

OPEN 🗟 ACCESS

Crystal structure of tetraguanidinium [hexahydrogen hexaarsenato(V)tetravanadate(V)] tetrahydrate

William T. A. Harrison

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland. *Correspondence e-mail: w.harrison@abdn.ac.uk

Received 15 April 2014; accepted 16 May 2014

Edited by M. Weil, Vienna University of Technology, Austria

The complete polyoxidometallate anion in the title compound, $(CH_6N_3)_4[H_6V_4As_6O_{30}]\cdot 4H_2O$, is generated by crystallographic inversion symmetry. The polyhedral building units are distorted VO₆ octahedra and AsO₃OH tetrahedra. The VO₆ units feature a short formal V=O double bond and are linked by a common edge. Two such V₂O₆ double octahedral units are linked by four isolated AsO₃OH tetrahedra to complete the anion, which features two internal O-H···O hydrogen bonds. In the crystal, O-H···O hydrogen bonds between the polyoxidometallate anions generate (011) sheets. The sheets are connected by cation-to-cluster N-H···O hydrogen bonds, and cation-to-water N-H···O links also occur. The O atom of one of the water molecules is disordered over two sites in a 0.703 (17):0.297 (17) ratio.

Keywords: crystal structure; polyoxidometallate anion; vanadium; arsenic.

CCDC reference: 1004306

1. Related literature

For crystal structures containing the same type of anion accompanied by different counter-cations, see: Durif & Averbuch-Pouchot (1979); Nenoff *et al.* (1994); Bremner & Harrison (2002). The site symmetries of these anions include $\overline{1}$ (as seen for the title compound) as well as 2/m and *mmm*.

2. Experimental

2.1. Crystal data

$\begin{array}{l} (\mathrm{CH}_{6}\mathrm{N}_{3})_{4}[\mathrm{H}_{6}\mathrm{V}_{4}\mathrm{As}_{6}\mathrm{O}_{30}]\cdot 4\mathrm{H}_{2}\mathrm{O} \\ M_{r} = 1447.71 \\ \mathrm{Triclinic}, \ P\overline{1} \\ a = 10.0403 \ (5) \ \mathring{A} \\ b = 11.0199 \ (6) \ \mathring{A} \\ c = 11.9806 \ (6) \ \mathring{A} \\ a \approx 114.892 \ (1)^{\circ} \\ \beta = 94.696 \ (1)^{\circ} \end{array}$

2.2. Data collection

Bruker SMART CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\rm min} = 0.287, T_{\rm max} = 0.403$

2.3. Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	
$wR(F^2) = 0.129$	
S = 0.99	
4909 reflections	

 $\gamma = 111.751 (1)^{\circ}$ $V = 1071.39 (10) Å^{3}$ Z = 1Mo K α radiation $\mu = 5.56 \text{ mm}^{-1}$ T = 293 K $0.30 \times 0.20 \times 0.20 \text{ mm}$

8711 measured reflections 4909 independent reflections 3655 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.035$

271 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.79 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -1.25 \text{ e } \text{\AA}^{-3}$

Table 1Selected bond lengths (Å).

V1-01	1.591 (4)	V2-O8	1.603 (5)
V1-O2	1.723 (4)	V2-O2	1.934 (4)
V1-O5	1.963 (4)	V2-O9	2.006 (4)
V1-O4	1.992 (4)	V2-O7	2.015 (4)
V1-O6	2.029 (4)	V2-O10	2.027 (4)
V1-O3	2.376 (4)	V2-O3	2.260 (4)

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O12−H12···O4 ⁱ	0.98	1.72	2.678 (5)	165
$O14-H14\cdots O13^{ii}$	0.96	1.66	2.579 (6)	158
$O15-H15\cdots O13^{iii}$	0.96	1.67	2.619 (6)	170
$N1 - H1B \cdot \cdot \cdot O13^{iv}$	0.86	2.26	3.056 (8)	154
$N1-H1A\cdots O6^{iv}$	0.86	2.18	3.007 (7)	160
$N2-H2A\cdots O15^{v}$	0.86	2.20	3.042 (8)	167
$N2-H2B\cdots O11^{iv}$	0.86	2.44	3.210 (8)	150
$N2-H2B\cdotsO1^{vi}$	0.86	2.47	3.040 (8)	125
$N3-H3A\cdots O9^{v}$	0.86	2.05	2.895 (7)	169
$N3-H3B\cdotsO1W$	0.86	2.20	2.984 (10)	152
$N4-H4A\cdots O12^{vi}$	0.86	2.30	3.089 (9)	152
$N4-H4B\cdots O10^{vii}$	0.86	2.48	3.230 (9)	146
$N5-H5A\cdots O2WA^{v}$	0.86	2.14	2.959 (13)	160
$N5-H5B\cdots O7^{vii}$	0.86	2.19	2.963 (8)	150
$N6-H6B\cdots O12^{vi}$	0.86	2.37	3.140 (9)	150
$N6-H6B\cdots O5^{vi}$	0.86	2.45	3.022 (7)	125
$N6-H6A\cdots O2WB^{v}$	0.86	2.01	2.78 (5)	148

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 2; (iii) -x, -y + 1, -z + 1; (iv) x, y - 1, z; (v) x + 1, y, z; (vi) -x + 1, -y, -z + 1; (vi) -x + 1, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *ATOMS* (Dowty, 1999); software used to prepare material for publication: *SHELXL97*.

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM0004).

References

- Bremner, C. A. & Harrison, W. T. A. (2002). Acta Cryst. E58, m254-m256. Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,
- Wisconsin, USA. Dowty, E. (1999). *ATOMS*. Shape Software, Kingsport, Tennessee, USA.
- Durif, A. & Averbuch-Pouchot, M. T. (1979). Acta Cryst. B**35**, 1441–1444.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Nenoff, T. M., Stucky, G. D. & Harrison, W. T. A. (1994). Z. Kristallogr. 209, 892–898.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, m305-m306 [doi:10.1107/S1600536814011349]

Crystal structure of tetraguanidinium [hexahydrogen hexaarsenato(V)tetravanadate(V)] tetrahydrate

William T. A. Harrison

S1. Synthesis and crystallization

 $0.91 \text{ g of } V_2O_5 \text{ and } 0.90 \text{ g of } (CN_3H_6)_2CO_3 \text{ were added to } 10 \text{ ml of a } 0.1 \text{ M } H_3AsO_4 \text{ solution and placed in a Teflon-lined hydrothermal vessel, which was heated to } 423 \text{ K for } 24 \text{ hours.}$ After cooling to room temperature over several hours, solids were recovered by vacuum filtration to yield a few orange blocks of the title compound accompanied by an unidentified brown powder.

S2. Refinement

The H atoms were located in different maps (O—H) or geometrically placed (N—H) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$. The water-molecule H atoms could not be located in the present experiment. One of the water molecule O atoms is disordered over two adjacent sites in a 0.703 (17):0.297 (17) ratio.

Figure 1

The molecular structure of the $(V_4As_6O_{30}H_6)^{4-}$ anion in the title compound showing 50% displacement ellipsoids. [Symmetry code: (i) –x, 1–y, 1–z.]

Figure 2

The packing of the title compound viewed down [100] with the anion shown in polyhedral representation (VO₆ octahedra orange, AsO_4 tetrahedra green). O—H…O hydrogen bonds within and between the anions are shown as yellow lines.

Tetraguanidinium [hexahydrogen hexaarsenato(V)tetravanadate(V)] tetrahydrate

Crystal data

 $(CH_6N_3)_4[H_6V_4As_6O_{30}]\cdot 4H_2O$ $M_r = 1447.71$ Triclinic, $P\overline{1}$ a = 10.0403 (5) Å b = 11.0199 (6) Å c = 11.9806 (6) Å a = 114.892 (1)° $\beta = 94.696$ (1)° $\gamma = 111.751$ (1)° V = 1071.39 (10) Å³

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 1999) $T_{\min} = 0.287, T_{\max} = 0.403$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.129$ S = 0.994909 reflections 271 parameters Z = 1 F(000) = 704 $D_x = 2.244 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.70173 \text{ Å}$ Cell parameters from 3266 reflections $\theta = 2.3-27.5^{\circ}$ $\mu = 5.56 \text{ mm}^{-1}$ T = 293 K Block, orange $0.30 \times 0.20 \times 0.20 \text{ mm}$

8711 measured reflections 4909 independent reflections 3655 reflections with $I > 2\sigma(I)$ $R_{int} = 0.035$ $\theta_{max} = 27.2^{\circ}, \ \theta_{min} = 1.9^{\circ}$ $h = -13 \rightarrow 13$ $k = -14 \rightarrow 12$ $l = -11 \rightarrow 15$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0766P)^2]$	$\Delta ho_{ m max} = 1.79 \ { m e} \ { m \AA}^{-3}$
where $P = (F_0^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -1.25 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} < 0.001$	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
V1	0.26837 (10)	0.46285 (10)	0.57607 (9)	0.0176 (2)	
V2	0.05032 (10)	0.50770 (11)	0.74922 (9)	0.0193 (2)	
As1	0.26156 (6)	0.46227 (6)	0.30244 (6)	0.02044 (15)	
As2	-0.08161 (6)	0.30204 (6)	0.44111 (5)	0.01626 (14)	
As3	0.39072 (6)	0.77706 (6)	0.84192 (5)	0.01955 (15)	
O1	0.3661 (5)	0.3738 (5)	0.5506 (4)	0.0282 (10)	
O2	0.1882 (4)	0.4284 (4)	0.6880 (4)	0.0192 (8)	
O3	0.1265 (4)	0.6002 (4)	0.6171 (4)	0.0194 (8)	
O4	0.4243 (4)	0.6617 (4)	0.7138 (4)	0.0202 (8)	
05	0.0880 (4)	0.3108 (4)	0.4329 (4)	0.0198 (8)	
O6	0.3215 (4)	0.5543 (4)	0.4605 (4)	0.0211 (8)	
07	-0.0827 (4)	0.6107 (5)	0.7760 (4)	0.0254 (9)	
O8	0.0098 (5)	0.4435 (5)	0.8461 (4)	0.0328 (10)	
09	-0.1059 (4)	0.3374 (4)	0.5863 (4)	0.0216 (8)	
O10	0.2301 (4)	0.7032 (4)	0.8748 (4)	0.0253 (9)	
011	0.3741 (5)	0.5860 (6)	0.2582 (5)	0.0389 (12)	
O12	0.2976 (5)	0.3108 (5)	0.2403 (4)	0.0299 (10)	
H12	0.4043	0.3389	0.2643	0.036*	
013	0.4138 (4)	0.9295 (4)	0.8315 (4)	0.0260 (9)	
O14	0.5335 (5)	0.8266 (5)	0.9655 (4)	0.0319 (10)	
H14	0.5560	0.9049	1.0518	0.038*	
015	-0.2016 (5)	0.1152 (4)	0.3450 (4)	0.0290 (10)	
H15	-0.2710	0.1031	0.2766	0.035*	
C1	0.6359 (8)	-0.0343 (7)	0.5654 (7)	0.0336 (15)	
N1	0.5480 (7)	-0.1219 (6)	0.6055 (6)	0.0441 (16)	
H1A	0.5002	-0.2169	0.5551	0.053*	
H1B	0.5389	-0.0834	0.6818	0.053*	
N2	0.6494 (8)	-0.0929 (7)	0.4497 (7)	0.0530 (19)	
H2A	0.7044	-0.0363	0.4229	0.064*	
H2B	0.6033	-0.1882	0.4001	0.064*	
N3	0.7054 (8)	0.1105 (7)	0.6418 (7)	0.0510 (18)	
H3A	0.7607	0.1680	0.6159	0.061*	

H3B	0.6959	0.1482	0.7180	0.061*	
C2	0.9422 (9)	0.0768 (8)	0.8896 (7)	0.0406 (17)	
N4	0.8450 (8)	0.0292 (9)	0.9471 (8)	0.069 (2)	
H4A	0.7854	-0.0646	0.9131	0.082*	
H4B	0.8411	0.0919	1.0186	0.082*	
N5	1.0309 (9)	0.2208 (7)	0.9432 (7)	0.061 (2)	
H5A	1.0945	0.2540	0.9067	0.073*	
H5B	1.0254	0.2818	1.0147	0.073*	
N6	0.9483 (9)	-0.0180 (8)	0.7813 (7)	0.064 (2)	
H6A	1.0112	0.0134	0.7435	0.076*	
H6B	0.8894	-0.1120	0.7475	0.076*	
O1W	0.7341 (7)	0.3408 (9)	0.9023 (6)	0.074 (2)	
O2WA	0.2417 (12)	0.2587 (12)	0.7880 (10)	0.082 (4)*	0.703 (17)
O2WB	0.063 (5)	0.108 (5)	0.631 (5)	0.18 (2)*	0.297 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
V1	0.0164 (4)	0.0168 (5)	0.0200 (5)	0.0099 (3)	0.0038 (4)	0.0073 (4)
V2	0.0180 (4)	0.0218 (5)	0.0200 (5)	0.0095 (4)	0.0055 (4)	0.0113 (4)
As1	0.0179 (3)	0.0225 (3)	0.0212 (3)	0.0109 (2)	0.0055 (2)	0.0093 (2)
As2	0.0159 (3)	0.0134 (3)	0.0203 (3)	0.0069 (2)	0.0036 (2)	0.0089 (2)
As3	0.0180 (3)	0.0178 (3)	0.0190 (3)	0.0090 (2)	0.0025 (2)	0.0055 (2)
O1	0.026 (2)	0.029 (2)	0.034 (2)	0.0197 (18)	0.0072 (18)	0.0131 (19)
O2	0.0200 (18)	0.0169 (19)	0.022 (2)	0.0090 (15)	0.0038 (15)	0.0109 (16)
O3	0.0208 (18)	0.0184 (19)	0.025 (2)	0.0113 (15)	0.0075 (16)	0.0136 (17)
O4	0.0168 (18)	0.0189 (19)	0.0205 (19)	0.0072 (15)	0.0075 (15)	0.0062 (16)
O5	0.0183 (18)	0.0166 (19)	0.022 (2)	0.0088 (15)	0.0058 (15)	0.0067 (16)
O6	0.0197 (18)	0.0189 (19)	0.020 (2)	0.0072 (15)	0.0042 (15)	0.0069 (16)
O7	0.0196 (19)	0.027 (2)	0.027 (2)	0.0131 (16)	0.0031 (17)	0.0086 (18)
08	0.032 (2)	0.044 (3)	0.033 (2)	0.018 (2)	0.013 (2)	0.027 (2)
09	0.0207 (19)	0.023 (2)	0.022 (2)	0.0098 (16)	0.0057 (16)	0.0120 (17)
O10	0.022 (2)	0.025 (2)	0.024 (2)	0.0098 (16)	0.0073 (17)	0.0076 (18)
O11	0.027 (2)	0.046 (3)	0.052 (3)	0.010 (2)	0.014 (2)	0.035 (3)
O12	0.022 (2)	0.026 (2)	0.037 (2)	0.0171 (17)	0.0060 (18)	0.0053 (19)
O13	0.027 (2)	0.019 (2)	0.027 (2)	0.0086 (16)	0.0018 (17)	0.0084 (17)
O14	0.030 (2)	0.031 (2)	0.023 (2)	0.0181 (19)	-0.0040 (18)	0.0021 (19)
O15	0.029 (2)	0.0147 (19)	0.034 (2)	0.0065 (16)	-0.0027 (18)	0.0091 (18)
C1	0.039 (4)	0.026 (3)	0.049 (4)	0.018 (3)	0.018 (3)	0.026 (3)
N1	0.059 (4)	0.024 (3)	0.050 (4)	0.012 (3)	0.024 (3)	0.024 (3)
N2	0.082 (5)	0.036 (4)	0.052 (4)	0.026 (3)	0.042 (4)	0.028 (3)
N3	0.066 (4)	0.032 (3)	0.049 (4)	0.011 (3)	0.027 (3)	0.023 (3)
C2	0.048 (4)	0.030 (4)	0.037 (4)	0.019 (3)	0.007 (3)	0.011 (3)
N4	0.057 (5)	0.051 (5)	0.078 (6)	0.017 (4)	0.028 (4)	0.018 (4)
N5	0.090 (6)	0.031 (4)	0.045 (4)	0.016 (4)	0.032 (4)	0.012 (3)
N6	0.096 (6)	0.036 (4)	0.050 (4)	0.030 (4)	0.031 (4)	0.012 (3)
O1W	0.062 (4)	0.101 (5)	0.049 (4)	0.019 (4)	0.003 (3)	0.047 (4)

Geometric parameters (Å, °)

V1-01	1.591 (4)	O3—As2 ⁱ	1.671 (4)
V1—02	1.723 (4)	O7—As1 ⁱ	1.665 (4)
V1—05	1.963 (4)	O12—H12	0.9769
V1-04	1.992 (4)	O14—H14	0.9637
V1-06	2.029 (4)	O15—H15	0.9600
V1—03	2.376 (4)	C1—N2	1.304 (9)
V2—08	1.603 (5)	C1—N3	1.309 (9)
V2—O2	1.934 (4)	C1—N1	1.330 (8)
V2—09	2.006 (4)	N1—H1A	0.8600
V2—07	2.015 (4)	N1—H1B	0.8600
V2010	2.027 (4)	N2—H2A	0.8600
V2—O3	2.260 (4)	N2—H2B	0.8600
As106	1.649 (4)	N3—H3A	0.8600
As1—O7 ⁱ	1.665 (4)	N3—H3B	0.8600
As1-012	1.708 (4)	C2—N6	1.304 (9)
As1-011	1.726 (5)	C2—N5	1.313 (9)
As2—O3 ⁱ	1.671 (4)	C2—N4	1.318 (10)
As2—O9	1.675 (4)	N4—H4A	0.8600
As2—O5	1.683 (4)	N4—H4B	0.8600
As2—015	1.719 (4)	N5—H5A	0.8600
As3—013	1.669 (4)	N5—H5B	0.8600
As3—O10	1.679 (4)	N6—H6A	0.8600
As3—04	1.687 (4)	N6—H6B	0.8600
As3—O14	1.714 (4)		
01—V1—O2	102.7 (2)	O13—As3—O4	109.0 (2)
01—V1—05	99.0 (2)	O10—As3—O4	117.33 (19)
O2—V1—O5	93.43 (17)	O13—As3—O14	108.5 (2)
01—V1—O4	98.6 (2)	O10—As3—O14	107.1 (2)
O2—V1—O4	90.70 (17)	O4—As3—O14	101.8 (2)
O5—V1—O4	160.49 (18)	V1—O2—V2	119.8 (2)
01—V1—06	99.5 (2)	As2 ⁱ —O3—V2	136.2 (2)
O2—V1—O6	157.65 (18)	As2 ⁱ —O3—V1	137.1 (2)
O5—V1—O6	84.99 (16)	V2—O3—V1	86.10 (14)
O4—V1—O6	83.98 (16)	As3—O4—V1	124.0 (2)
01—V1—03	178.9 (2)	As2—O5—V1	121.6 (2)
O2—V1—O3	77.34 (16)	As1—O6—V1	125.2 (2)
O5—V1—O3	82.06 (15)	As1 ⁱ —O7—V2	127.5 (2)
O4—V1—O3	80.26 (15)	As2—09—V2	122.6 (2)
O6—V1—O3	80.37 (15)	As3—O10—V2	124.8 (2)
O8—V2—O2	99.5 (2)	As1—O12—H12	112.3
O8—V2—O9	100.3 (2)	As3—O14—H14	122.9
O2—V2—O9	87.28 (16)	As2—O15—H15	109.3
08—V2—O7	96.9 (2)	N2—C1—N3	120.6 (6)
O2—V2—O7	163.55 (18)	N2-C1-N1	119.8 (6)
09—V2—07	88.82 (16)	N3—C1—N1	119.5 (7)

O8—V2—O10	97.8 (2)	C1—N1—H1A	120.0
O2—V2—O10	87.81 (16)	C1—N1—H1B	120.0
O9—V2—O10	161.83 (17)	H1A—N1—H1B	120.0
O7—V2—O10	90.97 (17)	C1—N2—H2A	120.0
O8—V2—O3	175.3 (2)	C1—N2—H2B	120.0
O2—V2—O3	76.60 (15)	H2A—N2—H2B	120.0
O9—V2—O3	82.29 (15)	C1—N3—H3A	120.0
O7—V2—O3	87.04 (16)	C1—N3—H3B	120.0
010—V2—03	79.55 (16)	H3A—N3—H3B	120.0
$O6$ —As1— $O7^{i}$	122.0 (2)	N6—C2—N5	121.2 (8)
06—As1—012	111.2 (2)	N6—C2—N4	120.1 (7)
07^{i} As1 - 012	102.3 (2)	N5-C2-N4	118.7(7)
06-As1-011	103.8(2)	C2—N4—H4A	120.0
07^{i} As1 - 011	110.7(2)	C2—N4—H4B	120.0
012 - As1 - 011	106.1(2)	H4A - N4 - H4B	120.0
$O_{3^{i}} = A_{s^{2}} = O_{9}$	114 15 (19)	C_2 _N5_H5A	120.0
O_{3i}^{i} As 2 O5	117.86 (10)	C_2 N5 H5R	120.0
$09 - As^2 = 05$	112.60(19) 112.62(19)	H_{2} N_{5} H_{5} H_{5	120.0
O_{2}^{i} As 2 O15	112.02(19) 108.0(2)	C2 N6 H6A	120.0
$O_{3} = A_{2} = O_{13}$	108.9(2) 103.6(2)	$C_2 = N_0 = H_0 A$	120.0
09 - As2 - 015	103.0(2) 102.62(10)		120.0
$03 - As_2 - 013$	105.05(19) 112.2(2)	поА—по—пов	120.0
013—A\$3—010	112.3 (2)		
O1 $V1$ $O2$ $V2$	-178.0(2)	O^{2i} As $2 O^{5}$ V1	(1) (2) (3)
$01 - \sqrt{1 - 02} - \sqrt{2}$	-77.0(2)	$O_{3} = A_{2} = O_{3} = V_{1}$	-388(3)
$03 - \sqrt{1 - 02 - \sqrt{2}}$	-77.9(2)	$09 - As_2 - 05 - V1$	-36.6(3)
$04 - \sqrt{1 - 02} - \sqrt{2}$	33.0(2)	015 - As2 - 05 - V1	-130.1(3)
$00 - \sqrt{1 - 02 - \sqrt{2}}$	7.5(0)	$01 - \sqrt{1 - 05 - As^2}$	132.3(3)
$03 - v_1 - 02 - v_2$	5.14 (19) 170 4 (2)	$02 - \sqrt{1 - 05} - As2$	48.8 (3)
$08 - \sqrt{2} - 02 - \sqrt{1}$	1/9.4 (2)	$04 - \sqrt{1 - 05} - As2$	-53.1(6)
$09 - v_2 - 02 - v_1$	79.4 (2)	$06 - \sqrt{1 - 05} - As2$	-108.9(3)
$0/-v_2-0_2-v_1$	2.9 (7)	03 - VI - 05 - As2	-27.9(2)
$010 - \sqrt{2} - 02 - \sqrt{1}$	-83.1(2)	O/-As1-O6-V1	67.3 (3)
03 - V2 - 02 - V1	-3.3 (2)	012—As1—06—V1	-53.5 (3)
$08 - V2 - 03 - As2^{1}$	-152 (2)	011—As1—06—V1	-167.1 (3)
$O2-V2-O3-As2^{1}$	173.8 (3)	Ol—Vl—O6—Asl	73.3 (3)
$09-V2-03-As2^{1}$	84.8 (3)	02—V1—06—As1	-111.9 (4)
$O7-V2-O3-As2^{1}$	-4.4 (3)	O5—V1—O6—As1	-25.0 (3)
O10—V2—O3—As2 ⁱ	-95.9 (3)	O4—V1—O6—As1	171.1 (3)
08—V2—O3—V1	37 (3)	O3—V1—O6—As1	-107.8 (3)
O2—V2—O3—V1	2.09 (13)	08—V2—07—As1 ⁱ	-88.3 (3)
O9—V2—O3—V1	-86.94 (14)	O2—V2—O7—As1 ⁱ	88.2 (6)
O7—V2—O3—V1	-176.15 (14)	09—V2—07—As1 ⁱ	12.0 (3)
O10—V2—O3—V1	92.32 (15)	O10-V2-O7-As1 ⁱ	173.8 (3)
$O1$ — $V1$ — $O3$ — $As2^i$	91 (11)	O3—V2—O7—As1 ⁱ	94.3 (3)
$O2$ —V1—O3—As 2^i	-174.0 (3)	O3 ⁱ —As2—O9—V2	-85.4 (3)
$O5$ — $V1$ — $O3$ — $As2^i$	-78.6 (3)	O5—As2—O9—V2	45.0 (3)
O4—V1—O3—As2 ⁱ	93.1 (3)	O15—As2—O9—V2	156.3 (2)
O6-V1-O3-As2 ⁱ	7.6 (3)	O8—V2—O9—As2	-153.2 (3)

O1—V1—O3—V2	-97 (10)	O2—V2—O9—As2	-54.0 (3)
O2—V1—O3—V2	-2.33 (14)	O7—V2—O9—As2	110.0 (3)
O5—V1—O3—V2	93.02 (15)	O10—V2—O9—As2	20.5 (7)
O4—V1—O3—V2	-95.27 (15)	O3—V2—O9—As2	22.8 (2)
O6—V1—O3—V2	179.25 (15)	O13—As3—O10—V2	109.2 (3)
O13—As3—O4—V1	-112.7 (3)	O4—As3—O10—V2	-18.1 (4)
O10—As3—O4—V1	16.3 (4)	O14—As3—O10—V2	-131.8 (3)
O14—As3—O4—V1	132.8 (3)	O8—V2—O10—As3	137.6 (3)
O1—V1—O4—As3	-142.3 (3)	O2—V2—O10—As3	38.3 (3)
O2—V1—O4—As3	-39.3 (3)	O9—V2—O10—As3	-36.1 (7)
O5—V1—O4—As3	63.0 (6)	O7—V2—O10—As3	-125.3 (3)
O6—V1—O4—As3	118.9 (3)	O3—V2—O10—As3	-38.5 (3)
O3—V1—O4—As3	37.7 (3)		

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H…A
O12—H12····O4 ⁱⁱ	0.98	1.72	2.678 (5)	165
O14—H14…O13 ⁱⁱⁱ	0.96	1.66	2.579 (6)	158
O15—H15…O13 ⁱ	0.96	1.67	2.619 (6)	170
N1—H1 <i>B</i> ····O13 ^{iv}	0.86	2.26	3.056 (8)	154
N1— $H1A$ ···O6 ^{iv}	0.86	2.18	3.007 (7)	160
N2—H2 A ···O15 ^v	0.86	2.20	3.042 (8)	167
N2—H2 <i>B</i> ···O11 ^{iv}	0.86	2.44	3.210 (8)	150
N2—H2 B ····O1 ^{vi}	0.86	2.47	3.040 (8)	125
N3—H3 <i>A</i> ···O9 ^v	0.86	2.05	2.895 (7)	169
N3—H3 <i>B</i> ···O1 <i>W</i>	0.86	2.20	2.984 (10)	152
N4—H4A····O12 ^{vi}	0.86	2.30	3.089 (9)	152
N4—H4 <i>B</i> ···O10 ^{vii}	0.86	2.48	3.230 (9)	146
N5—H5 A ···O2 WA^{v}	0.86	2.14	2.959 (13)	160
N5—H5 <i>B</i> ····O7 ^{vii}	0.86	2.19	2.963 (8)	150
N6—H6 <i>B</i> ···O12 ^{vi}	0.86	2.37	3.140 (9)	150
N6—H6 <i>B</i> ···O5 ^{vi}	0.86	2.45	3.022 (7)	125
N6—H6 A ···O2 WB^{v}	0.86	2.01	2.78 (5)	148

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+2; (iv) x, y-1, z; (v) x+1, y, z; (vi) -x+1, -y, -z+1; (vii) -x+1, -y+1, -z+2.