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Abstract: Kerr soliton frequency comb generation in monolithic microresonators recently 
attracted great interests as it enables chip-scale few-cycle pulse generation at microwave rates 
with smooth octave-spanning spectra for self-referencing. Such versatile platform finds 
significant applications in dual-comb spectroscopy, low-noise optical frequency synthesis, 
coherent communication systems, etc. However, it still remains challenging to 
straightforwardly and deterministically generate and sustain the single-soliton state in 
microresonators. In this paper, we propose and theoretically demonstrate the excitation of 
single-soliton Kerr frequency comb by seeding the continuous-wave driven nonlinear 
microcavity with a pulsed trigger. Unlike the mostly adopted frequency tuning scheme 
reported so far, we show that an energetic single shot pulse can trigger the single-soliton state 
deterministically without experiencing any unstable or chaotic states. Neither the pump 
frequency nor the cavity resonance is required to be tuned. The generated mode-locked 
single-soliton Kerr comb is robust and insensitive to perturbations. Even when the thermal 
effect induced by the absorption of the intracavity light is taken into account, the proposed 
single pulse trigger approach remains valid without requiring any thermal compensation 
means. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Since the use of self-referencing technique to stabilize carrier-envelope phase (CEP) was 
demonstrated in 2000 [1], optical frequency combs lead to revolutionary breakthrough in 
many fields such as spectroscopy, metrology, communications, biochemical sensing, etc [2–
4]. Kerr frequency combs, as a branch of the frequency comb family, can be generated 
through modulation instability (MI) and cascaded four-wave mixing (FWM) in externally 
driven nonlinear microresonators [5–7]. Microresonators, typically structured as disk [5,8], 
toroid [9,10], or ring [11,12], have the advantages of compactness, high finesse, and CMOS 
compatibility. Externally driven microresonators are intrinsically driven-damped nonlinear 
systems, which normally exhibit multistable and chaotic dynamics depending on the system 
parameters [13]. Such dynamical behaviors have been observed in the experiments of 
microresonator-based Kerr frequency comb formation [14]. Temporal dissipative cavity 
solitons are first demonstrated in fiber cavity [15], which are stable solitons superimposed on 
a continuous-wave (CW) background, can be achieved through comb formation. Especially, 
the single cavity soliton (SCS) state shows many attractive characteristics, e.g. the generation 
of few-cycle femtosecond pulses at microwave rates and octave spanning phase-locked comb 
spectra [14,16,17]. However, straightforward and deterministic generation of the desired 
single-soliton state remains a challenge. The typical approach to obtain the single-soliton Kerr 
combs is to tune the pump frequency across a resonant frequency of the cavity from blue-
detuned side to effectively red-detuned side [10,14]. Various improvements to the basic pump 
tuning scheme have been proposed and demonstrated. They include experimental 
demonstrations such as the combined forward and backward pump tuning to successively 
reduce the number of solitons generated in the microresonator [18,19] and a two-step “power 
kicking” protocol to overcome the thermal destabilization [20–22], and theoretical works like 
a specified tuning pathway obtained by prior scanning of the parameter space to achieve the 
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deterministic SCS by avoiding the chaotic and unstable states [23] and slow pump tuning in 
conjunction with phase or amplitude modulation [24]. However, any pump tuning scheme 
requires tunable lasers which in general suffer from broad linewidth and thus high noise 
density and degrade the frequency/phase noise characteristics of the combs. Tuning the cavity 
resonance by current-controlling a resistive heater has been proposed to excite single-soliton 
with fixed-frequency pump lasers [25,26]. Although these tuning based approaches show 
promising performances, it would be more attractive to straightforwardly and 
deterministically generate the SCS state without any tuning and active servo control. 
Furthermore, SCS generation schemes that minimize the thermal effect are particularly 
important for microresonators with fast thermal response. For instance, the thermal response 
time of silicon nitride (SiN) microresonators can be as short as hundreds of nanoseconds 
[27,28]. The tuning speed of most lasers or microheaters cannot match such a fast thermally-
induced cavity resonance shift, making it difficult for frequency-tuning based schemes to 
generate SCS. Phase modulation of the pump field has been proposed to deterministically 
excite the SCS instead of the tuning approaches [29–32]. However, the roundtrip times of 
Group IV (Si, SiN) and Group III-V (AlN) semiconductors based microresonators are 
typically in the order of a few picoseconds. Currently there are no commercially available 
phase modulators that could achieve such high-speed operation. 

In this paper, we propose to generate single-soliton Kerr combs by seeding the CW 
pumped microcavity with a single shot pulsed trigger. The proposed method does not require 
any frequency tuning process, thus the complication induced by the fast thermal response 
issue is largely avoided. Also in the proposed triggering scheme, as will be discussed later, 
the cavity starts from the red-detuned side of the cold cavity and evolves into the SCS state 
along the nearest path, thus avoiding the chaotic states. As the extra energy injected into the 
microresonator is small, the variation of intracavity energy is kept at a low level. 
Consequently, the thermal effect induced resonant frequency shift of the microresonator is 
much smaller than that of the frequency tuning schemes. Similar cavity soliton excitation 
schemes by using addressing pulse have been proposed in spatial structures [33,34] and fiber 
cavities [15,35,36]. However, in microresonators the cavity roundtrip time is typically either 
comparable to or even shorter than the duration of the trigger pulse. Thus the full trigger pulse 
is likely to cover multiple cavity roundtrip time. The coherent stacking of the trigger pulse 
may cause destructive perturbation to the intracavity field. Furthermore, the thermal effects 
will not be a problem in the large volume fiber or spatial cavities. A recent work shows 
deterministic generation of SCS in a Fabry–Pérot microresonator by using synchronous 
pulsed pump instead of the common CW pump [37]. Although such a scheme can tolerate a 
small amount of non-synchronization, it cannot be used in microresonators with picosecond 
roundtrip time because it is difficult to obtain several hundreds of GHz pulse sources. More 
important, the pulsed pump must always be kept on because it serves as the pump, not a 
trigger. It is difficult to keep the pulse train synchronized to the cavity for a long period of 
time. Thus, the proposed trigger approach to generate SCS in microresonators is novel and 
unique. 

2. Principles and methods 

Figure 1(a) illustrates the proposed Kerr comb generation scheme. The combined field of a 
CW pump and a trigger pulse is injected into the microring resonator. The trigger pulse 
injects energy to those comb lines within the resonant profiles of the cavity and 
simultaneously covered by the spectrum of the trigger pulse. Most importantly, the phases of 
the comb lines are intrinsically synchronized as they are generated from the same single pulse 
trigger. Such coherently seeded comb lines initiate the Kerr comb generation process and 
avoid the random build-up of pulses through modulation instability (MI). Figure 1(b) shows a 
schematic diagram of the relationship between the spectral profiles of a trigger pulse train and 
the microresonator modes for three pulse periods T. When a single trigger pulse, i.e. T = ∞ 
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(Case (iii)) is used, the pulse spectrum has the most off-resonant components, thus the least 
efficient energy coupling from the trigger pulse to the microresonator. However, the spectrum 
of the trigger pulse will certainly overlap with the resonant modes of the cavity. Thus, 
problems such as synchronization, timing jitter, and carrier envelope phase (CEP) 
stabilization will not arise if a single pulse is used as a trigger (Case (iii)), but are inevitable if 
a pulse train is used as trigger instead (Cases (i) and (ii)). In practice, any low repetition rate 
picosecond or femtosecond lasers with sufficient peak power and single pulse energy to 
excite an SCS can be used to construct the single shot trigger pulse source. The trigger pulse 
source is simply switched off after launching a single pulse into the cavity. 

 

Fig. 1. (a) Schematic diagram of the proposed single-soliton Kerr comb generation. (b) 
Schematic diagram of the spectral profiles of a trigger pulse train at three different pulse period 
T (i) T = 1/FSR, where FSR is the free spectral range of the microresonator, (ii) T = K/FSR, 
where K is a positive integer, and (iii) T = ∞ (single shot trigger pulse). (c) and (d) are the 
illustrative diagrams of the variation of averaged intracavity power versus pump-resonance 
detuning in the Kerr comb excitation process when (c) only Kerr effect, and (d) both Kerr and 
thermal effects are considered. The blue solid curves show the possible intracavity power 
evolution to approach a single-soliton state in conventional pump frequency tuning scheme. 
The black dashed curves indicate the states with different number of intracavity solitons 
[14,18]. The lower red solid curve indicates the stable cold state with CW field only in the 
cavity. The evolution path to the single-soliton state utilizing the pump frequency tuning 
scheme (A→B→C→D) and the proposed trigger scheme (F→E→D) are indicated by the red 
and blue dashed arrows, respectively. Different colored regions indicate different intracavity 
states. MI stands for modulation instability. λp is the pump wavelength, and λ0 is the closest 
cold-cavity resonant wavelength. λa and λb mark the wavelength detuning region where the 
SCS state exists as indicated in (c) and (d). 

The wavelength of the CW pump is fixed and red-detuned [λa < (λp − λ0) < λb] with respect 
to the closest cold-cavity resonant wavelength (λ0), where λp is the pump wavelength, λa and 
λb mark the wavelength detuning range that SCS state exists, as indicated in Figs. 1(c) and 
1(d). The evolution path to the SCS state in the proposed trigger scheme is rather different 
from that of the conventional pump tuning scheme. The schematic diagrams in Figs. 1(c) and 
1(d) show the variation of the average intracavity power versus the pump-resonance detuning, 
which have terraced soliton solution states (black dashed curves). Kerr effect is included in 
both figures but thermal effect is considered in Fig. 1(d) only [14,18]. From Figs. 1(c) and 
1(d), as the pump wavelength is increased from the blue-detuned side to the effectively red-
detuned side, the cavity undergoes the (A) CW, (B) MI, (C) chaotic which is also called 
unstable MI, and (D) SCS state along the path A→B→C→D. In the proposed trigger scheme, 

                                                                                                Vol. 26, No. 14 | 9 Jul 2018 | OPTICS EXPRESS 18567 



the cavity starts from (F) cold state in the red-detuned side, first jumps to (E) a stable cold 
equilibrium CW state, and then to (D) the SCS state along the path F→E→D, by the 
combined action of the CW and trigger pulse. The inclusion of thermal effect tilts the 
response curve, as shown in Fig. 1(d), but the dominant behaviors shown in Figs. 1(c) and 
1(d) are similar. 

We note that the intracavity power of the SCS state (D) is much lower than that of the 
chaotic state (C). To reach the SCS state from the chaotic state, the cavity will have to be 
significantly cooled down. The excess energy should be quickly shed, otherwise the SCS state 
cannot be accessed and sustained. The difficulty to dissipate the excess energy is the reason 
that the resonance is typically lost when the pump wavelength enters the effectively red-
detuned region in conventional pump tuning experiments. Thus special tuning speed control, 
power kicking methods, and/or active servo control, which are equivalent to thermal 
annealing of the microcavity, are required to obtain and stabilize the SCS state from the 
chaotic state [14,20–22]. Despite the use of these special means, conventional pump tuning 
scheme to reach the SCS state remains unpredictable because it starts from a chaotic state. In 
the proposed trigger scheme, as the microcavity will not go through any chaotic state, the 
final state is deterministic. As the variation of intracavity energy is much smaller than that of 
the pump tuning scheme, the proposed trigger scheme is more robust to thermal perturbations. 

Since the trigger field is the combination of a CW pump and a pulse, the light injected into 
the resonator is not a fixed quantity but varies significantly. Thus for the proposed trigger 
scheme, the mean-field Lugiato-Lefever equation (LLE) is no longer adequate to describe the 
system. We model the evolution of the optical field inside the cavity using the Ikeda map 
[38–40], 

 0( 1) ( ) ( )
in( 0, ) ( ) 1 ( , ),im m mz e z Lδψ τ θψ τ θ ψ τ−+ = = + − =  (1) 

 
( ) ( )
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2 !
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ττ≥

∂ ∂ ∂= − + + +
∂ ∂∂  (2) 

where ψ(m)(z,τ) is the slowly-varying envelope of the intracavity optical field in the m-th 
roundtrip, τ is the retarded time, α0 is the linear loss coefficient, θ is the coupling coefficient 
between the microring and the bus waveguide, βk is the k-th order dispersion coefficient, γ is 
the nonlinear coefficient, L = 2πr is the roundtrip length, r is the radius of the resonator, δ0 = 
tR(ω0 − ωp) = 2πl − φ0 is the detuning between the CW pump frequency ωp and its closest l-th 
order cold-cavity resonant frequency ω0, here tR is the roundtrip time of the resonator and l is 
an integer, φ0 is the linear phase delay of the intracavity field in a single roundtrip, and τs = 
1/ωp is the optical shock time constant. The dispersion of the nonlinearity is typically 
negligible for the reported microresonators [8–12,14,18,20–22,41], but can be included by 
referring to the modeling of supercontinuum generation [39] for specific materials and 
operation bands. The combined injection signal of a CW pump and a single shot pulse during 
the m-th roundtrip is given by, 

 [ ] [ ]( )
in cw t R R t( ) exp ( ) sech ( ) .m P i mt mt tψ τ ψ τ τ δ τ= + − ΔΩ + + −  (3) 

where ψcw is the CW pump field, Pt and τt represent the peak power and duration of the trigger 
pulse, respectively. δt represents the temporal central position of the trigger pulse. ΔΩ = 2πΔf 
= 2π(ft − fcw) is the central frequency offset of the trigger with respect to the CW pump, where 
ft and fcw are the central frequencies of the trigger pulse and the CW field, respectively. The 
fast variation of the combined injection field is completely described by Eq. (3). We note that 
phase matching between the trigger pulse and the roundtrip phase of the CW pump is not 
required. Different phases difference only result in different interference profiles of the 
combined optical fields of the trigger pulse and the CW pump, but does not prevent the 
excitation of the SCS. 
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Thermal effects become significant only after the formation of the SCS but contribute 
little during the initial transient Kerr process. Therefore, we first study the trigger approach on 
SCS generation without including the thermal effect in Eqs. (1) and (2). The thermal effect is 
discussed and studied individually. 

3. Results and discussion 

3.1 SCS excitation with a single shot pulse trigger 

 

Fig. 2. (a)-(c) Temporal and (d)-(f) spectral evolutions of the intracavity field and the 
instantaneous profiles at the final and 3084-th roundtrips, respectively, when a single shot 
pulse trigger with a peak power of 520 W and an FWHM of 1.5 ps is injected. (g) Pt_min versus 
τt at different Δf. (h) Different operation regions within the parameter space of Pt and δ0 with τt 
= 1.5 ps and Δf = 6·FSR. Other parameters: |ψcw|2 = 1 W, β2 = −59 ps2/km, γ = 1 W−1/m, α0L = 
0.012. Dispersion parameters up to 7-th order are included to properly describe the broadband 
dispersion characteristics of the resonator. 

To demonstrate the effectiveness of the proposed trigger approach, we use a Si3N4 microring 
resonator fabricated on silicon oxide substrate as an example, which is similar to that reported 
in [12,17]. We also note that Eqs. (1)-(3) can be applied to microresonators fabricated by 
other materials. The resonator has a free spectral range (FSR) of 226 GHz, a radius of r = 100 
μm, and a coupling coefficient between the bus and ring waveguides of θ = 0.25%. The 
loaded Q-factor is ∼1 × 105. The detuning δ0 is fixed to 0.0205 here. A single shot pulse with 
a peak power of 520 W is launched at the 2050-th roundtrip, accompanying the CW pump of 
1 W, as shown in the inset of Fig. 2(a). The power might be doubled in practice as a beam 
splitter is likely required to combine the two optical fields. After the injection of the trigger 
pulse, the peaks of the interference profiles between the trigger pulse and the CW pump first 
evolve into several weak pulses. Eventually the central one, which has the highest peak 
power, evolves into a stable SCS. No chaotic or MI states are experienced. Figure 2(b) shows 
the intracavity temporal waveform at the final roundtrip of the simulation. The SCS has a 
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peak power of 86 W and FWHM of 43.4 fs. The waveform at the 3084-th roundtrip is shown 
in Fig. 2(c), which is captured at the first peak of a damped oscillation in the evolution. The 
cavity soliton has a higher peak power of 143 W and a smaller FWHM of 32 fs when 
compared with the final state. Figures 2(d), 2(e), and 2(f) show the spectral evolution, spectral 
profiles of the intracavity field at the final and the 3084-th roundtrips, respectively. Figure 
2(d) shows that an initial broadband gain is introduced by the high energy single shot pulse 
trigger, which initiates and accelerates the generation of the Kerr comb lines. 

Figure 2(g) shows the minimum Pt required for SCS generation versus the pulse width τt 
for different central frequency offset Δf. The required Pt_min decreases when τt increases. For 
the Δf values which are integer multiples of the FSR, a larger Δf corresponds to a larger Pt_min. 
The relationship is reasonable since larger Δf will reduce the period of the beating oscillation 
caused by the interference between the trigger pulse and CW pump, which reduces the energy 
within each interfered peak. The reduction of energy has to be compensated at the expense of 
increasing Pt_min. When Δf deviates slightly from an integer multiple of the FSR, e.g. Δf = 
5.9·FSR and 6.1·FSR, Pt_min deviates from the original curve especially when τt is larger than 
1 ps. For such Δf, the roundtrip time will no longer be an integer multiple of the oscillation 
period, which may lead to destructive interference because of the coherent stacking of 
different parts of the pulse that leaked into adjacent roundtrips. Such perturbation will become 
significant when the trigger pulse is relatively long. For example, with a trigger pulse width 
of 1.5 ps, a Δf deviation of ± 0.1·FSR from 6·FSR will increase the power threshold by ~40 
W. For the same deviation of Δf, the power penalty is only ~5 W if the trigger pulse width is 
0.5 ps only. With a 0.5 ps pulse, the SCS state can be excited even when Δf is decreased from 
6.0·FSR to 5.5·FSR, i.e. the central frequency of the pulse locates at the middle of two 
resonances of the microcavity, with a fixed peak power equal to Pt_min at Δf = 6.0·FSR. Thus, 
with an ultrashort trigger pulse whose spectra can cover several FSR, the SCS excitation is 
insensitive to the central frequency offset of the trigger pulse. In Fig. 2(g), the Pt_min curves of 
Δf = 5.9·FSR and 6.1·FSR begin to deviate from that of Δf = 6.0·FSR when τt is about 1 ps. 
Thus, the best choice of the trigger pulse width should be <1 ps for the configuration of the 
microresonator under studied. Figure 2(h) shows the different working regions in the 
parameter space (Pt, δ0) at τt = 1.5 ps and Δf = 6·FSR. For the δ0 considered, there is always a 
band of Pt bounded by the two blue dashed curves that ensures SCS generation. The region 
above this band lead to stable multi-solitons states, while only CW states can be found in the 
region below this band. The details in Figs. 2(g) and 2(h) will be changed when thermal effect 
is included, but the basic trend and characteristics remain the same. 

3.2 Deterministic SCS excitation 

SCS excitation using the conventional frequency tuning approach is not deterministic because 
the intracavity field must undergo the chaotic state before the SCS state can be reached 
[14,23]. We compare the conventional pump frequency tuning approach with the proposed 
single shot pulse trigger approach by introducing temporal perturbations to the CW field of 
the conventional tuning approach, and both the CW field and the trigger pulse of the proposed 
trigger approach. The perturbation is defined as σ = ηÑexp(i2πŨ). Here Ñ is a normally 
distributed random variable with zero mean value and standard deviation of 1, Ũ is a 
uniformly distributed random variable between 0 and 1, and η = 1 × 10−8 is the factor 
denoting the amplitude of the perturbation. The other parameters used in the pump tuning 
case are the same as those in Fig. 2 except for the varied δ0. 
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Fig. 3. (a)-(b) Temporal and (c)-(d) spectral evolutions of the intracavity field and the 
instantaneous profiles at the final roundtrip. (e) The intracavity energy at each roundtrip. (f) 
Instantaneous temporal profile at the 8000-th roundtrip of the pump frequency tuning 
approach. 1,000 simulation results using (g) the pump frequency tuning and (h) the proposed 
trigger approaches, respectively. The counts of different soliton states of the 1,000 simulations 
using (i) the pump frequency tuning and (j) the trigger approaches, respectively. 

Figures 3(a) and 3(c) respectively show the temporal and spectral evolutions of the cavity 
field using the pump frequency tuning approach. Figures 3(b) and 3(d) show the 
instantaneous temporal and spectral profiles of the cavity field at the final roundtrip (12,000-
th) of the simulation, respectively. δ0 is initially set to −0.005, and increased to 0.018 and 
0.035 at the 4000-th and 8000-th roundtrips, respectively. MI and chaotic states of the 
intracavity field are observed before the excitation of SCS. Multi-soliton states could also be 
excited if δ0 is chosen to a value between 0.018 and 0.035 at 8000-th roundtrip. Figure 3(e) 
shows the evolution of the intracavity energy during the dynamics. The chaotic region is 
clearly indicated by the large oscillations of the energy. Figure 3(f) shows the instantaneous 
temporal profile at the 8000-th roundtrip, which presents a group of pulses with random-like 
locations and amplitudes in the chaotic state. The results of 1,000 simulations for the pump 
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frequency tuning and trigger approaches are shown in Figs. 3(g) and 3(h), respectively. The 
temporal positions and peak power of the solitons are plotted as the azimuthal angle and 
radial position in polar coordinates. The temporal positions in the range of [−tR/2, tR/2] are 
mapped into azimuthal angles in [0°, 360°], corresponding to the positions in the microring. 
The angular positions of all intracavity solitons are recorded despite of the final state. The 
peak power is normalized to the maximum peak power of the single-soliton case. It is clear 
that the final soliton states are not deterministic. The number of intracavity solitons varies 
from zero to six. Even CW states are observed. In contrast, the proposed trigger approach 
always deterministically excites the cavity to the SCS state despite the perturbations, as 
shown in Fig. 3(h). Figures 3(i) and 3(j) show the counts of different soliton states with the 
pump tuning and trigger approaches, respectively. It is surprising that CW state without any 
intracavity soliton is the mostly observed state with the pump frequency tuning approach. The 
count of single-soliton with the pump frequency tuning approach is only 154 out of 1,000, 
while single soliton state is obtained in all of the 1,000 simulations with the proposed trigger 
approach. 

3.3 Thermally self-stabilized SCS 

Compared with large volume fibers or spatial cavities, the thermal effect is much stronger for 
nanoscale microcavities [42]. The dissipated energy heats up the microcavities and induces 
changes in the refractive indices. Thus, the resonant frequencies of the cavities are shifted by 
the thermo-optic effect and the pump-resonance detuning cannot be modeled as a fixed value 
any more. The development of athermal optical materials and advanced cooling techniques 
are promising in overcoming the thermal problem, but up to now, these techniques still cannot 
fully avoid the thermal effect in microcavities [43]. 

The thermal effect leads to the thermal instability of the effectively red-detuned region 
[42], which forces the frequency scanning to start from the blue-detuned side in conventional 
pump tuning schemes. Thermal instability of the red-detuned region is the phenomenon that a 
pump initially injected at the near red-detuned side of a microresonator eventually operates in 
the effectively blue-detuned side because of the thermal effect. From Fig. 1(d), if the pump at 
λp is initially injected at the red-detuned region 0 < (λp − λ0) < λa of a cold microresonator, the 
combined thermal and Kerr effects will push the microcavity to operate in one of the states 
(CW or MI) on the blue solid curve above, which is in the effectively blue-detuned side 
[14,18,42]. If the pump starts the frequency scanning from a wavelength detuning (λp − λ0) > 
λa, the microcavity will stay at a cold CW state represented by the lower red solid curve in 
Fig. 1(d). As the cold CW state is very stable and has a lower intracavity power, it cannot 
reach the soliton states with higher intracavity power unless additional energy is injected into 
the microcavity. Scanning the pump frequency from the red-detuned region towards the blue-
detuned side will eventually run into the thermal instability (when (λp − λ0) < λa) and will not 
arrive at any of the soliton states. 

In the proposed trigger scheme, the CW pump wavelength λp is not tuned but fixed to a 
value in the region λa < (λp − λ0) < λb at a cold microresonator state (point F). Thus the thermal 
instability of red-detuned region is avoided. The microresonator will therefore first operate in 
the stable cold CW state (point E) and then get pushed up to the SCS state (point D) by the 
trigger pulse. We will show that the energy variation of this transition is small which only 
results in a small thermal shift, thus does not destroy the SCS state. We include the thermal 
effect into the model and divide the temporal triggering procedure of the SCS states into two 
stages, i.e. the CW and CS stages. In the CW stage, only the CW pump accumulates in the 
cavity and reaches the thermally stabilized state. Along the intracavity power accumulation, 
the resonant frequency of the cavity gets red-shifted towards the pump frequency, thus the 
pump-resonance detuning is reduced. Then, in the CS stage, the single shot trigger pulse is 
injected to excite the SCS state. If the thermally shifted pump-resonance detuning at the end 
of the CW stage still locates in the detuning region that supports CSs, then the SCS can be 
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excited by the trigger pulse in the early CS stage. The thermal effect does not affect the initial 
excitation of SCS because the thermal response time of Si3N4 waveguide is typically 
microseconds or sub-microseconds [44,45], which is much longer than the excitation time of 
CS (~1000 roundtrips, 4 ns). The thermally shifted detuning is very small in such short 
transient time. However, the increase of intracavity energy due to the injected pulse trigger 
does further shift the cavity resonant frequency, which might annihilate the excited SCS after 
thermal relaxation. 

We first study the thermal effect in the CW stage. Since the intracavity CW field does not 
vary significantly between consecutive roundtrips and considering the extremely long thermal 
stabilization process, we use a modified LLE to improve the computation efficiency, 
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where δtherm = tR(ωtherm − ω0) is the thermally induced detuning shift, ωtherm is the thermally 
shifted cavity resonant frequency. τ0 is the thermal response time determined by the material 
of the microresonator and the thermal dissipation in experiments. ξ is the coefficient 
representing the detuning shift in response to the average intracavity power. We use τ0 = 100 
ns and ξ = −4.5 × 104 W−1s−1 in the simulation according to a practically fabricated high-Q 
(~1.1 × 106) Si3N4 microresonator [45,46], which has comparable volume and parameters to 
the one used in Fig. 2 except a smaller propagation loss of α0L = 0.0012. Comparing with the 
thermo-optic effect of Si3N4, the contribution of thermal expansion effect is much smaller and 
can be neglected [44,45]. Hence, ξ ∝ ℘Cα0L depends on the thermo-optic coefficient ℘ of 
Si3N4, the heat capacity C of the microring, and the ratio that intracavity power is absorbed 
and converted to heat. We can use the ξ value at α0L = 0.0012 as a reference to calculate ξ at 
other loss parameters. 

 

Fig. 4. (a) Stabilized δ1 at the end of CW stage starting from a cold cavity as a function of 
initial detuning δ0 under different propagation loss and pump power. Other parameters: γ = 1.4 
W−1/m, L = 628 μm, θ = 0.0025, tR = 4.425 ps. (b) S-curves with the border detuning values 
δ1_lower and δ1_upper for the pump power of 0.5 W when α0L are 0.005 and 0.01, respectively. 

Figure 4(a) shows the stabilized detuning δ1 ≡ δ0 + δtherm at the end of CW stage versus 
initial detuning δ0 under different propagation loss and pump power. Simulation is carried out 
for 5 × 106 roundtrips (~22 µs) to guarantee thermal stabilization in the CW stage. We find 
that, for a given pump power and loss, there is a lowest initial detuning δ0_min to ensure that 
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the shifted detuning will still remain within the red-detuned side. The final stabilized detuning 
δ1 will be positive (effectively red-detuned) only if δ0 ≥ δ0_min, which is a necessary condition 
for CS excitation. When δ0 < δ0_min, δ1 becomes negative (effectively blue-detuned), thus no 
CS can be excited. The results are consistent with that shown in [42], which indicates two 
kinds of thermal equilibriums, i.e. stable warm equilibrium (effectively blue-detuned) and 
stable cold equilibrium (effectively red-detuned) CW states can be reached. With the increase 
of propagation loss, the threshold δ0_min also increases since more intracavity power is 
converted to heat. δ0_min will also increase when the pump power Pcw increases. The detuning 
value δ0_min gives the critical value to reach an effectively red-detuned state, which 
corresponds to the lowest red solid curve in Fig. 1(d). 

It is known that the CS states exist almost in the same bistable region of the stationary 
CW solution solved by Ikeda map or LLE [15,40]. The two models give the same bistable 
region when the nonlinear length is much longer than the cavity length [16,40]. Since the 
thermal effect responds in a long time scale, we can focus on the initial stage of the CS stage 
and obtain the stationary CW solution by setting the derivative terms in Eq. (4) to zeros and 
neglecting the variation of δ1 in the transient triggering process. The equation becomes 
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where Y = |ψin|
2 is the pump power, X = |ψ|2 is the intracavity power, α = (α0L + θ)/2 is the 

total loss per roundtrip. The turning points of the function Y(X) can be calculated by setting 
the first derivative dY/dX to zero as 
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The function X(Y) given by Eq. (6) has a bistable region when Eq. (7) has two different 
real roots of X, which requires δ1

2 > 3α2. The two real roots corresponding to the two turning 
points of the bistable curve are given by 
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Substituting these roots into Eq. (6), we obtain the minimum and maximum of Pcw in the 
bistable region for given values of δ1 and α. By sweeping the values of δ1, the limited bistable 
regions are found in the 2-dimensional (Pcw, δ1) space with α0L values varying from 0.0012 to 
0.012, shown in Fig. 5 as the green regions confined by the two orange boundary curves in 
each map. The two specific loss values, i.e. α0L = 0.0012 and 0.012, correspond to two 
practically fabricated Si3N4 microresonators [12,17,45,46]. The other two loss values of α0L = 
0.004 and 0.008 are arbitrarily chosen between the two specific values. In each green bistable 
region, there are two boundary detuning values δ1_upper and δ1_lower of δ1 for each Pcw. In the 
detuning range of δ1_lower < δ1 < δ1_upper with a given pump power Pcw, the system always has 
two stable solutions. Figure 4(b) shows two sets of S-curves with the boundary detuning 
values δ1_lower and δ1_upper for a pump power Pcw = 0.5 W. When the loss α0L is 0.005, the 
δ1_upper (red solid curve) and δ1_lower (red dashed curve) are calculated to be 0.0785 and 
0.01895, respectively. The difference between δ1_upper and δ1_lower is 0.0595. When α0L is 
increased to 0.01, δ1_upper = 0.0285 (blue solid curve) and δ1_lower = 0.01785 (blue dashed 
curve) are obtained. Compared to that of α0L = 0.005, the difference between δ1_upper and 
δ1_lower is reduced to 0.0107, which means the range of valid δ1 becomes narrower. The trend 
of the variation agrees with that of the green regions in Fig. 5. 

If the thermally-stabilized detuning δ1 falls into the region bounded by δ1_upper and δ1_lower 
at the end of the CW stage, SCS can be excited very quickly after the injection of the single 
shot trigger pulse. Figure 5 shows the minimum possible values of δ1 (blue dots) that can be 
stabilized in the red-detuned side with their fitting (blue dashed curves). In experiments, the 
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combinations of Pcw and corresponding δ1 above the blue curves can be obtained by referring 
to the results in Fig. 4(a). Thus we can easily identify the valid regions (hatched regions in 
Fig. 5) for SCS excitation when thermal effect is taken into account, which are the 
overlapping area of the green and required δ1 regions. When the loss α0L is increased, i.e. the 
Q-factor of the microresonator is decreased, Figs. 5(a)-5(d) show that the region bounded by 
δ1_upper and δ1_lower becomes narrower. Meanwhile, the required minimum pump power Pcw 
and minimum detuning δ1 in the hatched region are both increased. Since injecting a CW light 
with several watts of power into a nanoscale waveguide is not practical, it is hard to excite the 
SCS in low-Q Si3N4 microresonators under the influence of thermal effect. The threshold of 
the Q-factor defined as “low-Q” depends on the operating range of the pump power. For the 
given pump power ranging from 0 to 1.2 W, Fig. 5(d) shows that there is no valid region for a 
cavity with α0L = 0.012 (Q-factor ∼1 × 105). In contrast, when α0L is 0.0012 (Q-factor ∼1.1 × 
106), Fig. 5(a) shows that the hatched region is quite large, which means the selection of 
initial δ0 becomes very flexible. 

 

Fig. 5. The green regions are the possible CS excitation regions (bistable regions) bounded by 
the detuning δ1_upper and δ1_lower. Blue dashed curves with dots show the minimum δ1 that can be 
thermally stabilized in the red-detuned side. Hatched regions indicate the valid regions for SCS 
excitation with thermal effect. The loss α0L is (a) 0.0012, (b) 0.004, (c) 0.008, and (d) 0.012, 
respectively. The inset in (a) shows the zoom-in view of the pump power ranging from 0 to 0.2 
W. 

From Fig. 5(a), we arbitrarily choose a pump power value of Pcw = 0.03 W and an initial 
detuning of δ0 = 0.018 which corresponds to a δ1 value within the hatched region, and 
simulate both the CW and CS stages with the inclusion of thermo-optics effect. Considering 
both the coherent stacking of the leaked pulse tails of the full trigger pulse and the fast 
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variation of the intracavity field between consecutive roundtrips, we simulate the SCS 
triggering process in the CS stage using a modified Ikeda map, which is similar to that of Eqs. 
(1)-(3) except that we replace δ0 by δ0 + δtherm and add the thermal dynamics governed by Eq. 
(5). We also assume that the variation of δtherm is small in one roundtrip and update the δtherm 
value in steps of tR. 

 

Fig. 6. (a) Temporal evolution and final instantaneous temporal profiles (b) spectral evolution 
and final instantaneous spectral profiles in the CW and CS stages. (c) Evolution of intracavity 
average power. Inset I and II show the zoom-in views in [0, 400] roundtrips of the CW stage 
and [0, 3000] roundtrips of the CS stage, respectively. (d) Evolution of δ0 + δtherm. 

Figures 6(a) and 6(b) show the intracavity temporal and spectral evolutions along with the 
instantaneous temporal and spectral profiles at the end of the CS stage, respectively. The 
corresponding variations of intracavity average power and δ0 + δtherm are shown in Figs. 6(c) 
and 6(d), respectively. The intracavity average power experiences a relaxation oscillation in 
the initial several hundreds of roundtrips (inset I of Fig. 6(c)), then increases slowly in the 
long thermal stabilization process and eventually converges to a fixed power of 0.2772 W. 
The detuning δ0 + δtherm varies significantly in the first 1 × 106 roundtrips of the CW stage and 
slowly converges to 0.016753. The complete thermal stabilization of the cavity is achieved 
after ~2 × 106 roundtrips. A single shot 0.5 ps hyperbolic secant pulse with a peak power of 
7.5 kW is launched at the end of CW stage to initiate the CS stage. The SCS is excited in 
~1000 roundtrips (4.42 ns), and more importantly the newly excited SCS survives and is 
thermally self-stabilized in the subsequent evolution. The average power and δ0 + δtherm are 
stabilized to 0.90375 W and 0.013933, respectively, in ~6 × 105 roundtrips of the CS stage. 
The stability of the SCS under thermal perturbation is the main advantage of the proposed 
pulse trigger approach. Unlike the conventional frequency tuning method, in which the tuning 
process is typically at microseconds level (comparable to or even longer than the thermal 
response time) and the intracavity field typically experiences the higher energy chaotic states, 
the SCS can be directly excited within several nanoseconds without going through any 
chaotic dynamics in the proposed pulse trigger approach. Hence, the thermal perturbation 
during the SCS excitation process is negligible as heating is a slow process. In the subsequent 

                                                                                                Vol. 26, No. 14 | 9 Jul 2018 | OPTICS EXPRESS 18576 



evolution at the thermal response time scale, the variation of the intracavity energy caused by 
the trigger pulse will further affect the detuning until the thermal equilibrium is reached. 
Since the energy variation is small, the transition from the CW state to the SCS state only 
results in a small thermal shift, which will not destroy the excited soliton state. We find that 
the final detuning δ0 + δtherm = 0.013933 is still in the green region and larger than the 
boundary value δ1_lower = 0.0073. Thus, the SCS will not be annihilated, but slowly adjust the 
working point with respect to the gradually changed detuning by thermal effect, and 
eventually gets thermally self-stabilized. It should be pointed out that it is not recommended 
to excite the SCS with δ1 close to the lower boundary δ1_lower, where breather CS states may 
appear [18,47,48]. The energy of the breather CSs is continually changing so that it is hard to 
be thermally self-stabilized. The exact thermally self-stabilization region of the SCS is not 
given in this paper, but will be studied in future work. However, we expect that this region 
will become broader for high-Q microresonators since the optical energy converted to heat is 
less, and the CSs valid region bounded by δ1_upper and δ1_lower will become broader too. 

4. Conclusions 

In conclusion, we propose to directly and deterministically generate single-soliton Kerr comb 
in a continuous-wave pumped microring resonator by seeding it with a pulsed trigger. Single 
cavity soliton can be straightforwardly and deterministically triggered by an energetic single 
shot pule without going through any multi-stable or chaotic states in the nonlinear 
microcavity. The feasibility of single shot trigger approach makes it possible to manipulate 
the number of solitons and their temporal locations inside the cavity by simply controlling the 
power and temporal location of the single pulse trigger. The proposed trigger approach can be 
applied to different type of microresonators as long as the microresonators do support cavity 
solitons. Moreover, we find that even under strong thermal effect the proposed trigger 
approach is valid to excite single cavity solitons in practically fabricated Si3N4 
microresonators. No additional complex engineering is required for thermal compensation. 
Benefiting from the fast triggering process and relatively slow thermal dynamics caused by 
the intracavity optical heating, single cavity solitons can be easily excited within a broad 
parameters range and thermally self-stabilized in long-term evolutions. Since the triggering 
process is insensitive to the central frequency offset of the single shot trigger pulse when the 
pulse width is much shorter than the roundtrip time, the choice of trigger source is very 
flexible and feasible. The thermally self-stabilized single cavity solitons suggested that the 
proposed trigger approach can be applied to microresonators fabricated by current fabrication 
foundries to generate deterministic cavity solitons, which will pave the way to many 
applications of single-soliton Kerr combs. 
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