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Abstract 

Integrating stable isotope tracers into rainfall-runoff models allows investigation of water 

partitioning and direct estimation of travel times and water ages. Tracer data have valuable 

information content that can be used to constrain models and, in integration with hydrometric 

observations, test the conceptualisation of catchment processes in model structure and 

parameterisation. There is great potential in using tracer-aided modelling in snow-influenced 

catchments to improve understanding of these catchments’ dynamics and sensitivity to 

environmental change. We used the spatially-distributed, tracer aided STARR (Spatially distributed 

Tracer-Aided Rainfall-Runoff) model to simulate the interactions between water storage, flux and 

isotope dynamics in a snow-influenced, long-term monitored catchment in Ontario, Canada. 

Multiple realisations of the model were achieved using a combination of single and multiple 

objectives as calibration targets. Whilst good simulations of hydrometric targets such as discharge 

and SWE could be achieved by local calibration alone, adequate capture of the stream isotope 

dynamics was predicated on the inclusion of isotope data in the calibration. Parameter sensitivity 

was highest, and most local, for single calibration targets. With multiple calibration targets key 

sensitive parameters were still identifiable in snow and runoff generation routines. Water ages 

derived from flux tracking subroutines in the model indicated a catchment where runoff is 

dominated by younger waters, particularly during spring snowmelt. However, resulting water ages 

were most sensitive to the partitioning of runoff sources from soil and groundwater sources, which 

was most realistically achieved when isotopes were included in the calibration. Given the paucity of 

studies where hydrological models explicitly incorporate tracers in snow-influenced regions this 
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study using STARR is an important contribution to satisfactorily simulating snowpack dynamics and 

runoff generation processes, whilst simultaneously capturing stable isotope variability in snow-

influenced catchments. 

 

Keywords: Tracer-aided model, streamwater ages, STARR (Spatially distributed Tracer-Aided 

Rainfall-Runoff), multi-criteria calibration, stable isotopes, snow-influenced catchments 

 

1. Introduction  

Understanding water sources, flow paths and storage dynamics is crucial for the sustainable 

management of water resources (Benettin et al., 2015). Conservative tracers, including stable 

isotopes, have provided invaluable insights into catchment-scale water fluxes and storage dynamics. 

An intrinsic value of tracers is that they help distinguish between the velocity and celerity of the 

hydrological response; the first represents the velocity of water molecules, while the second is the 

speed at which a rainfall or snowmelt perturbation is propagated via prevailing hydraulic gradients 

(McDonnell & Beven, 2014). Integrating tracers into rainfall-runoff models allows investigation of 

water partitioning and direct estimation of travel times (i.e. time spent by water travelling through a 

catchment from input to output) and water ages (i.e. time spent by water within a control volume 

from entry to the system to the present); and thus provides a basis for the examination of the 

internal consistencies of models. Essentially, tracer-aided models combine the computation of water 

fluxes and solute transport, the estimation of tracer concentrations both in storage elements and 

discharge, and consequently, the identification of the storage dynamics controlling the catchment 

discharge and solute flux responses (Birkel & Soulsby, 2015). Tracers have been integrated into 

several lumped conceptual and analytical hydrological models (Barnes & Bonell, 1996; Hooper et al., 

1988; Neal et al., 1988; Weiler et al., 2003; Sayama & McDonnell, 2009; Birkel et al., 2015; McGuire 

& McDonnell, 2015). Recently, there has been an increasing focus on statistical approaches aimed at 

representing the probability distribution of transit times (Botter et al., 2011; Rinaldo et al., 2015). 

Nevertheless, few spatially-distributed conceptualisations of tracers-aided models have been 

developed (Stadnyk et al., 2013; van Huijgevoort et al., 2016a; Delavau et al., 2017; Uhlenbrook et 

al., 2004; Kuppel et al., 2018).   

Tracer data also have a valuable information content that can be used to constrain models and, in 

integration with hydrometric observations, test the conceptualisation of catchment processes in 
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model structure and parameterisation (Uhlenbrook and Sieber, 2005; Fenicia et al., 2008). 

Calibration of models based only on the hydrograph captures the celerity of the runoff response, but 

does not necessarily further understanding of internal catchment processes, leading to equifinality in 

model solutions (Beven & Binley, 1992; Beven, 1993; Kuczera & Mroczkowski, 1998; Kirchner, 2006; 

Fenicia et al., 2008; Rinaldo et al., 2011). Although this problem has been widely examined, use of 

stream discharge observations solely for calibration remains the most common practice. Using other 

observed data to calibrate models (especially as parameterisation increases) can be useful in 

constraining the model space and testing for internal consistencies (Kuppel et al., 2018). Moreover, 

calibration based on different data often diversifies the choice of performance measures, as each 

calibrated model can be related to the information content of observations (e.g. Birkel et al., 2014). 

Accordingly, an intrinsic strength of tracer-aided models is the application of multi-criteria 

calibration (McDonnell & Beven, 2014). Commonly, multi-criteria calibrations using “hard” or “soft” 

data are based on hydrometric observations, e.g. snow depth, groundwater level, soil moisture data 

(Seibert & McDonnell, 2002; Freer et al., 2004; Finger et al., 2011). Given that a multi-criteria 

calibration in tracer-aided models is not aimed solely at improving the discharge prediction, such 

calibrations can help identify model parameters and consequently improve the interpretation of 

relative storages and fluxes for better understanding catchment processes (Gupta et al., 1998; Birkel 

et al., 2011; Price et al., 2012; Soulsby et al, 2015). 

In regions where the hydrology is dominated by snow, appropriate modelling of seasonal snowpack 

accumulation and melt is essential for simulating the catchment hydrological response, both in 

terms of timing and magnitude of spring freshet, soil-moisture content, soil thermal conductivity and 

ground temperature (Kane et al. 1991; Hinzman et al. 1996; Liston & Eilder, 2006). Processes of 

snow accumulation and melt are extremely variable in space and time, driven by the interaction of 

topography (e.g., slope and aspect), solar radiation intensity, precipitation inputs, wind fields and 

patterns of drifting snow, vegetation distribution causing interception and different rates of 

sublimation in canopy intercepted snow (Liston & Elder, 2006; Luce et al., 1998). For tracer-aided 

modelling, in addition to the formidable challenges of incorporating such spatial and temporal 

heterogeneity in energy-driven snowmelt models (e.g. DeBeer & Pomeroy, 2017), isotope mass 

balances must also be tracked to simulate the isotopic composition of melt water (e.g. Ala-aho et al., 

2017b).  Despite these challenges, there is great potential in using tracer-aided modelling in snow-

influenced catchments to improve understanding of their dynamics and sensitivity to environmental 

change (Tetzlaff et al., 2015).   
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The STARR (Spatially distributed Tracer-Aided Rainfall-Runoff) model was recently developed to 

facilitate fully distributed simulations of hydrological storage dynamics and runoff processes, as well 

as their associated isotopic compositions and age distributions (van Huijgevoort et al., 2016a,b). The 

most recent advancement in the STARR model sought to improve modelling of spatially distributed 

mass balances of snow accumulation and melt along with simulation of the isotopic composition of 

melt water (Ala-aho et al., 2017a,b). A logical next step is to test the model at other catchments with 

different intrinsic characteristics of snow accumulation and melt as a learning tool. The aim of this 

paper is to test the STARR model at the Plastic Lake catchment near Dorset, Ontario in Canada. This 

is a snow-influenced, long-term experimental site with a rich hydrological and isotopic tracer record. 

In the model application to this new site, we also use a stepwise approach to multi-criteria 

calibration. We specifically aim to: 1) evaluate the information content of different calibration 

targets when simulating the snowpack and discharge, as well as the stable isotope dynamics in snow 

melt and stream water; and 2) investigate the effects of multi-criteria calibration on the estimated 

water age distributions in the catchment. This is the first time such work has been conducted in a 

continental, southern boreal catchment. Plastic Lake is also part of a long-term study network where 

effects of acid deposition and climate change have been investigated (Aherne et al., 2008). Thus, this 

tracer-aided approach may assist in interpreting stream hydrochemistry in snow-influenced 

catchments and help to evaluate catchment sensitivity to environmental change.  

 

2. Data and Methods 

2.1  Study site 

The PC1 (Plastic-1) headwater catchment (0.23 km
2
) of Plastic Lake is located in south-central 

Ontario, Canada (45°11’N, 78°50’W), 12 km south-east of Dorset (Fig. 1a). According to the Köppen 

classification (Peel et al., 2007), the climate is humid-continental with long cool summers (Dfb). 

Mean annual air temperature is 5.0 °C, with sub-zero monthly mean temperatures from December 

to March. Mean January and June temperatures are -10.6 °C and 18.6 °C, respectively (Environment 

Canada, 2010). Mean annual precipitation is 1058 mm, with >25% as snowfall (Environment Canada, 

2010). 

Elevation ranges between 351 and 385 m a.s.l. (Fig. 1b), and the catchment contains two vegetated 

wetlands (Fig. 1c). The largest occupies a central bedrock depression, contains peat deposits > 1 m in 

depth, and represents 7-10% of the total basin (Devito & Dillon, 1993; Devito et al., 1996). Bedrock is 
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composed of granitic biotite gneiss with crosscutting pegmatitic veins in the topographic highs and 

amphibolite in the topographic lows (Kirkwood & Nesbitt, 1991; Dillon & LaZerte, 1992). The bedrock 

is largely unfractured, and therefore groundwater is limited to the near surface. Relatively quick 

infiltration and preferential lateral flow at the soil-bedrock interface are important runoff 

mechanisms (Peters et al., 1995; Buttle & McDonald, 2002). 

Soil thickness is highly variable, ranging from 0 to 1.5 m (Fig. 1d) and averaging about 0.5 m, with 

bedrock outcrops covering 10% of total area. Dominant soils are weakly developed orthic humo-

ferric and ferro-humic podzols with humic mesisols under the largest wetland, formed upon thin 

sandy basal tills (Dillon & LaZerte, 1992). Saturated hydraulic conductivities for the podzols are high: 

vertical and horizontal conductivities, respectively, are approximately 10
-4

 m s
-1

 and 10
-3

 m s
-1

 near 

the surface and decrease with depth to 10
-5

 m s
-1

 above the bedrock (Peters et al., 1995). Major 

macropores at the soil bedrock interface can lead to preferential lateral flow with greater rates than 

the sole conductivity values suggest. 

Average annual discharge is 4.3∙10
-3

 m
3 

s
-1

 with peaks up to 0.24 m
3 

s
-1

 during snowmelt and 

occasionally no flow during summer droughts. The wetland has four intermittent channelized 

inflows (Devito & Dillon, 1993) and drains to the gauged stream and subsequently into Plastic Lake. 

Runoff in the wetland is generated by saturation-excess overland flow. The catchment is forested 

and dominated by conifers: white pine (Pinus strobus) and hemlock (Tsuga canadensis) (Fig. 1c). 

Upland areas contain some red oak trees, and the wetland is forested with birch (Betula spp.) and 

black spruce (Picea mariana). The understorey is of Alnus spp., Ilex verticillata, and a well-developed 

layer of Sphagnum in the wetland (Devito et al., 1996). 

2.2  The STARR model  

The STARR (Spatially distributed Tracer-Aided Rainfall-Runoff) model is a spatially explicit 

hydrological model that simulates water fluxes, storage dynamics, isotope ratios and water ages. 

Originally developed for a long-term experimental catchment in the Scottish Highlands (van 

Huijgevoort et al., 2016a), recent advances include implementation of a snowmelt routine that 

simulates the isotopic composition of the snowpack and melt water (Ala-aho et al., 2017a,b). 

 

STARR is driven by standard meteorological variables and the isotope composition of precipitation 

(full description in Section 2.3 and calibrated parameters are listed in Table 1). The model usually 

runs at a daily time-step, but can be used at coarser or finer temporal resolution. The model builds 

on a HBV-type conceptual model structure (Lindström et al., 1997), comprising routines for 

Page 5 of 41

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6 

 

interception (of rain and snow), snow accumulation and melt, soil water storage and flow, 

groundwater storage and flow, and surface water routing. All routines use uniformly sized cells as 

primary hydrological units (Fig. S1).  

 

The snow routine is conceptualized by an energy balance based on heat advection from 

precipitation, heat storage in the snowpack, net radiation, and latent and sensible heat exchange 

(see Ala-aho et al., 2017b for details). Thermal processes are coupled with water mass balance 

modelling to solve the snow accumulation, melt and sublimation fluxes. Estimation of the amount of 

water retained in the soil uses physically-based parameters of volumetric field capacity and soil 

depth; the latter is conceptualised as the depth to either water table or bedrock. Both recharge from 

soil to groundwater storage and the soil outflows to discharge are conceptualized as power laws 

parameterized by different recession coefficients (see Ala-aho et al., 2017b for details). Actual 

evaporation is derived from potential evaporation as a function of soil water storage. The 

groundwater module is a linear reservoir, with discharge to the stream network computed as a 

linear function of water storage, while lateral groundwater flow between cells is based on DEM-

derived slopes, and a hydraulic conductivity parameter. Runoff fluxes from all cells in the different 

modules are routed through the catchment according to the local drainage direction to simulate the 

stream hydrograph. 

 

Concurrent with the hydrological process modelling, isotope tracers are stored and mixed in each 

conceptualized compartment (snow, soil and groundwater), similar to an earlier lumped tracer-aided 

model (Birkel et al., 2011): for each model compartment, isotope ratios are estimated from a mixing 

equation, assuming complete and instantaneous mixing within each cell. These mixing equations 

enable estimation of water ages, where water age is included in the model as an “artificial tracer”. 

New water from rainfall events or snowmelt is assigned an age of one day. During each time step, 

water that is already stored in the model becomes a day older, and through mixing and water 

exchange between model compartments and model cells, the water age evolves dynamically in the 

landscape analogous to the water isotope composition. An additional passive storage in isotopic 

mixing in the soil conceptualises the stored water that contributes to the isotope and water age 

mixing volume, but does not contribute to runoff generation (Birkel et al., 2015). The snow module 

accounts for sublimation fractionation (through the Efrac parameter) that would enrich heavy 

isotopes in the remaining snow storage (both canopy intercepted snow and ground snowpack). 

Another parameter (Mfrac) is used in the estimation of the temporal dynamics of isotope 

fractionation in meltwater and snowpack over the total melt period.  
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2.3  Data  

PC1 has been monitored by the Dorset Environmental Science Centre (DESC) since 1987; however, 

the period with availability of all required data (including stable isotopes in precipitation and stream 

flow) was 2010-2016. Meteorological data used as model inputs are daily precipitation, air 

temperature, shortwave radiation, relative humidity and wind speed: they were all measured using 

standard instrumentation at a nearby automatic meteorological station (PCP, Fig. 1b).  

Precipitation isotope composition is also required as a model input: liquid precipitation samples 

were collected at station PT1 (at Paint Lake, located around 10 km NW from Plastic Lake, Fig. 1a) 

from June 2010 to July 2014, while from May 2014 to May 2016 samples were collected at Plastic 

Lake (station PCP). The overlapping period in 2014 showed good correspondence of isotope ratios 

confirming that the two datasets could be merged. As only liquid precipitation was sampled (Fig. 2), 

to estimate isotopes in winter precipitation we infilled data gaps with the average monthly isotope 

compositions estimated by the Online Isotope Precipitation Calculator (Bowen, 2017). The 

estimation from OIPC is based on catchment latitude, longitude and mean elevation. According to 

(Bowen & Revenaugh, 2003) at our location the 95% confidence interval is <4‰ for δ
2
H mainly due 

to the close proximity of PC1 to several stations. The method we used for filling the isotope record 

has been shown to be effective in reproducing the depleted winter signal in precipitation and 

allowing the snowpack isotope composition to be tracked in order to simulate the melt water 

depletion (Ala-aho et al., 2017a).  

The digital elevation map had a spatial resolution of 25 m; this was used for model grid size (Fig. 1b). 

In order to have a spatially varied parameterization for vegetation, we derived a raster map from the 

Canadian Land Cover circa 2000 vector file available on GeoBase from classified Landsat 5 and 

Landsat 7 ortho-images (Fig. 1c). The catchment is classified as vegetated: almost 90% of the area is 

classed as mixed wood dense (as defined by the forest cover classification of the Earth Observation 

for Sustainable Development (EOSD) maps; greater than 60% crown closure and neither coniferous 

nor broadleaf tree account for 75% or more of total basal area). Some zones are coniferous dense 

cover (conifers >75% of total basal area) and a small area, roughly overlapping with a wetland, is 

classified as mixed wood sparse (10-25% crown closure). Some LAI (Leaf Area Index) measurements 

were available for three vegetation species (red oak, white pine and hemlock) from upward 

hemispherical images analysed using the CAN EYE V6.1 software (Weiss & Baret, 2010). We averaged 

LAI values of white pine and hemlock to produce a conifers class value (LAI=4.3) and combined their 

LAI values with that of red oak to produce a mixed wood value (LAI=4.1). To model the hydrological 

characteristics of the wetland, we digitised the areas using empirical depth to bedrock 
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measurements from a previous study (a seismic refraction survey). From these we derived a raster 

map of soil thickness (Fig. 1d), assuming an average value of 0.5 m (i.e. depth to water table) for the 

wetland (Dillon and LaZerte, 1992). In absence of a specific model routine able to specifically 

simulate the behaviour of lakes or wetlands, we incorporated the wetland conceptualisation in the 

soil routine parametrization.  Soil parameters that allow storage of different water amounts (i.e. fcap 

and Ksat) were separately set for wetland or non-wetland cells.   

Streamwater and snowmelt isotope composition, snow water equivalent (SWE) and stream 

discharge were all used in the multi-criteria calibration process. Streamwater isotope samples were 

available at the catchment outlet (PC1) starting in June 2010. Average sampling frequency was 12 

days, though this was more frequent during snowmelt and rainfall events and there are some longer 

gaps due to both frozen and completely dry conditions, particularly during a dry period in summer 

2012 (Fig. 2). The isotopic composition of snowmelt was sampled with snowmelt lysimeters between 

2011 and 2016 at Paint Lake (PT1, Fig. 2) and utilized in the calibration process to constrain the 

model routines simulating snow isotope evolution. We chose not to use the measured snowmelt 

data as model input, because of (1) frequent temporal mismatches of snowmelt samples and model-

simulated snowmelt and (2) the problem of assigning a spatially distributed value from a melt 

sample in a single location (Ala-aho et al., 2017a). Fig. 3 shows the seasonal variability of the isotopic 

composition of precipitation (occurring in March-November) and snowmelt (occurring in November-

April) over the analysed period and the OIPC monthly average values that we coupled to liquid 

precipitation data to produce a continuous time series that captured the depleted winter signal in 

the absence of snowfall data.  

SWE data were available from snow surveys conducted by DESC during 2011-2016 at Paint Lake 

(PT1), with three replicates at 3 locations (South, Middle and North) and an average data frequency 

of two days during the winter period. Ten replicates on eight sampling days between January and 

April 2011 from PCP2 (located at Plastic Lake) were used to verify that the Paint Lake snow data 

could be assumed to be representative for Plastic Lake (Pearson r correlation coefficient = 0.78, 

slope of linear regression = 0.81). Daily discharge was recorded with a gauging station at the 

catchment outlet (PC1, Fig. 1b), with some occasional gaps in 2015. 

All isotopic samples were analysed by a Los Gatos DTL-100 laser analyser that has an instrument 

precision of ±0.4‰ for δ
2
H ±0.1‰ for δ

18
O. We chose to use δ

2
H in the modelling as it was 

characterised by slightly less uncertainty than δ
18

O. 

Page 8 of 41

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9 

 

2.4  Step-wise approach to multi-criteria calibrations  

A Monte Carlo approach was used to calibrate the model. We ran 10,000 simulations, each 

characterized by a parameter set randomly drawn from a uniformly constrained range (Table 1). The 

calibrated parameters affect snow, soil and groundwater compartments and isotope modelling. 

Previous work demonstrated that these parameters are the most sensitive in the model (van 

Huijgevoort et al., 2016a; Ala-aho et al., 2017a,b). Values of other fixed parameters were selected 

according to available data, literature values, and preceding model experiences and trial runs. Initial 

conditions were based on trial simulations; however, each Monte Carlo simulation included a spin 

up period of two years to minimize the influence of initial conditions on the model performance. The 

calibration period for each of 10000 simulations in the Monte Carlo approach was selected as 1
st
 

January 2010 - 16
th

 June 2016, according to the availability of all the required data.  

We conducted a stepwise calibration approach. The goal was to retain 100 parameter sets from the 

10,000 run ensemble according to different optimisation criteria. Firstly, we selected the 100 runs 

for each single variable calibration: 100 best runs with the highest efficiencies of simulated discharge 

(Q calibration), 100 best runs according to the efficiency of simulated streamwater δ
2
H (Hs 

calibration), and the 100 best runs according to the snowpack simulation, estimated as SWE (S 

calibration) and snowmelt δ
2
H (Hm calibration) to test the performance of the snow modelling in 

terms of both snowpack and isotopic composition. After these single variable optimisations, we 

applied a multi-criteria calibration, i.e. including simultaneously the efficiency of more than one 

variable. We conducted a calibration for the best efficiency for all the pairs of discharge plus one of 

the other variables (i.e. Q+Hs, Q+S, Q+Hm), then for discharge + streamwater isotopes + SWE 

(Q+Hs+S calibration). Finally, we included all four available variables (discharge, streamwater 

isotopes, SWE and snowmelt isotopes, Q+Hs+S+Hm calibration). Abbreviations are summarized in 

Table 2.  

Calibration efficiencies for discharge were calculated from daily time step simulations. Both 

streamwater isotopes and SWE were compared on observation days. We compared snowmelt 

lysimeter values with spatially weighted values of simulated snowmelt water flux and isotope 

composition for days preceding the lysimeter sampling days, assuming that lysimeters integrate the 

isotopic snowmelt signal between the sampling days (Ala-aho et al., 2017a). 

We used three different objective functions for each analysed variable: the Nash- Sutcliffe efficiency 

(NSE, Eq. 1) (Nash & Sutcliffe, 1970), the Kling-Gupta efficiency (KGE, Eq. 2) (Gupta et al., 2009) and 

the mean absolute error (MAE, Eq. 3). 
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where r is the Pearson correlation coefficient, μ is the mean, σ is the standard deviation, s refers to 

simulated values while o to observed, i to time step and n to the total number of time steps in 

simulations and observations. The NSE is commonly used in hydrology and emphasises the 

importance of discharge peaks. The KGE is based on equal weighting of linear correlation, bias ratio 

and variability, and simultaneously measures the Euclidian distance of the three components from 

the optimum. Thus, it is a more balanced approach than the NSE, with less biasing to peak runoff 

(Gupta et al., 2009). MAE assumes the same weight for all errors, does not square the errors and 

aims to minimize the bias ratio while ignoring correlation and variability between observations and 

simulations. Thus, the MAE gives an estimate of the error range in the same scale as observation 

variability, providing advantages over the root mean square error (Willmott & Matsuura, 2005). In 

calibration, we maximized either KGE or NSE while minimizing MAE. Unless stated, all the results 

refer to KGE for hydrometric variables (KGEQ for discharge and KGESWE for SWE) and MAE for 

isotopes (both the streamwater MAEHs and snowmelt composition MAEHm), although we also 

analysed the other objective function combinations. 

We identified the 100 runs in the multi-criteria calibrations that best satisfied each target, based on 

the maximisation or minimisation of empirical cumulative distribution functions (eCDF) of the 

efficiencies. Details on this eCDF algorithm are given in Ala-aho et al. (2017b). An iterative process 

selects the quantile threshold common to all eCDFs that gives 100 model runs satisfying calibration 

targets. When applied to single variable calibration, the algorithm picks the 100 runs with the 

highest efficiency of the single target. This simple method, also applied by Kuppel et al. (2018), has 

the advantage of not combining the different objective functions in a single value.  

To visualise the global parameter sensitivity of the calibrated model with different targets, we 

evaluated the maximum distance (MD) between the theoretical CDF (uniform or log-normal 

distribution) of each parameter randomised in the Monte Carlo approach and the eCDFs of that 

parameter after optimisation according to different calibration targets. Essentially the MD is the 

largest absolute Kolmogorov-Smirnov distance between the two curves (Kolmogorov, 1933). This 

method has been used by Spear & Hornberger (1980) and Whitehead & Young (1979), and 
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formalised by Pianosi & Wagener (2015) and gives a value that is easily compared between the 

calibrations: the higher MD, the higher the model sensitivity to that parameter.  

3. Results  

3.1  Hydroclimate and isotope hydrology at the PC1 catchment 

The study period of >6 years covered a wide range in hydroclimatic conditions affecting the PC1 

catchment. Annual precipitation ranged from 855 mm in 2012 to 1221 mm in 2014 (Fig. 2a). On 

average, the months with highest precipitation were usually October and June, while the driest were 

usually February, March and July. Discharge was usually lowest in August (0.0009 m
3
s

-1
 on average), 

generally increasing in October (0.0037 m
3
s

-1
), and dropping over winter to 0.0019 m

3
s

-1 
in February, 

and then increasing during the snowmelt, peaking in April (mean over 6 years of 0.015 m
3
s

-1
, Fig. 2a). 

The driest months in 2012 and 2015 occurred in early summer and there were two months of no 

discharge in 2012 (from 08
th

 July to 07
th

 September).  

Daily temperatures ranged between -29 °C and 26 °C (Fig. 2b). On average, 110 days per year had 

mean temperatures below 0 °C. Winter 2013-2014 had the highest SWE values (Fig. 2b), with 

monthly means of 172 mm in both February (±7 mm, standard deviation) and March (±12 mm) 2014. 

SWE values in other winters had similar patterns of snow pack accumulation with peaks in March 

(mean of 135 mm ± 16 mm).  

Time series of δ
2
H in precipitation (Fig. 2c and Figure 3) showed high variability and strong 

seasonality, with depleted values in winter and relatively enriched values in summer (-135.8 to -3.9 

‰). Snowmelt samples were also depleted and showed high variability, ranging from -154.2 ‰ to -

40.7‰, usually increasing as snowmelt progressed. Compared to the variability in precipitation, 

streamwater had a damped response (ranging from -91.1 ‰ to -45.8 ‰), with clear seasonal 

depletion during snowmelt and more enriched values in summer. Median streamwater composition 

of δ
2
H (-69.1 ‰) was closer to summer precipitation than snowmelt. 

Samples were plotted in dual isotope space (Fig. 4) showing the large range of precipitation and 

more restricted variation in streamwater. The local meteorological water line (LMWL) was 

$�H = 7.82	�±0.09	$-.O + 10.72	�±0.88	�0� = 0.97. Its slope and intercept were similar to 

those of the global line (GMWL): 8 and 10, respectively. Few snowmelt and streamwater samples 

plotted below the LMWL; thus, the effect of evaporative fractionation was small.    
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3.2 Information content of different calibration targets 

The model was able to reproduce the hydrograph quite well (Fig. 5) with good capture of discharge 

peak timing and high KGEQ efficiencies where discharge was included as a calibration target (Table 

3). In general, summer low flows were slightly overestimated, with no days of zero flow being 

simulated. Simulated recession limbs were slightly steeper than measured. The temporal dynamics 

were similar across all calibrations. The best calibration used discharge as the sole criterion. That 

calibration also exhibited the smallest variability between the retained models.  

Simulations of streamwater δ
2
H (Fig. 6) generally captured the observed gradual winter depletion, 

marked snowmelt pulse and summer enrichment. Simulations slightly overestimated or 

underestimated observations in some years, notably in spring 2014 and spring 2016, respectively. 

Unlike the discharge simulations, uncertainty in the retained 100 simulations could be large: during 

dry periods (most evident in the summers of 2012 and 2015) the lower bounds of simulations were 

more negative than measured. However, the median and upper simulation bounds captured most of 

the observed variability, and calibrations based only on isotope composition showed the lowest 

uncertainty in simulations. Uncertainty increased in some of the multi-criteria calibrations. The 

worst was for Q+Hm, indicating that including snowmelt composition could not help constrain the 

model for a good simulation of streamwater isotopes (Table 3).  

 

Snowpack SWE was also simulated reasonably well with maximum KGESWE up to 0.71 (Table 3, Fig. 

7). Snowpack temporal dynamics were reasonably reproduced with most of the discrepancies in 

under- and over-estimating peaks in 2011 and 2013, respectively. Among the different multi-criteria 

calibrations, the higher variability in KGESWE values occurred when Hs was included in the calibration, 

while the best case was for the S calibration as expected.  

 

The snowmelt isotope simulations, even if they did not always fit the data in terms of timing, were 

still insightful and worth including in the calibration (Fig. 8). The average isotope composition and 

the trend of gradual depletion during snowmelt episodes through early winter and gradual 

enrichment during spring melting were simulated reasonably well. The model tended to 

overestimate the most depleted measurements in January-February and the timing of snowmelt was 

not always well captured. The most obvious cases were in 2012 and 2014 which had more midwinter 

melt events than were simulated. Differences among the multi-criteria calibrations were small in 

terms of uncertainty and model efficiencies (Table 3). 
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Efficiency ranges of the 100 best simulations for each calibration target and each simulated variable 

are summarised in Fig. 9. Discharge simulations were generally reasonable, so long as discharge data 

were included in the set of calibration targets. For all multi-criteria calibrations that included 

discharge, the minimum KGEQ efficiency of retained simulations was >0.56 and the maximum was 

<0.69. For streamwater isotope composition, the best efficiency (MAEHs = 5.66 ‰, range <1 ‰) was 

obtained using the single variable Hs calibration target, though multi-criteria calibration results 

where Hs was included were also reasonable. Other single calibration targets, or flow coupled with S 

or Hm, had higher MAEHs values. For the SWE simulations, KGESWE efficiencies for the best runs were 

>0.52 (when the calibration targets included SWE). In single variable calibrations when SWE was not 

included, the minimum KGESWE efficiency dropped to <0.3, but could exceed 0.68. For snowmelt 

isotope simulations, the range of efficiencies in terms of MAEHm was quite poor and similar among all 

the calibration targets.  

Unsurprisingly, single variable calibrations (Q, Hs, S, Hm) gave the best efficiencies (KGE or MAE 

according to the variable) for the variable in question and large ranges in efficiency for all the other 

variables. Adding one variable to discharge (e.g. Q+Hs, Q+S, Q+Hm) constrained simulations for both 

discharge and the other calibrated variable, but large ranges persisted for the uncalibrated variables. 

Both Q+Hs+S and Q+Hs+S+Hm calibrations produced more balanced models in terms of overall high 

efficiencies and small ranges for all the other variables. The only difference was that the calibrations 

that did not include snowmelt isotopes (Hm) gave slightly higher efficiencies for all other variables in 

spite of the greater range in snowmelt δ
2
H MAEHm. Similar relative trends in the efficiencies resulted 

if NSE was used as the objective function to calibrate discharge and SWE (Table S1).  

The maximum distance (MD) of parameter eCDFs prior to and after each calibration was used to 

assess the overall model identifiability and to compare different selected parameter sets (Fig. 10). It 

is particularly notable that the model was shown to be sensitive (i.e. high value of MD and greater 

difference between eCDFs) for many contrasting parameters in the case of single or dual calibration 

targets (whether hydrometric or isotopic), whilst it was relatively insensitive to changes in the other 

parameter values. However, for many of the more sensitive parameters (e.g. apow, Bseepage, ccorr, cflux, 

Kpow, SMpas), the sensitivities in the calibration targets that included at least three variables (i.e. 

Q+Hs+S, and Q+Hs+S+Hm) were just slightly lower than the corresponding highest sensitivities with 

one of the single calibration targets, but higher than the other calibrations cases. Also, the MD for 

the KG parameter in the case of calibrations with three or all variables was even higher than 

calibrations based solely on discharge or isotopes. Parameters related to the snow module (TThigh, 

TTlow and Mfrac) had high MD values where calibration included SWE or snowmelt isotope 
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composition, as expected. However, the sensitivity decreased in calibrations including streamwater 

isotopes (Q+Hs+S and/or Q+Hs+S+Hm) and other calibration targets. Efrac (the parameter controlling 

the snow sublimation fractionation) was identifiable in the isotope calibrations (including both 

streamwater and snowmelt) and in the Q+Hs+S+Hm calibration, but overall was one of the least 

sensitive model parameters.  

 

3.3 Influence of multi-criteria calibration on stream water age distributions  

The model allowed us to derive and compare time-variant stream water ages using the different 

calibration targets (Fig. 11). This resulted in different estimated water ages, with median ages over 

the entire period, individual years and different calibrations generally being less than 1 year, 

indicating a catchment with short transit times. Except for the Q calibration, which simulated the 

oldest median age for 2015, the oldest median ages in all calibrations were during 2012 (Table S3). 

The youngest median ages occurred in 2010 or 2013 according to different calibrations (2010 for Q, 

Hs, Q+Hs, Q+S, Q+Hm calibrations; 2013 for S, Hm, Q+Hs+S, Q+Hs+S+Hm).  

To compare the resulting ages obtained from the different calibrations, we analysed the cumulative 

distribution functions (eCDF) of the median ages from each set of 100 retained simulations (Fig. 12). 

The resulting eCDFs were all statistically significantly different (p<0.05) according to the Kolmogorov-

Smirnov test, except for the Q+Hs and Q+Hs+S+Hm calibrations that had p=0.051. Calibration based 

only on discharge gave the highest probability of older water with both 50
th

 and 95
th

 percentiles 

being highest at 330 and 1566 days, respectively (Table 4). Overall, adding data in the calibration 

decreased the modelled proportion of old water: the 95
th

 percentile decreased to 480 days (Hs 

calibration), to 452 in Q+Hs calibration, to 437 days both in Q+Hs+S and Q+Hs+S+Hm. Calibrations 

based only on SWE or only on snowmelt isotopes gave similar water age eCDFs. Likewise, combining 

discharge with SWE or snowmelt isotopes resulted in a similar water age eCDF. The age distributions 

of S and Hm calibrations had a median value similar to the average 50
th

 percentile among the 

calibrations, while the age distributions of Q+S and Q+Hm had third quantiles similar to the average 

95
th

 percentile among calibrations.   

The choice of KGE or NSE as the objective function to calibrate discharge and SWE had little effect on 

the water age estimations, with similar resulting eCDFs (Fig. S2, Table S2). The only notable 

difference in the calibrations based on the NSEQ and NSESWE was in the 95
th

 percentile of the Q 

calibration and of the Q+S calibration that showed ages respectively 6 and 8 months younger than 

the ages derived using KGEQ and KGESWE.  
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4. Discussion 

4.1 Importance of the information content of different calibration targets when simulating 

discharge, snowpack and stable isotope dynamics 

The study confirmed the general skill of the STARR model in satisfactorily simulating snowpack 

dynamics and runoff generation processes, whilst simultaneously capturing stable isotope variability 

in snow-influenced catchments (Ala-aho et al., 2017b). This is significant given the paucity of studies 

where hydrological models explicitly incorporate tracers in snow-influenced regions (Tetzlaff et al., 

2015). The model was able to produce concurrently good fits for discharge, snow water equivalent, 

and the stable isotope composition of streamwater and snowmelt. However, simulations of 

snowmelt isotopes were more problematic in matching point scale data. Nevertheless, given the 

long-term dataset, the model-data fits of the different variables showed good temporal consistency 

and this increases confidence that the estimated water ages are reasonable (McDonnell & Beven, 

2014). 

One of the main findings is that although the performance for a given variable was maximised in the 

local calibration, integrating other objectives in global solutions (e.g Q+Hs+S and Q+Hs+S+Hm cases) 

degraded the performances only marginally (though less so for snowmelt isotope composition). 

Furthermore, the performance range for a certain parameter in the global optimisation was usually 

significantly reduced compared to the performance of that parameter in a local optimisation (Fig. 9). 

These insights seem to be in line with the conclusion presented in Seibert & McDonnell (2002), i.e. 

incorporating diverse data-streams in the calibration conditions moved the model towards 

considering different dominant processes in the model simulations, giving a more balanced 

representation of catchment functioning. This conclusion is similar to Birkel et al. (2014), who 

showed that a coupled flow-tracers model with eight parameters and five calibrated variables (both 

hydrometric and isotopic: i.e. discharge, groundwater level, soil moisture, streamwater isotopes and 

soil water isotopes) exhibited better identifiability than model configurations with fewer parameters 

and calibration targets. Similarly, Hrachowitz et al. (2013) showed how a multiple objective 

calibration increased model truthfulness. One of the benefits of combining streamflow observations 

with other related data streams is that the spatio-temporal footprint of the information contained in 

these observations is more specific and more restricted  behaviourally, as recently shown by Kuppel 

et al. (2018). In particular, based on the definition of an overall performance objective function, 

Kuppel et al. (2018) were also able to conclude that while model performance obtained with 
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calibration on an individual dataset was good for single objectives, using multiple datasets in the 

calibration improved the overall model performance and yielded  smaller overall uncertainty. A 

similar comparison is not possible here as we did not define an overall measure of performance, in 

favour of a compared analysis of single objective functions. However, the advantages of using 

calibration targets in addition to discharge are clear, with a substantial improvement in overall 

model-data fit and a general decrease of predictive uncertainty. 

The good model-observation agreement for discharge (KGEQ=0.69/0.75) based on discharge-specific 

calibration provided a starting point for the model. However, such a simple analysis supplies an 

incomplete understanding of catchment function with poorer simulations of stream isotopes and 

SWE, indicating some likely equifinality (i.e. that the right answer may not have been reflecting the 

right reasons in terms of catchment function, Kirchner, 2006). Despite the simplified 

conceptualisation of the suite of snow processes, model fitting of SWE was quite good. This probably 

reflects the limited influence of factors such as the redistribution of snow by wind in the forested 

environment of PC1. However, Buttle (2009) showed the distinction between rain, snowmelt and 

rain-on-snow to be important in applying the temperature-based WINTER snowmelt model for 

estimating SWE at PC1. Whilst the temperature-based approach to snowmelt simulations in STARR 

would capture the broad transitions between rainfall and snow, the simple conceptualisation and 

the daily model time steps may have compromised the details of SWE simulation even though the 

overall pattern was captured.   

Overall, the models performed well in estimating streamwater isotope composition. The misfit 

during dry periods (particularly in summer 2012 and 2015) gives an insight into other model 

limitations (Fig. 6). The exaggerated isotopic depletion predicted by the model widens the 

uncertainty bounds when flows become very low. Low discharge and flow cessation are captured 

quite well, but the simulations conceptualise the dominant runoff source shifting to the 

groundwater source where modelled stored water tends to be isotopically depleted as it is mainly 

recharged by spring snowmelt. Previous empirical work in PC1 inferred that deep groundwater 

fluxes are negligible (Devito & Dillon, 1993) and the ephemeral groundwater contributions are only 

strong during autumn and spring (Devito et al., 1996). Moreover, Devito et al. (1996) emphasised the 

dominant role of the wetlands in PC1, which become hydrologically disconnected under dry 

conditions and play a dominant role in mediating the relationship between water storage and runoff 

generation. In the STARR model, this is partially conceptualised by the parametrisation that gives 

higher water storage in the wetland cells, which are also replenished by summer rainfall and become 

less isotopically depleted as the summer progresses. Hence, when the model simulates cessation of 
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flows from this source, the shift to deeper storage dominance explains the high instability of 

streamwater isotope estimation during dry periods. Similarly, poor models fits in stream isotope 

simulations were already highlighted in a previous application of STARR (Ala-aho et al., 2017b) 

where winter misfits at a site in Sweden (Krycklan) were explained by the model failing to capture 

the switch from soil sources to a more isotopically depleted groundwater source during winter.  

Although simulated snowmelt isotope compositions did not match the point observations in detail, 

other benefits of including the snowmelt isotope routine in the analysis became apparent. The fact 

that the depletion of stream isotope composition in spring was well-captured suggests the snowmelt 

isotope routine helps identify the overall isotope dynamics at the catchment scale. There are 

numerous issues that make the simulation of snowmelt isotopes extremely challenging (Ala-aho et 

al., 2017a). First, the isotopic composition of snowmelt is highly variable both spatially and 

temporally (Unnikrishna et al., 2002; Evans et al., 2016). This reflects the spatial distribution of the 

snowpack and the layered structure that evolves. However, the conceptualisation in STARR assumes 

complete isotopic mixing of the snowpack. Moreover, the effects of possible rain-on-snow events 

render the simulation of midwinter snowmelt difficult, as shown by others (Eiriksson et al., 2013; 

Evans et al., 2016; Juras et al., 2017). In addition, in order to compare simulation results with 

observations, it was necessary: (1) to assume that lysimeters integrate the snowmelt isotopic signal 

between the sampling days; and (2) to average the simulated snowmelt flux and its isotope 

composition both spatially (across the catchment) and temporally (i.e. between sampling days since 

the output signal of snowmelt flux is discontinuous). This method was originally applied by Ala-aho 

et al. (2017a) and these pragmatic assumptions provide a successful basis for catchment scale 

snowmelt isotope simulations, but the approximation gives crude results at the point scale. Despite 

the discussed limitations of the snowpack and snowmelt process conceptualisation, the important 

outcome of including both is the model’s ability to decouple the isotopic composition of incident 

precipitation from the actual liquid water inputs to the hillslope-stream system. In a snow-driven 

catchment such as the one studied, this conceptualisation is valuable  for the interpretation of water 

composition and gives insights with respect to water fluxes, mixing and consequently, water age.        

Contrary to previous work (Ala-aho et al., 2017b) which showed that some parameters related to the 

snow module (TThigh, TTlow and Mfrac) were relatively insensitive, here they exhibited greater 

sensitivity (measured by MD) in the case of the calibration including SWE or snowmelt isotope 

composition (S and/or Hs calibration). Nevertheless, as in the previous work, the overall parameter 

sensitivity was low: in particular, Efrac (which governs the depletion of water that sublimates from the 

snowpack) was less sensitive than shown in previous work (e.g. Ala-aho et al., 2017a,b). This was 
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unexpected at PC1 as we anticipated a strong influence of snowpack fractionation and isotopic 

enrichment of the snowpack due to high canopy coverage and interception. However, as already 

noted, the model reproduced the spring stream isotopes well, independent of a more enriched (high 

Efrac) or less enriched (low Efrac) snowmelt signal. A further reason for the lower sensitivity of the Efrac 

parameter compared to previous findings might be the approximated snowfall signal that could in 

reality be more depleted than the OIPC monthly average values used in the absence of a consistent 

winter dataset. As shown in Fig. 3, modelled OIPC values for the depleted signal of snowfall in 

January and December were  lower than the snowmelt range in the same period. However, in the 

absence of data, we have no basis for assessing whether that the snowfall signal is sufficiently 

depleted, although the low sensitivity of Efrac suggests that this is not the case.  

4.2 Effects of multi-criteria calibration and choice of objective function on the estimated water age 

distributions in the catchment 

As well as their value in constraining conceptual models like STARR, integrating isotopes or other 

tracers provides a basis for tracking fluxes and water ages, as has been successfully achieved in other 

studies (e.g. Vaché & McDonnell, 2006; McMillan et al., 2012; Birkel et al., 2014). However, the 

methodology that STARR uses to track water ages is spatially distributed and is intrinsically based on 

spatial storage and flux distribution. Potentially, STARR also provides a detailed visualisation of how 

fluxes, storage and water ages interact in time and space to underpin catchment functioning (van 

Huijgevoort et al., 2016a,b). Other approaches to estimate water age, such as use of transit time 

distributions (McGuire and McDonnell, 2006), lumped conceptual models (Birkel et al., 2014; 

Soulsby et al., 2015) or storage selection functions (Rinaldo et al., 2015), do not necessarily bring 

these insights. The method used by the STARR model for estimating water ages gives a mean stream 

water age value between 7 and 11 months for Dorset depending on the calibration target. This 

indicates that the catchment runoff is dominated by young water, especially in the spring snow melt, 

similar to other boreal catchments such as Krycklan in Sweden (Ala-aho et al., 2017b). In addition, 

the water age is generally consistent with mean transit times estimated in previous studies at the 

PC1 where convolutional integral models yielded MTTs estimated to be between 7 and 9 months 

(Lane-Coplen, 2015). Peralta-Tapia et al. (2016) also showed that convolution integral models with 

long term data also gave comparable results to those derived by STARR. 

Previous work also showed how tracking spatially distributed water ages with the STARR model 

could give insights into a catchment’s dominant flow processes (Ala-aho, 2017b). Estimated stream 

water ages are generated by integrating when, where and which runoff generation processes are 

activated. The benefit of this approach was shown in a comparison between different catchments, 

Page 18 of 41

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

19 

 

with different characteristics and dominant runoff generation processes (Ala-aho, 2017b). Here, the 

analysis of the time series of water ages revealed not only the dominant runoff processes and the 

interactions between water storages, but also the impact of the different calibration targets on their 

realisation in the model (Fig. 11). The time series reflected marked seasonality in temporally-variant 

runoff processes. There were generally two periods each year with older water dominance, one 

during winter baseflows and one during the dry summer season. The stream water rejuvenation 

observed during the snowmelt period is consistent with the large contribution of younger water to 

streamflow at that time (Wels et al., 1991), while rewetting of the catchment in the fall likely 

accounts for the decrease in water ages following summer events. The ability of event water to 

make a rapid contribution to catchment streamflow was also shown by Peters et al. (1995) and 

explained by a dominance of preferential vertical movement of event water and its subsequent 

lateral movement at the soil-bedrock interface.  

Based on the multi-criteria calibration approach, different information content of the estimated 

water ages was derived from different calibration targets (Fig. 11 and Fig. 12). This has shown how 

the model can be constrained to appropriately reflect the different aspects of catchment function 

(Birkel & Soulsby, 2015). A likely reason for the different eCDFs of water ages which we found for the 

different calibration targets is how the calibration affects the main storages within PC1. The best 

simulations calibrated to discharge constrain the model to simulate higher amounts of water held in 

the deeper storage. This is likely related to the fact that there are no restrictions in the model on the 

storage volume, and the discharge calibration selects the simulations with higher recession 

constants for the soil box and lower for the groundwater box. As the calibration target resolves to 

the best possible fitting of flow at the outlet, this resulted in a higher fraction of old water. Including 

the streamwater isotopes in the calibration forced the model to route less water through deep flow 

paths, thus better capturing the simulations of tracer dynamics and producing a more responsive 

system dominated by younger water that fits better our conceptual understanding of the hydrology 

of the catchment. It has been shown previously that a critical issue in water age estimation is related 

to constraining the passive storage, i.e. the additional mixing volume that damps the tracer signal to 

conceptualise the slower velocity of the water particles relative to the celerity of the runoff response 

(Benettin et al., 2015; Birkel & Soulsby, 2016). The critical problem is the adequate representation of 

relative storage, conceptualised in STARR explicitly in the SMpass parameter and implicitly in the fcap 

parameter. The former is sensitive only in models where additional observations - e.g. volumetric 

water content or groundwater levels - are included in the multi-criteria calibration. In these cases 

the water age distribution can be more adequately simulated as the storage dynamics are more 

appropriately captured (Kuppel et al., 2018). Explicitly including groundwater data in multi-objective 
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calibration could help address this issue (Fenicia et al., 2008). However, simply using the plausibility 

of water ages to compare between multi-criteria calibration results can provide a basis for rejecting 

models, if results are inconsistent with independent estimates of water age (Birkel & Soulsby, 2016).  

5. Conclusions 

We used the spatially-distributed, tracer aided STARR model to simulate the interactions between 

water storage, flux and isotope dynamics in a snow-influenced, long-term monitored catchment 

near Dorset, Ontario, Canada. Multiple realisations of the model were achieved using a combination 

of single and multiple objectives as calibration targets. Whilst good simulations of hydrometric 

targets such as discharge and SWE could be achieved by local calibration alone, adequate capture of 

the stream isotope dynamics was predicated on the inclusion of isotope data in the calibration. 

Parameter sensitivity was highest, and most local, for single calibration targets. With multiple 

calibration targets the sensitivity of individual parameters was reduced, but key sensitive parameters 

were still apparent in more balanced model solutions. Water ages derived from flux tracking 

subroutines in the model indicated a catchment where runoff is dominated by younger waters, 

particularly during spring snowmelt. The resulting water ages were most sensitive to the partitioning 

of runoff sources from soil and groundwater sources. The stream water age became progressively 

younger when adding tracer data in the model calibration. The isotope tracer data forced runoff 

generation to take place in model compartments producing rapid flow response, and thereby 

produced a more thorough understanding of the catchment runoff generation processes. The more 

refined model behaviour demonstrates the usefulness of stream isotope composition in constraining 

the stream water age through numerical simulations.    
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Table 1 Description and initial ranges of calibrated parameters in the model  

Parameter  Description Min Max 

Snow 

aPow [-] Coefficient to reduce snow albedo 1 3 

ccorr [-] Correction factor for snowfall in addition to wind correction 0 0.3 

TTlow [°C] Threshold temperature below which all precipitation is liquid -2 0 

TThigh [°C] Threshold temperature above which all precipitation is liquid 0 2 

Soil and groundwater 

Βseepage (log) Recession coefficient to determine soil recharge into groundwater 10
-1

 10 

Cflux (log) Parameter for maximum capillary flux 10
-2

 1 

fcap[-] Field capacity (fcapw for wetland, otherwise fcapnw) 0.2 0.8 

KG (log) Recession coefficient baseflow 10
-5

 10
-3

 

Kpow [-] Power coefficient 1 3 

Ks [day
-1

] 

Recession coefficient to determine outflow from soil storage (Ksw for 

wetland, otherwise Ksnw) 5 50 

Ksat (log m s
-1

) Saturated conductivity of lateral flow 10
-1

 10 

LP (log) Fraction of limiting actual evaporation 10
-2

 1 

Isotopes 

Efrac [‰] Fractionation parameter for δ
2
H -133 0 

Mfrac [‰] Offset parameter, equilibrium ice-liquid for δ
2
H -19 0 

SMpas [mm] Mixing volume soil 100 300 
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Table 2 Calibration target abbreviations and calibrated variables. Each calibrated variable that is 

included in each calibration target is marked with a cross. Q refers to discharge, Hs to streamwater 

isotopes, S to the Snow Water Equivalent (SWE) and Hs to the snowmelt isotopes. Colour legend is 

the same for all plots in Fig. 5-11. 

Calibration target 

Q Hs S Hm Q+Hs Q+S Q+Hm Q+Hs+S Q+Hs+S+Hm 

Discharge Q x 

 

x x x x x 

Stream δ
2
H 

 

x 

 

x 

 

x x 

SWE 

 

x 

 

x 

 

x x 

SnowMelt  δ
2
H 

 

x 

 

x 

 

x 
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Table 3 Comparison between ranges of objective functions (KGE of discharge and SWE, MAE of both 

isotope streamwater and snowmelt composition) for different calibration targets over the calibrated 

period (1st January 2010 – 16th June 2016). 

Calibration 

target 

KGEQ [-] 
MAEHs (stream δ

2
H) 

[‰] 
KGESWE [-] 

MAEHm (snowmelt 

δ
2
H) [‰] 

min max max min min max max min 

Q 0.69 0.75 16.64 6.75 0.16 0.69 24.50 21.79 

Hs 0.05 0.65 6.50 5.66 0.07 0.70 24.17 21.74 

S 0.10 0.72 18.92 6.43 0.67 0.71 24.37 21.64 

Hm 0.12 0.72 18.26 5.91 0.19 0.68 21.79 21.50 

Q+Hs 0.61 0.70 7.47 6.17 0.17 0.69 24.05 21.52 

Q+S 0.64 0.74 18.92 6.88 0.63 0.71 24.50 21.64 

Q+Hm 0.62 0.73 17.33 6.66 0.25 0.68 22.07 21.52 

Q+Hs+S 0.59 0.70 7.81 6.27 0.56 0.69 24.05 21.70 

Q+Hs+S+Hm 0.56 0.69 8.28 6.54 0.52 0.67 22.35 21.70 
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Table 4 5th, 50th and 95th percentiles of eCDFs of median ages [in days] for the different calibration 

targets, with KGE as objective function for Q and SWE and MAE as objective function for isotopes. 

 

Percentile Q Hs S Hm Q+Hs Q+S Q+Hm Q+Hs+S Q+Hs+S+Hm 

5
th

 121 158 149 141 133 128 132 125 125 

50
th

 330 269 324 308 224 275 291 213 213 

95
th

  1566 480 841 785 452 1321 1182 437 437 
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Figure 1: Location of the Plastic Lake catchment, the closest town (Dorset) and Paint Lake, b) map of 
topography (elevation in m a.s.l. and rough contour lines every 1 m, location of gauging and meteorological 

stations, c) land cover map and wetland areas, d) soil depth raster map.  
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Figure 2: Daily data of precipitation and discharge (a), temperature and Snow Water Equivalent (SWE) (b) 
and stable isotopes of precipitation, snowmelt and stream water (c).  
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Figure 3: Boxplots showing the seasonality of precipitation and snowmelt isotope composition over the 
analysed period. The line shows the monthly average value estimated by OIPC.  
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Figure 4: Dual isotope plot of precipitation, snowmelt and streamwater isotope samples with marginal 
boxplots showing ranges in δ2H and δ18O. Solid line is the Local Meteorological Water Line (LMWL) and 

dotted line is the Global Meteorological Water Line GMWL.  
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Figure 5: Discharge simulations based on the different calibration targets listed in Table 2 in semi-
logarithmic plots: solid lines are simulated medians and colours refer to calibration target. Shaded areas 
encompass the highest and lowest 100 simulations selected according to each calibration. Measured 

discharge is drawn as black line.  
 

177x118mm (300 x 300 DPI)  

 

 

Page 34 of 41

http://mc.manuscriptcentral.com/hyp

Hydrological Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 6: Streamwater δ2H simulations based on the different calibration targets listed in Table 2: solid lines 
are simulated medians and colours refer to calibration target. Shaded areas encompass the highest and 
lowest 100 simulations selected according to each calibration. Black dots are the streamwater isotope 

samples.  
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Figure 7: SWE simulations based on the different calibration targets listed in Table 2: solid lines are 
simulated medians and colours refer to calibration target. Shaded areas encompass the highest and lowest 

100 simulations selected according to each calibration. Black dots are the SWE measurements.  
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Figure 8: Snowmelt δ2H based on the different calibration targets listed in Table 2, split by winter from 2010 
to 2016: in each subplot, orange dots are simulated medians and colours refer to calibration target. Shaded 
error bars encompass the highest and lowest 100 simulations selected according to each calibration. Black 

dots are the snowmelt isotope samples.  
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Figure 9: Comparison between maximum and minimum efficiency for each variable on the x-axis and each 
calibration target (by colour). The compared objective fuctions are KGE for discharge and SWE and MAE for 
streamwater and snowmelt isotope compositions. The MAE is reversed for improved readibility, as the aim is 

to minimize MAE, while maximizing KGE.  
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Figure 10: Comparison of parameter sensitivities based on the different calibration targets differentiated by 
colour (single variables, calibration of three variables and calibration of all variables). Ranking is based on 

the maximum distance of eCDFs before and after each type of calibration. The greater the maximum 
distance of eCDFs, the greater the model sensitivity to that parameter.  
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Figure 11: Estimated stream water ages based on different calibration targets. Solid lines are the simulated 
medians, colour refer to calibration target and shaded areas encompass the highest and lowest simulated 

values in 100 runs selected according to calibration.  
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Figure 12: Empirical cumulative distribution functions (eCDFs) of the median water age (days) from selected 
100 runs using the different calibration targets and KGE as objective function for Q (KGEQ) and SWE 

(KGESWE), MAE of both streamwater and snowmelt isotope compositions (MAEHs and MAEHm).  
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