mn_2O_3(202)$ and 428 Mn₂V₂O₇($\overline{2}01$), we further explored NH₃ oxidative dehydrogenation over Mn₂O₃(202) and 429 Mn₂V₂O₇(2^o01) at a reaction temperature of 400 K. As shown in Figure 10, not only is the 430 adsorption strength of NH₃ on Mn₂O₃(202) stronger than on Mn₂V₂O₇(201) but also the NH₃ 431 activation barrier of 0.29 eV on Mn2O3(202) is much lower in comparison with 1.23 eV for 432 Mn₂V₂O₇(2⁰01), indicating that Mn₂O₃ with excellent oxidation properties can readily activate the 433 adsorbed NH₃ to form NH₂^{*}+H^{*} (^{*} denotes the adsorbed species) which is demanding on 434 Mn₂V₂O₇($\overline{2}01$).

437 **Figure 11.** (a) Energy profiles and the corresponding transition states and intermediate states 438 geometry structures of the oxidative dehydrogenation of NH_2^* and the formation of N₂O and N₂ 439 processes over $\text{Mn}_2\text{O}_3(202)$ considering the great entropy of gaseous NO and NH₂NO ($T = 400$) 440 K, $TS_{NO} = 0.87$ eV and $TS_{NH_2NO} = 1.07$ eV); (b) Energy profiles and the corresponding transition 441 states and intermediate states geometry structures of N₂O and N₂ formation over Mn₂V₂O₇(2^{O1})

442 after the migration of NH₂^{*} from Mn₂O₃(202) to Mn₂V₂O₇(201) considering the great entropy of 443 gaseous NO and NH₂NO ($T = 400$ K, $TS_{NO} = 0.87$ eV).

444

Accordingly, the subsequent reaction channels beginning with NH_2^* including the possible 446 further oxidative dehydrogenation of NH_2^* were investigated over $Mn_2O_3(202)$. As shown in 447 Figure 11a, on the one hand, the energy barrier for NH_2^* oxidative dehydrogenation to NH^{*} is as 448 high as 1.26 eV, leading to the outcome that the formation of $NH^* + 2H^*$ from activated $NH_2^* + H^*$ 449 via this pathway, i.e. the deep oxidative dehydrogenation of NH3 would not be feasible at low 450 temperature. On the other hand, the formation of $N_{12}N_{12}N_{12}$ and gaseous NO is 451 evidently exothermic, which could compensate for the entropy loss of gaseous NO due to its 452 fixation by the surface. This indicates that NH_2^* tends to associate with gaseous NO to produce 453 *NH₂NO rather than undergo further dehydrogenation. After the desorption and re-adsorption 454 process, the chemisorption of N_{H2NO} at Mn site will switch from the configuration via the N of 455 NH₂ moiety to the more stable configuration via the N of NO moiety (N_{H_2} NO \rightarrow NH₂NO^{*}). The 456 NH₂NO^{*} formed could then be dehydrogenated to NHNO^{*} almost without energy barrier which 457 then tends to be further dehydrogenated to form N_2O instead of the more desirable N_2 from the 458 dehydroxylation over Mn₂O₃(202). The formation of N₂ must undergo N-O bond dissociation 459 process. Since the breaking of the single bond of N-O in NHNOH and the formation of 460 monovalent NHN^{*} and OH^{*} would be thermodynamically far easier than the breaking of double 461 bond of N=O in NHNO and the formation of bivalent NH_2N^* and O^* with stronger bonding 462 competition at single Mn cation of $Mn_2O_3(202)$, the production of N_2 will pass through 463 NHNOH^{*} over Mn₂O₃(202). However, since the reaction energy from NHNO^{*} to NHNOH^{*} is 464 1.44 eV, which is even higher than the energy barrier of 0.78 eV for the dehydrogenation of 465 NHNO^{*} to yield N₂O, N₂O production is more favorable than N₂ over the pure Mn₂O₃(202) 466 surface. This DFT result is consistent with the experimental results of the low N_2 selectivity of 467 Mn₂O₃ in SCR reaction (Figure 3b).

468 Interestingly, in the presence of the second component of $Mn_2V_2O_7$, despite the tough 469 oxidative dehydrogenation of NH₃ to produce NH₂^{*} over Mn₂V₂O₇(201), once NH₂^{*} is able to 470 migrate to this surface from the $Mn_2O_3(202)$ surface, it is clear from Figure 11b that the energy 471 barriers of the subsequent reaction channels towards the production of N₂O and N₂ are all rather 472 low. Additionally, although the facile energy barrier of oxidative dehydrogenation of NHNO* to 473 yield N₂O over Mn₂V₂O₇(2⁰¹) (0.33 eV) is evidently lower than that over Mn₂O₃(202) (0.78 474 eV), the energy barriers in the branch pathway towards the formation of gaseous N_2 starting from 475 NHNO^{*} are all even lower than the energy barrier of N₂O formation over Mn₂V₂O₇(2⁰01). This 476 might be attributed to the presence of one-fold coordinated lattice oxygen anion at the surface of 477 Mn₂V₂O₇(2⁰01) with stronger Lewis basicity and steric structure advantage which is in favor of 478 the hydrogen transfer between the surface and intermediates via hydrogen bond for the formation 479 of NHNOH^{*} and NNOH^{*}. Thus N₂ production is more favorable than N₂O over Mn₂V₂O₇(201) 480 surface. Furthermore, once NH_2^* could readily migrate to $Mn_2V_2O_7$ from Mn_2O_3 , the formation 481 of N₂O over the Mn₂O₃(202) surface could be suppressed. This sheds light on the fact that N₂ 482 could be rapidly and selectively produced utilizing V_a -MnO_x catalysts, which also underscores 483 the significance of the existence of Mn₂O₃ which is capable of activating NH₃ to form NH₂^{*} and 484 the intimate contact between Mn_2O_3 and $Mn_2V_2O_7$ on which NH_2^* migration depends.

485 Combining experimental results with DFT calculations, we conclude that the SCR reaction 486 over this bifunctional catalyst mainly follows the pathway as described: adsorbed $NH₃$ is 487 activated over Mn_2O_3 into a NH₂ intermediate, which then transfers to $Mn_2V_2O_7$ where it reacts

488 with gaseous NO to form NH2NO, which will be exclusively decomposed into N2. The NO*^x* 489 conversion on Mn_2O_3 into N₂O is thus inhibited.

490

491 **5. CONCLUSIONS**

492 In summary, we have fabricated the bifunctional V_a -MnO_x catalysts composed of Mn₂O₃ and 493 Mn₂V₂O₇, which separate the activation of NH₃ and the production of N₂ via an active 494 intermediate NH_2 transfer. Both NO_x conversion and N_2 selectivity are greatly improved in 495 comparison with Mn_2O_3 at the low temperature due to the synergism between Mn_2O_3 and 496 Mn₂V₂O₇ which enhanced Lewis acid density of V_a-MnO_x. The maximum activity for V_{0.05}- 497 MnO_x is attributed to the optimal contact between these two components, highlighting the 498 significance of the proximity for transfer of the intermediate. Using a combination of *in situ* IR 499 characterization and DFT calculations, the $NH₂$ intermediate was found to be formed by $NH₃$ 500 dehydrogenation over Mn_2O_3 , and to subsequently be transferred and reacted with gaseous NO 501 into NH₂NO on Mn₂V₂O₇, which exclusively decomposes into N₂. The deep oxidation of 502 adsorbed NH₃ on Mn₂O₃ into N₂O is therefore inhibited.

503

504 **ASSOCIATED CONTENT**

505 **Supporting Information**. Additional characterization data (such as XAFS, Raman, XPS, 506 XRD and *in situ* IR) and theoretical calculation results can be found in the Supporting 507 Information.

AUTHOR INFORMATION

- **Corresponding Author**
- *chm_zhangzl@ujn.edu.cn
- *xmcao@ecust.edu.cn
- *j.anderson@abdn.ac.uk
-

ACKNOWLEDGEMENTS

This work was supported by National Natural Science Foundation of China (No. 21477046,

21333003 and 21673072) and Key Technology R&D Program of Shandong Province (No.

2016ZDJS11A03). The authors also thank the computing time support from Special Program for

Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase)

under Grant No.U1501501.

REFERENCES

- (1) Centia, G.; Ciambelli, P.; Perathoner, S.; Russo, P. Environmental catalysis trends and outlook, *Catal. Today* **2002**, 75, 3-15.
- (2) Liu, C.; Shi, J. W.; Gao, C.; Niu, C. M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NO*^x* with NH3: A review, *Appl. Catal. A: Gen.* **2016**, 522, 54-69.
- (3) Kang, M.; Park, E. D.; Kim, J. M.; Yie, J. E. Manganese oxide catalysts for NO*^x* reduction with NH3 at low temperatures, *Appl. Catal. A: Gen.* **2007**, 327, 261-269.
- (4) Liu, Y.; Xu, J.; Li, H. R.; Cai, S. X.; Hu, H.; Fang, C.; Shi, L. Y.; Zhang, D. S. Rational design and *in situ*
- 530 fabrication of MnO₂@NiCo₂O₄ nanowire arrays on Ni foam as high-performance monolith de-NO_x catalysts, *J. Mater. Chem. A* **2015**, 3, 11543-11553.
- (5) Qi, G.; Yang, R. T.; Chang, R. MnO*x*-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, *Appl. Catal. B: Environ.* **2004**, 51, 93-106.
- (6) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NO*^x* by ammonia over oxide catalysts: A review, *Appl. Catal. B: Environ.***1998**, 18, 1-36.
-
- 537 metal ions doping $(M=Ti^{4+}, Sn^{4+})$ on the catalytic performance of MnO_x/CeO_2 catalyst for low temperature selective catalytic reduction of NO with NH3, *Appl. Catal. A: Gen.* **2015**, 495, 206-216.

(7) Xiong, Y.; Tang, C. J.; Yao, X. J.; Zhang, L.; Li, L. L.; Wang, X. B.; Deng, Y.; Gao, F.; Dong, L. Effect of

- (8) Liu, F. D.; Yu, Y. B.; He, H. Environmentally-benign catalysts for the selective catalytic reduction of NO*^x*
- from diesel engines: structure-activity relationship and reaction mechanism aspects, *Chem. Commun.* **2014**, 50, 8445-8463.
- (9) Li, J. H.; Chang, H. Z.; Ma, L.; Hao, J. M.; Yang, R. T. Low-temperature selective catalytic reduction of NO*^x* with NH3 over metal oxide and zeolite catalysts—A review, *Catal. Today* **2011**, 175, 147-156.
- (10) Zhang, S. G.; Zhang, B. L.; Liu, B.; Sun, S. L. A review of Mn-containing oxide catalysts for low 545 temperature selective catalytic reduction of NO_x with $NH₃$: reduction mechanism and catalyst deactivation, *RSC Adv.* **2017**, 7, 26226-26242.
- 547 (11) Tang, X. F.; Li, J. H.; Sun, L.; Hao, J. M. Origination of N₂O from NO reduction by NH₃ over β -MnO₂ and α-Mn2O3, *Appl. Catal. B: Environ.* **2010**, 99, 156-162.
- (12) Tang, X. F.; Hao, J. M.; Xu, W. G.; Li, J. H. Low temperature selective catalytic reduction of NO*^x* with NH3 over amorphous MnO*^x* catalysts prepared by three methods, *Catal. Commun.* **2007**, 8, 329-334.
- (13) Tian, W.; Yang, H. S.; Fan, X. Y.; Zhang, X. B. Catalytic reduction of NO*^x* with NH3 over different-shaped MnO2 at low temperature, *J. Hazard. Mater.* **2011**, 188, 105-109.
- (14) Xu, H. M.; Yan, N. Q.; Qu, Z.; Liu, W.; Mei, J.; Huang, W. J.; Zhao, S. J. Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: A critical review, *Environ. Sci. Technol.* **2017**, 51, 8879-8892.
- (15) Long, R. Q.; Yang, R. T.; Chang, R. Low temperature selective catalytic reduction (SCR) of NO with NH3
- over Fe-Mn based catalysts, *Chem. Commun.* **2002**, 452-453.
- (16) Qi, G.; Yang, R. T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnO*x*-CeO2 catalyst, *J. Catal.* **2003**, 217, 434-441.
- (17) Eigenmann, F.; Maciejewski, M.; Baiker, A. Selective reduction of NO by NH3 over manganese-cerium mixed oxides: Relation between adsorption, redox and catalytic behavior, *Appl. Catal. B: Environ.* **2006**,
- 62, 311-318.
- (18) Casapu, M.; Krocher O.; Elsener, M. Screening of doped MnO*x*–CeO2 catalysts for low-temperature NO-SCR, *Appl. Catal. B: Environ.* **2009**, 88, 413-419.
- (19) Wan, Y. P.; Zhao, W. R.; Tang, Y.; Li, L.; Wang, H. J.; Cui, Y. L.; Gu, J. L.; Li, Y. S.; Shi, J. L. Ni-Mn bi-
- metal oxide catalysts for the low temperature SCR removal of NO with NH3, *Appl. Catal. B: Environ.* **2014**, 148-149, 114-122.
- (20) Lian, Z. H.; Liu, F. D.; He, H.; Shi, X. Y.; Mo, J. S.; Wu, Z. B. Manganese-niobium mixed oxide catalyst for the selective catalytic reduction of NO*^x* with NH3 at low temperatures, *Chem. Eng. J.* **2014**, 250, 390- 398.
- (21) Chen, Z. H.; Yang, Q.; Li, H.; Li, X. H.; Wang, L. F.; Tsang, S. C. Cr-MnO*^x* mixed-oxide catalysts for selective catalytic reduction of NO*^x* with NH3 at low temperature, *J. Catal.* **2010**, 276, 56-65.
- (22) Zuo, J. L.; Chen, Z. H.; Wang, F. R.; Yu, Y. H.; Wang, L. F.; Li, X. H. Low-temperature selective catalytic
- reduction of NO*^x* with NH3 over novel Mn−Zr mixed oxide catalysts, *Ind. Eng. Chem. Res.* **2014**, 53, 2647-2655.
- (23) Qi, G.; Yang, R. T. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania, *Appl. Catal. B: Environ.* **2003**, 44, 217-225.
- (24) Smirniotis, P. G.; Peña, D. A.; Uphade, B. S. Low-temperature selective catalytic reduction (SCR) of NO
- with NH3 by using Mn, Cr, and Cu oxides supported on hombikat TiO2, *Angew. Chem. Int. Ed.* **2001**, 40, 2479-2482.
- (25) Smirniotis, P. G.; Sreekanth, P. M.; Peña, D. A.; Jenkins, R. G. Manganese oxide catalysts supported on
- TiO2, Al2O3, and SiO2: A comparison for low-temperature SCR of NO with NH3, *Ind. Eng. Chem. Res.*
- **2006**, 45, 6436-6443.
- (26) Park, E.; Kim, M.; Jung, H.; Chin, S.; Jurng, J. Effect of sulfur on Mn/Ti catalysts prepared using chemical vapor condensation (CVC) for low-temperature NO reduction, *ACS Catal.* **2013**, 3, 1518-1525.
- (27) Huang, J. H.; Tong, Z. Q.; Huang, Y.; Zhang, J. F. Selective catalytic reduction of NO with NH3 at low
- temperatures over iron and manganese oxides supported on mesoporous silica, *Appl. Catal. B: Environ.* **2008**, 78, 309-314.
- (28) Singoredjo, L.; Korver, R.; Kapteijn, F.; Moulijn, J. Alumina supported manganese oxides for the low- temperature selective catalytic reduction of nitric oxide with ammonia, *Appl. Catal. B: Environ.* **1992**, 1, 297-316.
- (29) Kapteijn, F.; Singoredjo, L.; Driel, M.; Andreini, A.; Moulijn, J. A.; Ramis, G.; Busca, G. Alumina- supported manganese oxide catalysts: II. Surface characterization and adsorption of ammonia and nitric oxide, *J. Catal.* **1994**, 150, 106-115.
- (30) Qi, G.; Yang, R. T.; Chang, R. Low-temperature SCR of NO with NHE over USY-supported manganese oxide-based catalysts, *Catal. Lett.* **2003**, 87, 67-71.
- (31) Lou, X. R.; Liu, P. F.; Li, J.; Li, Z.; He, K. Effects of calcination temperature on Mn species and catalytic activities of Mn/ZSM-5 catalyst for selective catalytic reduction of NO with ammonia, *Appl. Surf. Sci.* **2014**, 307, 382-387.
- (32) Carja, G.; Kameshima, Y.; Okada, K.; Madhusoodana, C. D. Mn–Ce/ZSM5 as a new superior catalyst for NO reduction with NH3, *Appl. Catal. B: Environ.* **2007**, 73, 60-64.
- (33) Marbán, G.; Valdés-Solís, T.; Fuertes, A. B. Mechanism of low-temperature selective catalytic reduction of NO with NH3 over carbon-supported Mn3O4 Role of surface NH3 species: SCR mechanism, *J. Catal.* **2004**, 226, 138-155.
- (34) Wang, L. S.; Huang, B. C.; Su, Y. X.; Zhou, G. Y.; Wang, K. L.; Luo, H. C.; Ye, D. Q. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: Catalytic activity and characterization, *Chem. Eng. J.* **2012**, 192, 232-241.
- (35) Fang, C.; Zhang, D. S.; Cai, S. X.; Zhang, L.; Huang, L.; Li, H. R.; Maitarad, P.; Shi, L. Y.; Gao, R. H.;
- Zhang, J. P. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnO*^x* on
- carbon nanotubes in situ prepared via a chemical bath deposition route, *Nanoscale*, **2013**, 5, 9199-9207.
- (36) Xiao, X.; Sheng, Z. Y.; Yang L.; Dong, F. Low-temperature selective catalytic reduction of NO*^x* with NH3
- over a manganese and cerium oxide/graphene composite prepared by a hydrothermal method, *Catal. Sci. Technol.* **2016**, 6, 1507-1514.
- (37) Zhang, R. D.; Liu, N.; Luo, Z.; Yang, W.; Liang, X.; Xu, R. N.; Chen, B. H.; Duprez, D.; Royer, S. A
- remarkable catalyst combination to widen the operating temperature window of the selective catalytic reduction of NO by NH3, *ChemCatChem* **2014**, 6, 2263-2269.
- (38) Salazar, M.; Becker, R.; Grünert, W. Hybrid catalysts–an innovative route to improve catalyst performance in the selective catalytic reduction of NO by NH3, *Appl. Catal. B: Environ.* **2015**, 165, 316- 327.
- (39) Salazar, M.; Hoffmann, S.; Tkachenko, O. P.; Becker, R.; Grünert, W. Hybrid catalysts for the selective
- catalytic reduction (SCR) of NO by NH3. On the role of fast SCR in the reaction network, *Appl. Catal. B: Environ.* **2016**, 182, 213-219.
- (40) Krivoruchenko, D. S.; Telegina, N. S.; Bokarev, D. A.; Stakheev, A. Y. Mn–Ce/beta "bifunctional" catalyst for the selective catalytic reduction of nitrogen oxides with ammonia, *Kinet. Catal.* **2015**, 56, 741-746.
- (41) Krivoruchenko, D. S.; Kucherov, A. V.; Telegina, N. S.; Bokarev, D. A.; Selvam, P.; Stakheev, A. Y. Development of the bifunctional catalyst Mn-Fe-Beta for selective catalytic reduction of nitrogen oxides,
- *Russ. Chem. B.* **2014**, 63, 389-395.
- (42) Stakheev, A. Y.; Mytareva, A. I.; Bokarev, D. A.; Baeva, G. N.; Krivoruchenko, D. S.; Kustov, A. L.; Grill,
- M.; Thøgersen, J. R. Combined catalytic systems for enhanced low-temperature NO*^x* abatement, *Catal.*
- *Today* **2015**, 258, 183-189.
- (43) Tang, X. L.; Li, Y. Y.; Yi, H. H.; Yu, Q. J.; Gao, F. Y.; Zhang, R. C.; Li, C. L.; Chu, C. An efficient two-
- 633 step method for NH₃ removal at low temperature using $CoO_x-CuO_x/TiO₂$ as SCO catalyst followed by NiMn2O4 as SCR catalyst, *Energ. Fuel.* **2017**, 31, 8580-8593.
- (44) Zhu, M. H.; Lai, J. K.; Tumuluri, U.; Wu, Z. L.; Wachs, I. E. Nature of active sites and surface intermediates during SCR of NO with NH3 by supported V2O5-WO3/TiO2 catalysts, *J. Am. Chem. Soc.* **2017**, 139, 15624-15627.
- (45) Vuong, T. H.; Radnik, J.; Rabeah, J.; Bentrup, U.; Schneider, M.; Atia, H.; Armbruster, U.; Grünert, W.;
- 639 Brückner, A. Efficient $VO_x/Ce_{1-x}Ti_xO_2$ catalysts for low-temperature NH₃-SCR: Reaction mechanism and active sites assessed by in situ/operando spectroscopy, *ACS Catal.* **2017**, 7, 1693-1705.
- (46) Huang, L.; Zhao, X.; Zhang, L.; Shi, L. Y.; Zhang, J. P.; Zhang, D. S. Large-scale growth of hierarchical
- transition-metal vanadate nanosheets on metal meshes as monolith catalysts for De-NO*^x* reaction, *Nanoscale* **2015**, 7, 2743-2749.
- (47) Liu, F. D.; He, H.; Lian, Z. H.; Shan, W. P.; Xie, L. J.; Asakura, K.; Yang, W. W.; Deng, H. Highly 645 dispersed iron vanadate catalyst supported on TiO₂ for the selective catalytic reduction of NO_x with NH₃, *J. Catal.* **2013**, 307, 340-351.
- (48) Casanova, M.; Nodari, L.; Sagar, A.; Schermanz, K.; Trovarelli, A. Preparation, characterization and NH3-
- SCR activity of FeVO4 supported on TiO2-WO3-SiO2, *Appl. Catal. B: Environ.* **2015**, 176-177, 699-708.
- (49) Zhao, X.; Huang, L.; Li, H.; Hu, H.; Hu, X. N.; Shi, L. Y.; Zhang, D. S. Promotional effects of zirconium doped CeVO4 for the low-temperature selective catalytic reduction of NO*^x* with NH3, *Appl. Catal. B: Environ.* **2016**, 183, 269-281.
- (50) Marberger, A.; Elsener, M.; Ferri, D.; Sagar, A.; Schermanz, K.; Kröcher, O. Generation of NH3 selective catalytic reduction active catalysts from decomposition of supported FeVO4, *ACS Catal.* **2015**, 5, 4180- 4188.
- (51) Wu, G. X.; Li, J.; Fang, Z. T.; Lan, L.; Wang, R.; Gong, M. C.; Chen, Y. Q. FeVO4 nanorods supported TiO2 as a superior catalyst for NH3–SCR reaction in a broad temperature range, *Catal. Commun.* **2015**, 64, 75-79.
- (52) Casanova, M.; Schermanz, K.; Llorca, J.; Trovarelli, A. Improved high temperature stability of NH3-SCR catalysts based on rare earth vanadates supported on TiO2–WO3–SiO2, *Catal. Today* **2012**, 184, 227-236.
- (53) Salazar, M.; Hoffmann, S.; Tillmann, L.; Singer, V.; Becher, R. Hybrid catalysts for the selective catalytic
- reduction (SCR) of NO by NH3: Precipitates and physical mixtures, *Appl. Catal. B: Environ.* **2017**, 218, 793-802.
- (54) Chung, F. H. Quantitative interpretation of X-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis, *J. Appl. Cryst.* **1974**, 7, 519-525.
- (55) Newville, M. IFEFFIT: interactive XAFS analysis and FEFF fitting, *J. Synchrotron Radiat.* **2001**, 8, 322- 324.
- (56) Kresse, G.; Furthmüller, J. Efficient iterative schemes for *ab initio* total-energy calculations using a plane-wave basis set, *Phys. Rev. B* **1996**, 54, 11169-11186.
- (57) Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, *Comp. Mater. Sci.* **1996**, 6, 15-50.
- (58) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B* **1999**, 59, 1758-1775.
- (59) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple, *Phys. Rev. Lett.* **1996**, 77, 3865-3868.
- (60) Grant, R. W.; Geller, S.; Cape, J. A.; Espinosa, G. P. Magnetic and crystallographic transitions in the α-Mn2O3-Fe2O3 system, *Phys. Rev.* **1968**, 175, 686-695.
- (61) Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework, *Phys. Rev. B* **2006**, 73, 195107.
- (62) He, Z. Z.; Ueda, Y. Magnetic properties of Mn2V2O7 single crystals, *J. Solid State Chem.* **2008**, 181, 235- 238.
- (63) Yan, Q. M.; Li, G.; Newhouse, P. F.; Yu, J.; Persson, K. A.; Gregoire, J. M.; Neaton, J. B. Mn2V2O7: An earth abundant light absorber for solar water splitting, *Adv. Energy Mater.* **2015**, 1401840.
- (64) Michaelides, A.; Hu, P.; Alavi, A. Physical origin of the high reactivity of subsurface hydrogen in catalytic hydrogenation, *J. Chem. Phys.* **1999**, 111, 1343-1345.
- (65) Liu, Z. P.; Hu, P. General trends in the barriers of catalytic reactions on transition metal surfaces, *J. Chem. Phys.* **2001**, 115, 4977-4980.
- (66) Hu, W. D.; Lan, J. G.; Guo, Y.; Cao, X. M.; Hu, P. Active low-coordination lattice oxygen and cooperation of multiple active sites, *ACS Catal.* **2016**, 6, 5508-5519.
- (67) Heyd, J.; Scuseria, G. E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional, *J. Chem. Phys.* **2004**, 121, 1187-1192.
-
- (68) Li, P.; Xin, Y.; Li, Q.; Wang, Z. P.; Zhang, Z. L.; Zheng, L. R. Ce−Ti amorphous oxides for selective
- catalytic reduction of NO with NH3: Confirmation of Ce−O−Ti active sites, *Environ. Sci. Technol.* **2012**, 46, 9600-9605.
- (69) Jeong, J.; Aetukuri, N.; Graf, T.; Schladt, T. D.; Samant, M. G.; Parkin, S. S. P. Suppression of metal- insulator transition in VO2 by electric field-induced oxygen vacancy formation, *Science*, **2013**, 339, 1402- 1405.
- (70) Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; Gryse, R. D. Determination of the V2p XPS binding 698 energies for different vanadium oxidation states $(V^{5+}$ to V^{0+}), *J. Electron Spectrosc.* **2004**, 135, 167-175.
- (71) Topsøe, N. Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy, *Science* **1994**, 265, 1217-1219.
- (72) Chen, L.; Li, J. H.; Ge, M. F. DRIFT study on cerium−tungsten/titiania catalyst for selective catalytic reduction of NO*^x* with NH3, *Environ. Sci. Technol.* **2010**, 44, 9590-9596.
- (73) Centeno, M. A.; Carrizosa, I. Odriozola, J. A. NO–NH3 coadsorption on vanadia/titania catalysts: determination of the reduction degree of vanadium, *Appl. Catal. B: Environ.* **2001**, 29, 307-314.
- (74) Liu, F. D.; He, H.; Zhang, C. B.; Shan, W. P.; Shi, X. Y. Mechanism of the selective catalytic reduction of NO*^x* with NH3 over environmental-friendly iron titanate catalyst, *Catal. Today* **2011**, 175, 18-25.
- (75) Amores, J. M. G.; Escribano, V. S.; Ramis, G.; Busca, G. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides, *Appl. Catal. B: Environ.* **1997**, 13, 45-58.
- (76) Wu, Z. B.; Jiang, B. Q.; Liu, Y.; Wang, H. Q.; Jin, R. B. DRIFT study of manganese-titania-based catalysts for low-temperature selective catalytic reduction of NO with NH3, *Environ. Sci. Technol.* **2007**,
- 41, 5812-5817.
- (77) Qi, G.; Yang, R. T. MnO*x*-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures, *J. Phys. Chem. B* **2004**, 108, 15738-15747.
- (78) Li, Q.; Gu, H. C.; Li, P.; Zhou, Y. H.; Liu, Y.; Qi, Z. N.; Xin, Y.; Zhang, Z. L. In situ IR studies of selective catalytic reduction of NO with NH3 on Ce-Ti amorphous oxides, *Chinese J. Catal.* **2014**, 35, 1289-1298.
-

Table of Contents

