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In a causal world the direction of the time arrow dictates how past causal events in a variable X
produce future effects in Y. X is said to cause an effect in Y, if the predictability (uncertainty) about the
future states of Y increases (decreases) as its own past and the past of X are taken into consideration.
Causality is thus intrinsic dependent on the observation of the past events of both variables involved,
to the prediction (or uncertainty reduction) of future event of the other variable. We will show that
this temporal notion of causality leads to another natural spatiotemporal definition for it, and that can
be exploited to detect the arrow of influence from X to Y, either by considering shorter time-series
of X and longer time-series of Y (an approach that explores the time nature of causality) or lower
precision measured time-series in X and higher precision measured time-series in Y (an approach
that explores the spatial nature of causality). Causality has thus space and time signatures, causing
a break of symmetry in the topology of the probabilistic space, or causing a break of symmetry in
the length of the measured time-series, a consequence of the fact that information flows from X to Y.

Published by AIP Publishing. https://doi.org/10.1063/1.5019917

In a causal world the direction of the time arrow dictates
how past causal events produce future effects. The deter-
mination of the direction and the intensity of the arrow of
influence, causality, is one of the first questions one tries
to answer in order to model a system. In ecology, it is
fundamental to understand whether zooplankton concen-
tration drives fish population. In meteorology, one wishes
to determine whether and how surface sea temperature
affects atmospheric temperature in different parts of the
globe, or how green house gases drive global temperature.
In finance, tax and expenditure correlates with saving
and growth. In geology, one wants to access the direction
of the flows of underground water from some measure-
ments of water reservoir levels. In urbanism, one wants
to understand how electricity consumption drives (or is
driven by) urbanism or how building environment leads to
obesity. Given the relevance of the topic, several methods
have been developed in the last decades to study causality.
Among them, there are the approaches that access causal-
ity based on informational quantities. They are sustained
by the fundamental idea that if X causes an effect in Y,
then uncertainty about future states of Y is reduced by
considering the past of Y and the past of X, a hypoth-
esis that implicitly adopts the Granger causal idea that
observations in the past of both X (causing system) and
Y (where the effect is produced) can be used to predict the
future state of Y. This work aims at unifying the Granger
definition of causality defined in terms of predictability
with those based on information quantities by studying the
spatiotemporal dynamics of causality. We will show that if
a system X causes an effect in a system Y, then not only
causal information from X to Y is positive but also longer-
time or higher-resolution observations in Y can be used to
predict the past states of the system X, an observation that
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will lead us to propose a new informational theoretic quan-
tity that we name Causal Mutual Information (CaMI),
and that can assist us in easily quantifying the direction of
the flow of information. This work will show that causal-
ity has space and time signatures, and each signature can
be advantageously exploited to study the direction of influ-
ence in different systems. Moreover, we will show that our
quantity allows for a simple, experimental appealing and
less computational demanding approach, but rigorous,
quantification of causality.

I. INTRODUCTION

The determination that a past event in a system has caused
a present effect on another system provides a straight mea-
surement of the direction of influence in these systems. Causal
relationships between two events happening in two different
systems X and Y can be established by verifying whether past
events in X and Y influence future events in Y. Such under-
standing is fundamental to characterise, model, and predict
behaviour in natural, social, and technological systems. The
study of the cause-effect relationships is defined as causality.
Causality is a concept that involves the temporal relationship
among past, present, and future events of variables. Our stud-
ies show, however, that the temporal nature of causality from
X to Y can not only be redefined in terms of the reduction of
uncertainty from the variable X solely based on observations
in the past, present, and future, of Y [a property that can be
understood from the way Transfer Entropy (TE)' is defined,
and also intuitively derived from Granger causality defined by
the way past dynamical states directly and linearly influences
dynamical future states], but also that causality can be defined
in terms of the topological feature of the probabilistic space. In
a deterministic system, two temporally related events defined
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by two particular states of the system are also intrinsically
related in space. This space-time ergodic duality in a deter-
ministic system indicates that time-causality should lead to
space-causality, a property that we will explore in this work
to create novel ways to quantify causality. If there is a direct
flow of information from X to Y, this is physically interpreted
as to that the uncertainty about past of X is reduced by obser-
vations of future states of Y. This physical interpretation of
causal information, and that is the core behind the definition
of Granger causality, can be demonstrated by analysing the
topology of the probabilistic space—exploring the spatiochar-
acter of causality, without the need to construct a model of the
observed data, as it would be the usual procedure from the
Granger approach.

When a perturbation affects a system, its influence is
transmitted from the perturbation’s source to the other vari-
ables of the system. The path the perturbation takes to prop-
agate within the system can be predicted by analysing the
causality of events in the system. A smart way to study causal-
ity is through a controlled experiment where perturbations
can be designed to extract the causal structure of the sys-
tem. However, the desired experiment could be too expensive,
technically impossible to perform, or too invasive. There-
fore, it is important to develop methods to identify the causal
structure of a system only from observational data, with-
out employing any perturbative technique. The identification
of the causing and affected systems from observational data
has been of great interest for many scientists. Consequently,
and also because the identification of causality is fundamen-
tal to the effective observation, modelling, and controlling of
any complex system, several techniques to infer and quantify
causality have been recently proposed.'!”

Granger*!'"1? considered that if a variable x(f) causes an
effect in y(#), then predictions of y(¢) are improved by consid-
ering its own past complemented by the past of x(¢). Based on
this assumption, he constructed statistical tests to validate this
hypothesis. To adopt this hypothesis to study causality from
data by constructing linear models, Granger causality intro-
duces measures mostly used in correlation-based approaches
(directed partial coherence):'? Directed Coherence,'* Partial
Direct Coherence,!” and direct Directed Transfer Function,'®
which are capable of identifying interactions in linear sys-
tems but are not suitable to detect causality among subsystems
composing a non-linear system.” Due to this, methods based
on Granger causality appropriated to detect causality in a
nonlinear system were developed.® Granger causality can
also be adopted by informational theoretical quantities, of
special interest to us, such as the TE, Directed Information
Theory,13’17 Conditional Mutual Information,® Partial Trans-
fer Entropy,'® and Mutual Information from Mixed Embed-
dings (MIME),'® which explore the intuitive notion that if
system X causes an effect in system Y, then, as specifi-
cally defined by transfer entropy, the amount of uncertainty
in future values of Y is reduced by knowing the past values of
X given past values of Y.

In this work, along the lines of the work in Ref. 13, we
intend to unify the concept of causality based on the pre-
dictability of dynamical states introduced by Granger with the
concept of causality defined in terms of transfer entropy, by
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considering the spatiotemporal character of causality. We will
also introduce an unnoticed informational quantity that fully
explores the space-time properties of causality, and that we
call Causal Mutual Information (CaMI). CaMlIy_, y measures
the total amount of information being transmitted from X to
Y, including both the information shared between both vari-
ables and that can be used to predict the present state of X by
observations in Y (i.e., Mutual Information), and the causal
information transmitted from X to Y and that can be used to
predict the past states of X by observations of the past and
future states of Y (i.e., Transfer Entropy).

Our proposed definition of causality, quantified by the
quantity CaMI, is based on the physical notion that if X
causes effect in Y, then longer observations of the variable
Y (or alternatively higher resolution observations) than the
one considered for X can be used to predict the past of X.
CaMI is calculated only by the probabilities of joint events,
without the need of conditional events. This allows one to
do a reduction in the dimensionality of the probability space
used to quantify causality, resulting in a method that demands
low computational power, and therefore allows for a quick
assessment of causality. To illustrate why this is of any inter-
est, notice that when calculating TE one needs to calculate
conditional probabilities. However, conditional probabilities
require the calculation of joint probabilities. CaMI only con-
siders joint probabilities, sparing one from the need to further
calculate conditional probabilities, but nevertheless a quantity
that trivially provides the directionality index, the net trans-
fer entropy between two systems, thus permitting the study of
causality with less computational resources. Then, we show
that the topology of the probabilistic space of joint proba-
bilities determined by the shapes and forms of the partitions
being generated by a dynamical process can also be used to
not only visualize the spatiotemporal character of causality
but also quantify causality, through the here defined CaMI.
The emergence of the spatiotemporal nature of causality can
be cumbersome or impossible to obtain with the usual higher-
dimensional space of conditional probabilities, from which
TE is calculated. A direct application of the topological prop-
erties of the joint probabilistic space is that it is not only
possible to state about the direction of information between
the measured variables but also to determine regions, the here
called causal bubbles, that define ranges for the variables
that are responsible for most of the information transmitted
between two systems. The topology of this space can also
be used to demonstrate that if there is a flow of information
from the variable X to Y, then it is also true that observa-
tions in Y allows for an accurate prediction of location of the
past dynamical states of variable X. As we shall see, there are
preferential places and preferential times to measure the infor-
mation being transmitted. Another advantage of our approach
is that our detection of causality is oriented to treat experimen-
tal systems since our probabilistic space is based on partitions,
which can be constructed based on the available experimental
resolution of the data, or on the sampling rate of the measure-
ments, allowing one to work with longer or short time-series.
The usual causal analysis based on the value of TE calculated
over equal-sized cells or from probabilities estimated by ker-
nels would only provide a scalar number, with no information
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about the dynamics behind the process or the topology of the
probabilistic space.

Il. COUPLED MAPS

For this study of causality, we consider discrete coupled
maps, whose connected nodes are described by

M
X =1 —a) +%ZAi,f(x{,,r), (1)
1 ]:1

where x', is the trajectory of map i, n is the time index of the
variable of the dynamics, « € [0, 1] is the coupling parameter,
Aj; is the adjacency matrix (with entries of 1 or 0 depend-
ing on the existence of a connection between two nodes or
not, respectively), r is the fixed parameter of each map, k; is
the degree of node i [k; = ) (A;)], and f(x,,r) is the map
governing the dynamics that can be described by the Logistic
map fi (x,,r) = rx,(1 — x,).2° A disconnected node (k; = 0)
is described by xfl a=f (xil, r). We assume that there are N,
maps forming the network.

Giving two variables X and Y, we are interested in deter-
mining the direction of influence that one variable imposes
over the other one. If X influences Y, we represent this
interaction by X — Y.

lll. PARTITIONS, STATE AND PROBABILISTIC SPACE,
AND SYMBOLIC TRAJECTORIES

In what follows, we consider that marginal observations
are being made in the relevant variables, defining events in
one variable by the falling of a trajectory point within an inter-
val. This interval represents the resolution of the observer.
These marginal observations and their probabilities will be
used to calculate the probabilities to quantify causality. For
simplicity in our analysis, we encode these partitions into
symbols and treat the trajectories as symbolic trajectories.

A. Order-m partitions, symbolic representation, and
dynamics on it

Consider two discrete scalar time-series X = {xg, x1,
X2, ... Xp—1} and Y = {yo,y1,¥2,...,Yu—1} With n elements,
and ® = {X, Y]} defines a pair of variables taken from two
subsystems in a complex network or coupled system. There-
fore, a point in a 2-dimensional state space QX" with coordi-
nates [X x Y] representing the states of the subsystems @ at
time ¢ has coordinates {x;, y;}.

We define a marginal partition of order-m of the coordi-
nate X as CX (m), defined by the boundary curves Lx (m) =
{IX(m), ..., IX(m)}, which in this work are assumed to be
straight lines, orthogonal to the direction of X. Then, this
partition is composed of columns ¢} (m) where each one is
separated from any other by one and only one curve I¥ (m) €
Lx (m). Similarly, for the coordinate Y, we can define a
marginal partition C¥ (m), formed by rows ¢! (m), enclosed
by the set of boundary curves Ly(m) = {Il (m),..., I¥ (m)},
which in this work are assumed to be straight lines, orthogonal
to the direction of Y. Since we have a 2D time-series, we can
construct a space partition CX¥ (m) as a splitting of the space
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QXY formed by the union of the lines in Lx (m) and Ly (m), so
M (m) = C(m)* UC@m)’. )

Areas enclosed by the straight lines of CXY(m) form the
cells ¢ (m) of the partition CX (m) that are encoded by the
symbols s (m). S (m) represents all the possible symbols
encoding cells in the partition of order-m.

The dynamics of points in this partition are repre-
sented by the transformation U;: (xi11,yi+1) = U (x;,y;) and
UL (X1, 91) = (Xr1p» Vitp)- The symbolic dynamics of points in
this partition are regulated by the transformation 7, a surjec-
tive mapping of the states of variables in QXY to a specific
symbol in XY (m). T provides a symbolic sequence ® in the
partition C*¥ (m). From Eq. (1), T is the transformation that
maps points from QXY into itself, a 2D projection of the whole
N,-dimensional network.

Given the partition CX¥ (m), we define a transition matrix
[1(m) where the element I1(m); = 1 if the cell ¢X¥(m) is
the pre-image of the cell cXY (m) (i.e., there is a dynamical
evolution from cell ¢} to cell cXY)

We define a transition matrzx of order-m [Tl (m)] as
follows:

1 if F™(¢;) Nej # 9,
0 otherwise.

M;(m) = { 3)
A partition is defined as an order-m if it generates a transition
matrix of order m.

We adopt a partition defined by marginal probabilities
because we want to define informational measures that quan-
tify the predictability one has to predict the state of one
variable by measuring only the state of the other variable,
assuming that variables are being measured by a physical
process, i.e., there is a measurement resolution.

B. Probabilistic space and symbolic trajectory

Now, let us define a L time-delay and time-forward
coordinate system from which probabilities are calcu-
lated. The time-delay trajectory ®_, () = {X_.(?),Y_.()} =
{Xi—Ls. - X—1,Yi—Ls- - -, Ys—1} represents a short segment with
length L (e.g., L points) of the time-series ®(f) taken
for a time span between the integer time 7 — L until the
time ¢ — 1, the time ¢ representing the time moment from
where past and future are defined. By applying the trans-
formation 7 to a segment of length L of the time-series
®_, (1), we generate a sequence of symbols that represent
the itinerary followed by the past length-L trajectory. The tra-
jectory points ®7, (¢) follow an itinerary along the partitions
CX(m) (6 =X),CY(m) (6 =Y), or CXY(m)(U = XY), which
are given by {c L(m), 7 L+1(m) ca ey 1(m)} If o = XY,
then (x,_z,yi—1) € chL (m). If o = X then x,_, € ¢ (m).
The itinerary C7,(t,m) = {cf_ (m), ¢} Hl(m) ces € (m)}
is encoded by a symbolic sequence S, (t,m) = {55 L(m)

z, - (m), . 57 7_,(m)}, from which probabilities can be
calculated. Slmllarly, the forward-time trajectory &7 (1) =
{X.(2),Y.(r)} follows an itinerary (or Visits the sequence
of cells) Cy (t,m) = {cf - (m), ‘m (m), .. lHL ,(m)} that is
encoded by the symbolic sequence S"(t m) = {s7 (m),

I+1
(m),. (m)}.

lt+2 lt+L 1



075509-4 E. Bianco-Martinez and M. S. Baptista

A (k + m)-order partition C? (k + m) is generated by the
k-pre-iteration of the boundary curves composing the m-order
partition C° (m). The pre-iteration is given by the evolution
operator U ~*. This order-(k 4 m) partition is formed by the
cells ¢7 (k + m). Notice that a cell ¥ (k + m) € C* (m + k),
with C¥(m + k) = U ¥[C* (m)] in an order-(k + m) par-
tition, represents points that follow a particular length-L =
k + m symbolic itinerary (or length-L trajectory) in the order-
1 partition. The probability measure of a length-L itinerary
u[{cg%(l), cg_w (D),..., cg_l (D)}] is assumed to be equal
to the probability measure of points in a cell of an order-L
partition and given by w[{c(L)}], with x,_; € ¢/ (L). Many
length-L trajectories can follow the same itinerary. The prob-
ability P calculated over the symbolic sequence of a length-
L itinerary along the order-m partition is represented by
P[{sj»LL(l),ﬁg_L+I (D), ....s7_ (D} If the partition is gener-
ating, then this probability is also equal to the probability of
points to belong to a cell s;(L) of an order L partition and given
by P[s;(L)], with i such that 7 (X_;) = s;(L), where s5;(L) is a
length-L symbolic sequence that gives the name of a cell in an
order-L partition.

Thus, there are two ways of calculating probabilities. One
based on the probability of the trajectory itineraries, which
produce the probability measures . The other based on the
symbolic itinerary, which produces the probability measures
P. There is, however, a fundamental difference between both
probabilities. Whereas u is calculated over a higher (m + k)-
order partition with non-overlapping well defined cells, and
therefore, it requires the use of a generating partition, P refers
to the probability of a symbolic sequence defined by the
marginal lower m-order original partition. It therefore does
not require that the higher-order partition is generating. In our
practical numerical calculations, we adopt the probabilities P
to calculate our informational quantities.

We assume in the following that the initial partition is
order-1 (m = 1); therefore, there is only one straight line in
Lx (1) and one straight line in Ly(1). Each of these sym-
bolic itineraries along the order-1 original partition can be
encoded by the symbolic name of a cell in an order-L parti-
tion. An event in CXY (1) is defined by trajectory points falling
incXV(1) € CXY(1).

C. A generating partition

An order-m + k partition C? (m + k) is generated from an
order-m C? (m) by

Co(m+ k) =UF[C’ (m)]. 4)

The partition C?(m) is a “generating” partition if all
the cells in C?(m + k) are non-overlapping and the union
of the partition boundary curves in an order-(m + 1) parti-
tion restores the boundary curves of an order-(m) partition.
The higher order partitions shown in this work satisfy Eq.
(4), however, higher-order cells do overlap. This overlapping
is, however, minor to the orders treated here; although this
overlapping will affect the topological properties of the proba-
bilistic space, this is not significant to all the results presented
in this work, in particular to the nominal value of the CaMI
quantity. This naturally will prevent the observed partitions to
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be generating. Consequently, this would have an impact if one
would want to calculate CaMI for longer time-delays, in terms
of the order-1 partition. Not the case for the present work.

In practice, when dealing with experimental (with noise)
or simulated time-series, as we will proceed in this work,
the boundaries and the cells of higher order-L partitions are
determined from symbolic sequences of length L created from
an order-1 partition. Initial conditions generating a symbolic
sequences of length L in the X_; coordinate created from
an order-1 partition (a binary partition) will belong to an
order-L marginal partition along this coordinate. Marginal and
joint probabilities are also estimated from the probabilities
of appearances of symbolic sequences by Eqs. (6) and (8),
respectively. More details on how this is done including the
composed subspace Y_;Y; where joint events in the variable
Y are calculated and where marginal partitions will have an
order of 2L can be seen in Sec. IV. See also Eq. (12) and
following explanations to understand how to calculate CaMI
from the higher-order partitions, from symbolic sequences.

D. An example

As an example of how trajectory points visit the par-
tition with different orders and how this trajectory is sym-
bolic encoded and probabilities are calculated, we consider
a dynamic process along a 1D binary partition. Assume
X € CX(I)- Then, (I))_(L(t) = XL Xi—r41s - X1} = X (B)
and ®F () = {x Xet1s - - - Xepr—1} = Xp(0), and S¥,(1,1) =
(&, (), 8%, (), .8 (D) and SF@1) = {sF (),
sy (D, ’5§+L71 (1)}. Observing a trajectory composed by
(X_.(t),X.(t)} considering the partition CX(1) allows us
to conclude that the trajectory of the system has visited
a sequence of cells described by a sequence of symbols
(S¥ (1, 1), ) (1, 1)),

Assuming L = 2, there exists an order-2 partition gen-
erated by U ~1[CX (1)] whose cells represent intervals where
points within generate S)fz(t, 1) and S§ (t,1). Moreover, a
cell in an order-2 partition is encoded by a symbol that
represents the whole symbolic sequence of length-2 trajec-
tories along the partition CX(1), and therefore there exist
i such that s¥(2) = S_,(#,1)* and there exist j such that
5])»( (2) = Sa(t, 1)X. Consequently, P[s¥(2)] = P[S_a(t, 1)¥]
and P[st (2)] = P[S» (1, D*].

In Fig. 1, we can see the relationship between a trajectory
of length-4 in an order-1 and an order-2 partition. This figure
also illustrates how an order-2 partition is generated from an
order-1 partition.

E. Probabilistic spaces and informational quantities

We now define some notations for the probabilities and
informational quantities to simplify the exposition of our next
derivations.

The notations P(X;) or P(Y.) represent P[ch(L)] or
P[cf L(L)]. So, P(X;) represents the probabilities of finding
points in the cells ch(L) or similarly P(X;) = P[sf(L(L)].
Therefore, the Shannon’s entropy of length-L symbolic
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X={,24-2=0.26,2,-1 = 0.69, 2, = 0.89, 2441 = 0.072}
51(1):,()/ 52(]_):/1/
A A
' v 1
|_“?1,‘t+1 Tieo < Li-1 o Tp . Order-1 Partition
0 - ;‘\:f) 1
UIY) I U=(1)
] 'l
(|)—U'C1 ot u-c4—;
Order-2 Partition
51(2) 2(2) 53(2) 54(2)
{17000 1 "o 1 1 1 10 1}

FIG. 1. In this diagram a length-4 trajectory is plotted in the state space and two partitions are shown, one of order-1 defined by the line /{ (and the bor-
ders of the state space) and another of order-2 defined by the union of I{ with & ~'(}f). The trajectory along the order-1 partition generates the symbolic
itinerary {S¥,(1),S¥ (1)} = {s,—2 = ‘0", 51 = ‘1", 5, = ‘1’, 5,41 = ‘0’} and along the order-2 partition generates the symbolic itinerary {S¥, (¢,2), Sy (1,2)} =
{8:—2(2) = ‘01", 5,1 (2) = ‘11", 5,(2) = ‘10’, 5,41 (2) = ‘00’}. Notice, however, that the first symbol in 5,(2) = ‘10’ represents the present location in an order-1
partition and the second symbol represents the location of the first iteration. Therefore, the second symbol in s,(2) = ‘10’, represents the same first symbol in

s1(2) = 00"

sequences, represented by H (X;) or H(X_p), is calculated by

H(X) = = Ple;“(L)] log{Ple;“ ()]}, )

So, if the “generating” property of the partition holds,
entropies of length-L trajectories along an order-1 partition
space can be calculated by the measure of the cells encoding
symbolic sequences of length 1 appearing in the higher order-
L partitions. This approach is especially oriented for analyt-
ical derivations based on the study of networks of coupled
dynamical systems. Otherwise, when dealing with time-series
coming from experiments or numerical simulations, as it is
the case of the present work, we calculate entropies consider-
ing the probabilities of length-L symbolic sequences observed
along the order-1 partition. So,

H(X,) = - Pls;"(D]log{Pls;“(L)]},  (6)

where 5?“ (L) represents a length-L symbolic sequence.

Let us now define a 2-dimensional state space Q¥-L¥-L =
[X_; x Y_;] and with a trajectory ®*-.Y-L on it.

The joint entropy of a composed space H (X;, Y, ) is then
defined by

H(X, Y1) = — Y Pl (D) log{Ple{" (D)1} (7)

Assuming that the generating property of the partitions do not
hold, then the quantity in Eq. (7) is estimated by

H(X, Y1) = — Y Pls;"" ()] log{P[s; " (1)]}.  (8)

By P(X., Y1), we represent the probability of a joint event
calculated by P(cf(L(L) Y1)y and by P(X.|YL), we represent a

conditional probability event representing the probability den-
sity of a point falling in the row ch(L) and then being iterated
to the column ¢+

Extended 3-dimensional spaces can be constructed by the
composition of Q¥-L¥-L with the 1-dimensional space rep-
resenting the presence of variable Y observed in an order-L
partition, or a space constructed from the time-forward trajec-
tory that visits an itinerary of length-L in an order-1 partition.
We represent this space by (1) or X (Q%). Notice that
a point belonging to a partition in c}l L(L) will produce an
length-L itinerary along the order-1 partition.

We are interested in the spaces QX-LY-L1L or QY-1X-LXL
composed by the variables {X_.(1),Y_.(r),Y.(f)} or
{Y_(®),X_L(t), X, ()}. It will be of further interest the spaces
QY-LYL and QX-LXL

Figure 2(a) shows the space QX-L7-LL formed by the
time-delay coordinates X_;, Y_; and time-forward coordinate
Y;, with L = 1, and an order-1 partition in all subspaces defin-
ing our probabilistic space. The order-1 partition for the 2D
space formed by (Y_; x Y;) shows the symbolic names of
columns, rows, and the composed cells.

Notice that the 2D space {Y_;, Y} with an order-1 par-
tition, where probabilities are calculated [Fig. 2(a)], can be
reduced to a 1D space W,' ™' with an order-2 partition
[Fig. 2(b)]. A partition cell in the space W2Y =1 represents
point that are in c}Ll (/) and move to ¢;(1) € Y, and there-
fore produce probabilities of the joint events P(Y_;,Y)) =
P(Y_)P(Y1|Y-1). In a general situation, for an arbitrary L,
probabilities in the space {X_;,Y_;} and {Y_;, Y.} could be
calculated over an order-L partition on each subspace. The
reduced probabilistic space would be composed by a coor-
dinate X_; where probabilities are calculated over an order-L
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(b)

00 01 10 11

FIG. 2. (a) Visualization of the space Q*-£¥-YL formed by the coordinates
(X_1,Y_1,Y)) and an order-1 partition in each subspace formed by pair of

coordinates. (b) Visualization of the reduced-dimensional space with coor-
dinates (X_,, WZY ~1"y and its asymmetric partition. Along X_; an order-1
Y1

partition is considered. Along W, an order-2 partition is considered.

partition and the coordinate WZY,__ Y where probabilities would

be calculated over an order-2L partition. A cell in WZYL_ B
would represent joint events P(Y_;,Y;) = P(Y_p)P(Y.|Y_L).

Notice that one can consider subspaces X_; and Y_; with
an order-L partition each, and the subspace Y; with an order-J
partition, with J # L, composing the space Q¥-1Y-LY7 Then,
the reduced space W would have a probabilistic space formed
by a partition of order (J + L).

IV. THE TOPOLOGY OF CAUSALITY
A. Generating higher-order partitions

We consider two non-coupled Logistic maps [ = 0 in
Eq. (1)], represented by X and Y, to illustrate how we con-
struct our partitions. Setting /{ = 0.5, if x; < I, then 7 (x;) =
0 [and s¥(1) =“0"], and if x; > I, then 7(x;) =1 [and
sX(1) = “17]. Applying these rules for a trajectory of this
uncoupled system, we generate Fig. 3(a). In Fig. 3(b), we
show in green two columns of the order-2 partition obtained
by U1(If). Setting I = 0.5, therefore £XY = {If, 1}, we
generate Fig. 3(c). The same coloured regions in this figure
represent cells in an order-3 partition created by U/ “2[CXY (D)].
The order-3 partition has columns and rows enclosed by
straight lines Ly (3) = U2[l{ (1)] and Ly(3) = Ul (D],
respectively, forming the partition CX¥ (3) = U« ~2[C*Y(1)]. In
this case, each column and row have boundaries that describe
a generating partition of one Logistic map.

In practice, we do not make pre-iterations of the
partition lines to determine the higher-order partitions.
Once we choose Ly and Ly, the rows, columns, and
cells of higher-order partitions are visualised by the
colours of points that encode a particular symbolic
sequence, using the following algorithm. Given a trajec-
tory, we construct the length-L segments of it ®XY(n) =
{(x),x0), ...,y 1. X5 )}, and whose symbolic sequence is
represented by Si‘y(n, 1) = {55(1),55;1(1), .. ,551(“71(1) °
sr(1),sr,,(1),...,sr,, ;(1)}. This symbolic sequence is
then encoded into an integer number that is used in the palette
of colours to set the colour of the point (x},x2) that will pro-
duce the length-L symbolic sequence S¥Y (n,1). Points will
belong to the same column (row) if their symbolic sequence

Chaos 28, 075509 (2018)

(a)

1 (b)
Y

o 1

1 N— ()
v B

-
e e -1
(3

FIG. 3. Panel (a) shows two columns with name s;(1) = “0” in red and
52(1) = “1” in blue, for the order-1 partition in X. Panel (b) shows in green
two columns from an order-2 partition in X with names s;(2) = “00” and
54(2) = “10”. Panel (c) shows, by the regions of the same color, cells cf‘y(3)
of an order-3 partition.

S¥(n, 1) [SY(n,1)] is the same and will belong to the same
cell if their symbolic sequence S5¥ (n, 1) is the same. To set
the palette of colours, we produce an integer for the colour
of the point @, (n) = (x!,x?) of an order-k partition generated
from an order-1 partition, using the following encoding rule:

colour[®p(n)] = O,(n) * 2~ + 0y (n), )

where 6,(n) = ZiL=1 sX, (D25 and 6,(n) = Zzzi1 Shi1i
(1)2%L=%, Then, colours are randomly assigned to each of these

integer numbers.

B. Understanding the arrow of influence

We now showhow the topological properties of higher-
order partitions change according to the coupling strength o
between 2 or more coupled systems as in Eq. (1), and how
these topological asymmetries can be used to determine the
arrow of influence in these systems.

The symmetry in the structure of the partition in Fig. 3(c)
reflects the fact that the two systems are not coupled. Imag-
ine that an observer measure an event in the variable Y at a
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(a)

X
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(b)

X

FIG. 4. Panel (a) shows an order-1 partition C{, each coloured region represents a cell. Panel (b) shows the order-2 partition given by C{¥ = U~'[C* (1)].
Panels [(c) and (d)] show the corresponding order-3 and order-4 partitions, generated by U ~2[C*Y (1)] and U/ 3[CXY (1)], respectively, coloured regions represent
the cells in the partition. Panels (e-g) show 2/~ '[I¥ (1)],142[1¥ (1)] and U/ —3[1¥ (1)], respectively, and each coloured “horizontal” stripe represents a higher-order
row. Finally, panel (h) shows only the higher-order rows of an order-5 partition, enclosed by L/ ~*[I¥ (1)].

time n: Y (n) = x2 = 0.5. Applying U (1), for any k, will
create always a vertical line stretching from O to 1, meaning
that an observation in Y at time n cannot be used to localize
the state of the variable X at time n — k. The consequence, as
we will show next, is that there is no flow of information from
X to Y. The contrary is also true, i.e., one can also use similar

arguments to conclude that there is no flow of information
from Y to X.

For a coupled system in a master (node X) and a slave
(node Y) configuration, assuming a coupling strength of o =
0.09, we have created partitions of different orders (from
order-1 to order-5) and shown in Fig. 4. One can see how the
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FIG. 5. Panel (a) shows the partition of order 5 in ¥ and order 2 in X. Panel
(b) shows the partition of order 2 in Y and order 5 in X.

increase of the order increases the topological complexity of
the partitions, for example going from Figs. 4(a) to 4(d). Pay-
ing attention to the higher order rows, defined by the enclosure
of L{’k(lf) along the Y variable, in Figs. 4(e)—4(h), and the
higher-order columns, defined by enclosure of I/ —k (lf ), we
can observe how they are not enclosed any longer by straight
lines. This asymmetry is the consequence of X driving Y.

We now want to analyse the different topological fea-
tures of the higher-order partitions when we consider different
orders in X and Y. For that we produce Fig. 5 obtained from
two Logistic maps coupled in a master (X) and slave (Y)
configuration with a coupling strength o = 0.09. We have
selected two orders for our partitions in X and Y: 2 and 5.
Figure 5(a) shows the different cells (same colour region) of a
partition created by the intersection of an order 2 partition in
X and order 5 partition in Y. Figure 5(b) shows the different
cells of a partition of an order 2 in Y and an order 5 in X. The
asymmetry in Fig. 5(a) indicates that the system has an arrow
of influence X — Y.

C. Local Mutual Information

Pointwise Mutual Information (PMI) is a probabilistic
measure of the amount of information that two different ran-
dom variables posses locally between them. Given a particular
partition, the PMI only takes into consideration the informa-
tion computed over a single cell and not over the entire set of
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X

FIG. 6. nPMI for a directed coupled Logistic map with a coupling strength
of 0.09. It can be observed how the nPMI is higher inside the bubbles.
Minimum and maximal values of nPMI are —5.12 and 4.12 respectively.
These values were normalized to fit in the interval [a,b], with a =0
and b = 1. The equation for the normalization is y = (b — a) * (nPMI —
min{nMPI}) /(max{nMPI} — min{nMPI}) + a.

cells as the MI. PMI is defined as
PMI(i,j) = Hy + H), — Hy},, (10)

where Hy = —P(s))log[P(s{)], Hy = —P(s])log[P(s))],
and H ;’Y = —P(ﬁfy) log[P(5fY )], with k representing the cell
formed by the overlapping of the higher-order row i with the
higher-order column j. Therefore, MI is just the average of
PMI over cells of the partition. In the following, we consider
a normalized variant of PMI, named normalized Pointwise
Mutual Information (nPMI), introduced in Ref. [21], and
defined as follows:

_ PMI(,j)
log[P(sy")]

The advantage of the nPMI over PMI is the reduction of the
sensitivity of the measure to short time-series.

Using nPMI in the partitions considered in Fig. 5, we can
calculate the amount of information exchanged between vari-
ables X and Y, the nMPI values for each cell represent the
contribution of specific symbolic sequences (time nature of
causality), or of particular variables domains (spatial nature
of causality) contributing to the information transferred from
Xto?.

Figure 6 shows the nPMI for two directed coupled Logis-
tic maps for an order-5 partition C*¥ as the order of the
partition along the variable Y in Fig. 5(a). Rule for the nor-
malization is explained in the figure caption. The surprising
fact is that nPMI is larger for a special union of cells enclosed
by one of the solutions of & ~3(1}') that forms closed curves.
We call these special union of cells, causal bubbles, from its
closed graphical representation. We can see that the bubbles
are areas containing trajectory points responsible for a large
amount of information exchanged between X and Y, and as
explained in Sec. IV D, a consequence of the fact that X — Y.

nPMI = (11)

D. Causal bubbles

Figure 7 shows an illustration of how these bubbles are
created. The partition line /" represented by the black dashed
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FIG. 7. (a) Dashed black line represents / }/ (b) The red curves are obtained by
one backward iteration of lly. (c) The closed red curve is obtained by 2L — 1
backward iterations of /!

line in panel (a) is iterated once producing the red curves such
as the ones showed in panel (b), and eventually after 2L — 1
backwards iterations these curves form a closed contour as is
shown in panel (c) by the closed red curves.

Assume that the future of the observed variable y, ; 1,
L iterations forward in y, has a value that lays exactly at the
partition line, i.e., y,4;—1 € lf . The variable to be predicted
has an arbitrary value at t4+ L — 1, so x;4,—; can assume
any value in the state space. Then, after one backward iter-
ation, y,.r—» € U7'(IV) is located on the red lines in panel
(b). After 2L — 1 backward iterations, y,_; has a position
along the red closed curve in panel (c), enclosing a bubble
area.

Therefore, the first observation in the variable y at time
t + L — 1 cannot tell anything about the position of the vari-
able x,y; ;. Assuming that the observer has full knowledge of
the dynamical equations, it makes one observation at y obtain-
ing the value y;;; 1, which in this imaginary example lays at
IY. The smart observer uses the knowledge of the dynamics
and makes 2L — 1 backward iteration of /. The observer will
conclude that, if y, ;-1 € I/, then y,_; € Iy and x,_ € Ix,
where Iy is the x-interval enclosed by the red curve, panel(c).
So, by making one observation of the future of y and using
the knowledge of the dynamics (which can be obtained by
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inspection of the time-series or from modelling the system),
the observer can better localize the state of the past variable
x, if X — Y. Moreover, if more observations are done (from
the future to the past) in y, more likely the observer is to
improve its knowledge about the location of x,_; by doing
similar analysis.

If there is no physical connection between system X and
system Y, and no flow of information from X to Y, the bubbles
are not formed, and therefore, one cannot localize the position
of the variable X by observing Y.

It is worth mentioning that the studied system is non-
invertible, and therefore, if future of ¥ depends on the past X
(as one would naturally conclude if doing the Granger analy-
sis by constructing a model from the data), it is not necessarily
obvious that the past of X can be predicted by the future of Y.
The causal bubble, however, demonstrates that this is indeed
true.

V. CAUSAL MUTUAL INFORMATION (CAMI)

We are now ready to define a new informational quantity
named Causal Mutual Information from X to Y (CaMlx_,y)
as the mutual information between joint events in X_;, and the
set composed by the joint events of Y_; and Y} as

CaMly_y = MI(X_1:Y_. Y1) = MIX_; W,/ ™). (12)

Analogously, CaMIy_,x = MI(Y_y; W;LLX‘L). So, in practice,

CaMly_,y is calculated by computing the mutual information
between symbolic sequences of length L in the variable X and
symbolic sequences of length 2L in the variable Y.

Notice that CaMI is not permutable since CaMIy_,y #
CaMly_ x. As we can see, CaMlIx_,y is the Mutual infor-
mation between trajectory points in the subspace X; and the
subspace W;LLY‘L and that measures the amount of informa-
tion between longer time-series of past, present, and future of
Y and shorter time-series of the past of X. The fundamental
idea behind the reason for us to propose CaMI as a measure
of causality is that if there is a flow of information from X to
Y, then longer observations in the Y variable can be used to
predict the past of states of X. CaMI is also a quantity that
measures the total amount of information extracted from one
variable by observing another variable, not only the shared
amount (non-causal, measured by the Mutual Information) but
also the transmitted amount (causal, measured by the Transfer
Entropy).

Considering the coupled system and the same parti-
tion used to create Fig. 5(a), the magnitude of the com-
puted CaMly_,y is 0.17. Considering the coupled system and
the same partition used to create Fig. 5(b), the magnitude
of the computed CaMlIy_ x is 0.04. The difference in the
CaMI’s magnitudes, meaning CaMlIy_, y-CaMly_,x > 0, and
the asymmetry in Fig. 5(a) with the existence of the causal
bubbles indicate the presence of a system whose direction of
causality is given by X — Y, and therefore, there is a flow
of influence from X to Y. As we shall see, for this situation,
CaMly_ x=MI(X_;;Y_;), meaning that the variables share
some common, non-causal information.

Notice that the PMI as defined in Eq. (10) is just one of
the terms considered in the calculation of CaMI.
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A. Transfer Entropy and Causal Mutual Information

Having two random processes X and Y, the amount of
information transferred from process X to Y (X — Y) can be
quantified by the Transfer Entropy,' defined as follows:

Txoy=HX|Y_1))-HX|Y_1,X_1), (13)

where H(X) is the Shannon’s entropy of X, H(Xy | Y_r) is
the knowledge (reduce of entropy) of process X from time ¢
to t + L — 1 if the past of process Y from ¢t — 1 to t— L is
known, and H (Y, | Y_1,X_1) represents the knowledge of the
process Y from time ¢ to t + L — 1, if the past of X and Y in
the interval from ¢ — 1 to ¢ — L is known. Transfer entropy
was shown to be related 2223 to directed information, a sort of
a cumulative version of transfer entropy. The later quantity is
being currently considered as an appropriate measure to deal
with channels of communication with feed-back, describing
channels where the output is fed back to the input.

We can express Eq. (13) as a function of joint entropies
and not conditional one using the chain rule for entropy and
Bayes theorem:

Txy=HY.,Y_1)—HY_L)

—HY_1, Y, X ) +HY_,X ). (14

But notice that CaMI can also be written as

CaMly .y =MI(X_1; Y., Y1)

=HX_p)+HY,Y_p)
—HX ;,Y,Y ). (15)
Finally, comparing Eq. (15) with Eq. (14), we conclude that

CaMly .y = Tx .y + MI(X_1; Y1), (16)

where MI(X_;Y_1) =HX_)+HY_1) —HX_;,Y_;) is
the mutual information of the system composed by X and Y.
Both quantities are shown over a Venn diagram in Fig. 8 for
their comparison. One can see that CaMI carries more infor-
mation about the considered variables than transfer entropy.
CaMly_,y represents the amount of information exchanged
between X and Y [provided by the term MI(X_;;Y_;)] and
the transfer entropy from X to Y. Whereas MI(X_;; Y_;) mea-
sures how much the observation of a length-L trajectory along
the variable X (or Y) can be predicted by observations of
a length-L trajectory of the variable Y (or X), the transfer
entropy from X to Y measures how much one can predict
from the past state of the X by making observations of the
past, present, and future states of the variable Y. One impor-
tant fact to notice is that since MI(X_;;Y_;) = MI(Y_;; X_}),
the directionality index defined by Tx_,y — Ty_.x, and there-
fore representing the net flow of information between both
variables, can be calculated by

DI = TX—>Y — Ty_>X = CaMIX_>y - CaMIyex. (17)

As another remark, notice that transfer entropy is
defined as the conditional mutual information, and there-
fore, T(X — Y) = MI(X_1;Y.|Y_L), see Ref. [5]. Recalling
that CaMlIy_.y = MI[X_p; (Y_L,Yp)], it is easy to see that
to define CaMI we have replaced the conditional probabili-
ties in the transfer entropy Tx_, y to joint probability ones in
CHMIX_>y.
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FIG. 8. Representation over a Venn diagram of the CaMI. Panel (a): Causal
Mutual Information, CaMly_, y. Panel (b): Transfer entropy, Tx_y.

VI. HIGHER-RESOLUTIONS INITIAL MARGINAL
PARTITIONS

We have previously seen that the probabilities of length-
L symbolic sequences representing trajectory points following
an itinerary along order-1 marginal partitions can be used to
calculate CaMI, and therefore, be used to detect the causal
direction of the flow of information. We have seen that the
topology of a higher-order 2D asymmetric partition, where
each coordinate has different orders, can be used to determine
the arrow of influence between two variables. The higher-
order partitions were generated out of order-1 marginal par-
titions. However, in certain practical situations, for example
in stochastic or experimental systems, higher-order partitions
generated out of lower-order partitions should be expected
to produce no discernible topological set that could orient
one to the correct direction of the flow of information. It
is thus interesting to verify whether and for which bound-
ary conditions a marginal partition with Nx boundary lines
along the variable X [Lx(m)] and a marginal partition with
Ny boundary lines along the variable Y [Ly(2m)] could be
used to estimate a physically consistent CaMly_,y. Simply
put, CaMlIy_,y calculated in this way would be obtained by
measuring the mutual information between lower-resolution
observations along the variable X and higher-resolutions
observations along the variable Y.
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FIG. 9. Two Logistic maps bi-directionally coupled. The coupling strengths
o and B are related by g = 0.1 — «.

We study the mutual information of a system (as the one
shown in Fig. 9), with a coupling strength « = {0,0.05,0.1}
and 8 = 0.1 — «. In Fig. 10, we show by colours the values of
the MI calculated considering Egs. (5) and (7) between vari-
ables X and Y for a partition CX for X and CY for Y, with a
different number of columns and rows, respectively. The num-
ber of Ny and Ny are shown in the axis of Fig. 10. Recall
that CaMIx_,y is just the mutual information between vari-
ables X and Y where the partition of X has order L and the
partition of Y has order 2L. Here, we want to test the plausi-
ble idea that causality can also be detected when the variables
are observed with different spatial resolutions. We, therefore,
want to test whether MI is capable of detecting the direction

100 ()
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a0 0.13
40 so . 80 100
X
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FIG. 10. Mutual information of coupled Logistic maps computed on an asym-
metric partition with different number of rows and columns. The horizontal
and vertical axis show the different amount of rows and columns of the parti-
tion. Panel (a) shows the result for « = 0.1 and B = 0, so information flows
from X to Y. Panel (b) the results for« = 0 and 8 = 0.1, so information flows
from X to Y. Panel (c) shows the result for « = 0.05 and g = 0.05.
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for the flow of information when a probabilistic space has an
arbitrary number of equal rectangular areas.

In Figs. 10(a)-10(c), if the partition in X has the same
number of cells than the partition in ¥, MI grows with the
growing of the number of cells. As expected, one can see that
if the flow of information is from X — Y [as in panel (a)],
then partitions with more cells in Y than in X produce larger
MI (or CaMI) than partition with less cells in Y than in X.

Surprisingly, Fig. 10(a) shows a novel feature for the
MI of coupled systems. If the flow of information goes from
X — Y, then given a partition in ¥ with a particular number
of cells (i.e., resolution), the value of MI obtained is roughly
invariant for the chosen resolution in X. This implies that
the amount of information one can realize from X by mak-
ing measurements in Y is almost solely dependent on the
resolution of the observation in Y, and there is a sufficient
large amount of number of cells in Y. In Fig. 10(b), the flow
of information goes from Y to X and therefore for a suffi-
ciently large number of cells in X, the information that one
can deduce from Y by measuring X almost solely depends on
the resolution of X. Finally, in Fig. 10(c) for the bidirection-
ally coupled system, with equal coupling strengths, the values
for MI will depend on both resolution of variables X and Y in
a complementary way; i.e., if the sum of the number of rows
and columns is maintained, MI remains roughly invariant. In
fact, the relationship is described by a diagonal hyperbola.
This phenomenon can be also used to detect the directionality
of the coupling.

VIl. CONCLUSION

In this work, we have investigated the spatiotemporal
properties of causality, causality meaning the study of the
arrow of influence between two systems. The spatiotempo-
ral nature of causality can be exploited to detect the arrow
of influence from X to Y, by considering either shorter time-
series of X and longer time-series of Y, an approach that
explores the time nature of causality, or lower precision
measured time-series in X and higher precision measured
time-series in Y, an approach that explores the spatial nature
of causality. Thus, this work shows that causality can be
detected not only by the analyses of the topological properties
of higher-order partitions generated by lower-order marginal
partitions (the “space” property of causality) but also by con-
sidering the probabilities on these partitions, reflecting the
density of trajectories of a given time-length (the “time” prop-
erty of causality). To apply this abstract notion of causality
into a quantitative approach, we have introduced a new infor-
mational quantity, the causal mutual information, CaMIy_, y,
that measures the total amount of information being trans-
mitted from X to Y, the information shared between both
variables and that can be used to predict the present state of
X by observations in Y (i.e., the Mutual Information), and the
causal information directed transmitted from X to Y, which
can be used to predict the past states of X by observations of
the past and future states of Y (i.e., the Transfer Entropy).

Since CaMI does not require the calculations of con-
ditional probabilities, but rather only joint probabilities, the
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probabilistic spaces involved in its calculation can be lower-
dimensional, enabling a quick estimation of TE. This property
is well wished for causal analysis of large complex systems
such as the brain or for technological applications that employ
TE, for example, the recently proposed brain-based cryp-
tography (see Ref. 24). Also, less data are required for the
determination of causality since the probability space can be
constructed according to the available data.

Another important result of this work was to show that
measuring a driven variable with finer resolution than that
used to observe the driving variable allows us to obtain more
information about the driving system but not the other way
around. Increasing the resolution of observation of the driv-
ing variable brings no additional information about the driven
variable. This observation could also be exploited to detect
directionality in networked systems.

A potential advantage of our approach is that even though
the analysis of causality is bivariate, employing two observ-
ables taken from two subsystems X and Y in a larger system,
the topological properties of the constructed probabilistic
space can potentially discern whether information is being
sent physically from X to Y, or whether it is being mediated
by other subsystems and variables (in this case, there is no
physical connection between X and Y). This special property
of the probabilistic space shown to exist to fully determin-
istic systems to detect causality allows one to detect direct
or mediate effects without the need to calculate multivariate
conditional probabilities, from which one can detect direct or
mediated influences in stochastic systems,'%* an approach
suitable for both dynamical and stochastic systems, but that
however requires the use of large dimensional probabilistic
spaces. In the multivariate approach to detect causality, the
conditional probabilities of multivariate variables need to take
into consideration the influence of co-founders,2¢ entities that
mediates the transfer of information from X and Y systems.
In fact, our approach was recently tested to infer the topol-
ogy and the synaptic nature (either chemical or electrical)
of complex neural networks. It was shown?’ that CaMI can
be used to successfully infer the topology of the neural net-
work with no mistakes, and also discern about the nature of
the connections, even when the network is in the presence
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of both dynamical and observational additive Gaussian noise,
and even when only observational time-series based on local
averages are available.
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