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SEMIGROUP IDENTITIES OF TROPICAL MATRICES

THROUGH MATRIX RANKS

ZUR IZHAKIAN AND GLENN MERLET

Abstract. We prove the conjecture that, for any n, the monoid of all n ˆ n tropical matrices satisfies
nontrivial semigroup identities. To this end, we prove that the factor rank of a large enough power of a

tropical matrix does not exceed the tropical rank of the original matrix.

Introduction

Tropical matrices are matrices over the max-plus semiring [28], that is T :“ R Y t´8u equipped with
the operations of maximum as addition and summation as multiplication:

a _ b :“ maxta, bu, a ` b :“ sumta, bu.

This semiring is additively idempotent, i.e., a _ a “ a for every a P T, in which 0 :“ ´8 is the zero
element and 1 :“ 0 is the multiplicative identity. More generally, one may consider T as an ordered
semiring whose addition is determined as maximum, e.g., a semiring obtained from an ordered monoid
pS, ¨ q by setting the addition to be maximum and ¨ as multiplication. MnpTq denotes the monoid of
all n ˆ n square matrices with entries in T, and induced multiplication. These matrices correspond
uniquely to weighted digraphs (see [4, 24] for recent expositions), which play a central role in algebraic
methods, applications to combinatorics, semigroup representations, automata theory, and many other
methodologies.

Any finitely generated semigroup of tropical matrices has polynomial growth [3, 33]; thus the free
semigroup on two generators is not isomorphic to a tropical matrix sub-semigroup. Growth rate of groups
is an important subject of study in combinatorial and geometric group theory, delivered to semigroup
theory as well, involving semigroup identities [34]. While Gromovs theory [12] implies that every finitely
generated group having polynomial growth satisfies a nontrivial semigroup identity (since it is virtually
nilpotent), Shneerson has given examples which show that this does not hold for semigroups [32].

Tropical matrices enable natural linear representations of semigroups; therefore, the question whether
tropical matrices satisfy nontrivial semigroup identities arises immediately [19]. If they do satisfy iden-
tities, then any faithfully represented semigroup inherits these identities, and complicated computations
are saved [16]. As well, these identities define varieties of tropically represented semigroups [29, Ch. VII],
where matrix view may provide a classification (or bases) for these varieties. Birkhoff HSP Theorem states
that varieties are the only classes of semigroup stable under homomorphisms, submonoids, and products.
In addition, by the one-to-one correspondence, matrix identities are carried over to labeled weighted
digraphs, with multiplication replaced by walk composition, and are interpreted as the impossibility of
word separation in automata theory [8]. (See Section 1.4 for details.)

Semigroup identities have been found for certain submonoids of tropical matrices, including triangular
matrices, and for arbitrary 2 ˆ 2 and 3 ˆ 3 matrices [14, 17, 19, 31, 27]. In this paper we prove the
existence of identities for all n ˆ n tropical matrices, for any n, to wit:

Theorem 3.7. The monoid MnpTq satisfies a nontrivial semigroup identity for every n P N. The length

of this identity grows with n as eCn2`opn2q, for some C ď 1{2 ` lnp2q.

This theorem further supports the insight that, in many senses, the behavior of tropical matrices is similar
to that of matrices over a field [2, 13, 18, 20, 21, 22, 23], and has immediate consequences in semigroup
representations.

Corollary 3.9. Any semigroup which is faithfully represented by MnpTq satisfies a nontrivial identity.
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Our semigroup identities arise from an idea of Y. Shitov [31], resulting in Lemma 3.1, which paves
the way to constructing identities for matrices by induction on their size. The further step towards this
aim is detecting new relations for those matrices which cannot be factorized to a product of matrices of
smaller size, said to have factor rank n. Unfortunately, Shitov was only able to deal with matrices having
maximal determinantal rank, and thus to conclude the existence of identities only for 3ˆ3 matrices. (See
Definition 1.3 for various notions of rank and [1] for an extensive survey.)

To prove Theorem 3.7, we rely on tropical rank and give a generalization of the first author’s result [17]
to obtain identities for matrices of maximal rank (Theorem 3.4), based on identities of triangular matrices
([14, Theorem 4.10] or [27]). Since tropical rank is the smallest among other notions of ranks [1], especially
smaller than determinantal rank, this is not enough to construct identities for MnpTq, and additional
ingredient is needed. Specifying a new relationship between tropical and factor rank is then a crucial
obstacle, confronted in this paper. We introduce two results of similar flavor.

Proposition 2.6. Let A P MnpTq and n “ lcmp1, . . . , nq. If rktrpA
nq ă n, then rkfcpA

tnq ă n for any
t ě 3n ´ 2.

Theorem 2.20. rkfcpAtq ď rktrpAq for any A P MnpTq and t ě pn ´ 1q2 ` 1.

The proof of the latter is based on the so-called weak CSR expansion – a method developed by T. Nowak,
S. Sergeev, and the second author in [26]. The former is proven in the same spirit, but the simplification
derived from the power n allows for a self-contained exposition of graph theoretic arguments.

These results are interesting for their own sake, as they introduce new relationships between different
notions of rank, concerning also their tendency to unite for large powers. Indeed, in their earlier paper [11]
the authors have shown that, taking powers of a matrix, at the limit all notions of rank coincide. This
limit is reached for irreducible matrices, but the exponent can be arbitrary large.

The paper is organized as follows. Section 1 recalls the relevant setup and results to be used in
the paper. Section 2 introduces the relationships between the factor rank of a matrix power and its
original tropical rank. Section 3 applies these relationships to prove the existence of semigroup identifies
for MnpTq.

1. Preliminaries

As the paper combines several areas of study, we provide the relevant background.

1.1. Semigroup identities. Given an alphabet A, i.e., a finite set of letters, the free monoid of finite
sequences generated by A is denoted by A˚. The elements of A˚ are termed words, its identity element
is the empty word, denoted by e. The length of a word w, denoted by ℓpwq, is the number of its letters.
We write #apwq for the number of occurrences of a letter a in w. Both ℓpwq and #apwq are nonnegative
integers. The free semigroup A` is obtained from A˚ by excluding the empty word.

A (nontrivial) semigroup identity is a formal equality u “ v, written as pair xu, vy, where u and v

are two different words in A`, cf. [34]. For a monoid identity one allows u and v to be the empty word
as well, i.e., u, v P A˚. The length of xu, vy is defined to be maxtℓpuq, ℓpvqu. An identity xu, vy is said to
be an n-letter identity, if u and v involve at most n different letters from A.

A semigroup S :“ pS, ¨ q satisfies a semigroup identity xu, vy, if

φpuq “ φpvq for every semigroup homomorphism φ : A` ÝÑ S. (1.1)

The set of all semigroup identities satisfied by S is denoted by IdpSq. Note that even if S is a monoid or
a group, u, v are still taken to be elements of the free semigroup A`. With this setting, xab, ey is not a
legal semigroup identity, but it is a monoid identity.

Theorem 1.1 ([14, Theorem 3.10]). A semigroup that satisfies an n-letter identity, n ě 2, also satisfies
a 2-letter identity of the same length.

In this view, regarding existence of semigroup identities, one may restrict to a 2-letter alphabet.
Therefore, in the sequel, we always assume that A “ ta, bu.

Notation 1.2. Given a word w P A` and elements s1, s2 P S, we write w Js1, s2 K for the evaluation of w
in S, obtained by substituting a ÞÑ s1, b ÞÑ s2. Similarly, we write xu, vy Js1, s2 K for the pair of evaluations
u Js1, s2 K and v Js1, s2 K in S of the words u and v.

In the certain case that S “ A`, to indicate that for u, v P A` the evaluation w Ju, v K is again a word
in A`, we use the particular notation w ru, v s. Similarly, we write xu, vy ru, v s for xu, vy Ju, v K.
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With these notations, condition (1.1) reads as

xu, vy P IdpSq iff u
q
s1, s2

y
“ v

q
s1, s2

y
for every s1, s2 P S.

Note also that, if xu, vy P IdpSq, then xu, vy rw1, w2 s P IdpSq for any w1, w2 P A`.

1.2. Tropical matrices. Tropical matrices are matrices with entries in T :“ R Y t´8u, whose multi-
plication is induced from the semiring operations of T as in the familiar matrix construction. The set of
all n ˆ n tropical matrices form the multiplicative monoid Mn :“ MnpTq. The identity of Mn, denoted
by I, is the matrix with 1 :“ 0 on the main diagonal and whose off-diagonal entries are all 0 :“ ´8.
Formally, for any nonzero matrix A P Mn we set A0 :“ I. A matrix A P Mn with entries Ai,j is written
as A “ pAi,jq, where i, j “ 1, . . . , n. We denote by Un :“ UnpTq the submonoid of all (upper) tropical
triangular matrices in Mn. We write Mm,n :“ Mm,npTq for the set of all m ˆ n tropical matrices. A
permutation matrix is an n ˆ n matrix Pπ “ pPi,jq, with π a permutation over t1, . . . , nu, such that
Pi,πpiq “ 1 for each i “ 1, . . . , n and Pi,j “ 0 for all j ‰ πpiq.

Definition 1.3. Given a tropical matrix A P Mn.

(i) The permanent of A is defined as:

perpAq “
ł

πPSn

ÿ

i

Ai,πpiq,

where Sn denotes the set of all the permutations over t1, . . . , nu. The weight of a permutation
π P Sn is ωpπq “

ř
i Ai,πpiq, so that perpAq “

Ž
πPSn

ωpπq.

(ii) A is called nonsingular, if there exists a unique permutation τA P Sn that reaches perpAq; that
is, perpAq “ ωpτAq “

ř
iAi,τApiq . Otherwise, A is said to be singular.

(iii) The tropical rank of A, denoted rktrpAq, is the largest k for which A has a k ˆ k nonsingular
submatrix. Equivalently, rktrpAq is the maximal number of independent columns (or rows) of A
for an adequate notion of independence [20].

(iv) The factor rank (also called Schein/Barvinok rank) of A, denoted rkfcpAq, is the smallest k for
which A can be written as A “ BC with B P Mn,k and C P Mk,n. Equivalently, rkfcpAq is the
minimal number of vectors whose tropical span contains the span of the columns (or rows) of A,
or the minimal number of rank-one matrices Ai needed to write A additively as A “

Ž
iAi, cf. [1].

(v) The trace trpAq “
ř

i Ai,i is the usual trace taken with respect to summation, although it corre-
sponds to the tropical product of diagonal entries in T.

By definition of rktr, a matrix A P Mn is nonsingular iff rktrpAq “ n. From the last characterization
of rkfc it readily follows that this rank is subadditive:

rkfcpA _ Bq ď rkfcpAq ` rkfcpBq. (1.2)

As known, the above notions of rank do not coincide [2, §8]. Nevertheless, the inequality

rktrpAq ď rkfcpAq (1.3)

holds for every A P Mn [9, Theorem 1.4].

It is easily seen that perpAq ě trpAq and trpABq ě trpAq ` trpBq for any A,B P Mn. Furthermore,
for products of matrices, we have the following.

Theorem 1.4 ([13, Theorem 2.6], [21, Theorem 3.5], [25, Proposition 3.4]). Any A,B P Mn satisfy

perpABq ě perpAq ` perpBq.

If AB is nonsingular, then A and B are nonsingular, perpABq “ perpAq ` perpBq, and τAB “ τB ˝ τA.

1.3. Digraphs and automata. Any matrix pAi,jq P Mn is uniquely associated with the weighted
digraph GpAq :“ pV , Eq over the set of node V :“ t1, . . . , nu with a directed arc εi,j :“ pi, jq P E of
weight Ai,j from i to j for every Ai,j ‰ 0. With this one-to-one correspondence, we say that GpAq is the
graph of the matrix A, and conversely that B is the matrix of the weighted digraph G1, if G1 “ GpBq.

A walk γ on GpAq is a sequence of arcs εi1,j1 , . . . , εim,jm , with jk “ ik`1 for every k “ 1, . . . ,m ´ 1.
We write γ :“ γi,j to indicate that γ is a walk from i “ i1 to j “ jm. The length of a walk γ, denoted
by ℓpγq, is the number of its arcs. Formally, we may consider also walks of length 0, one on each node.
The weight of γ, denoted by ωpγq, is the sum of weights of its arcs, counting repeated arcs.
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We write γi,j ˝γj,h for the composition of the walk γi,j from i to j with the walk γj,h from j to h. Simi-
larly, pρqk denotes for the composition ρ˝¨ ¨ ¨˝ρ of a loop ρ repeated k times. A walk γ “ εi1,i2 , . . . , εim,jm

may also be viewed as the sequence of nodes pi1, i2, . . . , im, jmq. For convenience, we use this point of
view as well, depending of context, and write i P γ to indicate that the node i appears in γ.

A walk γ is simple (or elementary) if it has no repeated nodes, i.e., a node appears in γ at most once,
except possibly as first and last node. A (simple) walk that starts and ends at the same node is called
a (simple) cycle. An arc ρi :“ εi,i is called a loop. A 1-cyclic walk is a walk which contains simple
cycles of length at most 1.

A digraph G is called strongly connected, if there is a walk from i to j for any nodes i, j. Maximal
strongly connected subgraphs of G are called strongly connected components (s.c.c.’s). When there
are no arcs between different s.c.c.’s, G is said to be completely reducible.

The cyclicity cycpGq of a strongly connected digraph G is the greatest common divisor of the lengths
of its cycles. If G is not strongly connected, then its cyclicity cycpGq is the least common multiple of the
cyclicities of its s.c.c.’s. It is well-known that the lengths of all walks on G which start at a same node i

and end at a same node j are congruent modulo cycpGq.

Remark 1.5. A permutation π P Sn uniquely corresponds to a disjoint union Θ of simple cycles θ1, . . . , θm
that cover all the nodes of GpAq. We say that θt is a cycle of π, and write ωpΘq “

ř
t ωpθtq, so that

ωpΘq “ ωpπq. The permanent of A is the highest weight ωpΘq over all such Θ. Accordingly, a matrix
A P Mn is nonsingular, if GpAq has a unique covering Θ of highest weight by simple cycles.

The spectral radius of a matrix pAi,jq P Mn is the value

λpAq “
ł

jďn

ł

i1,...,ij

Ai1i2 ` Ai2i3 ` ¨ ¨ ¨ ` Aij i1

j
, (1.4)

that is, the maximal mean weight of (simple) cycles in GpAq. A simple cycle of GpAq is called critical, if
its mean weight equals λpAq. A node of GpAq is said to be a critical node, if it belongs to some critical
cycle. The critical graph of A, denoted by GcrpAq, is the union of all the critical cycles of GpAq, over
the node set V . If GpAq is acyclic, then λpAq “ 0 and GcrpAq has no arcs. We may also view GcrpAq as
a subgraph of GpAq over a subset of nodes in V .

The kleene star of A is the matrix

A‹ “
ł

kPN

Ak.

(Some entries might be `8, unless A is normalized by λpAq ď 1.)

Remark 1.6. Taking a power At of a matrix A P Mn, it is easily verified that the entry pAtqi,j is the
highest weight of walks from i to j of length t on GpAq. Thus, the pi, jq-entry of A‹ is the supremum of
the weights of all walks from i to j on GpAq. Obviously, the supremums are reached and A‹ P MnpTq if
the weight of the cycles are nonpositive, that is if λpAq ď 1.

While powers of a single matrix correspond to walks on GpAq, to deal with products of matrices, GpAq
needs a generalization. We restrict to products of two matrices, which suffices our purpose.

Definition 1.7. The labeled-weighted digraph GpA,Bq, written lw-digraph, of matrices A,B P Mn

is the digraph over the nodes V :“ t1, . . . , nu with a directed arc εi,j from i to j labeled a of weight Ai,j

for every Ai,j ‰ 0 and a directed arc from i to j labeled b of weight Bi,j for every Bi,j ‰ 0. A walk γ “
εi1,j1 , . . . , εim,jm on GpA,Bq is labeled by the sequence of arcs’ labels along γ, from εi1,j1 to εim,jm , which
is a word in ta, bu`. (In particular, every walk labeled by w has length ℓpwq.) The weight ωpγq of γ is
the sum of its arcs’ weights.

Note that GpA,Bq may have parallel arcs, but with different labels, and that GpA,Aq “ GpAq. With
this definition, we have the following proposition.

Proposition 1.8. Given a word w P ta, bu` of length ℓpwq and matrices A,B P Mn, the pi, jq-entry of
the matrix w JA,B K is the maximum over the weights of all walks δi,j on GpA,Bq from i to j labeled
by w.

lw-digraphs are the core of weighted automata – a widely studied extension of standard (i.e.,
boolean) automata. (See [10] for an overview on automata theory.)
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Remark 1.9. In automata theory, nodes are called states, arcs are called transitions, and one consider
set of walks (also called runs) from an initial to a final state. The initial and final state might also have
weights. Thus, a weighted automaton is defined by pGpA,Bq, r, cq, where r is a row vector and c is a
column vector. The weight of a word w is the sum (here max) of weights of walks labeled by w, given by
r pw JA,B Kq c.

1.4. Word separation. Due to Remark 1.9, existence of a nontrivial semigroup identity for Mn can be
understood as the impossibility to separate two words by weighted automata. Recall that a standard
automaton is said to separate a pair of words pu, vq if it accepts u but not v. Determining the size of the
smallest automaton that separates a pair of words is an old open problem in automata theory. See [8]
for a survey on the subject. Let seppmq be the smallest size of automata, in terms of state number n,
necessary to separate all pairs of words of length m (or at most m, since separating words of different

length is easier). The best known upper bound is seppmq “ O
`
m2{5 ln3{5pmq

˘
[30, Theorem 3].

Since there are finitely many automata having n “ seppmq states, and 2m words of length m in ta, bu˚,
obviously, there is a pair of words that cannot be separated by such an automaton. This simple argument

on cardinality gives words of length 22n
2`opnq. This means that there exists a nontrivial semigroup

identity of length 22n
2`opnq, satisfied by the monoid Mn of n ˆ n boolean matrices. Analyzing powers

of boolean matrices, shorter identities of order en`opnq are obtained, so that seppmq ě lnpmq ` oplnpmqq.
To the best of our knowledge, this is the best lower bound.

A weighted automaton is said to separate two words, if it assigns these words with different weights.
As there are infinitely many weighted automata having a given number of states, it is not obvious that
not all pairs of words can be separated by automata of a given size. Denote by sepSpmq the smallest
size of weighted automata, having weights in the semigroup S, necessary to separate all pairs of words
of length m (or at most m). It follows from Remark 1.9 that sepSpmq ą n iff there exists a semigroup

identity for MnpSq. Theorem 3.7 implies that sep
T

pmq ě c ln1{2pmq for some c ą 0. As far as we know,
there is no better upper bound than the one for boolean matrices.

2. Ranks of large powers of a matrix

In this section we assume that A is a matrix in Mn, and set n “ lcmp1, . . . , nq.

2.1. Direct approach.

Lemma 2.1. If rktrpA
nq “ n, then perpAnq “ trpAnq.

Proof. Follows from Theorem 1.4. (See also [17, Lemma 2.8] or [31, Corollary 4].) �

We start with an easy lemma that links weights of permutations to weights of simple cycles.

Lemma 2.2. Given a permutation τ P Sn, let µi be the average weight of the unique (simple) cycle of τ
that contains the node i. Suppose

ωpθq ă
ÿ

iPθ

µi, (2.1)

for every simple cycle θ of GpAq which is not a cycle of τ , then A is nonsingular and τ “ τA.

Proof. A permutation π P Sn corresponds to a disjoint union of simple cycles θ1, . . . , θm (cf. Remark 1.5).

If θt is also a cycle of τ , then µi “ ωpθtq
ℓpθtq for every i P θt, by definition of µi. Therefore ωpθtq “

ř
iPθt

µi.

Using (2.1), we see that

ωpπq “
mÿ

t“1

ωpθtq ď
mÿ

t“1

ÿ

iPθt

µi “
nÿ

i“1

µi “ ωpτq,

where equality can only be reached if all cycles of π are cycles of τ ; that is, if π “ τ. This implies that τ
is maximally unique; hence, A is nonsingular and τ “ τA. �

Remark 2.3. The critical nodes of GcrpAnq and GcrpAq are the same, while GcrpAnq also has a loop at
each node belonging to a critical cycle of A.

More generally:

Lemma 2.4 ([24, Lemma 3.6]). The matrix of GcrpAtq is the t’th power of the matrix of GcrpAq, for any
t ě 1. Moreover, λpAtq “ tλpAq.

From this simple lemma, in the spirit of [26], we deduce:
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Lemma 2.5. Suppose that B “ An for some A P Mn, and that t ě 2n ´ 2. For every pBtqi,j ‰ 0 there
exists a walk γi,j from i to j on GpBq, with weight pBtqi,j and length t, of the form

γi,j “ γi,h ˝ ρs ˝ γh,j , (2.2)

where ρ is a loop at node h, and γi,h, γh,j are simple walks, possibly empty.1

Proof. Proof by induction on the matrix size n. The case of n “ 1 is trivial.
Assume n ą 1. Since Bt “ Atn, for pBtqi,j ‰ 0 there is a walk γ0 on GpAq from i to j of length tn

and weight pBtqi,j . Note that GpAq and GpBq have the same critical nodes (Remark 2.3), so we often
say critical node without specific details. There are two cases.

Case I: γ0 passes through a critical node c.
Let θ be a simple cycle, possibly a loop, on GcrpAq which contains c. We insert θ repeated n{ ℓpθq times
in γ0 to obtain a walk γ1 on GpAq. This walk has length pt ` 1qn and weight Bi,j ` nλpAq, where λpAq
is the spectral radius of GpAq defined by (1.4).

The sequence of nodes positioned at 0, n, 2n, . . . , pt ` 1qn in γ1 determines a walk γ2 on GpBq that
passes through a critical node c1 (not necessarily c). This walk has length t ` 1 and weight at least
Bi,j ` nλpAq “ Bi,j ` λpBq.

– If c1 appears twice (or more) in γ2, then the closed subwalk from the first occurrence of c1 in γ2 to
last occurrence can be replaced by loops on c1.

– If a node k appears twice (or more) on the same side of the occurrence of c1 in γ2, then the closed
subwalk from the first occurrence of k to last occurrence can be replaced by loops on c1.

These exchanges do not decrease the weight of γ2, since the loop at c1 is critical. They provide a new
walk γ3 which can be decomposed as in (2.2), but has length t ` 1 and weight at least pBtqi,j ` λpBq “
pBtqi,j `Bc,c. Since t`1 ě 2pn´1q `1, while simple walks have length at most n´1, γ3 has at least one
loop ρ which can be removed to get the desired walk γ4 of the right length. The weight of γ4 is proved
to be at least pBtqi,j , but, clearly, it cannot be strictly greater.

Case II: γ0 does not pass through any critical node.

Then, γ0 is a walk on the graph Gp rAq, where rA is the matrix obtained by deleting from A the rows

and columns corresponding to critical nodes. Thus, pBtqi,j “ p rAtnqi,j and, by the induction hypothesis,

pBtqi,j is the weight of a walk γi,j of length t on Gp rAnq of the form (2.2). By definition of rA and

Remark 1.6 the weights of the arcs of Gp rAnq are at most the weights of the corresponding arcs of GpBq,
so that the weight of γi,j as a walk on GpBq is at least pBtqi,j . As it cannot be strictly greater, γi,j has
weight pBtqi,j . �

Proposition 2.6. If rktrpA
nq ă n, then rkfcpAtnq ă n for any t ě 3n ´ 2.

Proof. Set B “ An and t ě 3n´ 2. Assume that rktrpBq ă n. Since B is singular, by Lemma 2.2 applied
to the identity permutation, there is a simple cycle θ on GpBq, which is not a loop, whose weight is at
least the sum of weights of loops at its nodes. Let c be a node of θ whose loop has minimal weight, and
let h0 be the node proceeding c in θ. We prove that for any i, j:

pBtqi,j ď
ł

h‰c

`
pBnqi,h ` pBt´nqh,j

˘
. (2.3)

If pBtqi,j “ 0, then this inequality holds trivially. Otherwise, let γi,j “ γi,h ˝ ρs ˝ γh,j be a walk
given by Lemma 2.5, where h is a node of γi,j . Since γi,h and γh,j are simple walks, they have length at
most n ´ 1, so that all nodes of γi,j at positions n to t ´ n ` 1 are the same, namely h.

– When h ‰ c, (2.3) follows from

pBtqi,j “ ωpγi,jq “ ω
´
γi,h ˝ ρn´ℓpγi,hq

¯
` ω

´
ρt´n´ℓpγh,jq ˝ γh,j

¯
ď pBnqi,h ` pBt´nqh,j .

1Note that γi,j needs not be 1-cyclic.
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– If h “ c, then ρ is the loop at c. We have n ´ 1 ` ℓpγh,jq ` ℓpθq ď 3n ´ 2 ď t and, by definition of c,
ωpθq ě ℓpθqωpρq, so that

pBtqi,j “ ωpγi,jq “ ω
`
γi,h ˝ ρn´1´ℓpγi,hq

˘
` ω

`
ρℓpθq

˘
` ω

`
ρt´pn´1q´ℓpγh,jq´ℓpθq ˝ γh,j

˘

ď ω
`
γi,h ˝ ρn´1´ℓpγi,hq

˘
` ω pθq ` ω

`
ρt`1´n´ℓpγh,jq´ℓpθq ˝ γh,j

˘

“ ω
`
γi,h ˝ ρn´1´ℓpγi,hq ˝ θ ˝ ρt`1´n´ℓpγh,jq´ℓpθq ˝ γh,j

˘

ď pBnqi,h0
` pBt´nqh0,j .

Thus, inequality (2.3) holds in all cases. Since the reverse inequality always holds, Bt is the tropical sum
of the n ´ 1 matrices

`
pBnqi,h ` pBt´nqh,j

˘
i,j

with h ‰ c. Each of these matrices has rank 1, as it is the

tropical product of a row of Bn by a column of Bt´n. Therefore, Definition 1.3.(iv) of factor rank implies
rkfcpBtq ă n. �

2.2. CSR approach. To prove Theorem 2.20 below we use the so-called weak CSR expansion of powers,
developed by T. Nowak, S. Sergeev and the second author [26]. We first recall the relevant setup and
results.

Definition 2.7. For a completely reducible subgraph H of GcrpAq, A P Mn, we set

MH “
´`

´ λpAq ` A
˘cycpHq

¯‹

,

and define the matrices C “ CH , S “ SH , R “ RH in Mn as follows

Ci,j “

#
Mi,j if j P H,

0 otherwise,
Si,j “

#
Ai,j if pi, jq P H,

0 otherwise,
Ri,j “

#
Mi,j if i P H,

0 otherwise.
(2.4)

The matrices CH , SH and RH are named the CSR terms of A with respect to H.

This CSR expansion provides a useful tool for analyzing tropical matrices, especially their powers.
For this purpose, we are interested in products CHpSHqtRH with t P N, whose interpretation in terms of
walks on GpAq is given by Theorem 2.10 below.

Remark 2.8. If GpAq is acyclic, then λpAq “ 0 and the matrices MH , CH , SH , RH are not defined
by (2.4). In this case, GcrpAq has no arcs, and we formally set these matrices to be zero matrix, which is
consistent with Theorems 2.9 and 2.10 below.

Alternatively to (2.4), when λpAq ‰ 0, the matrices CH and RH can be extracted respectively from the
columns and the rows of MH which are indexed by the nodes of H, while SH can be obtained from the
square submatrix indexed by the critical nodes of GcrpAq. The products CHpSHqtRH obtained with this
approach are the same as those obtained via (2.4). Note that MH , CH and RH remain unchanged when
(tropically) multiplying A by any α P R, but SH is multiplied by α.

The matrix BrAs is defined by2

pBrAsqi,j “

#
0 if i or j is a critical node in GcrpAq,

Ai,j else.
(2.5)

In graph view, the digraph GpBrAsq is the subgraph of GpAq induced by the set of non-critical nodes,
i.e., the digraph obtained from GpAq by omitting all arcs incident to critical nodes, in particular all arcs
of GcrpAq. Therefore, if GpAq is acyclic, then BrAs “ A.

Theorem 2.9 ([26, Theorem 4.1]). Given A P Mn, let CH , SH , RH be the CSR terms (2.4) of A

for H “ GcrpAq, and let BrAs be the matrix (2.5). Then

At “ CHpSHqtRH _ pBrAsq
t
, for any t ě pn ´ 1q2 ` 1. (2.6)

Note that GcrpAq is a completely reducible subgraph of GpAq, unless GpAq is acyclic. In the latter case,
all matrices in (2.6) are zero, so the equation holds obviously.

A main approach for proving CSR results, for instance Theorem 2.9, is the interpretation of a product
CHpSHqtRH in terms of walks on GpAq, based on the following notations (N denotes a node subset):

‚ W tpi Ñ jq is the set of all walks from i to j of length t,

2It is called the Nachtigall matrix subordinate to A in [26], denoted there by BN .
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‚ W tpi
k
ÝÑ jq “

Ť
t1`t2“t tγi,k ˝ γk,j | γi,k P W t1pi Ñ kq, γk,j P W t2pk Ñ jqu,

‚ W tpi
N
ÝÑ jq “

Ť
kPN W tpi

k
ÝÑ jq,

‚ W˚pi
N

ÝÑ jq “
Ť

tě0 W
tpi

N
ÝÑ jq,

‚ W t,ppi
N
ÝÑ jq “

 
γ P W˚pi

N
ÝÑ jq

ˇ̌
ℓpγq “ t mod p

(
, with p P N.

Theorem 2.10 ([26, Theorem 6.1]). Let A P Mn be a matrix with λpAq “ 1, and let CH , SH , RH be
the CSR terms of A for H a completely reducible subgraph of GcrpAq. Let p P N be a multiple of cycpHq,
and let N be a subset of nodes of H that contains at least one node from each s.c.c. of H. Then, for
every i, j “ 1, . . . , n and t P N:

`
CHpSHqtRH

˘
i,j

“ max
 
wpγq | γ P W t,ppi

N
ÝÑ jq

(
. (2.7)

The theorem has the following corollaries

Corollary 2.11 ([26, Corollary 6.2]). CHpSHqtRH depends only on the set of s.c.c.’s of GcrpAq inter-
secting H – a completely reducible subgraph of GcrpAq.

Corollary 2.12 ([26, Corollary 6.3]). If H1, . . . , Hq are the s.c.c.’s of H, then

CHpSHqtRH “
qł

ξ“1

CHξ
pSHξ

qtRHξ
. (2.8)

Definition 2.13. Let H be a subgraph of GpAq, and let p P N. The cycle removal threshold Tp
crpHq

(resp. strict cycle removal threshold rTp

crpHq) of H is the smallest T P NYt0u for which the following

holds: for each walk γ P W˚pi
H

ÝÑ jq of length ě T there is a walk δ P W˚pi
H
ÝÑ jq obtained from γ by

removing cycles (resp. at least one cycle), and possibly inserting cycles from H, such that ℓpδq ď T and
ℓpδq “ ℓpγq mod p.

Proposition 2.14 ([26, Proposition 9.5]). Given a subgraph H of GpAq with m nodes, then

Tp
crpHq ď pn ` n ´ m ´ 1, for any p P N.

Corollary 2.15. For a simple cycle θ of GpAq with ℓpθq ď n ´ 1 the following holds:

Tℓpθq
cr pθq ď ℓpθqn ` n ´ ℓpθq ´ 1 “ ℓpθqpn ´ 2q ` n ` ℓpθq ´ 1 ď pn ´ 1q2 ` 1 ` pℓpθq ´ 1q.

Corollary 2.16. For a node i of GpAq and p ď n the following holds:

rT
p

crptiuq ď pn ` n ´ 2 ` 1 ď n2 ` pp ´ 1q.

The next proposition allows to deal with Hamiltonian cycles.

Proposition 2.17 ([26, Proposition 9.4]). For a simple cycle θ of length n in GpAq the following holds:

rT
n

crpθq ď n2 ´ n ` 1 “ pn ´ 1q2 ` 1 ` pℓpθq ´ 1q.

Remark 2.18. The above bounds on Tp
cr are applied to produce from a given walk γ1 P W tpi

H
ÝÑ jq

a new walk γ2 P W t,ppi
H

ÝÑ jq with ℓpγ2q ď T , and the bound Tp
crpHq ď T , by omitting cycles from γ1

and possibly inserting cycles of H.

The next lemma (included implicitly in [26]) completes Theorem 2.10 for matrices A P Mn that are
not normalized, i.e., have λpAq ‰ 1.

Lemma 2.19. Given A P Mn, t P N, and indices i, j “ 1, . . . , n.

(i) pCHpSHqtRHqi,j ě ωpγi,jq for any completely reducible subgraph H of GcrpAq and any walk

γi,j P W tpi
H

ÝÑ jq;

(ii) Assume θ is a simple critical cycle. If t ě pn ´ 1q2 ` 1, then there exists γi,j P W tpi
θ

ÝÑ jq such
that pCθpSθqtRθqi,j “ ωpγi,jq.

Proof. Both in piq and piiq, since pCHpSHqtRHqi,j and ωpγi,jq decreases by tλpAq when replacing A

by p´λpAqq ` A, we may assume that λpAq “ 1.

piq: Follows immediately from Theorem 2.10.
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piiq: Take γ1 P W t,gpi
N

ÝÑ jq having weight pCθpSθqtRθqi,j , cf. Theorem 2.10. If ℓpθq “ n, apply

Proposition 2.17, otherwise use Corollary 2.15, to get a walk γ2 such that ℓpγ2q “ t mod ℓpθq and
ℓpγ2q ď t`ℓpθq´1, so ℓpγ2q ď t. If needed, insert additional copies of θ to get a walk γ3 of length exactly t.
Since λpAq “ 1, ωpγ2q ě ωpγ1q. Since θ is critical, ωpγ3q “ ωpγ2q. Thus, ωpγ3q ě ωpγ1q “ pCθpSθqtRθqi,j .

The reverse inequality is given by piq, so that γi,j “ γ3 has the desired properties. �

We are now ready to prove the main result of this section.

Theorem 2.20. rkfcpA
tq ď rktrpAq for any t ě pn ´ 1q2 ` 1.

Proof. Fix t ě pn ´ 1q2 ` 1, and apply Theorem 2.9 recursively to get At as the sum of CHξ
pSHξ

qtRHξ

defined by successive matrices subordinate to A. Explicitly, we start with A1 “ A and define inductively
Aξ`1 “ BrAξs. At each step, we set Cξ “ CHξ

, Sξ “ SHξ
, Rξ “ RHξ

to be the CSR terms of Aξ with
respect to Hξ “ GcrpAξq.

By definition (2.5) of BrAξs we get a sequence of nested digraphs

GpAq “ GpA1q Ě GpA2q Ě GpA3q Ě ¨ ¨ ¨ , (2.9)

such that for any ξ ą ς , GpAξq is the subgraph of GpAςq obtained by removing all the arcs of GpAςq that
are incident to some node that is critical for some Aζ , where ξ ą ζ ě ς . Thus, GpAξq can be viewed as a
digraph on a subset of nodes of GpAq, i.e., as an induced subgraph.

Since GpA1q has finitely many nodes and GcrpAξq and GcrpAςq are arc-disjoint for any ξ ‰ ς , the
sequence (2.9) stabilizes after finitely many steps, when GpAξq is acyclic. Therefore, (2.9) restricts to
matrices A1, . . . , Aq with strict inclusions, where At

q “ 0, since GpAqq is acyclic. Applying Theorem 2.9
recursively, we obtain

At “
q´1ł

ξ“1

CξpSξqtRξ.

If ξ ă q, then Hξ is not acyclic; hence Hξ is completely reducible. Let Θξ be a collection of simple
cycles of Hξ that contains one cycle from each s.c.c. of Hξ, each of them having minimal length. By
Corollaries 2.11 and 2.12, we have

CξpSξqtRξ “
ł

θPΘξ

CθpSθqtRθ,

where Cθ, Sθ, Rθ are CSR terms of Aξ with respect to θ P Θξ. Namely, the collection Θ “
Ť

ξ Θξ of
node-disjoint simple cycles gives

At “
ł

θPΘ

CθpSθqtRθ, (2.10)

where Cθ, Sθ, Rθ are the CSR terms of the unique Aξ such that θ is a simple cycle of GcrpAξq. The factor
rank is subadditive, cf. (1.2), and thus (2.10) implies

rkfcpA
tq ď

ÿ

θPΘ

rkfc
`
CθpSθqtRθ

˘
ď

ÿ

θPΘ

ℓpθq. (2.11)

(Later we show that some terms can be omitted to get
ř

θPΘ ℓpθq ď rktrpAq.)
Let Φ be a subcollection of Θ for which (2.10) holds as well. Assume that

ÿ

θPΦ

ℓpθq ą rktrpAq. (2.12)

Denote by N the set of nodes of all θ P Φ, and by Q the principal minor of A indexed by the nodes in N .
Since the θ P Φ are node-disjoint simple cycles, N has strictly more than rktrpAq elements; hence Q is
singular. By Lemma 2.2, applied to the permutation of N whose cycles are the θ P Φ (cf. Remark 1.5),
GpQq has a simple cycle θ R Φ such that

ωpθq ě
ÿ

iPθ

ÿ

HξQi

λpAξq. (2.13)

(The right part runs over all nodes i P θ and for each i accumulates the spectral radius λpAξq for the
unique Hξ containing i.)

Let l and m be respectively the smallest and largest ξ such that θ X Hξ ‰ H. Note that θ is a simple
cycle belonging GpAlq, since all its node occur in Hξ for some ξ ě l. Assume first that l “ m. Then,
ωpθq ě ℓpθqλpAlq by (2.13), implying that θ is a simple cycle of Hl. Since each simple cycle in Φ X Θl



10 ZUR IZHAKIAN AND GLENN MERLET

belongs to a different s.c.c. of Hl, all nodes of θ appear in the same simple cycle θ̃ in ΦXΘl. Since θ R Φ,
there is an arc of θ that does not belong to θ̃. Starting with this arc and going back along the arcs of θ̃,
we build a cycle of Hl shorter than θ̃. This contradicts the minimality of the length of θ̃.

We are left with the case where l ă m. Let θξ, with ξ “ l,m, be a simple cycle in GcrpAξq that belongs
to Φ such that θ X θξ ‰ H, and let kξ be a node of this nonempty intersection. It remains to show that

CθmpSθmqtRθm ď CθlpSθlq
tRθl . (2.14)

Fix indices i and j, for which pCθmpSθmqtRθmqi,j ‰ 0. By Lemma 2.19, there is a walk γ1 P W˚pi
θmÝÝÑ jq

on GpAmq such that ωpγ1q “ pCθmpSθmqtRθmqi,j . In particular, γ1 intersects θm, and θm intersects θ at

some km. Insert θm into γ1 to get a walk γ2 P W t`ℓpθmqpi
kmÝÝÑ jq. Note that γ2 lives on GpAmq, so it

visits at most n ´ 1 different nodes, since all arcs incident to Hl do not belong to GpAmq.

By Corollary 2.16, applied to p “ ℓpθq and i “ km, there is another walk γ3 P W t,ℓpθmqpi
kmÝÝÑ jq

on GpAmq, of length at most pn´1q2 ` ℓpθmq ´1 (cf. Remark 2.18). But ℓpγ3q “ t mod ℓpθmq, and thus

ℓpγ3q ď pn ´ 1q2 ă t. Inserting copies of θm into γ3 at km , we get a walk γ4 P W tpi
kmÝÝÑ jq. Namely, γ4

is obtained from γ1 by adding a copy of θ and copies of θm, and removing cycles having average weight
at most λpAmq, which is the average weight of θm. Therefore ωpγ4q ě ωpγ1q “ pCθmpSθmqtRθmqi,j .

Now we reduce γ4 (cf. Remark 2.18), and then insert copies of θ at km to produce a new walk γ6 P

W tpi
θlÝÑ jq for which

ωpγ6q ě ωpγ4q ě
`
CθmpSθmqtRθm

˘
i,j

. (2.15)

Note that γ4 is a walk on GpAmq, so it visits ñ ď n ´ 1 different nodes, at most n´ ℓpθq of which do not
belong to θ, as γ4 is also a walk on GpAq.

– When ñ ă n ´ 1, we apply Proposition 2.14 with p “ ℓpθq to get a walk γ5 P W t,ℓpθqpi
θ

ÝÑ jq of length
at most pñ ´ 1q ℓpθq ` n ´ 1 ď pn ´ 1q2 ă t. Then, we insert at least one copy of θ to get a walk γ6
of length t. Since the average weight of θ is larger than λpAmq by (2.13), and thus larger than the
average weight of each cycle of γ4, inequality (2.15) holds.

– The equality ñ “ n´1 implies that θl is a loop at kl. In this case, we apply Proposition 2.14 with p “ 1

and get γ5 P W˚pi
kmÝÝÑ jq of length at most n´ 1`n´ 1 “ 2n´ 2. Then we insert θ once and enough

copies of the loop θl to get a walk γ6 of length t. Since θl is a critical cycle for Al, its average weight
is λpAlq, while λpAlq ě λpAmq; thus (2.15) holds.

Finally (2.14) follows from (2.15) by Lemma 2.19 piq, and we have proved that the sum
ř

θPΦ ℓpθq is
not minimal, as long as this sum is strictly larger than rktrpAq. Thus, the inequality rkfcpA

tq ď rktrpAq
follows from (2.11), applied to a minimal subcollection Φ that satisfies (2.10). �

3. Semigroup identities of tropical matrices

The following auxiliary results lead to Theorems 3.6 and 3.7. We begin with an idea of Y. Shitov [31],
implemented in the following lemma.

Lemma 3.1. Let A,B,C P Mn such that A “ PQ, where P P Mnˆk, Q P Mkˆn, k ă n, and let
w P ta, bu`. Then pwaq JAB,AC K “ P

`
w JQBP,QCP K

˘
Q.

Proof. Straightforward by induction on the length of the word w. �

To deal with matrices that cannot be factorized as above, we use Theorem 3.4 which extends a result
from [17]. To this ends additional results are needed, based on the following conditions: A pair of matrices
A,B P Mn and a word w P ta, bu` satisfy (PR) if:

perpAq “ trpAq, perpBq “ trpBq, and rktrpw JA,B Kq “ n. (PR)

Lemma 3.2. Assume that (PR) holds for A,B P Mn, w P ta, bu`, and write w “ w1w2 ¨ ¨ ¨wℓpwq as a
sequence of letters. For each index i “ 1, . . . , n we have

`
w JA,B K

˘
i,i

“

ℓpwqÿ

t“1

`
wt JA,B K

˘
i,i

“ #apwqAi,i ` #bpwqBi,i, (3.1)

i.e., the i’th diagonal entry of w JA,B K is #apwqAi,i ` #bpwqBi,i.
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Proof. Applying Theorem 1.4, as (PR) holds, we have

per
`
w JA,B K

˘
“

ℓpwqÿ

t“1

per
`
wt JA,B K

˘
“

ℓpwqÿ

t“1

tr
`
wt JA,B K

˘
ď tr

`
w JA,B K

˘
,

implying the equality

tr
`
w JA,B K

˘
“

ℓpwqÿ

t“1

trpwt JA,B Kq, (3.2)

since per
`
w JA,B K

˘
ě tr

`
w JA,B K

˘
. Proposition 1.8 obviously implies

`
w JA,B K

˘
i,i

ě

ℓpwqÿ

t“1

`
wt JA,B K

˘
i,i

“ #apwqAi,i ` #bpwqBi,i , (3.3)

since the right hand side corresponds to the weight of the walk from i to itself, composed of loops only.
On the other hand, since w JA,B K is nonsingular, we have

nÿ

i“1

`
w JA,B K

˘
i,i

“ trpw JA,B Kq
(3.2)
“

ℓpwqÿ

t“1

trpwt JA,B Kq

“ #apwq trpAq ` #bpwq trpBq “
nÿ

i“1

`
#apwqAi,i ` #bpwqBi,i

˘
,

so that the inequality in (3.3) cannot be strict for any i. Hence, (3.1) holds. �

Lemma 3.3. Assume that (PR) holds for A,B P Mn, w P ta, bu`. For each entry Wi,j ‰ 0 of
W “ w JA,B K there is a 1-cyclic walk γi,j on GpA,Bq, labeled by w of weight Wi,j.

Proof. An pi, jq-entry of w JA,B K corresponds to the weight of a walk γ0 :“ γi,j from i to j on GpA,Bq
labeled by w, by Proposition 1.8. Assume γ0 is not 1-cyclic, which means that γ0 returns to a node h

which it has already left. Let γ1 be the subwalk γ1 of γ0 which starts at the first occurrence h and ends
at the last occurrence of h. Let v be the factor of w labeling γ1. Since v JA,B K is a factor of w JA,B K,
it follows from Proposition 1.4 that rktrpv JA,B Kq “ n, and A,B, v satisfy (PR). Hence, by Lemma 3.2
the walk γ2 labeled by v that stays at h has weight at least as that of γ1. Then γ1 can be replaced by
γ2 in γ0 to obtain a walk γ3 that does not return to h after leaving h and whose weight is at least as
that of γ0. Repeating this process sequentially for each recurrent node, we receive a 1-cyclic walk γ with
weight at least as that of γ0. Since γ cannot have a strictly larger weight, we are done. �

We are now ready to prove:

Theorem 3.4. Suppose that xu, vy P IdpUnq, with u, v P ta, bu`, and that A,B P Mn satisfy

perpAq “ trpAq and perpBq “ trpBq; (3.4)

rktrpu JA,B Kq “ rktrpv JA,B Kq “ n. (3.5)

Then, u JA,B K “ v JA,B K.
Proof. We prove that the following inequality holds for any entry pi, jq:

pu JA,B Kqi,j ď pv JA,B Kqi,j . (3.6)

The case of pu JA,B Kqi,j “ 0 is obvious. Otherwise, Lemma 3.3 gives a 1-cyclic walk γi,j , i.e., γi,j never

returns to a node which it has already left. Thus, the nodes of GpA,Bq can be permuted, say by π P Sn,
in a way that γi,j has only arcs that go forward. Let P :“ Pπ be the matrix associated to π, and let TA

and TB be the upper triangular matrices obtained respectively from P´1AP and P´1BP by setting all
entries below the diagonal to 0. Then the matrix P´1AP satisfies

`
u

q
P´1AP,P´1BP

y ˘
πpiq,πpjq

“
`
u JTA, TB K

˘
πpiq,πpjq

,

and we can compute

pu JA,B Kqi,j “
`
u

q
P´1AP,P´1BP

y˘
πpiq,πpjq

“
`
u JTA, TB K

˘
πpiq,πpjq

“
`
v JTA, TB K

˘
πpiq,πpjq

ď
`
v

q
P´1AP,P´1BP

y˘
πpiq,πpjq

“ pv JA,B Kqi,j .
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Thus (3.6) holds for each entry pi, jq. The reverse inequality holds by symmetry, so that u JA,B K “
v JA,B K. �

To apply Theorem 3.3, matrices which satisfy (3.4) should be detected; this is done by Lemma 2.1.

Remark 3.5. Lemma 2.1, and consequently Theorem 3.4, also hold if the maximality condition of tropical
rank is replaced by maximality of the so-called determinantal rank, which is larger. As well, modifying the
notion of nonsingularity accordingly, Theorem 1.4 holds, cf. [31, Theorem 2]. Nevertheless, Theorem 2.6
holds for tropical rank, which suffices our needs.

We can finally prove our main result:

Theorem 3.6. Given n P N, let n “ lcmp1, . . . , nq. For any t ě pn´1q2`1 and every xu, vy P IdpMn´1q,
where u, v, p, p̂, q, q̂, r, r̂ P ta, bu`, the following hold:

(i) If xq, ry P IdpUnq, then

xua, vay
“`

pqrqt
˘ “

an, bn
‰
,
`
pqrqtr

˘ “
an, bn

‰ ‰
P IdpMnq; (3.7)

(ii) If ppq̂p, pr̂pq P IdpUnq, then

xua, vay
“
pwq̂p

˘ “
an, bn

‰
, pwr̂p

˘ “
an, bn

‰ ‰
P IdpMnq (3.8)

with w “ ppq̂pr̂pqt.

Proof. piq: Let A,B P Mn, and let

X “
`
pqrqt

˘q
An, Bn

y
, Y “

`
pqrqtr

˘ q
An, Bn

y
“ XR, with R “ r

q
An, Bn

y
,

be matrices in Mn.

– If rkfc pXq ă n, then X “ PQ for some matrices P P Mn,n´1 and Q P Mn´1,n. (Add columns and
rows of 0, if rkfc pXq ă n ´ 1.) Hence QP,QRP P Mn´1, and using Lemma 3.1 we obtain

puaq JX,Y K “ P
`
u JQP,QRP K

˘
Q “ P

`
v JQP,QRP K

˘
Q “ pvaq JX,Y K ,

since xu, vy P IdpMn´1q by assumption. Therefore,

puaq JX,Y K “ pvaq JX,Y K . (3.9)

– If rkfc pXq “ n, then rktr
`
pqrq

q
An, Bn

y˘
“ n by Theorem 2.20, implying that

rktr
`
q
q
An, Bn

y˘
“ rktr

`
r
q
An, Bn

y˘
“ n

by Proposition 1.4. Then q
q
An, Bn

y
“ r

q
An, Bn

y
by Theorem 3.4, since xq, ry P IdpUnq. Thus X

and Y are both powers of q
q
An, Bn

y
, and hence commute. This implies (3.9), since #apuq “ #apvq

and #bpuq “ #bpvq.

Therefore, (3.9) holds for any A,B P Mn, which means that (3.7) holds true.

piiq: The proof of (3.8) follows along the same lines of piq. �

Replacing Theorem 2.20 in the proof by Proposition 2.6, a similar result is obtained, but with longer
identities, in which t is exchanged by nt and t ě pn ´ 1q2 ` 1 by t ě 3n ´ 2. Consequentially, by this
change, only a subset of identities is produced.

Theorem 3.7. The monoid Mn satisfies a nontrivial semigroup identity for every n P N. The length of

this identity grows with n as eCn2`opn2q for some C ď 1{2 ` lnp2q.

Proof. The case of n “ 1 is trivial, while [19, Theorem 3.9] proves the case of n “ 2. For tropical triangular
matrices there exists an identity xq, ry P IdpUnq by [14, Theorem 4.10], or [27, Theorem 0.1]. The proof
then easily follows from Theorem 3.6 by induction. To bound the length, note that xq, ry P IdpUnq given
by [14, Theorem 4.10] has length ℓpqq “ ℓprq “ 2n`opnq, while n “ en`opnq – a fact that follows from the
Prime Number Theorem. �

Remark 3.8. Decreasing the length of xq, ry P IdpUnq would lead to a better bound on C. Yet, with this
method whose formulas includes n, such bound cannot be lower than 1{2.

We immediately conclude the following:

Corollary 3.9. Any semigroup which is faithfully represented by Mn satisfies a nontrivial identity.
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Example 3.10. Set p “ a2b2arab, bas. Then xpabp, pbapy P IdpU3q by [15], while M2 satisfies an iden-
tity xu, vy of length 17 by [7]. Thus, by Theorem 3.6.(ii), M3 satisfies an identity of length 19,656, while
Theorem 3.6.(i) gives a length 24,816. In [31] Shitov pointed out that a matrix A P M3 has either deter-
minantal rank 3 or factor rank at most 2. Consequently, for M3, Remark 3.5 allows to omit exponent t
in Theorem 3.6, which reduces the identity length to 4,968 and 5,808, respectively. [31] provides identities
of length 1,795,308.
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