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GRAPHICAL ABSTRACT 

 

 

ABSTRACT 

For the past decades, considerable attention has been focused on the manufacture of a high-

performance, environmentally compliant water-based mud system to be a better choice than 

oil and synthetic-based muds (OBM/SBM). However, the improvement of WBMs has not 

reached the satisfactory level yet and attempts in this regard should be continued. Accordingly, 

in this study, an attempt was made to improve the performance of a Bentonite-WBM by adding 

four types of hydrophilic nanoparticles (NPs), namely aluminum oxide (Al2O3), titanium 

dioxide (TiO2), silicon dioxide (SiO2), and copper oxide (CuO). The NPs were dispersed in the 

drilling fluid with concentrations of 0.01, 0.05, 0.1 and 1wt%. The results revealed that the 

Al2O3 NPs increased the amount of mud filtration up to 80% while the mud cake quality 

became poorer as compared to the based mud. In contrast, the amount of mud filtration had a 

decreasing trend when SiO2, TiO2 and CuO NPs were applied especially at the concentration 

below 0.5wt%. Rheological properties and gel strength were also improved in the presence of 

TiO2, Al2O3 and CuO NPs in comparison with the based mud. Overall, it was concluded that 
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adding of the NPs at concentrations below 0.5wt% to the Bentonite-WBM has potential to 

improve rheological and filtration properties.  

Keywords: Drilling Fluids, Water-Based Mud (WBM); Nanoparticles; Rheological Properties 
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1. Introduction 

Globally growth in energy demand and decline in oil production from the current oil 

resources has renewed the interest of petroleum engineers to explore new opportunities in deep-

water and unconventional hydrocarbon reservoirs. In this regard, the right choice of a drilling 

fluid formulation for specific drilling conditions is a key factor for the success of drilling 

operations, particularly in unconventional formations. Drilling fluids have various roles which 

include cooling drilling pipes and bits, carrying drilling cuttings from the bottom of a wellbore 

to the ground surface, suspending the cuttings from sedimentation during the shutdown, and 

stabilizing the wellbore [1-3]. Drilling fluids are mainly classified into three types, namely 

water-base muds (WBM), Oil-based muds (OBM) and synthetic-based muds (SBM). The 

OBM and SBM have higher operational efficiencies as compared to the WBM. However, the 

use of OBM and SBM has been declined due to the environmental issues [4-6]. This remains 

WBMs as the preferred ones over the other two types despite their limitations. Therefore, in 

order to obtain further achievements in drilling engineering, more studies on WBMs properties 

are in demand to improve their applications. 

The main drawback of applying WBMs emerges in the course of drilling a shale formation 

due to shale swelling which makes the use of WBMs ineffective. This is mainly due to the fact 

that shale swelling brings other destructive problems such as wellbore instability, lost 

circulation, and pipe sticking [7-8] which lower the rate of penetration and raise the drilling 

operation costs. In the 19th century, OBM was utilized in shale formations. However, in the 

20th century, the application of OBM was prohibited due to the environmental issues. 

Therefore, water became the main and unique fluid to make drilling muds. This caused the 

researchers focused on the modification of rheological WBM properties to solve the 

aforementioned problem. It is an important point that the driller of wells be able to control the 

rheological properties of drilling fluids by using various additives.  
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Several studies were carried out on the WBMs during past decades to modify their 

properties by adding different additives such as soda ash and calcium carbonate [9-10]. 

Recently, the use of nanoparticles (NPs) has been introduced for modification of drilling fluid 

properties [11]. Through chemical and physical processes, researchers have shown an ability 

to create nanomaterials with improved thermal, mechanical, electrical, and rheological 

properties. The positive effects of different types of NPs on the properties of drilling fluids are 

documented by some researchers [1,10,12-18]. For example, Hou et al. [16] and Mohammadi 

et al. [15] evaluated the effects of nanopowders on the rheological properties of clay based-

muds at high temperature and pressure conditions. They could enhance the penetration or 

plastic deformation. Rosso et al. [12] determined the effect of zinc oxide NPs to remove H2S 

productive on the wells to improve the WBM performance and maximizes the porosity. Abdo 

and Haneef [1] came up with an approach to stabilize the drilling fluid rheology in high-

pressure, high-temperature (HPHT) conditions by making use of NPs. They claimed that NPs 

are able to retain the properties over a wide range of operating temperatures and pressure, thus 

ensuring efficient operation in versatile formations and operating conditions. Mohammed [10], 

Amanullah et al. [13], Mao et al. [14], and Aftab et al. [17] have studied the effect of various 

concentration Nano iron oxide on the enhancement of Bentonite-WBM rheological properties 

such as yield point, plastic viscosity and apparent viscosity. Chai et al. [19] and Amarfio [20] 

studied the effect of Al2O3 NPs on the WBM at varying temperature conditions that have shown 

increasing procedure of shear rates. Sadeghalvaad and Sabbaghi [21] and Zhou et al. [22] 

studied the effect of TiO2 NPs on the WBM properties and the results indicated that the additive 

contributes in increasing the base mud viscosity and decreasing the fluid loss and filter cake 

thickness. Wang et al. [18] introduced modified Fe3O4 NPs with Poly (sodium p-styrene 

sulfonate) into water-based drilling fluids as effective additives. Their rheological tests 

indicated a significant improvement of the drilling fluids against salt (KCl) tolerance even 
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under high temperature and high salinity. They, therefore, concluded that their modified water-

based drilling fluids are potential candidates for drilling in deep and salty formations. A few 

research studies have also been conducted on thermal stability and hydrate inhibition by metal 

oxide NPs [23-28]. It was found that heat transfer properties have been improved extensively 

through the addition of metal NPs. With the use of NPs, thermal conductivity increases over 

50% for some cases, and filtration loss decreases with increasing NPs concentration for nearly 

all studies. Accordingly, it can be concluded that NPs may have the potential of solving 

technical challenges associated with the drilling operation.  

The performance of a nano system in water based drilling fluid has shown promising 

potential in shale formations stability. The main mechanism through which the nano system 

reduces the shale permeability is by physically plugging of the nanometer sized pores [29]. The 

right sized NPs in combination with the correct fluid loss system can minimize the fluid-rock 

interaction. 

As mentioned above, although there are some studies on the effects of NPs applications on the 

rheology of WBM, the number of NPs utilized in the previous studies was limited and more 

studies are in demand in this area of research to completely understand the roles of various NPs 

types and concentrations on the WBM.  Thus, the objective of this study is to determine the 

rheology properties of a Bentonite-WBM in the presence of various metal oxide NPs namely 

Al2O3, TiO2, CuO, and SiO2. Moreover, finding the optimum concentration of the above 

mentioned NPs was another task in the current study. For this purpose, the Bentonite-WBM 

was first made and then the above mentioned NPs were added at different concentrations to the 

base mud. Thereafter, plastic viscosity, yield point, gel strength, filtration loss and filter cake 

thickness were evaluated and the results were compared to each other.  

 

ACCEPTED M
ANUSCRIP

T



6 
 

2. Materials and methods 

2.1. Materials 

In this study, four commercial NP types, namely TiO2 (40nm, purity 99.5%, specific 

surface area 50-100 m2/g), SiO2 (40nm, purity 99.5% and specific surface area 160 m2/g), CuO 

(40nm, purity 99% and specific surface area 50 m2/g), and Al2O3 (40nm, purity 99% and 

specific surface area 60 m2/g) were Procured from SkySpring Nanomaterials, Inc., (Houston, 

TX). X-ray diffraction (XRD, model D5000, SIMENS) and transmission electron microscopy 

(TEM, model JEM-2100/HR, JEOL, Acc.200.00kV) analyses were carried out to evaluate the 

NPs crystalline compositions, sizes, and morphologies. Sodium carbonate (also known as soda 

ash, Na2CO3, purity >99%) was obtained from Merck chemicals. Bentonite (size 40 µm and 

density of 2.68 g/cm3) powder received from SunClayTherapy, Inc. (Florida, US) and was 

utilized without further purification. To determine the morphology of Bentonite, Field 

Emission Scanning Electron Microscope (FESEM; HITACHI-SU8020) image was prepared 

from the powder. Furthermore, energy dispersive X-ray (EDX) analysis was also carried out to 

determine the Bentonite compositions.  

 

2.2. Water-based mud preparation 

To make a based mud, 22.5 gr Bentonite was slowly added to 350 mL of distilled water 

and put them in a mixer for 10 mins. Then, 2 gr of sodium carbonate was added to the 

suspension to maintain the filtration rate and increase the viscosity of the drilling fluid. The 

suspension was mixed by the mixer for 5 mins to achieve a uniform suspension. The prepared 

mud was put in the room at ambient condition (27 oC) for 16 hrs according to the API standard 

(API 1608). Accordingly, the bentonite crystallized completely in the suspension. After 16 hrs, 

before any testing the mud was put further in the mixer for 2 mins to recombine the mud 
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contents. To determine the influence of NPs on the mud rheology, the base mud was placed 

into a balloon and the NPs in concentrations of 0.05, 0.1, 0.5 and 1 wt% were added to the 

prepared base mud. The muds were then agitated for 1 hr using an orbital shaker at 220 rpm 

and ultrasonicated by an ultrasonic bath for a period of 15 mins to obtain homogeneous muds 

prior to each test. It should be noted that API 13D has been meticulously used for conducting 

the experiments. The concentrations of mud ingredients and nanoparticles have been adopted 

from literature [30] and some primary experimental studies. 

 

2.3. Determination of the rheological properties of muds 

Basic rheological properties of the prepared muds such as plastic viscosity, yield point, gel 

strength, filter cake thickness and filtrate loss were tested. The viscosity and gel strength of 

muds were measured via a V-G meter (model 35, EN 61010-1:2010, CAN/CSA C22.2 No. 

61010-1-2012). API RP 13B-1 was used to measure the plastic viscosity and yield point 

parameters. The sample initially was placed in a Thermo-cup and then was heated up to 49°C. 

Then, the V-G meter motor speed was set at 600 and 300 RPM to determine the values of 

plastic viscosity and yield point at each speed. Besides that, a filter press (Series 300 API) was 

applied to measure the filter loss and evaluate the filter cake. The filter press has a pressurized 

cell, which has been fitted with a filter medium. The schematic of filter press setup is shown in 

Fig.1. A Nitrogen gas cylinder was connected to the filter press equipment to raise the cell 

pressure to 100 psi. The prepared mud was loaded into the cell within 1⁄4 inch of O-ring groove. 

A suitable graduated cylinder was placed under the filtrate opening to achieve the filtrate value. 

The inlet valve applying pressure was then opened to the cell. Each test was carried out in a 

period of 30 min. once the test was finished, the cell was disassembled and the mud was 

discarded. It should be noted that the disassembling should be done slowly and carefully to 
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prevent any disturbance and damage to the formed mud cake. Then, the cake was washed gently 

to remove excess mud. Finally, the thickness of the filter cake was measured and reported 

according to the thickness of 1/32 inch. It should be pointed out that all tests were carried out 

at room temperature (27 ˚C). 

The rheology of the mud systems has been also tested using rotational rheometer (OFITE 800). 

Fig. 2 shows shear stress against the shear rate of the base drilling fluid without NPs at 27 oC. 

As it can be seen from Fig.2, shear stress was increased with the shear rate which reveals that 

the fluid behavior of the base mud follows the Herschel-Buckley model with a shear thinning 

behavior similar to Bingham Pseudoplastic fluids. However, power law fluid behavior has also 

been reported by other researchers [31-32]. 

The Herschel-Buckley model can be generalized by the following Equation: 

𝜏 = 𝜏0 + 𝐾𝛾𝑛                                       (1) 

 

Where τ is the shear stress (lb/100 ft2), τ0 is the yield point (lb/100 ft2), K is the consistency 

index, γ is the shear rate (sec-1) and n is the flow behavior index (dimensionless) which should 

be less than 1 for shear thinning fluids. 

 

3. Results and discussion 

3.1. Powders characterization 

The average sizes of CuO, Al2O3, SiO2, and TiO2 nanopowders were determined: firstly, by X-

ray diffraction (XRD) analysis, and secondly, by Scherrer’s formula [33] as follows:  

                                                                                                                        (2) 
0.9 λ

 
cos

hkl

B

d
B 


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where dhkl is the mean NPs size (nm), λ is the wavelength of Cu Kα radiation (=0.1542 nm), B 

(in radians) comprises the full width at half-maximum of the broadened diffraction line 

observed at the 2θ angular range, and θB is the Bragg angle of diffraction.  

The XRD analysis from Al2O3 and CuO samples demonstrated that these two NPs have alpha 

(α) crystalline structure and their compositions are pure (Fig. 3a-c). Furthermore, SiO2 and 

TiO2 NPs have partial amorphous (semi-crystalline) structures. The former has quartz 

composition while the latter has a composition of anatase as shown in (Fig.3, (b) and (d)). 

Besides that, from the Eq.1, the sizes of CuO, Al2O3, TiO2, and SiO2 NPs were calculated 29, 

26, 11.8, and 16.1 nm, respectively. The sizes of CuO, Al2O3, TiO2, and SiO2 NPs were also 

measured via TEM and image-processing software (ImageJ; National Institute of Mental 

Health). The measured geometric means of CuO, Al2O3, TiO2, and SiO2 NPs diameter were 28 

(11-120), 25 (12-138), 6 (3-65), and 13 (7-81) nm, respectively. Therefore, there is a 35% to 

40% difference in the size of the nanopowders depending on whether it was measured by TEM 

and XRD or reported by the manufacturer. Furthermore, the morphology of NPs appeared to 

be spherical according to TEM images (Fig. 3). In addition, the FESEM plus EDX analyses 

results depict that the morphology of bentonite particles is similar to cornflake and O, Si, Al, 

Na, Ca, and K are the elements detected in this clay (Fig. 4). 

 

3.2. Effect of NP type and concentration on rheological properties of Bentonite-WBM 

3.2.1. Plastic Viscosity  

Plastic viscosity (PV) is a parameter of the Bingham model and it represents the viscosity of 

mud when extrapolated to infinite shear rate on the basis of the mathematics of Bingham model 

[34]. Generally, a drilling fluid with high PV is difficult to pump and, therefore, is not favored 

by drillers for drilling operations. However, a drilling fluid should have an appropriate density 

to improve the hydrostatic pressure which has a direct relationship with the mud viscosity. 
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Accordingly, lower mud viscosity results in lower mud density and apparently lower 

hydrostatic pressure which is not always a good outcome.  Therefore, an optimum value of PV 

should be obtained by considering all the operational conditions and the required characteristics 

of the mud for having safe drilling operations [35]. 

The PV of Bentonite-WBM (base mud) was measured to be 6 cP. As shown in Fig.5, the 

PV of Bentonite-WBM was generally increased by adding the NPs. However, the amount of 

PV for each type of NPs at various concentrations (from 0.01 to 1 wt%) was different. The 

amount of Bentonite-WBM PV was approximately doubled by adding Al2O3 NPs from 0.1 to 

1wt%. The amount of PV was also increased to 10 cP by adding CuO NPs at 0.5wt%. However, 

by adding 1wt% of CuO NPs to the Bentonite-WBM mud, the PV amount was decreased to 

8.5 cP. By SiO2 NPs the amount of PV was remained constant at 8 cP at all concentrations. 

The results for TiO2 NPs were totally different from other NP types. By adding 0.01wt% TiO2 

NPs to base mud, the PV amount was achieved 10 cP. With increasing concentration up to 

0.5wt%, the PV was declined to 7.5 cP before reached to 9 cP at 1wt%.  

NPs can improve the rheological properties of Bentonite-WBM using various mechanisms 

which mostly depend on the continuous phase of mud system and characteristics of NPs. SiO2 

NPs can typically enhance the apparent viscosity of water as the continuous phase of drilling 

fluids [5,36-38]. It has been well established that the viscosity of nanofluids is much higher 

than the viscosity of conventional dispersions at the same volume concentration of dispersed 

particles. As viscosity is defined as internal friction between two layers of a fluid under shear 

stress, once NPs are dispersed in the fluid, there is a possibility of increasing friction between 

layers of the fluid, which results in an increase in viscosity of nanofluid [11,39-40]. 

Generally, in absence of any reaction, physical properties of NPs such as their geometry and 

density along with their heat capacity play an important role in alteration of drilling fluid 
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rheological properties. the NPs and Bentonite-WBM may be linked or bonded together directly 

or through certain intermediate chemical linkages to increase the PV of Bentonite-WBM [41]. 

Among NPs utilized in this study, Al2O3 NPs at a concentration of 1wt% is the best option to 

enhance the PV of Bentonite-WBM and CuO, TiO2 and SiO2 NPs in order are next options. 

 

3.2.2. Yield Point 

The yield point is a part of fluid flow resistance created by electrochemical forces within a 

fluid. These electrochemical forces are due to the electrical charges on the surface of reactive 

particles [42]. Generally, increasing yield point value leads the drilling cuttings faster to 

transport and carry toward the ground surface [43]. Yield point must be high enough to carry 

cuttings out of the hole, but not so large as to create excessive pump pressure when starting 

mud flow [44]. The yield point of based Bentonite-WBM was measured to be 21 lb/100ft2. The 

effects of NPs on yield point of Bentonite-WBMs are demonstrated in Fig.6. The yield point 

of Bentonite-WBM shows different performances at the various NPs concentrations. The yield 

point of Al2O3 NP Bentonite-WBM has an increasing trend at all examined concentrations. The 

maximum value of yield point for Al2O3 NP Bentonite-WBM was achieved 45 lb/100 ft2 at a 

concentration of 1wt%. In contrast, the yield point values achieved by CuO NPs were 

moderately decreased from 22 lb/100 ft2 at 0.01wt% to 18 lb/100 ft2 at 1wt%. The yield point 

values of Bentonite-WBMs approximately remained unchanged around 24 lb/100 ft2 by adding 

SiO2 and TiO2 NPs at all concentrations. Generally, Al2O3, TiO2, SiO2 NPs reveal better yield 

point result than CuO NPs especially at a concentration of 1wt%. 

3.2.3. Gel strength 

Gel strength is one of the important drilling fluid properties which represents the ability of a 

drilling fluid for suspending drilling fluid solids and cutting [42]. The gel strength is a 
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measurement of electrochemical forces within the fluid under static condition. Fig 7 shows the 

effects of NPs on gel strength at different concentrations at 10 seconds and 10 minutes, 

respectively. The initial measurement of base mud gel strength showed that the gel strength 

value for 10 seconds and 10 min was respectively 17 and 17.5. As shown in Fig. 7, the gel 

strength values of Bentonite-WBMs for the both tests (10 sec and 10 min) were increased 

around 2.5 folds by adding Al2O3 NPs from 0.01 to 1wt%. At 1wt% of Al2O3 NPs concentration 

the Bentonite-WBM 10 sec gel strength and 10 min gel strength values achieved 47 and 76 

lb/100 ft2, respectively. Both TiO2 and CuO NPs Bentonite-WBMs have a similar trend in gel 

strength values where at concentrations between 0.01 and 0.1wt%, the gel strength values 

decreased and then increased till 1 wt%. The values of 10 sec and 10 min gel strength in the 

presence of SiO2 NPs were remained constant from 0.01 to 0.5wt%. However, by adding 1wt% 

of SiO2 NPs both 10 second and 10 mins gel strength values were declined. The high gelling 

characteristics of the fluid may demand a high starting torque which needs to be justified by 

investigating the shear thinning behavior of the fluid. Furthermore, high gel strength is essential 

for avoiding many severe drilling problems [45]. As a result, it can be concluded that the gelling 

properties of Al2O3 and TiO2 NPs at concentration of 1wt% are better than SiO2 and CuO NPs. 

 

3.2.4.  Filtration Loss 

The fluid loss volume and mud cake thickness are the two measurable parameters in this type 

of test. The high volume of filter loss is not desirable property for drilling mud since it may 

have some issues like formation instability and formation damage [46]. The comparison of the 

fluid loss behavior of Bentonite-WBM with different concentrations of NPs is shown in Fig.8. 

The Bentonite-WBM had 13.4 mL fluid loss after 30 min. Adding 0.01wt% of Al2O3 NPs to 

the Bentonite-WBM, the fluid loss volume was achieved 12.5 mL and it was significantly 
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increased to 24.4 mL at Al2O3 concentration of 1wt%. Generally, it can be concluded that the 

Al2O3 NPs is not a suitable additive for reducing the filter loss of Bentonite-WBM.  

The filter loss of Bentonite-WBM was slightly reduced to 12.6 mL by adding 0.1wt% of CuO 

NPs. However, addition of 1wt% of CuO NPs to the Bentonite-WBM, mud filtrate volume 

raised to 14.4 mL. The results show that CuO NPs can be a candidate as an additive to reduce 

the Bentonite-WBM fluid loss especially at concentration below 0.1 wt%. At concentrations 

below 0.1wt%, SiO2 NPs effectively reduced the Bentonite-WBM fluid loss (around 12.5 mL). 

SiO2 NPs at concentration above 0.5wt%, similar to CuO NPs, caused the fluid loss increased 

to 14.2 wt%. However, SiO2 NPs as compared to CuO NPs is better candidate for the 

Bentonite-WBM fluid loss reduction. Finally, after adding different concentrations of TiO2 

NPs to the Bentonite-WBM, it was observed that the fluid loss significantly decreased to 11.4 

mL. Accordingly, TiO2 NPs as compared to the rest is the best additive for the Bentonite-WBM 

fluid loss reduction. 

 

3.2.5. The quality and thickness of the filter-cake 

For evaluation of filter cake quality toughness, slickness and hardness of mud should be 

considered. The quality of filter cake is one of the factors that should be attended in drilling 

operation. The quality is the representative factor of amount of filter loss and in drilling 

operation should be prevented from fluid loss to guarantee the wellbore stability. For this 

purpose, some additives should be added to drilling fluid to decrease the filter loss. 

From the experiment it was noticed that increasing Al2O3 NPs concentration resulted in heavy 

filter cake thickness but low quality especially at higher concentrations. Therefore, it can be 

inferred that Al2O3 NPs cannot form an effective seal for controlling filtration loss.  
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CuO NPs revealed decreasing trend by increasing concentration up to 0.1wt% and then has an 

increasing trend in making filter-cake. And with the laboratory analyzes CuO in 1wt% has the 

higher fragility in the filter-cake. On the other hand, TiO2 shows decreasing trend in making 

filter-cake. The quality of TiO2 filter-cake was smoother and better particle compression also 

this filter-cake has not easily cracked. In the lower concentration (0.05wt%) filter-cake of TiO2 

has suitable quality. After 16 hours, filter-cake in the higher concentration twitched but in lower 

concentration has more flexibility. Also, it has a suitable quality rather than CuO and Al2O3. 

SiO2 shows increasing trend in making filter-cake by increasing concentration. In the lower 

concentrations (below 0.05w%), the quality of filter-cake is relatively better and more flexible 

with less friability. 

In these tests, it was observed that with increasing in the concentration, the quality of the filter 

cake was improved notably only for TiO2 NPs which have the lowest fluid loss among others. 

The better filter cake quality and lower fluid loss after TiO2 belong to SiO2, CuO, and Al2O3 

NPs, respectively.  

4. Conclusion 

The effects of different concentrations of Al2O3, TiO2, SiO2 and CuO NPs on rheology of a 

Bentonite water based mud were determined. Generally, the applied NPs in this study were 

found to be suitable for the use in drilling mud due to its functional characteristics of 

maintaining low viscosity without compromising the density requirement and thus expected to 

minimize drilling problems. Plastic viscosity, yield point and gel strength of the Bentonite-

WBM were increased by adding Al2O3 NPs that are favorable. Al2O3 NPs also increased the 

Bentonite-WBM fluid loss which is undesirable. Therefore, utilizing Al2O3 NPs to improve the 

Bentonite-WBM rheology is not highly recommended. TiO2 and CuO NPs resulted in 

decreasing of plastic viscosity, yield point and gel strength. These two NPs especially at 
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concentrations below 0.5wt% are recommended to be applied as additives to improve the 

Bentonite-WBM rheology. SiO2 NPs revealed a good improvement in the Bentonite-WBM 

rheology and acceptable enhancement in the characteristics of the final mud product in terms 

of filter loss and filter cake. They are thereby highly recommended to be included in the mud 

formulation especially for drilling of formations which swell while contacting with WBM (e.g. 

shales) and those formation rocks having low shear strength (e.g. unconsolidated sands). 

Overall results show that NPs can be added to Bentonite-WBM to enhance the properties of 

drilling fluids. However, the significant point is NPs concentrations which plays a vital role in 

their usage. 
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 Fig. 1: Schematic of filter press apparatus  

 Fig. 2: Shear stress against the shear rate of the base mud at 27 oC  

Fig. 3: TEM and XRD analyses from nanopowders: (a) Al2O3, (b) TiO2, (c) CuO, and (d) SiO2  

Fig. 4: FESEM (up) and EDX (down) analyses results from bentonite particles  

Fig. 5: Behavior of Bentonite-WBM plastic viscosity in presence of different NPs  

Fig. 6: Yield point of NPs Bentonite-WBM at different concentrations (CuO, TiO2 and SiO2 NPs 

Bentonite-WBM from left Y-axis and Al2O3 NPs Bentonite-WBM from right Y-Axis)  

Fig. 7: Bentonite-WBM Gel strength in the presence of various NPs measured in: (a) 10 sec and 

(b) 10 min (CuO, TiO2 and SiO2 NPs Bentonite-WBM from left Y-axis and Al2O3 NPs Bentonite-

WBM from right Y-Axis)  

Fig. 8: The Bentonite-WBM fluid loss in the presence of NPs at various concentrations (CuO, TiO2 

and SiO2 NPs Bentonite-WBM from left Y-axis and Al2O3 NPs Bentonite-WBM from right Y-Axis)  
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Fig. 1: Schematic of filter press apparatus 

 

 

 

Fig. 2:  Shear stress against the shear rate of the base mud at 27 oC  
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Fig. 3: TEM and XRD analyses from nanopowders: (a) Al2O3, (b) TiO2, (c) CuO, and (d) 

SiO2 
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Fig. 4: FESEM (up) and EDX (down) analyses results from bentonite particles 
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Fig. 5: Behavior of Bentonite-WBM plastic viscosity in presence of different NPs 
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Fig. 6: Yield point of NPs Bentonite-WBM at different concentrations (CuO, TiO2 and SiO2 

NPs Bentonite-WBM from left Y-axis and Al2O3 NPs Bentonite-WBM from right Y-Axis)  
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Fig. 7: Bentonite-WBM Gel strength in the presence of various NPs measured in: (a) 10 sec 

and (b) 10 min (CuO, TiO2 and SiO2 NPs Bentonite-WBM from left Y-axis and Al2O3 NPs 
Bentonite-WBM from right Y-Axis)  
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Fig. 8: The Bentonite-WBM fluid loss in the presence of NPs at various concentrations (CuO, 

TiO2 and SiO2 NPs Bentonite-WBM from left Y-axis and Al2O3 NPs Bentonite-WBM from 

right Y-Axis)  

 

12

14

16

18

20

22

24

26

11

12

13

14

15

0.01 0.1 1

F
lu

id
 l

o
ss

 (
m

L
)

F
lu

id
 l

o
ss

 (
m

L
)

NP concentration (wt%)

cuo

Tio2

Sio2

AL2o3

CuO

TiO2

SiO2

Al2O3

ACCEPTED M
ANUSCRIP

T


