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One key hypothesis explaining the evolution and persistence of polyandry, and resulting female extra-pair reproduction in so-

cially monogamous systems, is that female propensity for extra-pair reproduction is positively genetically correlated with male

reproductive fitness and consequently experiences positive cross-sex indirect selection. However, key genetic correlations have

rarely been estimated, especially in free-living populations experiencing natural (co)variation in reproductive strategies and fit-

ness. We used long-term life-history and pedigree data from song sparrows (Melospiza melodia) to estimate the cross-sex genetic

correlation between female propensity for extra-pair reproduction and adult male lifetime reproductive success, and thereby test

a key hypothesis regarding mating system evolution. There was substantial additive genetic variance in both traits, providing

substantial potential for indirect selection on female reproductive strategy. However, the cross-sex genetic correlation was es-

timated to be close to zero. Such small correlations might arise because male reproductive success achieved through extra-pair

paternity was strongly positively genetically correlated with success achieved through within-pair paternity, implying that the

same successful males commonly sire offspring produced by polyandrous and monogamous females. Cross-sex indirect selection

may consequently have limited capacity to drive evolution of female extra-pair reproduction, or hence underlying polyandry, in

systems where multiple routes to paternity success exist.

KEY WORDS: Additive genetic variance, heritability, lifetime reproductive success, mating system evolution, polyandry, quanti-

tative genetics, sexual conflict.

Impact summary
Why do females commonly mate with multiple males when a

single mating would seemingly suffice to fertilize a female’s

eggs and hence ensure her reproductive success? Such fe-

male multiple mating, known as polyandry, is widely observed

across the animal kingdom but is hard to explain because mul-

tiple mating is often harmful for females.

One interesting idea is that females are caught in an evo-

lutionary bind resulting from their reproductive interactions

with males. Specifically, because males are likely to increase

their total reproductive success by mating with multiple fe-

males, genes that cause males to mate multiply are likely to be

favored by selection. Further, males that mate extensively are

likely to produce offspring with females that are also willing

to mate multiply (i.e., that are polyandrous). These offspring

will inherit genes for multiple mating from their mother and

genes for high reproductive success from their father, causing

these sets of genes to become associated. Selection that causes

genes for high male reproductive success to spread through a

population might consequently cause genes for polyandry to

spread too.
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However, the key idea that genes underlying female mul-

tiple mating are associated with genes underlying high male

reproductive success has not yet been tested in wild popula-

tions where individuals are free to mate as they choose. We

analyzed long-term data from song sparrows, where females

and males form socially monogamous breeding pairs but both

sexes commonly also mate with other individuals. We discov-

ered that female extra-pair reproduction and male reproductive

success both have a substantial genetic basis. However, there

was no association between genes that increase female extra-

pair reproduction and genes that increase male reproductive

success. Consequently, our study does not support the idea that

female promiscuity is a side-product of selection on males.

Song sparrow on Mandarte Island, Canada

One general hypothesis explaining the evolution and persis-

tence of complex reproductive strategies, and of resulting mating

systems, is that key reproductive traits expressed in one sex ex-

perience indirect selection stemming from genetic correlations

with traits expressed and directly selected in the other sex (Burt

1995; Kirkpatrick and Barton 1997; Cordero and Eberhard 2003;

House et al. 2008; Forstmeier et al. 2011; Neff and Svensson

2013; Gosden et al. 2014; Moorad and Walling 2017). Such

cross-sex indirect selection is particularly pertinent when traits

expressed by the focal sex are known or suspected to experience

negative direct selection, and consequently defy straightforward

evolutionary explanation.

One well-known example concerns polyandry, defined as fe-

male mating with multiple males within a single reproductive

episode, commonly resulting in multiple or extra-pair paternity

within single batches of offspring. Polyandry can experience pos-

itive direct selection, for example when multiple mating ensures

female fertility and/or additional males provide cumulative re-

sources that increase female fecundity (Jennions and Petrie 2000;

Simmons 2005; Slatyer et al. 2012; Egan et al. 2016). How-

ever, such effects often appear to be weak or absent, and numer-

ous sources of negative direct selection against polyandry have

been demonstrated or hypothesized (e.g., stemming from physi-

cal harm, time or energy expenditure and/or predation or disease

risk to females, Keller and Reeve 1995; Jennions and Petrie 2000;

Cordero and Eberhard 2003; Simmons 2003, 2005; Evans and

Simmons 2008; Slatyer et al. 2012; Parker and Birkhead 2013).

Further, paternity loss might cause an additional component of

negative selection by prompting reduced male care for polyan-

drous females’ offspring (Arnqvist and Kirkpatrick 2005; Kokko

and Jennions 2008; Neff and Svensson 2013). Explaining the

evolution and persistence of polyandry, and resulting extra-pair

paternity, consequently remains a core problem in evolutionary

ecology (Slatyer et al. 2012; Pizzari and Wedell 2013; Parker and

Birkhead 2013; Forstmeier et al. 2014). One pertinent hypothesis

is that female propensity for multiple mating, and/or for result-

ing extra-pair reproduction, is positively genetically correlated

with components of male fitness and hence experiences positive

cross-sex indirect selection (Halliday and Arnold 1987; Keller and

Reeve 1995; Arnqvist and Kirkpatrick 2005; Evans and Simmons

2008; Forstmeier et al. 2011, 2014; Neff and Svensson 2013; Reid

et al. 2014a; Egan et al. 2016; Travers et al. 2016).

Such positive genetic correlations could result from

pleiotropic effects of alleles at specific loci that influence both

female and male propensities for multiple mating, potentially

generating intralocus sexual conflict (Halliday and Arnold 1987;

Forstmeier et al. 2011, 2014; Neff and Svensson 2013; Zietsch

et al. 2015). Further, because polyandry commonly affects distri-

butions of paternity, genetic correlations could result from link-

age disequilibria that arise among alleles at physically unlinked

loci. For example, there might be inevitable assortative mating,

and hence assortative reproduction, between polyandrous females

and promiscuous males, causing alleles underlying these sex-

specific reproductive behaviors to become associated in result-

ing offspring (e.g., Arnqvist and Kirkpatrick 2005; Reid et al.

2014a). Similarly, alleles underlying polyandry might become as-

sociated with alleles that increase male fertilization success given

the sperm competition caused by polyandry (i.e., the “sexually

selected sperm” hypothesis), and potentially with alleles that in-

crease other components of male fitness (i.e., the general “good

sperm” hypothesis, Keller and Reeve 1995; Yasui 1997; Simmons

2003, 2005; Evans and Simmons 2008; Iyengar and Reeve 2010;

Egan et al. 2016; Travers et al. 2016). Such linkage disequilibria

may typically be weak, and evolutionary responses may be further

constrained by genetic architectures (e.g., sex-linkage) that limit

father–son inheritance of key reproductive traits (Kirkpatrick and

Barton 1997; Pizzari and Birkhead 2002; Simmons 2003; Kirk-

patrick and Hall 2004; Arnqvist and Kirkpatrick 2005; Bocedi

and Reid 2015). Yet, in some circumstances, such disequilibria

might cause sufficient indirect selection to counteract weak nega-

tive direct selection against polyandry, or reinforce positive direct

selection, thereby facilitating polyandry evolution (Kirkpatrick
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and Hall 2004; Kokko et al. 2006; Iyengar and Reeve 2010; Egan

et al. 2016).

However, such hypotheses explaining evolution of female

multiple mating (and resulting multiple or extra-pair paternity)

through intrinsic cross-sex genetic correlations with male repro-

ductive traits rest on a critical assumption that relevant male traits,

such as mating rate or fertilization success, are positively genet-

ically correlated with male fitness and hence experience strong

positive direct selection (Halliday and Arnold 1987; Kirkpatrick

and Barton 1997; Arnqvist and Kirkpatrick 2005; House et al.

2008). This condition is plausible, but is not inevitable because

such male traits may trade-off against each other and against other

components of fitness (e.g., Kokko et al. 2006; Evans and Sim-

mons 2008; Evans 2010; Parker and Birkhead 2013). For example,

in socially monogamous systems, male propensity for extra-pair

mating might be negatively genetically correlated with ability to

defend within-pair paternity or deliver paternal care, reflecting a

trade-off in time or energy allocation (e.g., Kokko and Jennions

2008; Lyu et al. 2017). A male’s extra-pair reproductive suc-

cess accrued with polyandrous females might then be negatively

genetically correlated with within-pair reproductive success, po-

tentially causing net negative selection against male promiscuity.

Indeed, the occurrence of polyandry can reduce a male’s probabil-

ity of fertilization success given (i.e., conditional on) mating, and

hence reduce the fitness benefit of multiple mating (i.e., the male

Bateman gradient, Parker and Birkhead 2013). Further, promiscu-

ity might potentially reduce male survival, and hence reduce fu-

ture within-pair and/or extra-pair reproductive success. Given the

potential for such trade-offs, theoretical expectations, or observa-

tions, of positive genetic correlations between female polyandry

or extra-pair reproduction and any focal male reproductive trait

do not prove that there will be net positive cross-sex indirect se-

lection on the female strategy, or resulting evolution (e.g., Kokko

et al. 2006). Moreover, observations of positive genetic correla-

tions between any focal male trait and total male reproductive

success also do not prove that there will be consequent evolu-

tion of polyandry. This is because further genetic constraints that

impede rather than drive evolution could potentially arise in mul-

tidimensional trait-space when males can achieve reproductive

success through multiple routes (e.g., Walsh and Blows 2009;

Reid et al. 2014a, b; Walling et al. 2014). Ultimately, therefore,

empirical test of the overarching hypothesis that evolution or per-

sistence of female reproductive strategy is facilitated by indirect

selection resulting from cross-sex genetic correlations with male

reproductive fitness requires explicit estimation of genetic cor-

relations between key female traits and total male reproductive

success.

Cross-sex genetic correlations are notoriously difficult to

estimate precisely (Lynch 1999; Bonduriansky and Chenoweth

2009), particularly for sex-limited traits in dioecious species.

Here, because female and male traits are expressed in different

individuals, genetic correlations must be estimated from among-

individual phenotypic associations, substantially reducing the

variance in relatedness and resulting statistical power below that

available when both traits of interest can be observed in the same

individual (i.e., within-individual phenotypic associations are also

observable). Key parameters are perhaps most readily estimated

using large structured breeding designs, or inferred from repli-

cated experimental evolution. However, power is often still low,

generating substantial uncertainty (e.g., Forstmeier et al. 2011;

Gosden et al. 2014; Punzalan et al. 2014; Calsbeek et al. 2015).

Further, imposing structured breeding designs might erode link-

age disequilibria and resulting genetic correlations that would

arise given natural patterns of assortative reproduction, while

evolutionarily relevant measures of male reproductive success

are hard to obtain in such constrained environments (Cordero and

Eberhard 2003; Garcia-Gonzalez and Evans 2010; Reid 2015).

Experimental studies must therefore be complemented by es-

timates of cross-sex genetic correlations between key female

reproductive traits and male reproductive success expressed in

wild populations experiencing natural (co)variation in reproduc-

tive strategy and fitness (e.g., Lynch 1999; Brommer et al. 2007;

Kruuk et al. 2008).

We used comprehensive pedigree and life-history data

from free-living socially monogamous but genetically polyg-

ynandrous song-sparrows (Melospiza melodia) to quantify the

cross-sex genetic correlation between female extra-pair repro-

duction per brood (EPR), a key reproductive trait that results

from polyandry, and adult male lifetime reproductive success

(LRS). We thereby test the key hypothesis that female propen-

sity for EPR experiences positive cross-sex indirect selection

through total male reproductive success. Further, we quantified the

within-sex genetic correlation between male lifetime within-pair

reproductive success (LWPRS) and lifetime extra-pair reproduc-

tive success (LEPRS), and thereby elucidate how the cross-sex

genetic correlation between female EPR and male LRS could be

shaped by the genetic structure of male reproductive success.

Methods
STUDY SYSTEM

Long-term data from song sparrows resident on Mandarte Island,

BC, Canada, have proved valuable for estimating additive genetic

variances (VA), covariances (COVA), and correlations (rA) in and

among sex-specific reproductive traits and fitness components

(Reid et al. 2011a, b, 2014a, b; Reid 2012; Reid and Sardell 2012,

Supporting Information S1). Briefly, since 1975, almost all breed-

ing attempts were closely monitored and all chicks surviving to

ca. 6 days posthatch and adult immigrants (�1 year−1 on average)
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were individually color-ringed (Smith et al. 2006). The identities

of the socially paired female and male that reared each brood,

and of any males that remained socially unpaired due to a male-

biased adult sex ratio, were recorded (Smith et al. 2006; Lebigre

et al. 2012). All chicks ringed since 1993, and all potential par-

ents, were blood-sampled and genotyped at �160 microsatellite

markers. Paternities were subsequently assigned with extremely

high individual-level confidence, effectively eliminating pater-

nity error (Sardell et al. 2010; Nietlisbach et al. 2017; Support-

ing Information S2). Overall, ca. 28% of chicks representing ca.

44% of broods were sired by extra-pair males, demonstrating

frequent EPR (Sardell et al. 2010). Previous analyses demon-

strated nonzero VA in female propensity for EPR (Reid et al.

2011a, 2014a) and in components of male paternity success (Reid

et al. 2014b). However, the key hypothesis that female EPR is

positively genetically correlated with total male reproductive suc-

cess, and could consequently experience positive indirect selec-

tion, has not been tested in song sparrows or any other free-living

population.

QUANTITATIVE GENETIC ANALYSES

We fitted a bivariate “animal model” (i.e., a generalized linear-

mixed model that utilizes an additive genetic relatedness matrix

derived from pedigree data) to estimate VA in female EPR and

adult male LRS and the cross-sex COVA, and thereby compute

the cross-sex rA (Supporting Information S3). Since distributions

of EPR and LRS are non-Gaussian, parameters were estimated

on latent scales, thereby fulfilling the fundamental quantitative

genetic assumption of multivariate normality of additive genetic

effects.

To quantify female EPR, the numbers of extra-pair and to-

tal offspring were recorded for each brood where �1 offspring

survived to paternity assignment (i.e., 6 days posthatch). Indi-

vidual females produced 1–3 broods/year (mean 1.9 ± 0.6 SD,

median 2) across reproductive lifespans of 1–8 years (mean 2.2

± 1.5 SD, median 2). As with most field systems, a female’s

degree of polyandry (i.e., her number of mates per reproduc-

tive episode) is not readily observable. However female EPR per

brood, which is observable, is a key trait in the context of mating

system evolution since it is distributions of paternity, not matings

per se, that could generate linkage disequilibria and resulting ge-

netic correlations with components of male reproductive success

(Arnqvist and Kirkpatrick 2005; Reid et al. 2011a). Adult male

LRS was measured as the total number of 6-day-old offspring

that a male sired during his adult lifetime (i.e., from reproduc-

tive maturity at age one year, see Discussion and Supporting

Information S3).

The model structure for female EPR (measured per brood)

included random year effects, and random individual female ef-

fects to account for nonindependence among broods and estimate

“permanent individual” variance (reflecting “permanent environ-

mental” and/or nonadditive genetic effects). It also included ran-

dom social mate effects to capture effects of a female’s socially

paired male on expression of EPR in each breeding attempt (Reid

et al. 2014a). Female EPR does not vary markedly with female

age in our system (Reid et al. 2011a). The model structure for

male LRS included random cohort (i.e., natal year) effects, but

not random individual male effects because LRS is observed once

per male. Residual variances were estimated for both traits, with

residual covariance fixed to zero since female EPR and male LRS

are not expressed by the same individual (Supporting Information

S3). Fixed effects were restricted to trait-specific regressions on

individual coefficient of inbreeding (f), thereby accounting for

resemblance among relatives resulting from correlations in f, and

estimating trait-specific inbreeding depression (Reid and Keller

2010).

Phenotypic data for female EPR comprised all individual

broods observed during 1993–2015 (i.e., the period of genetic

paternity assignment). Phenotypic data for male LRS were re-

stricted to males hatched during 1992–2010, all of which had

died by 2016. The complete genetically assigned LRS for all

males from these cohorts is therefore known with probably no

error or missing data. All males hatched after 2010 were excluded

because some individuals from these cohorts were still alive in

2016, meaning that LRS was not fully measured. Consequently,

to utilize all available data on male reproductive success, we fitted

a second bivariate animal model that estimated VA in female EPR

(again measured per brood) and adult male annual reproductive

success (ARS, i.e., the total number of offspring that a male sired

in any one year), and estimated the cross-sex COVA and hence

rA. This analysis included all observations of ARS for all adult

males alive in each year during 1993–2015, irrespective of their

hatch year. Since VA in male LRS primarily reflects VA in ARS

rather than longevity (Wolak et al. 2018), ARS is an informative

proxy for LRS. Model structure was as above, except the model

for male ARS included random individual male effects and ran-

dom year (rather than cohort) effects, and estimated the cross-sex

year covariance to capture any common year effects on EPR and

ARS. The model also included fixed effects of male age category

(1, 2–5 or 6+ years) to account for age-specific variation in ARS

(Keller et al. 2008).

An adult male’s total LRS comprises his lifetime within-

pair reproductive success (LWPRS, i.e., total offspring sired with

his socially paired females) plus his lifetime extra-pair repro-

ductive success (LEPRS, i.e., total offspring sired with polyan-

drous extra-pair females). All else being equal, a positive cross-

sex genetic correlation between female EPR and male LEPRS

might be expected, due to inevitable assortative reproduction

between polyandrous females and successful extra-pair sires

(e.g., Arnqvist and Kirkpatrick 2005). However, this correlation,
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and hence the overall genetic correlation between female EPR

and male LRS, will also depend on the genetic correlation

between male LEPRS and LWPRS and thus on the additive

genetic value for LEPRS of males that sire within-pair off-

spring (which include offspring of females with low additive

genetic value for EPR). To examine such effects, we fitted a

third bivariate animal model to estimate VA in male LEPRS

and LWPRS and the within-sex COVA and rA. This model also

estimated cohort and residual variances in both traits and associ-

ated covariances, and again included trait-specific regressions on

individual f.

ANALYSIS IMPLEMENTATION

Standard algorithms were used to compute the inverse related-

ness matrix and individual f values from the population pedi-

gree pruned to phenotyped individuals and their known ancestors

(Supporting Information S2). Bayesian animal models were fit-

ted to facilitate estimation of VA, COVA, and rA and associated

uncertainty given non-Gaussian trait distributions, using pack-

age MCMCglmm (Hadfield 2010) in R (v3.3.3, R Core Team

2017) with relatively uninformative priors (Supporting Informa-

tion S3). Female EPR was modeled as a binomial trait with the

numbers of extra-pair and total offspring per brood as numer-

ator and denominator, and logit link function. Male traits were

modeled assuming Poisson distributions with log link functions

and additive overdispersion. Posterior means and 95% highest

posterior density credible intervals (95%CI) for key parame-

ters were estimated across thinned samples of marginal pos-

terior distributions. Further details of pedigrees, models, and

priors are in Supporting Information S2–S4. Conclusions re-

mained unchanged when analyses were repeated using relative

(i.e., mean-standardized) rather than absolute male LRS and ARS

(Supporting Information S5).

Results
Female EPR was observed for 1096 breeding attempts made

by 279 individual females, and LRS was observed for 306

adult males (Fig. 1A and B). The bivariate animal model for

female EPR and male LRS estimated substantial VA in both

traits (Table 1A). However, the posterior mean cross-sex COVA

and rA were close to zero (although the 95%CIs were wide,

Table 1A). There was strong inbreeding depression in male LRS,

but not in female EPR (Table 1A).

ARS was observed for 987 male-years, involving 401 indi-

vidual males (Fig. 1C). The bivariate animal model for female

EPR and male ARS yielded similar conclusions as for female

EPR and male LRS. Specifically, there was nonzero VA in both

traits (Table 1B). The posterior mean cross-sex COVA and rA

were again close to zero, although the 95%CIs were again wide

(Table 1B).

Across the 306 adult males whose LRS was observed, mean

LWPRS exceeded mean LEPRS (Fig. 1D and E); on average,

most male reproductive success was accrued through within-

pair paternity (reflecting the overall within-pair and extra-pair

paternity rates of 72% and 28%). The bivariate animal model

for male LEPRS and LWPRS estimated moderate VA in both

traits (Table 1C). The posterior mean COVA and rA were pos-

itive and substantial, with 95%CI limits that did not span zero

or converge to one (Table 1C). Because the cohort and residual

covariances were also positive (Table 1C), there was a strong

positive phenotypic correlation between LEPRS and LWPRS

(Fig. 1F). There was strong inbreeding depression in both traits,

particularly in LEPRS (Table 1C).

Discussion
One hypothesis explaining the evolution and persistence of female

extra-pair reproduction, and underlying polyandry, is that key

female traits are intrinsically positively genetically correlated with

male reproductive fitness and hence experience positive cross-sex

indirect selection (Halliday and Arnold 1987; Keller and Reeve

1995; Arnqvist and Kirkpatrick 2005; Forstmeier et al. 2011).

Our analyses demonstrated substantial VA in female EPR and

adult male LRS in song sparrows, providing substantial potential

for nonzero cross-sex genetic correlations and resulting indirect

selection (e.g., Jennions and Petrie 2000; Evans and Simmons

2008). However, the posterior mean cross-sex COVA and rA were

close to zero. There is consequently no clear evidence that strong

cross-sex indirect selection stemming from covariances with adult

male reproductive fitness could facilitate ongoing evolution or

persistence of female extra-pair reproduction.

However, since COVA and rA were unsurprisingly estimated

with considerable uncertainty, the existence of weak positive or

negative indirect selection cannot be excluded. Yet, follow-up sim-

ulations suggest that the song sparrow data and model structures

would yield unbiased rA estimates on average, and that posterior

mean values of approximately zero are most likely to reflect true

values of <0.25 (Supporting Information S6). The true rA be-

tween female EPR and male LRS is consequently most likely to

be small, limiting the magnitude of cross-sex indirect selection on

female EPR despite substantial VA in male LRS. This conclusion

is further supported by the posterior mean rA between female EPR

and male ARS, which was also close to zero, albeit also estimated

with considerable uncertainty.

No previous studies have directly estimated rA between fe-

male EPR, or polyandry or other associated components of fe-

male reproductive strategy, and total male reproductive success

expressed under natural environmental conditions and mating
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Figure 1. Phenotypic distributions of (A) female extra-pair reproduction with respect to brood size, and adult male (B) lifetime reproduc-

tive success, (C) annual reproductive success, (D) lifetime within-pair reproductive success (LWPRS) and (E) lifetime extra-pair reproductive

success (LEPRS), and (F) the phenotypic relationship between LWPRS and LEPRS across individual males. On A, white, light gray, mid gray,

dark gray, and black respectively denote zero, one, two, three, and four extra-pair offspring within a brood of each size. On F, points

denote single datapoints, line segments denote further identical datapoints and the dashed line shows the linear regression of LEPRS on

LWPRS (phenotypic correlation coefficient: 0.63). On B–E, the mean, median, interquartile range (IQR), percentage of observations that

were zero (%0) and maximum (max) are shown. To facilitate visualization, one male with very high (i.e., max) reproductive success is not

plotted on B, D, or F.

regimes. However, rA between the occurrence of female and

male extra-pair mating was estimated to be close to zero in hu-

mans (Homo sapiens) despite substantial heritability in both sexes

(Zietsch et al. 2015). In experimental systems, Travers et al. (2016)

estimated very low VA in male offensive sperm competitiveness in

Drosophila melanogaster, and consequently zero genetic correla-

tion with female lifetime mating frequency. Meanwhile, selection

on female propensity to remate caused detectable evolution of fe-

male mating rate in adzuki bean beetles (Callosobruchus chinen-

sis), but no correlated evolution of male mating rate (Harano and

Miyatake 2007). Similarly, selection on male mating frequency

in stalk-eyed flies (Cyrtodiopsis dalmanni) caused no correlated

evolution of female mating frequency (Grant et al. 2005), and

inheritance patterns observed in rattlebox moths (Utethesia or-

natrix) imply that different genes affect female and male mating

rates (Iyengar and Reeve 2010). Together, these studies and the

song sparrow data imply that key cross-sex genetic correlations

in promiscuous mating systems may often be very small. How-

ever, in contrast, Forstmeier et al. (2011) estimated strong posi-

tive rA between multiple measures of female and male extra-pair
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behavior and paternity in zebra finches (Taeniopygia guttata, val-

ues commonly >0.5, although also estimated with considerable

uncertainty). Such values would have been detectable with the

song sparrow dataset (Supporting Information S6), and might re-

flect the zebra finch genome structure, where inheritance of few

large linkage groups generates very strong linkage disequilibria

(Forstmeier et al. 2012). Further studies on diverse taxa, that en-

deavor to overcome low power and potential experimental and

observational artefacts (e.g., Grant et al. 2005; Simmons 2005;

Harano and Miyatake 2007; Garcia-Gonzalez and Evans 2010),

are clearly required to allow stronger meta-analytic inference of

any general patterns.

Meanwhile, it is insightful to consider why rA between fe-

male EPR and male LRS is apparently small in song sparrows,

given that adult male LEPRS, which is a substantial component

of adult male LRS, is by definition achieved through extra-pair

reproduction with polyandrous females. Some degree of assorta-

tive reproduction between females and males with high additive

genetic values for EPR and LEPRS, and hence emerging ge-

netic covariance, might therefore be expected. Since male LEPRS

is strongly positively genetically correlated with male LWPRS

(Table 1C), LEPRS is inevitably strongly positively genetically

correlated with total male LRS (Supporting Information S7), po-

tentially generating indirect selection on EPR. However, opposite

to this logic, the strong positive rA between male LEPRS and

LWPRS might in fact eliminate any possible positive rA between

female EPR and male LRS. This is because, contrary to the propo-

sition that extra-pair paternity trades-off against within-pair pater-

nity, successful extra-pair song sparrow sires are also successful

within-pair sires and hence commonly sire offspring of females

with low phenotypic and additive genetic values for EPR. For

there to be cross-sex indirect selection on female EPR, mean ad-

ditive genetic values for fitness must differ between males that

sire extra-pair versus within-pair offspring (Arnqvist and Kirk-

patrick 2005). This cannot be substantively the case if the same

males frequently sire both types of offspring. The genetic covari-

ance structure of male reproductive fitness, as achieved through

the dual within-pair and extra-pair routes, may therefore con-

strain the degree to which positive rA between female EPR and

male LRS could arise, and hence constrain rather than generate

cross-sex indirect selection on female EPR.

Proximately, the positive rA between male LEPRS and LW-

PRS partly reflects a positive rA between male within-pair pater-

nity success per brood and annual extra-pair reproductive success

(Reid et al. 2014b), and may also reflect a genetic basis to the

observed phenotypic association between a male’s probability

of social pairing and siring extra-pair offspring (Sardell et al.

2010). However, total male fitness comprises survival to matu-

rity as well as subsequent adult LRS. Current analyses focused

specifically on adult LRS because male reproductive success is the

trait with which intrinsic positive genetic correlations with female

EPR could arise through assortative reproduction (e.g., Keller

and Reeve 1995; Arnqvist and Kirkpatrick 2005). In contrast, ge-

netic correlations with survival to maturity (i.e., “viability,” and

associated “good sperm” hypotheses) require further pleiotropy

or linkage (e.g., Yasui 1997; Simmons 2005). Moreover, pre-

vious analyses showed that male and female juvenile survival

are strongly positively genetically correlated in song sparrows,

but may be weakly negatively genetically correlated with female

EPR (Reid 2012; Reid and Sardell 2012) and adult male LRS

(Wolak et al. 2018). Such negative associations between survival

to maturity and aspects of adult reproductive success also occur

in other systems (e.g., Chippindale et al. 2001; Mojica and Kelly

2010), and might help maintain VA in adult male LRS that in turn

shapes the form of indirect selection on female reproductive traits.

Future analyses could also reveal how such genetic correlations

among components of male fitness, and among components of

female reproductive strategy and male fitness, might vary with

environmental conditions.

Overall, our analyses do not support the hypothesized posi-

tive rA between female EPR and male LRS, implying that female

reproductive strategy is not currently substantively driven by posi-

tive cross-sex indirect selection. New theory is now required to ex-

amine how the genetic covariance structure of male reproductive

fitness arising in systems with multiple routes to paternity suc-

cess might constrain emerging cross-sex rAs, and hence constrain

rather than facilitate ongoing evolution of EPR and underlying

polyandry.
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