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Abstract
Inspired by non-constructive simulation devel-
oped in qualitative reasoning, we present a non-
constructive interval simulation algorithm for sim-
ulating dynamic systems. We recast two integra-
tion methods from traditional numerical simulation
to make them suitable for non-constructive interval
simulation. We then proposed an iterative interval
narrowing algorithm to control the growth of inter-
vals during simulation, and we also designed sev-
eral simulation modes. The simulation algorithm
has been both theoretically and experimentally val-
idated.

1 Introduction
Numerical simulation of dynamic systems has been widely
used in many engineering and scientific fields [Angermann,
2011]. It numerically simulates differential equation mod-
els, such as Ordinary Differential Equation (ODE) and Differ-
ential Algebraic Equation (DAE) models, thereby describing
how the dynamic system evolves with time.

However, for many real-world problems, due to incomplete
knowledge and data, the initial values of model variables
and/or the model parameter values have to been given as in-
tervals with lower and upper bounds. Simulating differential
equation models as such necessitates the use of interval anal-
ysis [Moore, 1966], which led to the development of interval
simulation. In history Interval simulation has attracted the
interest of both Qualitative Reasoning (QR) [Kuipers, 1994]
and Numerical Simulation (NS) communities. This resulted
in the parallel development of interval simulation (in QR the
subfield is called semi-quantitative simulation), and therefore
there is a gap between these two fields.

In this research we aim to bridge this gap through a novel
interval simulation framework. This framework is based
on QR but employs techniques developed in NS. Further-
more, we have designed the simulation algorithm to be non-
constructive, a simulation approach originating from QR (see
details in Section 3). This enables the proposed approach to
straightforwardly handle models with algebraic loops, which
are normally dealt with by NS algorithms through additional,
and often complicated and unreliable, operations [Cellier,
1991a].

In the rest of the paper, we first describe the development of
interval simulation within the NS and QR fields in Section 2.
Then in Section 3 we present the motivations of the research.
In Section 4 we introduce the Morven formalism used in our
approach. In Section 5 the proposed non-constructive inter-
val simulation approach is described in detail. In Section 6
we provide the theoretical analysis on the proposed simula-
tion algorithm. This is followed by the report of a series of
experiments in Section 7. Finally Section 8 concludes the
paper and explore the future work.

2 Background

2.1 From Numerical Simulation to Interval
Simulation

Researchers in NS extended IVP (Initial Value Problem) for
ODEs to the interval IVP for ODEs as follows:

Y ′(t) = F (Y ), (1)
Y (t0) = Y0. (2)

In the above, Y ∈ IRn is an unknown n-dimensional
interval-valued vector variable, where IR denotes the set of
real intervals. Y0 ∈ IRn is the given initial values. Y ′(t) is
the first derivative of Y with respect to time t, and F : Rn →
Rn is a given function.

Some researchers further consider situations when the pa-
rameters are also intervals, which lead to the replacement of
Equation (1) by the following equation:

Y ′(t) = F(Y, θ). (3)
In the above, F is a vector function containing interval-

valued parameters, and θ ∈ IRm is the parameter vector with
m being the number of parameters in the model.

Many efforts in NS have been made to recast numerical
ODE solvers to deal with interval IVPs for ODEs described
by Equations (1) ∼ (2) [Nedialkov et al., 1999].

Apart from ODEs, DAEs (Differential Algebraic Equation)
are often used in practice. A set of DAEs is represented as
follows:

F (t, y, y′, y′′, ...., y[m]) = 0 (4)
In the above y is an unknown n-dimensional vector variable,
and y′, y′′,..., y[m] are derivatives of y with respect to time t.
Function F is a mapping Rn·m+1 → Rn.

The initial values at time t0 is a solution of DAEs in the



Table 1: Some qualitative constraints in Morven and their corre-
sponding mathematical equations

Morven Constraints Mathematical Equations

sub (dt 0 Z, dt 0 X, dt 0 Y) Z(t) = X(t)− Y (t)
mul (dt 0 Z, dt 0 X, dt 0 Y) Z(t) = Y (t) ∗X(t)
div (dt 0 Z, dt 0 X, dt 0 Y) Z(t) = X(t)/Y (t)
func (dt 0 Y, dt 0 X) Y (t) = f(X(t))
sub (dt 1 Z, dt 0 X, dt 0 Y) dZ(t)/dt = X(t)− Y (t)
func (dt 1 Y, dt 0 X) dY (t)/dt = f(X(t))

form of Equation (4) in the following form:
F (t0, y(t0), y

′(t0), y
′′(t0), ..., y

[m](t0)) = 0 (5)
The IVP for DAEs is to numerically simulate DAEs in the

form of Equation (4) given the initial values in Equation (5).
Similar to the way we represent the interval IVPs for ODEs,
the interval IVPs for DAEs can be formulated according to
Equations (4) and (5). The development of interval DAE
solvers also received some attention [Nedialkov and Pryce,
2005] recently.

2.2 Semi-quantitative Simulation
In the Qualitative Reasoning (QR) community, quali-
tative simulation uses Qualitative Differential Equations
(QDEs) [Kuipers, 1994; Coghill, 1996; Bruce and Coghill,
2005]. Table 1 lists some Morven constraints and the corre-
sponding mathematical equations.

Some researchers started from qualitative simulation en-
gines such as QSIM and incorporated incomplete quantita-
tive information (in the form of intervals), and this led to the
development of semi-quantitative simulation algorithms, for
instance, Q2 [Kuipers and Berleant, 1988] and Q3 [Berleant
and Kuipers, 1997].

3 Motivations of the Research
From Section 2 we can see that the researchers from the NS
and QR communities took different approaches to interval
simulation, and there is a gap between these two communi-
ties.

From the QR perspective, there is room for improvement
for interval simulators: first, as far as the authors are aware,
up till now only the Euler and Runge-Kutta integration meth-
ods have been used in QR. So one motivation of our research
is to explore the potential of a wider range of integration tech-
niques as applied to QR-based interval simulation.

Second, there are both constructive and non-constructive
simulation [Wiegand, 1991; Coghill and Chantler, 1999] in
QR. Constructive simulation requires the explicit forms of the
derivatives of variables. In constructive simulation, at time
point ti, the derivatives are first calculated directly from their
explicit forms, and then used for the estimation of the magni-
tudes of variables at the next time point ti+1. Constructive
simulation has been extensively used in NS, but one limi-
tation is that when models are given as implicit forms (i.e.,
DAEs), additional procedures have to be performed to ob-
tain the explicit forms, and such procedures may be compu-
tationally expensive. In addition, to solve a DAE construc-
tively, the structure analysis may fail in some ill-structured

Table 2: The Morven Model for the Single Tank System

Differential Plane 0
C1: mul (dt 0 qo, dt 0 k, dt 0 V) (qo = kV )
C2: sub (dt 1 V, dt 0 qi, dt 0 qo) (V ′ = qi − qo)
Differential Plane 1
C3: mul (dt 1 qo, dt 1 k, dt1 V) (q′o = kV ′)
C4: sub (dt 2 V, dt 1 qi, dt1 qo) (V ′′ = q′i − q′o)

DAEs [Pryce, 2001], which makes it impossible to obtain the
explicit forms. Furthermore, it is not straightforward for con-
structive simulation to deal with models containing algebraic
loops, which are sometimes used when modelling some real-
world systems [Cellier, 1991b].

Within QR there are a number of non-constructive qualita-
tive simulators, such as QSIM and FuSim [Shen and Leitch,
1993]. Non-constructive simulation essentially employs a
generate-and-eliminate strategy, and it does not require the
explicit forms of variables or their derivatives. This is partic-
ularly effective when dealing with some ill-structured DAEs
or DAEs containing algebraic loops.

In interval simulation, variables take interval values in-
stead of qualitative values. However, under the QR frame-
work a differential equation model with interval initial con-
ditions and parameter values can be converted into a semi-
quantitative model composed of several constraints. So simi-
lar to qualitative simulation, in interval simulation we can use
each constraint to determine the ranges of interval values for
all variables of this constraint (generate). Then the resulting
interval value for a variable will be the intersection of all in-
tervals obtained from each individual constraint (eliminate).
This means we can also perform the interval simulation in a
non-constructive manner.

The above consideration leads to another motivation of this
research: implement a non-constructive interval simulator.
We expect such research will contribute to both the NS and
QR communities.

4 The Morven Framework

In this research we use the Morven [Coghill, 1996] formalism
to represent semi-quantitative models. The Morven frame-
work is a constraint-based fuzzy qualitative system. Qualita-
tive constraints in a Morven model are distributed over multi-
ple differential planes. Qualitative variables in Morven are in
the form of variable length vectors.

Consider the ODE model of the single tank system:
qo = kV, (6)

dV/dt = qi − qo, (7)
where V is the volume of the liquid in the tank, qi is the in-
flow, qo is the outflow, and k is a positive constant coefficient.

The above ODE model can be converted into a Morven
model shown in Table 2. It is noted that Morven can use
function constraints (”func”) to represent qualitative models.



5 Non-constructive Interval Simulation
There are two phases in non-constructive qualitative simula-
tion [Coghill and Chantler, 1999]: Transition Analysis (TA)
and Qualitative Analysis (QA), which correspond to interval
integration and interval refinement in interval simulation, re-
spectively, and they are two most important components of
non-constructive interval simulation.

5.1 Interval Arithmetic
The interval arithmetic used in our algorithm is defined in
Table 3.

Table 3: Interval Arithmetic Operations

Let: m = [a b], n = [c d]
Operation Result Conditions
−n [d c] all n
1
n [ 1d

1
c ] c, d > 0 or c, d < 0

[−∞ ∞] c ≤ 0 and d ≥ 0
m + n [a + c b + d] all m,n
m− n [a− d b− c] m 6= n

[0 0] m = n
m× n [ac bd] m = n and (c, d > 0 or c, d < 0)

[0 bd] m = n and c ≤ 0 and d ≥ 0
[ac bd] m 6= n and a, c > 0
[bc ad] m 6= n and a > 0 and d < 0
[bc bd] m 6= n and a > 0 and c ≤ 0 and d ≥ 0
[ad bc] m 6= n and b < 0 and c > 0
[bd ac] m 6= n and b < 0 and d < 0
[ad ac] m 6= n and b < 0 and c ≤ 0 and d ≥ 0
[ad bd] m 6= n and a ≤ 0 and b ≥ 0 and c > 0
[bc ac] m 6= n and a ≤ 0 and b ≥ 0 and d < 0
[min(ad, bc) max(ac, bd)] m 6= n and a ≤ 0 and b ≥ 0

and c ≤ 0 and d ≥ 0
m
n [1 1] m = n

m× 1
n m 6= n

m ∩ n [max(a, c),min(b, d)] a ≤ c ≤ b or c ≤ a ≤ d
∅ b > c or d > a

m ∪ n [max(a, c), min(b, d)]

m 6= n denotes that the intervals do not correspond to the same interval whereas
m = n indicates that the intervals do correspond to the same interval. a, c > 0

indicates that both intervals are positive whereas b, d < 0 dictates that both intervals
are negative. c ≤ 0 and d ≥ 0 (as well as a ≤ 0 and b ≥ 0) governs that the interval
spans zero. It is possible to define m× n for when both intervals span zero however it
has been left out in this table for simplicity.

5.2 Integration Methods
In this subsection, we investigate which integration methods
can be used in non-constructive simulation as Morven mod-
els can represent those ill-structured ODE and DAE models
which are impossible to simulate constructively.

We have explored several common integration methods:
(1) Euler methods [Ascher and Petzold, 1998] (including
both forward and backward Euler methods), (2) Runge-
Kutta methods [Butcher, 2008], (3) Taylor Series Expan-
sion [Arfken et al., 2005], (4) the linear multi-step meth-
ods [Butcher, 2003a], including the Adams-Bashforth (AB)
methods [Butcher, 2003b], Adams-Moulton and Backward
Differentiation Formulas (BDF) [Hairer et al., 1993], (5) the
predictor-corrector methods [Press et al., 1992], including the
Euler Trapezoidal method and the Adams-Bathforth-Moulton
method [Mathews and Fink, 2004].

Among all the above mentioned methods, we identified
that Taylor Series (with the forward Euler method being a
special case) and AB methods can be used in non-constructive

simulation. They can also be easily recast for interval simula-
tion by using the interval mathematics defined in Section 5.1.
Therefore, in this research these two integration approaches
will be investigated.

We take the Euler methods as an example to demonstrate
how we determine the suitability of an integration method for
non-constructive simulation, and due to page limit, we will
not present the investigation on other integration methods.

We study two streams of Euler methods: forward and back-
ward. The forward Euler method for constructive simulation
is given as follows:

yn+1 = yn + hf(yn) (8)
In the above yn is the magnitude of y at time step tn; f(yn)
is the explicit form of y′n given by the model: y′n = f(yn);
yn+1 is the magnitude of y at the next time step tn+1, and
h is the step size (tn+1 − tn). In constructive simulation, at
time step tn+1, first we calculate the value of yn+1 according
to Equation (8), then this value will be used to calculate the
value of y′n+1 in the next simulation step tn+1 by evaluating
f(yn+1).

In the context of non-constructive simulation, at time step
tn+1, the value of f(yn) cannot be calculated directly as the
form of f(yn) is not explicitly given. However, the value of
y′n can be taken from previous calculation at time step tn, and
replace f(yn) in Equation ( 8), which is shown below:

yn+1 = yn + hy′n (9)
In addition, the initial value of y′0 is either given or calculated
by the interval narrowing algorithm which will be described
in Section 5.3. This means that the forward Euler method can
be used in non-constructive simulation.

The backward Euler method for constructive simulation is
given as follows:

yn+1 = yn + hf(yn+1), (10)
where f(yn+1) is the explicit form of y′n+1: y′n+1 =
f(yn+1). In constructive simulation the above equation has
to be solved to obtain the precise value of yn+1, for instance,
by the fixed point iteration method [Burden and Faires, 2000].

On the other hand, in non-constructive simulation at the
time step tn+1 the explicit form f(yn+1) cannot be obtained
straightforwardly, and the value of y′n+1 is not calculated
yet. This means the backward Euler is not suitable for non-
constructive simulation.

5.3 Interval Narrowing Algorithm
Having defined the interval mathematics and chosen the in-
tegration methods, the next component to be developed is
the interval narrowing algorithm. The interval narrowing al-
gorithm is to control the growth of intervals during simula-
tion, which is achieved by iteratively applying the model con-
straints to intervals.

We first propose the Inverse Constraint Operations, as de-
tailed below: for each constraint in the model, we obtain all of
its mathematically equivalent forms, each of which is called
an inverse of this constraint in this paper. For example, con-
sider the following constraint:

A = B + C, (11)
its inverses will be the following two:

B = A− C, (12)



C = A−B. (13)
Then this constraint together with its inverse(s) are used to
narrow down the intervals of relavent variables after an inte-
gration step. For example, suppose after an integration step,
the intervals for variables A, B, and C are A = [5, 6], B = [3,
4], and C = [2.5, 3.5].

Applying interval arithmetic defined in Table 3 to Equation
(11), we can determine the range of A by (B+C) as follows:
[5.5, 7.5] = [3, 4] + [2.5, 3.5]. Consider the initial interval
A = [5, 6] from integration, the intersection of these two
intervals will be: A= [5, 6] ∩ [5.5, 7.5] = [5.5, 6].

To narrow the rest of the variables the inverse constraints
should be used: according to Equation (12), the interval for B
should be: [2, 3.5] = [5.5, 6] - [2.5, 3.5]. Again from integra-
tion,B = [3, 4]. Taking the intersection of the intervals gives
B = [3, 3.5]. Similarly, using Equation (13), the interval for
C is: [2 , 3] = [5.5, 6] - [3, 3.5], but C = [2.5, 3.5] from
integration therefore taking the intersection C = [2.5, 3].

Finally, intervals for all variables narrowed as much as pos-
sible are: [2.5, 3] = [5.5, 6] - [3, 3.5].

After this process the intervals for A, B and C are nar-
rowed as much as possible by reasoning over Constraint (11)
(and its two inverses) alone. However, these updated values
may result in further narrowing in other constraints; hence
the process is repeated until no more changes are made in the
whole model or the change is within a given threshold, which
is a very small value and determines the simulation precision.
Due to the narrowing of intervals using this Inverse Constraint
Operations, not much looping of the whole model is required.

The interval narrowing algorithm described above is es-
sentially a Waltz algorithm [Waltz, 1975] applied to interval
values. In particular, the soundness and completeness of the
Waltz algorithm applied to interval refinement has been ex-
tensively studied by Davis [Davis, 1987]. It is noted that in
Q3 [Berleant and Kuipers, 1997] the Waltz algorithm was
also used to refine interval values. However, Q3 applied
the Waltz algorithm to the constraint network composed of
constraints instantiated from the model across different time
points, one of the reasons for which is to propagate the quan-
titative information (in the form of intervals) annotated on
the given and newly interpolated states throughout the net-
work. While in our interval simulation algorithm the Waltz
algorithm is used only at the current time point to ensure the
generation of tight interval values for precise estimation of
variable values as well as for the integration towards the next
time point.

We finally point out that this interval narrowing algorithm
is suitable for the situation when there exist time-invariant
interval parameters in the model, as described in Equation
(3), because the constant intervals for these parameters can
be directly processed by the interval arithmetic during inter-
val narrowing. This makes our simulation different from the
widely used approach suggested by Lohner [Lohner, 1988]
in the NS community, which treats the time-invariant interval
parameters as independent state variables and thus increases
the complexity of simulation.

5.4 Modes of Simulation
A common problem in interval simulation is that the intervals
begin to widen and then eventually become uncontrollable
during simulation. This problem is called the “wrapping ef-
fect” [Moore, 1966] in NS. In this research we offer different
approaches to deal with the interval widening problem, and
each approach is termed a simulation mode in this paper. For
ease of description, the simulation which does not take any
additional approach to reduce the spurious behaviours is also
considered as a simulation mode: the Basic Interval Simula-
tion (BIS) mode.

Basic Interval Simulation
In the Basic Interval Simulation (BIS) mode, the previously
mentioned three modules are straightforwardly employed to
simulate a model. In this sense BIS will demonstrate how the
basic non-constructive simulation algorithm is performed.

In the BIS mode, at the beginning of the simulation, users
are asked to give the size of the integration step δt and the
total simulation time ttot, and therefore the number of simu-
lation steps is given by: num = ttot/δt.

At the initial time step t0, given an incomplete initial state,
which specifies the initial intervals for some model variables,
the interval narrowing algorithm is first used to narrow down
as much as possible these initial intervals. Meanwhile, based
on the known initial intervals, the interval narrowing algo-
rithm also tries to infer the initial intervals of those variables
whose values are not specified. Another function of the inter-
val narrowing algorithm is to check whether the initial state
is consistent with the model, and if the initial state is incon-
sistent, the simulation will not proceed.

During simulation a repository R is maintained to record
the history of simulation data, and each element in R is a
four-tuple < V ar,Der, [a, b] : ti >, where V ar is the name
of the variable; Der is a non-negative integer which specifies
the order of derivative of V ar (0 means the magnitude); the
third and fourth elements represent the interval value and the
time step, respectively.

At each new time step ti all derivatives of all variables are
first integrated, and the relevant intervals used for integra-
tion can be retrieved from the repository R. For the Taylor
method, only the data at time step ti−1 will be retrieved, and
the data may include intervals for magnitudes and derivatives
of variables. For the Adams-Bashforth method, apart from
data at ti−1, data before ti−1 will also be retrieved, but only
intervals for the first derivatives of relevant variables will be
used.

Then in the interval narrowing process, all the intervals for
all derivatives are iteratively checked against each constraint
of the model. After the interval narrowing process, all the
updated intervals are stored in the repository R, which are
ready for the simulation at the next time step ti+1. Finally
we point out that BIS is complete, as will be discussed in
Section 6.1.

Sub-interval Simulation
One way to handle the uncontrollable growth of intervals dur-
ing simulation is to simulate the model many times but using
a smaller sub-interval each time. This approach is called Sub-
interval Simulation (SIS) in this paper. The motivation of SIS



is that when the initial intervals are very small the simulation
will suffer less from the interval divergence over time.

In the SIS mode, the initial interval for each vari-
able/derivative is divided into n equal and non-overlapping
sub-intervals. Then for each combination which takes one
sub-interval from each initial interval, an initial state is gen-
erated and the BIS is used to simulate the model with this
initial state. After all possible combinations of sub-intervals
have been used for simulation, the final simulation results will
be the union of all individual simulations.

As with the Basic Interval Simulation, the Sub-interval
Simulation is complete in the sense that it can guaranteed to
bound all real solutions, as will be discussed in Section 6.1.
Although complete, the Sub-interval Simulation requires a
large number of initial states generated for simulation, which
becomes a major concern in terms of the computational ef-
ficiency. However, it is often the case that not all the gen-
erated initial states are consistent with the model, and these
states will be discarded during the interval narrowing process,
which makes the simulation less expensive.

Monte-Carlo Interval Simulation
Although the sub-interval simulation is complete, its compu-
tational cost may increase exponentially with the increase of
the number of intervals. Another simulation mode is to use
the Monte-Carlo method [Rubinstein, 1981]. That is: instead
of exhaustively using all combinations of sub-intervals as in
SIS, we only randomly sample a specified number of combi-
nations. This simulation mode is called Monte-Carlo Interval
Simulation (MCIS) in this paper.

The sub-intervals used by MCIS can be smaller than those
in SIS, which means it can generate a tighter enclosure of the
simulation trajectories. Theoretically speaking, MCIS has to
sample an infinite number of combinations to bound all real
solutions, but as the sample space of MCIS is finite (each
interval is divided into a finite number of sub-intervals), com-
pared with the MC method applying to infinite sample space,
it is more likely to cover all solutions if the samples are suffi-
cient enough.

Point Simulation
The point simulation samples points (intervals with zero
width) rather than sub-intervals from given initial intervals to
approximate the solutions. The point simulation is similar to
traditional numerical simulation, except that non-constructive
simulation is used. The motivation for using points for simu-
lation is to reduce the spurious behaviours, because the trajec-
tories obtained from simulation with point initial conditions
are zero width.

Several point simulation methods are developed in this re-
search: (1) the Extreme Point Simulation, in which each ini-
tial state is formed by taking the upper or lower bound from
each initial interval. Taking the extreme points of each in-
terval gives an approximate range of possible values whilst
maintaining an efficient method. This method is sound but
incomplete in the sense that the solutions found contains no
spurious ones but it may not cover every possible solution.

(2) Regular-spaced Point Simulation: As with the Sub-
interval Simulation, the Regular-spaced Point Simulation
method takes each interval in the initial state and splits it into

a number of states. These states contain a number of regular-
spaced points which approximate the interval. This method is
theoretically sound and complete when the number of points
in each interval tends to infinity. As with the Sub-interval
Simulation, this method is exponential in the number of in-
tervals. However, similar to Sub-interval Simulation, it also
has the benefit that not every state has to be simulated because
some of them will be inconsistent with the model.

(3) Monte-Carlo Point Simulation: For each initial inter-
val, we randomly choose a point within it and thus form an
initial state. Then we generate a specified number of such ini-
tial states to perform simulation. The advantages of this ap-
proach are: using points guarantees that the solution is sound
and using Monte-Carlo methods makes the solution tend to be
complete and more efficient than Regular-spaced Point Sim-
ulation.

A Summary of All Simulation Modes
In this subsection, we proposed several simulation modes to
improve the simulation. These simulation modes are clas-
sified by two categories: simulation using real intervals and
simulation using group of points to approximate the real so-
lutions. We also offer both deterministic and Monte-Carlo
approaches to perform the simulation.

In practice, the choices of simulation modes mainly depend
on two factors: the requirements of different problems and the
computational cost.

6 Theoretical Analysis of the Simulation
Algorithm

In this section, we present some theoretical analysis on the
completeness, soundness, convergence, and stability of the
proposed algorithm. As the algorithm is a collection of in-
tegration methods and simulation modes, we have to analyse
every combination of simulation modes and integration meth-
ods. We first study the completeness and soundness of the
algorithm under different simulation modes, then we further
analyse the convergence and stability of the algorithm. All
proofs of the lemmas and theorems are not presented in this
paper due to page limit.

6.1 Completeness and Soundness
The completeness means that the interval simulation algo-
rithm must bound all real solutions. The soundness means
that the simulation results should be a subset of the actual so-
lution. As for the completeness, we present the following two
theorems:

Theorem 1. Non-constructive Interval Simulation under the
Basic Interval Simulation mode is complete.

Theorem 2. Non-constructive Interval Simulation under the
Sub-interval Simulation mode is complete.

BIS is not sound because of the wrapping effect, which
is intrinsic to interval arithmetic. Similarly, SIS is also not
sound. For the point simulation modes, we give the following
lemma and theorem:

Lemma 1. Non-constructive numerical simulation using the
BIS mode is complete and sound.



Theorem 3. All Point Simulation modes are sound, but not
complete.

6.2 Convergence and Stability
In this section we discuss the convergence and stability
of the algorithm. The convergence and stability analy-
sis presented in this section is influenced by Berleant and
Kuipers [Berleant and Kuipers, 1997], who are in turn in-
spired by Moore [Moore, 1979] and proofs of convergence
and stability in numerical simulation [Gear, 1971]. For inter-
val simulation, a simulation algorithm is convergent if at any
time point the uncertainty of any variable values is eliminated
when the integration step approaches zero and the uncertainty
of initial conditions does not exist. Here the uncertainty of a
variable value in the context of interval simulation means the
width of intervals. For interval simulation, we say a simu-
lation algorithm can achieve h → 0 stability [Berleant and
Kuipers, 1997] if at any time point the uncertainty of vari-
able values is bounded by the uncertainty of initial conditions
when the integration step h approaches zero.

We first give the following lemma, which shares some sim-
ilarities with Lemma 1 in [Berleant and Kuipers, 1997].

Lemma 2. Consider the first order differential equation with
a given initial condition Y0, assume its explicit form is as
follows:

Y ′ = F (Y ), (14)
where F is an interval valued function of Y , although this
explicit form cannot always be obtained as function F is not
always solvable. Suppose Y (t) ⊆ [lo, hi], where lo, hi ∈ R.
We further assume that F (Y ) is defined when Y (t) ⊆ [lo, hi],
and F (Y ) is calculated by using the interval arithmetic de-
fined in Table 3. Suppose the corresponding real rational
function of F (Y ) is f(y).

Let Yn be the simulated value for Y at time step n. If the
given initial condition Y0 ⊆ [lo, hi], and the forward Euler
method is used, there exists a constant K such that

|Yn| ≤ |Y0|+Kh (15)
In the above operator | · | denotes the width of an interval;

h is the integration step size; Yn is the simulated interval at
time step n.

Similarly, if the two-step AB method and Taylor method
are used, we have the following two lemmas:

Lemma 3. If all the assumptions are the same as those made
in Lemma 2 except that the AB method is used, we still have
statement (15).

Lemma 4. In Lemma 2 if the Taylor method is used, we can
still have statement (15).

Equipped with the above lemmas, we give the theorem of
convergence and stability:

Theorem 4. (Convergence and Stability for a system of
ODEs) Consider the following system of first order differen-
tial equations:

~F(t,Y,Y′) = 0 (16)
where Y is an interval valued vector, and ~F is a vector of
interval valued functions of Y. Assume for each element of

vector Y, Y(i)(t) ⊆ [lo, hi]. We further assume that we can
solve ~F in (16) to obtain the explicit form as follows:

Y′ = F(Y), (17)
where F is a vector of interval valued functions of Y. Sup-
pose for each element of Y, Y(j)(t) ⊆ [lo, hi], where lo, hi ∈
R. We further assume that F(Y) is defined when each
Yj(t) ⊆ [lo, hi], and for each element of F(Y), F(j) is cal-
culated by using the interval arithmetic defined in Table 3.
Suppose the corresponding real rational function of F (Y ) is
f(y).

Let Yn be the simulated value for Y at time step n. If for
each element of the given initial condition Y0, Y0j ⊆ [lo, hi],
and the Tayor or AB integration methods are used, there
exists a constant K such that

||Yn|| ≤ ||Y0||+Kh (18)
In the above, operator || · || denotes the norm of an interval

valued vector such that for an interval valued vector A =
{A1, A2, ··, An}, ||A|| = max(|A1|, |A2|, ··, |An|), where |·|
denotes the width of an interval; h is the integration step size;
||Yn|| is the simulated interval vector at time step n.

It is noted that Theorem 4 can be extended to higher order
systems as any such systems can be reduced to first order sys-
tems. From statement (18), we see that given a precise initial
condition ||Y0|| = 0, for any fixed simulation time t = nh,
when h → 0, we will have ||Yn|| → 0. This means that the
algorithm is convergent when the simulation step approaches
zero. According to the h → 0 stability defined in [Berleant
and Kuipers, 1997] and shown below:

||Yn|| ≤ K||Y0||, (19)
where K is a constant, we can see that our proposed simula-
tion algorithm possesses the h→ 0 stability from Theorem 4.

In Theorem 4 we assume that (16) can be solved to obtain
its explicit form (17). This actually indicates that the underly-
ing model is a system of ODEs. As we know that (16) could
also be a system of DAEs, we give the following theorem:

Theorem 5. (Convergence and Stability for a system of
DAEs) Suppose by solving (16), we can only obtain the fol-
lowing form:

X′ = F(X,Z), (20)
0 = G(X,Z). (21)

In the above F and G are two vectors of interval valued
functions. Vector Y in (16) can be formed by combining vec-
tors X and Z together. (This means that the underlying model
is a system of DAEs.)

If we assume that F and G are defined when each Yj(t) ⊆
[lo, hi], and the other assumptions are the same as those in
Theorem 4, there exist three constants K1, K2, and K2 such
that

||Xn|| ≤ ||X0||+K1h (22)
||Zn|| ≤ K2||Z0||+K3h (23)

From this theorem we can conclude that the conver-
gence and stability can still be achieved when dealing with
DAEs. Finally, from Theorems 4 and 5 we see that in non-
constructive interval simulation the uncertainty of simulation
results measured by the norm of vectors at each simulation
step is determined by two factors: the uncertainty of initial



“x lower” and “x upper” mean the lower and upper bounds of x, respectively. Numbers
in the brackets indicate the numbers of sub-intervals being used.

Figure 1: Sub-interval Simulation

“x lower” and “x upper” mean the lower and upper bounds of x, respectively. Numbers
in the bracket indicate the numbers of Monte-Carlo Sample Intervals being used. In

this figure as the results of simulation using 50 samples and those using 1000 samples
largely overlapped, only two curves can be clearly seen.

Figure 2: Monte-Carlo Interval Simulation

conditions and the size of the simulation step. To reduce the
uncertainty, we can either use a smaller simulation step or
split initial intervals into several subintervals. This justifies
the use of all the simulation modes in addition to BIS.

7 Experiments
In this section we only report part of the experimental results
due to page limit, and readers are referred to [Pang et al.,
2012] or the supplementary material for a full experiment re-
port.

The model for the spring-mass system is given as: x′′ =
F − kx, where F is the constant external force, k is a con-
stant parameter, and x is the displacement of the mass with
respect to the equilibrium position. The initial condition is
set as follows: x = [0.9, 1.1], x′ = [1, 1], F = [0, 0]. The
sub-interval simulation and Monte-Carlo Interval Simulation
results are shown in Figure 1 and Figure 2, respectively.

The Van der Pol oscillator model is given as x′′ =
−P (x2 − 1)x′ − Qx, where P and Q are two parameters.
The Regular-spaced Point simulation for this model is given
in Figure 3, where the initial condition is x, x′ = [0.5, 1.5]
and P,Q = [1, 1]. The Monte-Carlo Points simulation on
this model is given in Figure 4, where the initial condition is

Figure 3: Regular-spaced Point Simulation of the Van der Pol
Oscillator (20 Points Per Interval)

Figure 4: Monte-Carlo Points Simulation of the Van der Pol
Oscillator with All Variables taking Interval Values

x, x′, P,Q = [0.9, 1.1] (all initial values and parameter val-
ues are intervals).

8 Conclusions and Future Work

In this paper we have presented a novel non-constructive in-
terval approach for the simulation of dynamic systems. We
established our novel non-constructive interval simulation
approach by (1) recasting existing NS integration methods
which are feasible for non-constructive simulation, (2) pro-
viding an iterative interval narrowing algorithm to deal with
the interval widening effect, and (3) offering several simula-
tion modes to meet different requirements.

In the future more simulation modes will be investigated
and implemented so that we can better sample the sub-
intervals or points from initial intervals of variables and pa-
rameters. Finally, we expect that the research results pre-
sented in this paper will contribute to both the NS and QR
communities, and we foresee the non-constructive approach
as a fruitful research direction for simulation at both quanti-
tative and semi-quantitative levels.
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