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REPRESENTATIONS OF QUANTUM GROUPS AT ROOTS OF UNITY,
WHITTAKER VECTORS AND Q-W ALGEBRAS

A. SEVOSTYANOV

ABSTRACT. Let Uc(g) be the standard simply connected version of the Drinfeld-Jumbo quan-
tum group at an odd m-th root of unity . The center of Uc(g) contains a huge commutative
subalgebra isomorphic to the algebra Zg of regular functions on (a finite covering of a big cell
in) a complex connected, simply connected algebraic group G with Lie algebra g. Let V be a
finite-dimensional representation of U.(g) on which Zg acts according to a non-trivial charac-
ter 7y given by evaluation of regular functions at g € G. Then V is a representation of the
finite-dimensional algebra Uy, = U (g)/U-(g)Ker ng. We show that in this case, under certain

1
restrictions on m, Uy, contains a subalgebra Uy, (m_) of dimension mz4m O where O is the
conjugacy class of g, and Uy, (m_) has a one-dimensional representation Cy,. We also prove that
if V' is not trivial then the space of Whittaker vectors HomUW}y (m_)(Cx,y, V) is not trivial and the
algebra Wy, = EHdUng (Un, ®Ung (m_) Cx,) naturally acts on it which gives rise to a Schur-type
duality between representations of the algebra Uy, and of the algebra Wy called a -W algebra.

1. INTRODUCTION

Let g’ be the Lie algebra of a semisimple algebraic group G’ over an algebraically closed field k
of characteristic p > 0. Let = — x[P! be the p-th power map of g’ into itself. The structure of the
enveloping algebra of g’ is quite different from the zero characteristic case. Namely, the elements
2P — 2Pl 2 € g’ are central. For any linear form 0 on g, let Up be the quotient of the enveloping
algebra of g’ by the ideal generated by the central elements 27 — z[P! — §(x)P with = € g’. Then
Uy is a finite-dimensional algebra. Kac and Weisfeiler proved that any simple g’-module can be
regarded as a module over Uy for a unique 6 as above (this explains why all simple g’~modules are
finite-dimensional).

One can identify 6 with an element of g’ via the Killing form and reduce the general situation to
the case of nilpotent 6. In that case, among other things, Premet defines in [14, 15] a subalgebra
Up(my) C Uy generated by a Lie subalgebra my C g’ such that Up(my) has dimension p%, where d
is the dimension of the coadjoint orbit of 8, and is equipped with a one-dimensional representation
kyy, Xo : Up(mg) — k. Thus for every Up-module V' the algebra Endy, (Us ®@u,(my) Ky, ) naturally
acts on the space Homy, (Up ®u,(my) Kxy, V') called the space of Whittaker vectors in V. This leads
to a Schur-type duality between representations of the algebras Uy and Endy,(Up ®@u,(ms) Kxo),
the latter being called a W-algebra. Tensoring V' with the one-dimensional representation k_,, of
Up(myp) one can define the structure of a Up(mg)—module (here Uy(myp) is the subalgebra generated
by my in Uy which corresponds to § = 0) on V', which makes it a Uy — Uy(mp)-bimodule, and the
two actions satisfy certain compatibility conditions. This brings the representation theory of the
algebra Uy into the context of equivariant representation theory showing also some similarity with
the theory of generalized Gelfand-Graev representations (see [10]).

Another important example of finite-dimensional algebras is related to the theory of quantum
groups at roots of unity. Let g be a complex finite—dimensional semisimple Lie algebra. A remarkable
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property of the standard Drinfeld-Jimbo quantum group U.(g) associated to g, where ¢ is a primitive
m-th root of unity, is that its center contains a huge commutative subalgebra isomorphic to the
algebra Z¢g of regular functions on (a finite covering of a big cell in) a complex algebraic group G
with Lie algebra g (see [3, 5]). In this paper we consider the simply connected version of U.(g)
and the case when m is odd. In that case G is the connected, simply connected algebraic group
corresponding to g.

Consider finite-dimensional representations of Uc(g), on which Zg acts according to non-trivial
characters 7, given by evaluation of regular functions at various points g € G. Note that all
irreducible representations of U, (g) are of that kind, and every such representation is a representation
of the algebra U, = U.(g)/U(g)Ker 1y for some 7,.

In this paper we construct certain subalgebras U,,g(m_) in Uy, which have properties similar
to those of the subalgebras Uy(my) C Uy. In particular, there is a Schur-type duality between
representations of the algebras U, and of certain quantum group versions of W-algebras called
o-W-algebras. U, -modules also naturally become U, — Uy, (m_)-bimodules. We show that for
such modules the corresponding spaces of Whittaker vectors are always non—trivial which can be
regarded as an analogue of the Engel theorem for quantum groups at roots of unity.

It turns out that the definition of the subalgebras U, (m_) is related to the existence of some
special transversal slices X to the set of conjugacy classes in G. These slices ¥, associated to
(conjugacy classes of) elements s in the Weyl group of g were introduced by the author in [17]. The
slices ¥ play the role of the Slodowy slices in algebraic group theory. In the particular case of
elliptic Weyl group elements these slices were also introduced later by He and Lusztig in paper [8]
within a different framework.

A remarkable property of a slice 3, is that if g is conjugate to an element in X, then U, has a

subalgebra of dimension macodim S: with a non—trivial character. If g € 35 (in fact g may belong
to a larger variety) then the corresponding subalgebra Uy, (m_) can be explicitly described in terms
of quantum group analogues of root vectors. There are also analogues of subalgebras U, (m_) in
U,(g) in case of generic ¢ (see [18]).

Q-W-algebras can be regarded as noncommutative deformations of truncated versions of the
algebras of regular functions on the slices 5. In case of generic € g-W algebras were introduced and
studied in [18].

In [19], Theorem 5.2 it is shown that for every conjugacy class O in G one can find a transversal
slice X such that O intersects ¢ and dim O = codim 4. Thus in this case for the corresponding
algebra U, (m_) we have dim U, (m_) = mz29m O where O is the conjugacy class of g.

There is, however, a major difference between Lie algebras and quantum groups: in case of Lie
algebras g’ over fields of prime characteristic the algebras Up(my) are local while in the quantum
group case the algebras U, (m_), which play the role of Uy(myg), are not local. In particular, each
Uy, (m_) may have several one-dimensional representations.

The author is grateful to the referee for careful reading of the text.

2. NOTATION

Fix the notation used throughout the text. Let G be a simply connected finite-dimensional
complex simple Lie group, g its Lie algebra. Fix a Cartan subalgebra h C g and let A be the set
of roots of (g,h). Let a;, i =1,...,1, | = rank(g) be a system of simple roots, A, = {S1,...,8n}
the set of positive roots. Let Hy,..., H; be the set of simple root generators of b.

Let a;; be the corresponding Cartan matrix, and let di,...,d;, d; € {1,2,3}, i = 1,...,1 be
coprime positive integers such that the matrix b;; = d;a;; is symmetric. There exists a unique
non-degenerate invariant symmetric bilinear form (,) on g such that (H;, H;) = d;laij. It induces
an isomorphism of vector spaces h ~ h* under which a; € h* corresponds to d; H; € h. We denote
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by oV the element of h that corresponds to o € h* under this isomorphism. The induced bilinear
form on bh* is given by (a;, ;) = by;.

Let W be the Weyl group of the root system A. W is the subgroup of GL(h) generated by the
fundamental reflections s1,..., s,

Sl(h) =h-— al(h)Hz, heb.

The action of W preserves the bilinear form (,) on b.

For any root o € A we also denote by s, the corresponding reflection.

For every element w € W one can introduce the set A, = {a € Ay : w(a) € —A4}, and the
number of the elements in the set A,, is equal to the length I(w) of the element w with respect to
the system I' of simple roots in A.

Let b4 be the Borel subalgebra corresponding to Ay, b_ the opposite Borel subalgebra, ny their
nilradicals. Denote by H, N;, N_, By, B_ the maximal torus, the maximal unipotent subgroups and
the Borel subgroups of G which correspond to the Lie subalgebras h,n;,n_, b, and b_, respectively.

We identify g and its dual by means of the canonical invariant bilinear form. Then the coadjoint
action of G on g* is naturally identified with the adjoint one.

Let gg be the root subspace corresponding to aroot 3 € A, gg = {z € g|[h,z] = B(h)x for every h €
h}. gg C g is a one—dimensional subspace. It is well known that for oo # —f the root subspaces g
and gg are orthogonal with respect to the canonical invariant bilinear form. Moreover g, and g_,
are non—degenerately paired by this form.

Root vectors X, € g, satisfy the following relations:

[Xo, X o] = (X0, X o).

Note also that in this paper we denote by N the set of nonnegative integer numbers, N = {0, 1,...}.

3. QUANTUM GROUPS

In this paper we shall consider some specializations of the standard Drinfeld-Jimbo quantum
group Up(g) defined over the ring of formal power series C[[h]], where h is an indeterminate. We
follow the notation of [2].

Let V be a C[[h]]-module equipped with the h—adic topology. This topology is characterized by
requiring that {h"V | n > 0} is a base of the neighborhoods of 0 in V, and that translations in V'
are continuous.

A topological Hopf algebra over C[[A]] is a complete C[[h]]-module equipped with a structure of
C|[[h]]-Hopf algebra (see [2], Definition 4.3.1), the algebraic tensor products entering the axioms of
the Hopf algebra are replaced by their completions in the h—adic topology.

The standard quantum group Uj,(g) associated to a complex finite-dimensional simple Lie algebra
g is a topological Hopf algebra over C[[h]] topologically generated by elements H;, X', X, i =
1,...,1, subject to the following defining relations:

Kt
[Hi, Hj) =0, [H;, X5 = +a; X5, XX - X7 X =000

qi—q;

1—a;; r 1—a;; +\1—a,;—r v+ +\r . .

S o[ 1] ey =0 iz
qi

where

dih

)

K=l el =g g =q% =e
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with comultiplication defined by
AyH)=H;@l+10H;, Ay(XH) =X 0K '+10 X}, AyX; ) =X, ®1+ K, ® X, ,
antipode defined by
Sn(H;) = —H;, Su(X]) = =X K;, Sp(X7) = —K;7' X7,
and counit defined by
en(Hy) = en(XE) = 0.
We shall also use the weight-type generators

Y= di(a™ V)i Hj.

Jj=1

Let Ll = eEhYi,

Now we shall explicitly describe a linear basis for Uy, (g). First following [2] we recall the construc-
tion of root vectors of Up(g) in terms of a braid group action on Up(g). Let m;j, i # j be equal to
2,3,4,6 if a;;aj is equal to 0, 1,2, 3, respectively. The braid group By associated to g has generators
T;,i=1,...,l, and defining relations

TT,TT; ... = TyTTT; . ..

for all ¢ # j, where there are m;; 1’s on each side of the equation.
By acts by algebra automorphisms of Uy, (g) as follows:

T(X) = X7 T(X]) = —e MHXG Ti(Hj) = Hj — ajiH,

—ayj
TXF) = 3 (-1 g (X)) X (G, i 4
r=0
—a;j
T(X;) =Y (1) g (X)X (X)), i A,
r=0

where

+\r —\r
(X;H" = & (X)) = & r>0,i=1,...,1
[r]q:! [r]q,!
Recall that an ordering of a set of positive roots Ay is called normal if for any three roots «, 3, v
such that v = o 4+ 8 we have either a <y < for f <y < a.
For any reduced decomposition wy = s;, ...s;, of the longest element wy of the Weyl group W

of g the ordering
Pr =i, B2 = 8i,Qiyy .., BD = Siy -+ Sip_ Qi
is a normal ordering in Ay, and there is a one-to—one correspondence between normal orderings of
A, and reduced decompositions of wy (see [21]).
Fix a reduced decomposition wg = s;, ...s;, of wy and define the corresponding root vectors in

Uh (g) by

(3.1) X5 =T, ... T, _ X,

k—1

Note that one can construct root vectors in the Lie algebra g in a similar way. Namely, if X,
are simple root vectors of g then one can introduce an action of the braid group By by algebra
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automorphisms of g defined on the standard generators as follows:

Ti(XiOéi) = 7X$04i7 E(HJ) = Hj - ajiHi’

1 —a;; . .
Ti(Xaj) = (_Tij)!adxanaj» i# 7,

(71)(1” —Qij . .

Ti(X—aJ) = —'adXi" X—Oéj7 ? 7é J-
(—aij)! ‘

Now the root vectors X4, € g+, of g can be defined by

(3.2) Xipe =Tiy - Ty, Xa, -

The root vectors X satisfy the following relations:

k1 k2

(3.3) X X5 —q“PX X, = > Cky,... kn)(X5,)
a<d1<... <6, <P

_ N
(X5,) - (X5)™, a<B,
where C(k1,...,k,) € P, and P = C[q, ¢~ ] if g is simply-laced, P = Clq, ¢ ?, [21]{ | if g is of type
By, Cy or Fy, and P = C[q,q7 !, ﬁ, ﬁ] if g is of type Gs.
Note that by construction

X (mod h) = Xp € gp,

X5 (mod h) =X_3€g_3

are root vectors of g.
Ui(g) is a quasitriangular Hopf algebra, i.e. there exists an invertible element R € U, (g) @ Un(g),
called a universal R—matrix, such that

(3.4) APP(a) = RAR(a)R ™ for all a € Uy(g).

An explicit expression for R may be written by making use of the q—exponential
= ety 2
expq(r) = an (et )W
k=0 7

in terms of which the element R takes the form (see e.g. [2], Theorem 8.3.9):

!
(3.5) R = He:cpqﬁ [(1- qg2)Xg @ X7 exp {h Z(E ® H;)
B

i=1

)

where the product is over all the positive roots of g, and the order of the terms is such that the
a—term appears to the left of the S—term if o < § with respect to the normal ordering of A .
One can calculate the action of the comultiplication on the root vectors X;c in terms of the

universal R-matrix. For instance for A, (X ) one has (see e.g. [2], Theorem 8.3.7)

(3.6) An(X5,) = Rep (X5, @1+ @ X5 )R,

where
R<5k~ = RBl ce Rﬁk—l? Rﬂr = €TPqg, [(1 - QETQ)X;;FT ® X[-}:}
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4. REALIZATIONS OF QUANTUM GROUPS ASSOCIATED TO WEYL GROUP ELEMENTS

Some important ingredients that will be used in the proof of the main statement in Section 7 are
certain subalgebras of the quantum group. These subalgebras are defined in terms of realizations of
the algebra Uy, (g) associated to Weyl group elements. Following [18] we introduce these realizations
in this section.

Let s be an element of the Weyl group W of the pair (g,b), and b’ the orthogonal complement
in b, with respect to the Killing form, to the subspace of h fixed by the natural action of s on b.
Let b be the image of §" in b* under the identification h* ~ b induced by the canonical bilinear
form on g. The restriction of the natural action of s on h* to the subspace h”* has no fixed points.
Therefore one can define the Cayley transform %‘_*2 Py« 1 b* = B’" C b* of the restriction of s to h'",
where Py~ is the orthogonal projection operator onto b’ *in h*, with respect to the Killing form.

Recall that in the classification theory of conjugacy classes in the Weyl group W of the complex
simple Lie algebra g the so-called primitive (or semi—Coxeter in another terminology) elements play
a primary role. According to the results of [1] the element s of the Weyl group of the pair (g, b) is
primitive in the Weyl group W’ of a regular semisimple Lie subalgebra g’ C g, rank g’ = dim §’, of

the form
g/ = hl + Z gCH

acA’

where A’ is a root subsystem of the root system A of g, g, is the root subspace of g corresponding
to root «.
Moreover, by Theorem C in [1] s can be represented as a product of two involutions,

(4.1) 5s=s's%

1_ 2 _ ;
= Sy, .+ 8y,, 8 = 84, ...5y,, the Toots in each of the sets v1,...7, and y,41...y are

positive and mutually orthogonal, and the roots 1, ...7y form a linear basis of b’*, in particular I’

where s

is the rank of g’. The scalar products %Phwyh 7 ) can be computed as follows.

Lemma 4.1. ([18], Lemma 6.2) Let Py~ be the orthogonal projection operator onto '™ in b*,

with respect to the Killing form. Then the scalar products (}J_r: h’*’Yz‘Wj) are of the form:

1+s
(4.2) (l_st’*'Yi:'Yj> = ¢ei; (7, 75),
where
-1 i<y
Eij = 0 7 :]
1 1>7

Let ~vf, i = 1,...,0' be the basis of h’* dual to ~;, i = 1,...,I’ with respect to the restriction
of the bilinear form (-,-) to h"*. Since the numbers (v;,v;) are integer each element ~; has the

form v} = 221:1 m;;7Y;, where m;; € Q. Therefore by Lemma 4.1 and using for simple roots «;

the decomposition of the form Py~ = Zgzl(ai, o)V = ZZ g=1(%, Yp)MpgYg we deduce that the
numbers

1 (1+s
(43) qij = E (1 — SP(]/*OZZ',CYJ') =

l/

1 1+s .

=4 E (Vi i) (15 ) <mph'*7pﬁq) MipMig, 7 =1,...,1
7 k,lp.g=1
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are rational as all factors in the products in the sum in the right hand side are rational. Fix a
positive integer d such that ¢;; € éZ for any i < j or for any ¢ > j, 4,5 =1,...,1.

Let n be a non-zero integer number, and let U7 (g) be the topological algebra over C[[h]] topolog-
ically generated by elements e;, f;, H;, i = 1,...1 subject to the relations:

gt
[Hy, Hj) =0, [Hie;] = agjey, [Hi, fi] = —aijfj, eifj — a9 fiei = 6 s

—1
ai—q; "’

1 lihH;
Cij = nd (1i_§Ph'*Oé1j,Oéj> , Ki, = ed’h y

1—aij o TCij 1—a; —a;—r r ; :
2r=o" (=1)7q" [ o } (€)= ej(e)" =0, i #j,
q

@

Sy | 10 ] ey =0 i 4
qi

Note that the matrix ¢;; is skew-symmetric.

Proposition 4.2. ([18], Theorem 4.1) For every solution n;; € C, i,j =1,...,1 of equations
(4.4) dini; — ding; = cij

there exists an algebra isomorphism ¥y, .y : Uy (8) — Un(g) defined by the formulas:

l l
w{nij}(ei) = Xz+ H ety w{nu}(fi) = H e_hniprXi_’ w{”ij}(Hi) =Hyi=1,...,1

p=1 p=1

The algebra U (g) is called the realization of the quantum group Up(g) corresponding to the
element s € W.

Remark 4.3. Let nj; € C be a solution of the homogeneous system that corresponds to (4.4),
Then the map defined by

I

+ + 17! hn!,Y,

X X ey e

— l _ ! —

(46) Xz s Hp:l e h"waXi ,

is an automorphism of Uy(g). Therefore for given element s € W the isomorphism 1,y is defined
uniquely up to automorphisms (4.6) of Un(g).

The realizations U (g) of the quantum group Uy, (g) are connected with quantizations of some non-
standard bialgebra structures on g. At the quantum level changing bialgebra structure corresponds
to the so—called Drinfeld twist (see [18], Section 4).

Equip Uj(g) with the comultiplication Ay given by

As(H;))=H;®1+1® H;,

Lt v —hd,ndit A hd, H,
As(ei) =¢; (g)e—hle1 + ehdlndlfsph’Hl ® e, As(fz) _ fl ® 1 te hdlndl,SP[,/Hr‘rhlez ® fi:
the antipode Ss(z) given by

o 1+s o I —hd. H.
Sy(e:) = _e~hdindE Py Hi g ohdiH: So(f;) = _hdind 35 Py HimhdiHi f. S.(H;) = —H,
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and counit defined by
es(Hy) = e(XE) =0.

The comultiplication A; is obtained from the standard comultiplication by a Drinfeld twist (see
[18], Section 4). Namely, let

l
(4.7) F=ep(~h Y =LY, ®Y;) € Un(h) ® Un(b),

ij=1 "

where n;; is the solution of the corresponding equation (4.4) used in the definition of the isomorphism
w{"w }- Then
(4.8) Aula) = (W71 @ V) FAWm, (@) F .

We shall construct analogues of root vectors for U (g). It is convenient to introduce an operator
K € End b defined by

l
_ Nij <,
(4.9) KH; _Zd_,yj
=1
For any solution of equation (4.4) and any normal ordering of the root system A, we define the
following elements of U (g), ez = Qﬁ{;}(XgehKﬁ ), fs = q/;{*nl}(e_hKB Xg), BeA,.
U;(g) is a quasitriangular topological Hopf algebra with the universal R-—matrix R?,

R* = [1 5 eapg, [(1 — 45°) f5 ® ege™ M= P87

4.10
(410 cop (Wi, (Vi @ Hy) = Sy nd 2 Py H @ V)|

where Py is the orthogonal projection operator onto b’ in h with respect to the Killing form, and the
order of the terms is such that the a—term appears to the left of the S—term if o < g with respect
to the normal ordering of A, .

Using formula (3.6) and Proposition 4.3 in [18] one can also find that

14s

(4.11) Ay(fp,) = Rip, (M0 @ g5 4 f5, @ 1)(RLg,) 7
where

Niﬁk = 7%21 . ..ﬁgk_l, ﬁ?ﬁ = expg, [(1— qgf)eﬁrefh’”dﬁph’ﬂv ® fa,]s
and

~ _ ~ p ~ ~ B s p gV
( s<ﬁk) 1:( 731971) 1( %1) 1: (R[Z,) 1:6(qu;"1[(]_—q[23,‘)eﬁre hnd =3 Py ®f[37»]'

We shall actually need not the algebras Uy, (g) and U (g) themselves but some their specializations
defined over certain rings and over the field of complex numbers. They are similar to the non-
restricted integral form and to its specialization for the standard quantum group Uy (g). The results
below are slight modifications of similar statements for Uy (g), and we refer to [2], Ch. 9 for the
proofs.

Note that by the choice of d we have ¢“v € Clg,q7']. Let A = Clq,q™ '] if g is simply-laced,
A=Clg,q !, ﬁ] if g is of type B;,C or Fy, and A = C[q,q7 !, ﬁ, ﬁ} if g is of type Ga.

aq

—1

Let U%(g) be the A-subalgebra of Uj(g) generated by the elements ei,fi,Lfl, Izl:fjl , o=
PR . -1

1,...,0 and Ugxk(g) the A-subalgebra of Uj(g) generated by the elements Xij[,Liil7 Iz_f_l , 1=

1.,
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Remark 4.4. Note that the general solution of equation (4.4) is given by

1
57 (cij + sij),

(412) Nij = 2dj

where s;; = sj5;. If ¢;5 € éZ for any i < j, we put

Cij i < _]
87;]' = 0 7 Zj
—Cij 1>7
Then
d%cij 1<
nij =4 0 i1=7
0 >
By the choice of d we have ¢;j € djnZ, and hence ni; € nZ fori,j =1,...,1. A similar consideration

shows that if q;; € éZ for any i > j then there exists a solution n;; € nZ fori,j=1,...,1.

Since there is a solution n;; € nZ for i,j = 1,...,1 to equation (4.4) the map Pin,;y associated
to this solution in Proposition 4.2 induces an isomorphism of algebras ¥, .} : U5 (g) — Ua(g)-

All algebras introduced above are Hopf algebras with comultiplications induced from Uj(g) or
Un(g). The algebra U#(g) acts on itself by the left and the right adjoint representations,

(4.13) Ad'z(y) = 2195 (12), Adz(y) = Ss(a1)yxo,

where we use the Swedler notation for the comultiplication, Ag(z) = z1 ® xa.

Denote by Ua(n;),Ua(n_) the subalgebras of U4(g) generated by the X;” and by the X,
respectively. For any a@ € A, and the quantum root vectors X+ constructed with the help of any
normal ordering in Ay one has X* € Uq(ny).

Let U%(ny), U5 (n-) be the subalgebras of U%(g) generated by the e; and by the f;, i =1,...,1,
respectively.

From the definition of the quantum root vectors X éc and from the commutation relations between
the generators XijE and Lfl, i,7 =1,...11t follows that for the solution of equation (4.4) introduced
in Remark 4.4 and any normal ordering of the root system Ay the elements eg = ¢Enl,i’j}(X;ehK5V)
and fg = 1/){_7111_”(6_’“(5v X5 ), B € Ay lie in the subalgebras Uj (ny) and Uj(n_), respectively.

The most important for us are the specializations U.(g) and UZ(g) of U4(g) and U%(g), U-(g) =
Ua(g)/(q —€)Ualg) Us(g) = Ui(9)/(q — £)U(g), where e € C*, 2% £ 1,0 =1,...,l and e* # 1 if
g is of type Ga.

Note that all specializations introduced above are invariant under the action of the braid group
By.
Denote by U.(ny),Us(n_) and U.(h) the subalgebras of U.(g) generated by the X', by the X,
and by the Liﬂ7 respectively.

Fix a normal ordering in A4 and let X (f be the corresponding quantum root vectors Define for
r=(ry,...,7p) € NP,

() = (X4 (X5,

(X7) = (Xg,)™" . (X))

and for s = (s1,...5;) € Z',
LS =1L ... L}
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Proposition 4.5. ([2], Proposition 9.2.2) The algebra U.(g) is generated over C by Liil, Xﬁ 1=
1,...,1.

The elements (X1)*, (X7)* and L%, forr, t € NP, s € Z!, form linear bases of U.(ny),U.(n_)
and U.(h), respectively, and the products (X T)*L5(X™)* form a basis of U.(g). In particular, mul-
tiplication defines an isomorphism of vector spaces:

Ue(n-) @ Ue(b) ® Ue(ny) — Uc(g)-

The root vectors X5 satisfy the following relations in U, (9):

e - o N N _ k1
(414) X X5 —e*PX X, = > Clky, .. k) (X5 )™ (X5 )7 (X)),

On—1
a<61<...<8,<B
where o < B, the sum is taken over tuples of roots d1,...,0, such that a < §; < ... <9, < [, and
over k; € N, C(kq,...,k,) € C, and for each term in the right hand side Y, k;6; = a + B.

Now we shall study the algebraic structure of UZ(g). Denote by Uf(ny) the subalgebra in UZ(g)
generated by e; (f;),i =1,...1. Let UZ(h) be the subalgebra in U?(g) gencrated by L;‘L17 1=1,...,1L
We shall construct a Poincaré-Birkhoff-Witt basis for UZ(g).

Proposition 4.6. (i) For any normal ordering of the root system A, and for any integer val-
ued solution of equation (4.4) the elements eg and fz lie in the subalgebras UZ(ny) and UZ(n_),
respectively. The elements fg, 5 € Ay satisfy the following commutation relations

a nd(3EE2 P, v n rkn—
(4.15)  fofs — @D tndGm el pyp = N O k) S S a < B,
a<51<...<8,<fB

where C'(k1, ..., kn) € C.

(ii) Moreover, the elements (€)* = (eg,)™ ...(esp)™?, (f)® = (fsp)P ... (fs,)" and L® =
Ly .. Ly forr, t € NP s € Z! form bases of U:(ny), US(n_) and US(h), and the products
(F)EL=(e)" form a basis of Us(g). In particular, multiplication defines an isomorphism of vector
spaces,

U2(n) @UZ(h) @ UZ (ny) = UZ(g)-

The proof of this proposition is similar to the proof of Proposition 4.2 in [18].

5. NILPOTENT SUBALGEBRAS AND QUANTUM GROUPS

In this section we define the subalgebras of U.(g) which resemble nilpotent subalgebras in g and
possess non—trivial characters. We start by recalling the definition of certain normal orderings of
root systems associated to Weyl group elements (see [18], Section 5 for more details). The definition
of subalgebras of U.(g) having non—trivial characters will be given in terms of root vectors associated
to such normal orderings.

Proposition 5.1. ([18], Proposition 5.1) Let s € W be an element of the Weyl group W of the
pair (g,h), A the root system of the pair (g,h) Then there is a system of positive roots A5 such that
decomposition (4.1) is reduced in the sense that [(s) = 1(s?)+1(s'), where l(-) is the length function in
W with respect to the system of simple roots in A%, and AS = A%, [Js?(A%), As_, = A% |Js'(AS)
(disjoint unions), A% . = {a € A% : s"?a € =A%}, AS ={a € AY : s € —A%}. Here st,s* are
the involutions entering decomposition (4.1), st = Sy v Sy §% = Sypyr -+ - Sy, the ToOts in each of
the sets Y1,...,Yn and Ypt1, ...,y are positive and mutually orthogonal.
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Moreover, there is a normal ordering of the root system A% of the following form
6117-"7ﬁtlvﬁtl+17"'76,51+P;2"77175:+p;_"+27~--752_,'_%_5_”17’727
(5.1) t1+%+m+2 e ,ﬁti%er,'yg, e mn,ﬁtlﬂﬂrl, e 7ﬂll(81)7 e
6%7 ce 3/3337714-1763—&-27 te aﬂ§+m177n+23 /8§+m1+27 ce 7ﬁ3+m277n+3, LR
s ﬁ§+ml(sz)+1’ e 75§q+2m,(ser(l’fn)’ ﬂngml(gr(zun)“v "' ’512(32)’
6?7 ) ﬁ%o»
where

1 1 1 1 1 1
{ﬁl?"wﬂtvﬂt-&-lw"7Bt+p;na717ﬁt+%+2:"'7Bt+P;n+nl>f}/27

1 1 1 1 __AS
t+—P;”+m+2'"’5t+—P;“+n2’73’""7”’5t+1>+1""’ﬁl(s1)} =4,

1 1 1 1
{/315—&-17' s 7/8t+p;"7’7176t+p;n+27 EERN ] t+%+n17’y27

tl+%+n1+2 .- "Bt1+%+n27737 o a'Yn} = {a € A5+|81(Oé) = —CM} = Ailz—lr

2 2 2 2 2 2
{517' .. 7ﬁq77n+17/8q+27 e 7ﬁq+7n177n+27ﬁq+m1+27 e 7/8q+m27’7n+37 sy

2 2 2 2 E
i ﬁq+ml(sz)+17 e 62q+2ml(52)—(l’—n)7 /62q+2ml(32)—(l'—n)+1? cee 76[(52)} = A;27
2 2 2 2
{,Y’rH—l? /Bq+27 Tt 5q+m1 » Yn+25 5q+m1+27 e 7/3q+m27,7n+37 LR
2 2 2
Vs Bty o 410+ '752q+2ml(52>—(l’—n)} ={aeAl|s*(a)=—a} =A%__4,

{8, Bp,} = {a € Afls(a) = a}.
The length of the ordered segment Ay, C A in normal ordering (5.1),

_ 1 1 1 1
Am+ _71”8t+";—"+2""’ﬂt+¥+n1’72’ﬂt+%+nl+2'"’ﬂt-ﬁ-%—&-ng’
(5.2) ¥35 -4y s Byt - Bliary -2 B, B2,
’Yn+1753+27"'a/6§+m177n+2a/83+m1+2""7B3+m217n+37'“a’Yl’a
1s equal to
I(s)=1
(5.3) p- (=l py),

where D is the number of roots in A%, I(s) is the length of s and Dy is the number of positive roots
fized by the action of s.

For any two roots o, B € An, such that a < 3 the sum o + 3 cannot be represented as a linear
combination ZZ=1 CkYiy,, where ¢y € N and a <y, < ... <7, <p.

Remark 5.2. In case when s = s' is an involution the last oot in the segment A, is the root

preceding 3) in normal ordering (5.1).

We shall also need another system of positive roots associated to (the conjugacy class of) the
Weyl group element s. In order to define it we need to recall the definition of a circular normal
ordering of the root system A.

Let B1,Ba,...,08p be a normal ordering of a positive root system. Then following [12] one can
introduce the corresponding circular normal ordering of the root system A where the roots in A are
located on a circle in the following way
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. \ .

B Bp
b b1
-Bp B
AN .

L]
Circular normal ordering of a root system.

Let a, 8 € A. One says that the segment [a, 5] of the circle is minimal if it does not contain
the opposite roots —a and —f and the root 3 follows after o on the circle above, the circle being
oriented clockwise. In that case one also says that a < § in the sense of the circular normal ordering,

(5.4) a < 8 < the segment [a, ] of the circle is minimal.

Later we shall need the following property of minimal segments which is a direct consequence of
Proposition 3.3 in [11].

Lemma 5.3. Let [, 3] be a minimal segment in a circular normal ordering of a root system A.
Then if o+ B is a root we have
a<a+p<p.

Note that any segment in a circular normal ordering of A of length equal to the number of positive
roots is a system of positive roots.

Now consider the circular normal ordering of A corresponding to the system of positive roots A%
and to its normal ordering introduced in Proposition 5.1. The segment which consists of the roots
« satisfying v1 < o < —71 is a system of positive roots in A as its length is equal to the number of
positive roots and it is closed under addition of roots by Lemma 5.3.

The system of positive roots Ay introduced this way and equipped with the normal ordering
induced by the circular normal ordering is called the normally ordered system of positive roots
associated to the (conjugacy class of) the Weyl group element s € W.

The linear subspace of g generated by the root vectors X, (X_,), o € A, is in fact a Lie
subalgebra my C g (m_ C g). Let by be the Borel subalgebra associated to A and b_ is the
opposite Borel subalgebra. Denote by ny the nilradicals of by. Let H, N, N_, By, B_ be the
Cartan subgroup, the maximal unipotent subgroups and the Borel subgroups of GG which correspond
to the Lie subalgebras b,ny,n_,b, and b_, respectively. Note that by definition A,, C A, and
hence my C ng.

Now we can define the subalgebras of U.(g) which resemble nilpotent subalgebras in g and possess
non-trivial characters.

Theorem 5.4. Let s € W be an element of the Weyl group W of the pair (g,h), A the root system
of the pair (g,b). Fiz a decomposition (4.1) of s and let Ay be a system of positive roots associated
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to 5. Assume that 2% # 1, e* # 1 if g is of type Go and that "' = 1, where d and n are
introduced in Section 4. Let U2(g) be the realization of the quantum group U.(g) associated to s. Let
faeUi(n_), B € Ay be the root vectors associated to the corresponding normal ordering of Ay .
Then elements fg € Us(n_), B € An,, where Ay, C A is ordered segment (5.2), generate a
subalgebra UZ(m_) C UZ(g). The elements f* = fi° ... fz1, ri € N, i =1,...D and r; can be
strictly positive only if B; € Am, , form a linear basis of US(m_).
Moreover the map x° : U (m_) — C defined on generators by

= van={0 G

is a character of US(m_).

Proof. The first statement of the theorem follows straightforwardly from commutation relations
(4.15) and Proposition 4.6.

In order to prove that the map x* : US(m_) — C defined by (5.5) is a character of UZ(m_)
we show that all relations (4.15) for f, fs with o, € Ay, , which are defining relations in the
subalgebra UZ (m_) by part (ii) of Proposition 4.6, belong to the kernel of x*. By definition the only

generators of Uf(m_) on which x* may not vanish are f,,, i = 1,...,l’. By the last statement in
Proposition 5.1 for any two roots «, 3 € Ap,, such that a < 3 the sum « + 3 can not be represented
as a linear combination Y {_, cx7vi,, where ¢, € N and o < 3, < ... < ;, < . Hence for any

two roots a, 3 € A, such that o < 3 the value of the map x® on the r.h.s. of the corresponding
commutation relation (4.15) is equal to zero.
Therefore it suffices to prove that

X (i — g(wﬁand(%fZPh'*%-,w)fwfy) = ciej(1 — )G Porin)y = 0 < j.

Since e"?~1 =1 and (72 Py+7;,7;) are integer numbers for any i,j = 1,...,l’, the last identity
always holds provided (v;,7;) + (112 Pyvi, ) = 0 for i < j. As we saw in Lemma 4.1 this is indeed

the case. This completes the proof. O

6. QUANTUM GROUPS AT ROOTS OF UNITY

Let m be a an odd positive integer number, and m > d; is coprime to all d; for all 7, € a primitive
m-th root of unity. In this section, following [2], Section 9.2, we recall some results on the structure
of the algebra U.(g). We keep the notation introduced in Section 2.

Let Z. be the center of U.(g).

Proposition 6.1. ([3], Corollary 3.3, [5], Theorems 3.5, 7.6 and Proposition 4.5) Fiz
the mormal ordering in the positive root system A, corresponding a reduced decomposition wy =
i, ...5;p of the longest element wy of the Weyl group W of g and let XT be the corresponding
root vectors in U.(g), and X, the corresponding root vectors in g. Let x,, = (g4 — e 5)™(X;)™,
xf = (eq — e )™ To(X,)™, where To =Ty, ... Tip, o € Ay and l; = L™, i =1,...,1 be elements
of Ue(g)-

Then the following statements are true.

(i) The elements v, a € Ay, 1;, i =1,...,1 lie in Z..

(i) Let Zg (ZofE and Z3) be the subalgebras of Z. generated by the v and the l;ﬂ (respectively by
the X and by the I:*). Then ZF C U.(ny), Z3 C U.(Y), Z5 is the polynomial algebra with gener-
ators =, 7 is the algebra of Laurent polynomials in the l;, ZSE = U.(nt) () Zo, and multiplication

defines an isomorphism of algebras
Zy @ Zy @ Z§ — Zy.

The subalgebra Zy is independent of the choice of the reduced decomposition wo = s;, ... S;,-
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(iii) U-(g) is a free Zo—module with basis the set of monomials (XT)*L3(X )% in the statement
of Proposition 4.5 for which 0 < rg,trp,si <m fori=1,...,1, k=1,...,D.

(iv) Spec(Zy) = C*P x (C*)! is a complex affine space of dimension equal to dim g.

(v) The subalgebra Zy is preserved by the action of the braid group automorphisms T;.

(vi) Let G be the connected simply connected Lie group corresponding to the Lie algebra g and G
the solvable algebraic subgroup in G x G which consists of elements of the form (Ly,L_) € G x G,

(Ly, L) = (t,t ) (ny,n_), ne € Ny, t € H.
Then Spec(Z3)) can be naturally identified with the maximal torus H in G, and the map
7 : Spec(Zy) = Spec(Zy) x Spec(Zy) x Spec(Zy ) — Gy,
Flup, t,u) = (X F(uy), 7' X" (u_)™1), ug € Spec(ZF), t € Spec(Z)),
X* : Spec(ZF) — Ny,
X" =exp(zg, X-—p,)exp(zs, X-p, ,)...exp(zg X_g,),
X+ = exp(zj, To(X—pp)) exp(ag To(X_p,_,)) .. exp(ef To(X_p,)),

where ;z:i should be regarded as complex-valued functions on Spec(Zy), is an isomorphism of varieties
independent of the choice of reduced decomposition of wy.

From parts (ii) and (iii) of Proposition 6.1 we immediately deduce similar properties for the
algebra U2 (g).

Proposition 6.2. (i) The subalgebra 1/){_7111_]}(20) C UZ(g) is the tensor product of the polynomial

algebra with generators e, fi', o € Ay and of the algebra of Laurent polynomials inl;, i =1,...,1.
(i1) U:(g) is a free w{_rllij}(Zo)fmodule with basis the set of monomials (f)*L3(e)® for which 0 <

Tkylk, S <m fori=1,...,l, k=1,...,D.

Remark 6.3. In fact Spec(Zy) carries a natural structure of a Poisson—Lie group, and the map T

is an isomorphism of algebraic Poisson—Lie groups if G{ is regarded as the dual Poisson—Lie group

to the Poisson—Lie group G equipped with the standard Sklyanin bracket (see [5], Theorem 7.6). We

shall not need this fact in this paper.

Let K : Spec(Z0) — H be the map defined by K(h) = h?, h € H.
Proposition 6.4. ([5], Corollary 4.7) Let G° = N_HN, be the big cell in G. Then the map
7 =X KX : Spec(Zy) = G°

1s independent of the choice of reduced decomposition of wg, and is an unramified covering of degree
2L,

Denote by Ao : G — G° the map defined by A\o(L,L_) = L™'L,. Then obviously 7 = \g o 7.
Define derivations = of U4(g) by

X;Hm _ _ _
60wt = [T ) = et T, 1= Lt e Ul
g, !
Let 20 be the algebra of formal power series in the 2, o € A, and the lfﬂ, i=1,...,l, which

define holomorphic functions on Spec(Zy) = C2P x (C*)!. Let

Ue(g) = U.(0) ®2, Zo, Ze = Ze @2, Zo.
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Proposition 6.5. ([3], Propositions 3.4, 3.5, [5], Proposition 6.1, Theorem 6.6)

(i)On specializing to q = ¢, (6.1) induces a well-defined derivation zi& of U.(g).

(ii) The series

exp(tzi) =Y 45 (@)"
k=0
converge for all t € C to a well-defined automorphism of the algebra ﬁg(g).

(iii)Let G be the group of automorphisms generated by the one—parameter groups exp(t@ii), 1=
1,...,1. The action of G on ﬁg(g) preserves the subalgebras 25 and 20, and hence G acts by holo-
morphic automorphisms on the complex algebraic varieties Spec(Z:) and Spec(Zy).

(iv)Let O be a conjugacy class in G. The intersection O° = O G° is a smooth connected variety,
and the variety 7=1(O°) is a G-orbit in Spec(Zy).

(v)If P is a G-orbit in Spec(Zy) then the connected components of 7~ (P) are G-orbits in
Spec(Z,).

Given a homomorphism 7 : Zy — C, let

Un(g) = Ue(9)/ 1y,
where I, is the ideal in U,(g) generated by elements z — n(z), z € Zy. By part (iii) of Proposition
6.1 U, (g) is an algebra of dimension m¥™ ¢ with linear basis the set of monomials (X )" Ls(X ~)*
for which 0 < ry,tg,s; <mfori=1,....[, k=1,...,D.
If g € G then for any n € Spec(Zy) we have gn € Spec(Zp) by part (iil) of Proposition 6.5, and
by part (ii) of the same proposition g induces an isomorphism of algebras,

9:Uy(g) = Ugn(g).
7. WHITTAKER VECTORS

In this section we introduce the notion of Whittaker vectors for modules over quantum groups
at roots of unity and prove an analogue of the Engel theorem for them. We start by studying some
properties of quantum groups at roots of unity.

From now on we fix an element s € W. Let A, be a system of positive roots associated to s~ .
We also fix positive integer d such that p;; € %Z for any i < j (or i > j), i,7 = 1,...,l, where the
numbers p;; are defined by formula (4.3). We shall always assume that m > d; is odd and coprime
toalld;, i =1,...,l and that d and m are coprime. The last condition is equivalent to the existence
of an integer n such that e"?~1 = 1. We fix an integer valued solution n;; to equations (4.4) and
identify the algebra Ujfl(g) associated to the Weyl group element s~% with U.(g) using Theorem
4.2 and the solution —n;; to equations (4.4). Using this identification Uj_l (m_) can be regarded as
a subalgebra in U.(g). Therefore for every character 1 : Zy — C one can define the corresponding
subalgebra in U, (g). We denote this subalgebra by U, (m_). By part (iv) of Proposition 6.2 we have
dim U, (m_) = mdim m-

First we study some properties of the finite dimensional algebras U, (g) and U,(m_). In order to
define Whittaker vectors for quantum groups at roots of unity we shall need some auxiliary notions
that we are going to discuss now.

Below we use the normal ordering of A, associated to s~!. Observe that by Proposition 5.1
for any two roots a, 8 € An, such that a < 3 the sum a + 3 can not be represented as a linear
combination 22:1 cLYi,, where ¢ € Nand a < ;, < ... <7, < f, and hence from commutation
relations (4.15) one can deduce that

1+s

« —n 1%k QL n kn—
(7.2)  fafg =@ GE el f = 3T Ok k) Sy frT) i €T,

a<51<...<5, <P
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where at least one of the roots d; in the right hand side of the last formula belongs to © = {ov € Ay, :
a & {y,...,w}}t, J is the ideal in U,(m_) generated by the elements fg € U,(m_), € ©. Thus
from part (ii) of Proposition 6.2 and commutation relations (7.2) it follows that if 61 < dz < ... < dp
are the roots in the segment A, , the elements

ky pky— k
(7.3) Thy,oky = S50 fs0 ) Is)

for k; € N, k; < m form a linear basis of U, (m_), and elements (7.3) for k; € N, k; < m and k; > 0
for at least one §; € © form a linear basis of 7.

Lemma 7.6. Let n be an element of Spec(Zy). Assume that n(f') = a; # 0 for i =1,...,1'and
that and n(f5') = 0 for B € Aw,, B & {n,...,w}, and hence fI' = n(f7}) = a; # 0 in Uy(m_)
fori=1,....1" and f* = 0 in Uy(m_) for B € Am,, B & {71,-..,w}. Then the ideal J is the
Jacobson radical of Uy(m_) and Uy(m_)/J is isomorphic to the truncated polynomial algebra

(C[f’ym SRR f'yl/}/{ '::L = ai}iil,m,l’

Proof. First we show that J is nilpotent.

Let 7 be the largest number such that k; = 0 for j > i in (7.3) and k; # 0. Then we define the

degree of z, .. 1, by
deg(xp, ... 5,) = (k1) € {1,...,m—1} x {1,...,b}.

Equip {1,...,m — 1} x {1,...,b} with the order such that (k,i) < (k¥,j) if j > i or j = i and
E > k.

For any given (k,i) € {1,...,m — 1} x {1,...,b} denote by (U,(m_)) i the linear span of the
elements 2y, .k, with deg(xy, . k,) < (k,i) and define J 5y = J ((Uy(m_)) k- We also have
(Un(m,))(lm) C (Un(m,))(k/’j) and j(k,i) C j(k’,j) if (kﬂ) < (k‘/,j)7 and u7(m71,b) = J. Note that
for the first few 4 linear spaces J(x ;) may be trivial, and these are all possibilities when those spaces
can be trivial.

We shall prove that J is nilpotent by induction over the order in {1,...,m —1} x {1,...,b}. Let
(k,4) be minimal possible such that J(k,iy is not trivial. Then we must have k = 1. If y € J(1 ;) then
y must be of the form

(7.4) y = fg,
where v is a linear combination of elements of the form f(éill e fgir for 0.y 0i, € {Vnt1s-- s}
B > 0;,, and 3 is the first root from the set © greater than 7, in the normal ordering of A associated
to s~!. Here it is assumed that ffll e ff: = 1if the set {vn+1,...,} is empty.

Now equation (7.2) implies that for any f(;ij which appears in the expression for v one has

5 )—nd(AE P 8,6,

(7.5) fofs, — PO TGS B0 £ fg € Tim14-1) =0
as by our choice of i J(;n—1,-1) = 0.

Formula (7.5) implies that the product of m elements of type (7.4) can be represented in the form

f5',
where v' is of the same form as v. Since fz' = 0 we deduce that ‘7(71"2) =0.

Now assume that J(Ik(l) =0 for some K > 0. Let (k’,7') be the smallest element of {1,...,m —
1} x {1,...,b} which satisfies (k,7) < (k’,4"). Then by Propositions 4.6 and 6.2, and by (7.2), any
element of s ;1) is of the form fs5,u + u’, where v’ € J ;) and if 05 € © then u € (Uy(m_)) ()
if 6 ¢ © then u € J(1 4.
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Now equation (7.2) together with (4.15) imply that for any u € (U,(m_)),;) one has

(7.6) ufs, = cfs,u+w,
where ¢ is a non-zero constant depending on u, and w € J(4;y. By formula (7.6) the product of m
elements fs,,u, + u;, p=1,...,m of the type described above can be represented in the form
m .
(7.7) > fe
j=0

where ¢; € Jg,i) for j = 0,...,m — 1 and if 6y € © then ¢, € (Uy(m_))u,); if 0y ¢ O then
¢m € J(k,iy- In the former case fg’; = 0, and the last term in sum (7.7) is zero; in the latter case
f55, =n(f§7) # 0, and the last term in sum (7.7) is from J3 ;). So we can combine it with the term
corresponding to j = 0. In both cases sum (7.7) takes the form

m—1

(7.8) > 1,

Jj=
where ¢, € J(:)- By (7.6) the product of K sums of type (7.8) is of the form

(m—-1)K

g on
Z f‘si’cj’
Jj=0

where each c}' is a linear combination of elements from ‘7(1,5 e By our assumption ;7(1,5 o= 0, and
hence the product of any mK elements of J(; ;1) is zero. This justifies the induction step and proves
that J(n—1,5) = J is nilpotent. Hence J is contained in the Jacobson radical of Up(m_).

Using commutation relations (4.15) we also have (see the proof of Theorem 5.4)

f%fv,‘ - f’yaf% €eJ.
Therefore the quotient algebra U,(m_)/J is isomorphic to the truncated polynomial algebra

(C[f’ym' L) f’yl/}/{ ':ZL = ai}iil,...,l’

which is semisimple. Therefore [J coincides with the Jacobson radical of U, (m_). 0

In Theorem 5.4 we constructed some characters of the algebra Uf(m_). Similarly one can define
characters of the algebra UES_1 (m_). Now we show that the algebra U,(m_) has a finite number of
irreducible representations which are one—dimensional, and all those representations can be obtained
from each other by twisting with the help of automorphisms of U, (m_).

Proposition 7.7. Letn be an element of Spec(Zy). Assume thatn(f)!) = a; # 0 fori=1,...,l'and
that and n(f5') =0 for B € Aw,, B & {n,...,w}, and hence f7! =n(f]!) = a; # 0 in Uy(m_) for
i=1,...,0" and [ =0 in Uy(m_) for B € Aw,, B & {m,...,w}. Then all non-zero irreducible
representations of the algebra Uy(m_) are one—dimensional and have the form

_ [0 sé{n,....w}
(79) i ={ o fEM
where complex numbers ¢; satisfy the conditions ¢ = a;, i = 1,...,l'. Moreover, all non—zero

irreducible representations of U, (m_) can be obtained from each other by twisting with the help of
automorphisms of U, (m_).
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Proof. Let V' be a non-zero finite-dimensional irreducible U,(m_)-module. By Corollary 54.13
in [7] elements of the ideal J C U,(m_) act by zero transformations on V. Hence V is in fact an
irreducible representation of the algebra U, (m_)/J which is isomorphic to the truncated polynomial
algebra

(C[f’yu ey f"/;/]/{f”? = ai}i:l,...,l'~

The last algebra is commutative and all its complex irreducible representations are one—dimensional.
Therefore V' is one-dimensional, and if v is a nonzero element of V' then f,,v = ¢;v, for some ¢; € C,
i =1,...,0". Note that n(fJ!) = a; # 0, i = 1,...,1" and hence ¢]* = a; # 0,7 = 1,...,l'. In
particular, the elements f,, act on V by semisimple automorphisms.

If we denote by x : U,(m_) — C the character of U, (m_) such that

x(fs) = { 2@. gi{f@:lﬂz'

and by C, the corresponding one-dimensional representation of U,(m_) then we have V' = C,.

Now we have to prove that the representations C, for different characters x are obtained from
each other by twisting with the help of automorphisms of U, (m_).

Since ¢* = a;, i = 1,...,1’ there are only finitely many possible characters x corresponding to
the given 7 in the statement of this proposition. If x and x” are two such characters, x(f,) = ¢,
i=1,...,0' and X'(fy,) = ¢}, i =1,...,0' then the relations ¢ = ¢} = qa;, i = 1,...,l’ imply that
dh=emc, 0<m;<m-1,m; €Z,i=1,...,0.

Now observe that for any h € b the map defined by f, — M f,, a € Ay . is an automorphism
of the algebra Ujfl(m,) generated by elements fo, & € Ay, with defining relations (4.15). Here
the principal branch of the analytic function £* is used to define e so that e*(Mf(h) = glat+B)(h)

for any o, 8 € A, . If in addition emi(h) = 1 4 =1,...,1' the above defined map gives rise to
an automorphism ¢ of U,(m_). Indeed in that case (£7:(M) f )™ = Myio=1,...,0" and all the

remaining defining relations f' = n(fJ!) = a; # 0,4 = 1,...,0', f5* = n(fF") =0, B € An,,
B & {m,...,} of the algebra U,(m_) are preserved by the action of the above defined map .

Now fix h € b such that v;(h) =my, i = 1,...,I’. Obviously we have e™™i =1,i=1,...,I'. We
claim that the representation C, twisted by the corresponding automorphism ¢ coincides with C,.
Indeed, we obtain

X(gf'Yi) = X(Emif’w) = Emici = C;a 1=1,.. -7ll~

This completes the proof of the proposition. O

Let V be a U,(g)-module, where n is an element of Spec(Z) such that n(f]") = a; # 0 for
i =1,...,0'and that and n(f5') = 0 for 8 € An,, B & {71,..., '} Let x : Uy(m_) — C be a
character defined in the Proposition 7.7, C,, the corresponding one-dimensional U, (m_)-module.
Then the space V, = H0111(]7](m7)(((:x7 V) is called the space of Whittaker vectors of V. Elements of
V, are called Whittaker vectors.

Now we describe the space of Whittaker vectors in terms of a nilpotent action of the unital
subalgebra U, (m_) generated by f,, @ € Ay, in the small quantum group U,,(g) = U;il(g)/L70
corresponding to the trivial central character 7o such that 7(n) = 1 € G and no(zf) =0, a € A,
no(l;) =1,i=1,...,1. Recall that the algebra U§71 (g) is a Hopf algebra. We shall need the following
formula for the action of the comultiplication on the quantum root elements fz, 8 = 22:1 coy €
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Am+7 ¢ € N7

nd (

(7.10) Ay1(fs) HKC' H Ly

=1 1,7=1

-1
+Zyz Qx4 x; € U<ﬁ7yi € U>/3U5S (h)a

i

= Pyrx o, 05)ci

®@fa+fe®l+

1—s

where U is the subalgebra (without unit) in U;il(m_) generated by f,, a <  and Usp is the
subalgebra (without unit) in Ugil(n_) generated by fo, a > f.
To derive formula (7.10) we first observe that by Corollary 4.3.2 in [6] one has in U,f_l(g)

!
(7.11) AXG) =][KieX; +X; @1+

i=1
+> Y@,

where 2 are elements of the subalgebra (without unit) in Up(g) generated by X, a < ( and
y, are elements of the subalgebra (without unit) in Uj(g) generated by X, a > § and by the
L j=1,...,1L

Using formula (4.8), the definition of the elements fz and the action of the comultiplication A on
the elements H,; we obtain from formula (7.11) that

(0]

0,0 )Ci

A (fs) HK“HLf_ @ fs+fs®l+
4,j=1
+Zyi®$i:

where z; are elements of the subalgebra (without unit) in Uﬁfl(g) generated by f,, @ < 8 and by
the L§d7j =1,...,0 and y; are elements of the subalgebra (without unit) in U,‘:fl(g) generated by
far o> B and by the L7, j =1,...,1

On the other hand formula (4.11) and commutation relations (4.15) imply that in fact z; are
elements of the subalgebra (without unit) in Uﬁ_l(g) generated by f,, a < 3. Since Uj"—l(g) is in
fact a Hopf subalgebra in U;"L‘_l (g) we deduce that z; are elements of the subalgebra (without unit)
inU j(l (g) generated by fo, @ < 8 and y; are elements of the subalgebra (without unit) in U j{l (9)
generated by fo, a > 3 and by the L;«tl,j =1,...,1. This implies (7.10).

Formula (7.10) shows that UES-1 (m_) is a right coideal in U§71 (g). One can also equip the algebra
U;fl(m,) with a character given by formula (5.5), where the numbers ¢; are the same as in the
definition of the character xy. We denote this character by the same letter, x : Ujf1 (m_) —C.

Note that V' can be regarded as a U.(g)-module and a U§71 (g)-module assuming that the ideal
I, acts on V in the trivial way. Now observe that A,—1 : US (m_) — US (g) ® US (m_)
is a homomorphism of algebras. Composing it with the tensor product S;-1 ® x of the anti-
homomorphism S,-1 and of the character x, which can be regarded as an anti-homomorphism as
well, one can define an anti-homomorphism, U§71 (m_) — U;’f1 (9), x = Ss—1(x1)x(22), Ag—1(x) =
T @z, w €U (m_).

Using this anti-homomorphism one can introduce a right Ujfl(m,)faction on V' which we call
the adjoint action and denote it by Ad. It is given by the formula (compare with the definition of
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the adjoint action in (4.13))

(7.12) Ad zv = Sy-1(21)x(22)V, 2 € Uff_l(m,),v ev,

where A1 (z) = 1 ® x2.

Note that using the Swedler notation for the comultiplication, (A -1 ®id®id)(Ay-1@id)Ag-1(z) =
1 ® o @ x3 @ x4, the coassiciativity of the comultiplication and the definition of the antipode we
have for any = € U;il(m,), y € Ujil(g)7 v € V (compare with the proof of Lemma 2.2 in [9])

(7.13) Adz(yv) = Sg—1(x1)x(x2)yv = Se-1(x1)yzaSe—1(23)x(24)v = Adz (y)Adaa(v).

Similarly to the Proposition in Section 5.6 in [5] we infer that Zj is a Hopf subalgebra in UE‘(1 (9).
Namely,

l m%(ﬁph'*ai’a'j)
Ay — K T QM+ fM®1,
j=1
L (i)
A371(€?7') _ 61;1 ® Ki—m + H Lj g 1-s ® 6?7

j=1
Ay (L) =L ® L™,

Therefore recalling that by the definition of x for z € U;ﬁl (m_) () Zp one has x(x) = n(z) we deduce
Ad zv = Sg-1(x1)x(x2)v = n(Ss-1(21)T2)0 = £4-1 ()0, 0 EV,

where £4-1 is the counit of U;_1 (g9). Note that by the definition of the ideal I,,, the ideal U;_1 (m_)N 1, C
Uf_l(m_) is generated by the elements f7', o € Ay, and e,-1(f7') = 0 for a € Ay, by the def-
inition of e,-1. Hence the adjoint action of U;il(m,) on V induces an action of the subalgebra
Uy, (m_) of the small quantum group U,,(g). We call this action the adjoint action as well.

Note that the small quantum group U,,(g) is a Hopf algebra with the comultiplication inherited

from U;’ﬁ1 (g). Now arguments used in the proof of Proposition 5.6 in [20] can be applied verbatim
to establish the following lemma.

Lemma 7.8. The space of Whittaker vectors V,, coincides with the space of Uy, (m_)—invariants for
the adjoint action on V,

(7.14) Vi={veV:Ad z(v) = gs-1(x)v Yo € U, (m_)}.
! . ! %(%Ph/*a“aj)ci . .
Proof. Indeed, denote by T} the factor [[,_; K" Hi,j:l L’ which appears in (7.10),
24 (12 Pyrs iy e
Tz = Hézl K Hi,j:l L;lJ e ! Then by the definition of the antipode we have from

(7.10)
szl(Tﬁ)fﬂ + S (fﬁ) + Z Sy (yZ)IZ = Eg-1 (fﬁ) =0.

. 1 1 pp— 73—?(%&/*%,%)% . .
Since Sy-1(Tp) =Ty =L K; “ Lm0 Ly 7 this yields

(7.15) S, 1(fs) = —Ss1(Tp)fs — Z S (i) ;.



REPRESENTATIONS OF QUANTUM GROUPS AT ROOTS OF UNITY AND Q-W ALGEBRAS 21

Now for § € An,, (7.10), (7.15) and definition (7.12) of the adjoint action imply
Ad fao =Ty 'x(fa)v =Ty fav = Y Ser(yi)miv+ _ Semr (yi)x(w:)v =

(7.16) =T (x(fs) — fa)v + Zssﬂ(%)(X(%) —i)v, 2 € Ucp,yi € UsgUs (b).

If v € V,, we immediately obtain from (7.16) that Ad fgv =0 for any § € Ay, i.e. v belongs to
the right hand side of (7.14).

Conversely, suppose that v belongs to the right hand side of (7.14). We shall show that zv = y(z)v
for any z € Ujil(m_). Let U-p be the subalgebra with unit generated by U.z. We proceed by
induction over the subalgebras Us,, k = 1,...b+ 1, where as before §; < ... < & is the normally
ordered segment Ay, and we define Uy, 41 to be the subalgebra Uff1 (m_).

Observe that 0; is a simple root and hence Ucs, = 0. Therefore we deduce from (7.16) for § = &,

Ad f51v = Té_ll(x(f§1) - f51)U =0.
Since Ty, ! acts on V by an invertible transformation this implies (x(fs,) — f5,)v = 0, and hence
v = x(z)v for any = € Us, as U, is generated by fs, .
Now assume that for some k < b xv = x(z)v for any x € U5, . Then by (7.16)
Ad fov =T;  (x(fs) = far)v =0,
As above this implies
(7.17) (x(f5,) = f3,)v = 0.

By Proposition 4.6 any element y € U, ,, can be uniquely represented in the form y = f5,3'+y",
where v/, y" € Us,. Now by (7.17) and by the induction assumption

yo = (fs,4" +v")v = x(f5.)x@W v+ x¥")v = x(y)v,

i.e. yv = x(y)v for any = € Uy, 41+ This establishes the induction step and completes the proof.
O

The following proposition is an analogue of Engel theorem for quantum groups at roots of unity.

Proposition 7.9. Let 1) be an element of Spec(Zy). Assume that n(f}') = a; # 0 fori=1,...,I'
and that n(fg') =0 for B € An,, B& {n,....,w}, and hence ' =n(f}') = a; #0 in Uy(m_) for
i=1,....0" and f5' = 0 in Uy(m_) for B € An,, B & {7,....,w}. Let x : Uy(m_) — C be any
character defined in Proposition 7.7. Then any non-—zero finite-dimensional Uy (g)-module contains
a non—zero Whittaker vector.

Proof. First we show that the augmentation ideal J° of U, (m_) coincides with its Jacobson radical
which is nilpotent. The proof of this fact is similar to that of Lemma 7.6, and we shall keep the
notation used in that proof.

We define \78“-) = J°N(Uny(m_))k,5), so that \78”) C J&,J) if (k,i) < (K,j), and \78,1_171,) =
J°.
We shall prove that J° is nilpotent by induction over the order in {1,...,m — 1} x {1,...,b}.
Note that (k,4) = (1,1) is minimal possible such that J ;) is not trivial. If y € J(; 1y then y must
be of the form
(718) Yy = afl/7 a€C.

The product of m elements of type (7.18) is equal to zero,

fpram =0,
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as fg' = 0. We deduce that (k7(0171))m =0.

Now assume that (‘7&’1.))1( = 0 for some K > 0. Let (k,4") be the smallest element of {1,..., m—
1} x{1,...,b} which satisfies (k,i) < (k’,i"). Then by Propositions 4.6 and 6.2 any element of j&,ﬂz,)
is of the form f5,u + u', where u’ € j&i) and u € (Upy(m_)) (k-

Now equation (4.15) implies that for any u € (U,,(m_)),q;) one has
(7.19) ufs, = cfs,u+w,

where ¢ is a non-zero constant depending on u, and w € ‘7(9&1')' By the formula (7.19) the product

of m elements fs,up, +u,, p=1,...,m of the type described above can be represented in the form
(7.20) > fe

j=0
where ¢; € j& j for j=0,...,m—1and ¢y, € (Uno(m_))(r,5)- Since f5* = 0 the last term in sum

(7.20) is zero. So sum (7.20) takes the form

m—1

(7.21) > e
=0

where ¢ € ‘78“). By (7.19) the product of K sums of type (7.21) is of the form

(m—1)K

g
Z f6i’cj’
3=0

where each ¢ is a linear combination of elements from (\7&7 Z.))K . By our assumption (j& z.))K =0,
and hence the product of any mK elements of ‘7&,7 i) 1s zero. This justifies the induction step and
proves that ‘78n—1,b) = JY is nilpotent. Hence [J° is contained in the Jacobson radical of Uy, (m_).

The quotient algebra U, (m_)/J° is isomorphic to C. Therefore J° coincides with the Jacobson
radical of Uy, (m_).

Now let V' be a finite-dimensional U, (g)-module. Then V is also a finite-dimensional U, (m_)-
module with respect to the adjoint action. Thus V' must contain a non-trivial irreducible U, (m_)—
submodule with respect to the adjoint action on which the Jacobson radical J° must act trivially.
From (7.14) it follows that this non—trivial irreducible submodule consists of Whittaker vectors.This

completes the proof.
O

Let
¢= | Ge
cec(w)
be the Lusztig partition of G (see [13]; we use the notation of [19], Section 4). Here C(W) C W is
a certain subset of the set of conjugacy classes W in W.
From the above discussion and Proposition 6.2 in [19] we deduce the following theorem.

Theorem 7.10. Let n € Spec(Zy) be an element such that 7 € Ge, C € C(W) and s~ € C.
Denote by d the number corresponding to s~ and defined in Proposition 6.2 in [19]. Assume that
m and d are coprime.

Then there is a system of positive roots Aﬁjl and a quantum coadjoint transformation g such that
§ = gn satisfies §(f}}) = a; # 0 fori=1,...,1" and §(f5') = 0 for B € A, B & {715, }, where
fa € Ue(m_) are generators of the corresponding algebra Ug(m_) C Ue(g) defined in Section 7. Let
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X : Us(m_) — C be any character defined in Proposition 7.7. Then any finite-dimensional U, (g)-
module contains a non-zero Whittaker vector with respect to the subalgebra Ud(m_) = g~ 'Ug(m_)
and the character x9 given by the composition of x and §, X9 = x 07 : Ug(m_) — C.

Moreover, dim Ug(m_) = madim O=n  where Onry, is the conjugacy class of mn € Ge.

Proof. Let
Ag ={a € Als(a) = a},

and I' the set of simple roots in a system of positive roots A:fl defined in Proposition 5.1. We
shall need the parabolic subalgebra p of g and the parabolic subgroup P associated to the subset
'y =T Ap of simple roots and containing the Borel subalgebra corresponding to Ai_l. Let n and
[ be the nilradical and the Levi factor of p, N and L the unipotent radical and the Levi factor of P,
respectively.

Note that we have natural inclusions of Lie algebras p D n. We also denote by n the nilpotent
subalgebra opposite to n. Denote by N the subgroup of G corresponding to the Lie subalgebra n
and by N the opposite unipotent subgroup in G with the Lie algebra t. Let Z be the subgroup of
G generaled by the semi—simple part of the Levi factor L corresponding to the Lie subalgebra [ and
by the centralizer of s in H. Denote by $ a representative of s in G. Let Ny = {v € N|svs~! € N}
and Hy C H the subgroup corresponding to the orthogonal complement by of h’ in h with respect
to the Killing form.

By Theorem 5.2 in [19] for every C € C(W) and s~! € C there is a system of positive roots Afl
as in Proposition 5.1 and such that all conjugacy classes in the stratum G intersect the variety
$HyNs which is a subvariety of the transversal slice ¥, = $Z N to the set of conjugacy classes in G.

Now let $hons, hg € Ho,ns € N be an element of $HyN;. Recall that by Proposition 6.2 in [20]
the representative $ can be represented in the form $ = m~'um ™! for some m,m € N, where u € G
is an element of the form

Y
(7.22) u= H explt; X_..],
i=1
t; € C are non—zero constants depending on the choice of the representative s and the product over
roots is taken in the order opposed to the normal order associated to s~—1.
Therefore

1

shons = m ™ 'um Y hons.

Conjugating the element in the r.h.s. by m we obtain that shons is conjugate to
L1
um thongm = uhon = Ao(hgn, hy >u™t),

1 11
where n € N, h§ € Hp is any element such that hjhi = ho, Ao is defined immediately after
Proposition 6.4, and we used the fact that Hy normalizes N and commutes with the element u.
By part (iv) of Proposition 6.5 we conclude that if n € Spec(Zy) satisfies mn € G¢ then there is
1

FE 1
a quantum coadjoint transformation g such that 7(gn) = (hZn, hy 2u~") for some n € N, h¢ € Hy.
Denote & = gn. From the definition of the map 7 and of the element w it follows that

exp(f(ng)ngD) CXp(f(x[;D,l)X*ﬂDfl) cee CXp(é(mEI)X*fh) =u

which implies §((X7,)™) = (Ejﬁ # 0 fori=1,...,0" and that {((X;)™) =0 for B € A,
BE{n,...,wk

By the definition of the elements fz with g = 22:1 mia; we have fz =[] L;nnf X . There-
meinij

fore the commutation relations between elements L; and X 5 imply that f5" = ¢z Hi j=1L; (Xg)™,

l
ij=1
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where cg are non-zero constants, and hence {(f5") = cg Hi,j:l (LT )mimiag((Xg)™). Since £(L;) #
0 for j =1,....1, £((X;)™) ti,])m #0fori=1,...,1" and £((X5)™) = 0 for f € A,

- (ev;—5
B & {n,....,w} we deduce £(f3}) = a; # 0 for i = 1,...,0" and £(f5") = 0 for f € Ay,
B & {v,...,y}. Thus ¢ satisfies the condition of Propositions 7.7 and 7.9. Let Ug,(m_) = Ug(m_)
be the corresponding subalgebra in Ug(g).

Note that by Theorem 5.2 in [19] for any g € G¢ we have
dim Zg(g) = dim X,
where Zg(g) is the centralizer of g in G.
By the definition of X, we also have dim £, = I(s) + 2D, 4 dim h’*. Observe also that dim G =
2D + dim b and dim b — dim §’" = dim §’ = I, and hence from (5.3) we deduce that dim m_ =
D — Dy — 5(I(s) = I') = 3(dim G — dim %) = dim O, and dim UJ(m_) = dim Ug,(m_) =

mdim m— — py3dim Os_ where O, is the conjugacy class of any g € Gc.
In particular, dim Ug(m,) = mzdim Omy where Opy, is the conjugacy class of m € Ge.
The remaining statements of this theorem are consequences of Proposition 7.9.

O

For given n € Spec(Zp) and g € G as in Theorem 7.10 we denote C,; the corresponding
one-dimensional representation of Ug (m_). Let Q,s be the induced left U,(g)-module, Q,z =
U,(9) BuI(m_) Cys. Let W2, (G) = Endy, 5)(Qy3)°"" be the algebra of U, (g)-endomorphisms
of @,s with the opposite multiplication. The algebra W;yn(G) is called a q-W algebra associ-
ated to s € W. Denote by U,(g) — mod the category of finite-dimensional left U, (g)-modules
and by WZ,(G) — mod the category of finite-dimensional left W7, (G)-modules. Observe that
if V€ Uy(g) — mod then the algebra W¢, (G) naturally acts on the finite-dimensional space

Vis = Hong(mi)((CX_a, V) = Homy, (4)(Qy3, V) by compositions of homomorphisms.

Proposition 7.11. Let ® : E — Q.5 Bws (&) E be the functor from the category of finite—

dimensional left W2, (G)-modules to the category U,(g) —mod. Its right adjoint functor is given by
UV Vs and satisfies ¥ o & = Id.

Proof. The first statement follows from the definitions.

For the second one, let £ be a finite-dimensional W (G)-module. First we observe that by the

definition of the algebra W7, (G) we have W, (G) = Endy, (4)(Qys)"? = Homyz ., 1(Cys, Qya) =
) ) 1 n —

(Qy3)y7 as a linear space, and hence (Q,3 @ (@) E) E. This proves the second statement. []

X9 =
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