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Abstract A statistical technique for the pore-scale analy-

ses of heterogeneity and representative elemental volume

(REV) in unconventional shale rocks is hereby presented.

First, core samples were obtained from shale formations.

The images were scanned using microcomputed tomogra-

phy (micro-CT) machine at 6.7 lm resolution with voxels

of 990 9 990 9 1000. These were then processed, digi-

tised, thresholded, segmented and features captured using

numerical algorithms. This allows the segmentation of each

sample into four distinct morphological entities consisting

of pores, organic matter, shale grains and minerals. In order

to analyse the degree of heterogeneity, Eagle Ford parallel

sample was further cropped into 96 subsamples. Descrip-

tive statistical approach was then used to evaluate the

existence of heterogeneity within the subsamples. Fur-

thermore, the Eagle Ford parallel and perpendicular sam-

ples were analysed for volumetric entities representative of

the petrophysical variable, porosity, using corner point

cropping technique. The results of porosity REV for Eagle

ford parallel and perpendicular indicated sample repre-

sentation at 300 lm voxel edge. Both pore volume distri-

bution and descriptive statistical analyses suggested that a

wide variation of heterogeneity exists at this scale of

investigation. Furthermore, this experiment allows for

adequate extraction of necessary information and structural

parameters for pore-scale modelling and simulation.

Additional studies focusing on re-evaluation at higher

resolution are recommended.

Keywords Pore-scale � REV � Shale rocks � Statistical
tools � Kurtosis � Skewness

Introduction

Pore geometry, tortuosity, grains size and shape are prop-

erties that are important to describe and characterise fluid

flow in shale rock. However, getting a single material point

measurement at which this shale rock property is deter-

mined depends on the ability to accurately extract infor-

mation from its structure.

Determination of the nature and extent of hetero-

geneities at pore scale can enhance fluid characterisation in

porous media. In shale rock, variability is extreme, because

shales are detrital sediments formed as a result of alteration

of mud or clay deposits. They occur as fine-grained rich in

illite and fragments with particle sizes generally less than

0.062 mm (Leith 2016). Hence, its petrophysical properties

(lithology, porosity, permeability water saturation) become

difficult to evaluate.

Another major challenge of shale petrophysical evalu-

ation is its heterogeneity as this makes quantification of

porosity and other properties difficult. These parameters

depend on knowing the details of how shape or size grains

(Milner et al. 2010), pore throats (Curtis et al. 2012) and

tortuosity (Bai et al. 2013; Katsube et al. 1991) are dis-

tributed. Several studies have reported the complex

microstructure of the shale rocks (Curtis et al. 2012),

heterogeneity of shale rocks (Chen et al. 2013) as well as

microcracks (Bai et al. 2013) without necessarily
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quantifying the degree of heterogeneity. Extensive research

into the effects of particle shape and polydispersity on flow

through porous media using synthetic models has shed

more light on how pore geometry and complexity of dif-

ferent porous media affect porosity and permeability (Mota

et al. 2005; Garcia et al. 2009). However, little has been

performed to fully characterise same in unconventional

shale geometries.

Microcomputed tomography (micro-CT) is one of the

most powerful non-destructive imaging techniques that can

be used to characterise the microstructure of porous

materials at the microscopic scale (Rozenbaum and du

Roscoat 2014). Over the years, this technique has con-

tributed immensely to the understanding and characterisa-

tion of fluid flow through pore geometries of shale rocks

(Watson and Mudra 1994; Boruah and Ganapathi 2015).

Ma et al. (2016) recently reported that they were able to

scan sample size of 100 lm and obtained spatial pixel size

of 130 nm. This, however, brings about the question of the

ability of the acquired images to adequately represent the

microstructural characteristics of the data sets. In order to

simulate fluid flow processes, an average of seven grains

diameter is required for a fully developed representative

elemental volume (REV) (Garcia et al. 2009).

Replacing a heterogeneous property of the rock with an

equivalent homogeneous one through a continuum

description could best be done through REV method,

which represents appreciable property to capture the

heterogeneity (Bear 1972). This analysis is carried out by

plotting different sample volumes with their corresponding

measured property. As shown in Fig. 1, the measured

property (n) varies intensely with small changes in the

sample length (L) and begins to reduce until measured

property is relatively insensitive to small changes in vol-

ume or location. Then, representative amount of porosity

can be confidently determined (Bear 1972). According to

Sahimi (1995), since the continuum approach breaks down

if the correlation lengths in the system approach the size of

the system, it is important to evaluate the effect of various

length scales at which the system may be considered

homogeneous.

In this paper, we developed a workflow for the charac-

terisation of heterogeneity of unconventional shale rock

samples. The degree of heterogeneity was evaluated using

1 microcomputed tomography (micro-CT) image from

Eagle Ford parallel. The sample was divided into 96 for

descriptive statistical analysis. Meanwhile, REV for

porosity was evaluated using a set of two microcomputed

tomography (micro-CT) images from Eagle Ford parallel

and perpendicular. Finally, corner point reference tech-

niques where each of the sample was cropped into 7 were

used to achieve REV for porosity. The images were pro-

cessed, digitised, thresholded, segmented and each feature

captured using marching cube algorithm. This allows the

segmentation of each sample into four distinct entities,

consisting of pores, organic matter, shale grains and

minerals.

Image acquisition and processing

The 3D image of the samples used for the analysis was

obtained using an industrial micro-CT device phoenix v|-

tome|x s. It has a 180-kV, micro- and nano-focus X-ray

tube and digital detector array (1000 9 1000 pixels). The

flow chart for this study is shown in Fig. 2. Full sample

(Fig. 2a) was placed in the sample holder, and 6.7 mm size

was scanned by rotating it 360�, and the signal-to-noise

ratio used for the acquisition of these data was 37.8%. The

resulting projections were converted into a 3D image stack

using the PhoenixImaging resolution 3D reconstruction

software developed from filtered backprojection Feldkamp

algorithm (Feldkamp et al. 1984). The detailed procedure

for the sample imaging can be found in Singhal et al.

(2013).

In order to accurately estimate petrophysical properties

of the samples, proper segmentation of solid(s) and void

phases takes a priority. Segmentation involves the segre-

gation of the grey-level voxels of the 3D image into distinct

phases. The presence of artefacts such as streaks, bright-

ness, non-uniformity, and phase-contrast fringes at edges

and/or noise would reduce the accuracy of segmentation of

these 3D images (Ketcham and Carlson 2001) and subse-

quently lead to misidentification of shale components

(Fig. 2b). Due to complex intrinsic shale properties,

advanced image processing such as artefact removal and

multiband thresholding is necessary (Iassonov et al. 2009).

In addition to acquiring high-quality images, the images

were cropped to remove edges artefacts present (Fig. 2b).

This will also reduce the processing power requirements of

the computing machine.Fig. 1 Graphical representation of how representative elementary

volume (REV) is determined for a specific property (Bear 1972)
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Polygon surface representation: marching cubes algorithm

The marching cube algorithm is applied to reconstruct a

surface CT scan volumetric data sets. It generates inter-

slice connectivity, through linear interpolation of the

scan line to calculate triangle vertices. The algorithm

works in two steps: initially the surface that matches to

the user-specified value is located, and subsequently, the

normal to the surface of each vertex of each triangle is

calculated.

The algorithm basically operates by determining how the

surface intersects one cube and then proceeds (marches) to

the subsequent cube. Full details of the implementation of the

marching cube algorithm can be found in Lorensen andCline

(1987). In summary, the marching cubes algorithm for cre-

ating a polygonal surface representation of an isosurface is

given as follows:

1. Four slices are read into the memory;

2. Two slices are scanned to form a cube from neigh-

bouring slices, and four others from the next slice;

3. By contrasting between the density values of the eight

vertices while keeping the surface constant, the cube

index can be calculated;

4. From the index value obtained, using a pre-calculated

table, a list of edges is determined;

Fig. 2 a Eagle Ford (EGF)

shale rock sample obtained

parallel to the bedding plane. b
Micro-CT image of the shale

sample at resolution of 6.7 lm
showing 3D volume raw data

with artefacts. c The 3D volume

after artefacts have been

removed. d Graphical

annotation design of six (6)

REV image windows of 50,

100, 200, 300, 400, 500 and

600 lm pixel length. e
Graphical annotation design of

ninety-six (96) 1

mm 9 1 mm 9 1 mm

subsamples for REV and

heterogeneity analyses,

respectively. f Sample

description used for

heterogeneity analysis. Note:

The length of each subsample is

denoted by lx where x 2
1; 2; 3; 4; � � � ; nf g and total

length L ¼
Pn

x¼1 lx
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5. Applying linear interpolation to find the surface edge

intersection using the densities at each vertex edge;

6. The unit normal at each cube vertex is calculated

using central difference approach and interpolating

the normal to each triangle vertex by using the

equations:

Gx i; j; kð Þ ¼ D iþ 1; j; kð Þ � D i� 1; j; kð Þ
Dx

; ð1Þ

Gy i; j; kð Þ ¼ D i; jþ 1; kð Þ � D i; j� 1; kð Þ
Dx

; ð2Þ

Gz i; j; kð Þ ¼ D i; j; k þ 1ð Þ � D i; j; k � 1ð Þ
Dx

; ð3Þ

where D i; j; kð Þ is the density at pixel (i, j) in slice k and

Dx;Dy;Dz are the lengths of the cube edges. When the

gradient is divided by its length, it produces the unit normal

at the vertex required for rendering.

7. Output the vertex normal and triangle vertices.

Representative elementary volume (REV) approach

In pore-scale modelling, smaller subsamples can be treated

as REV in order to be used in the evaluation of Darcy

fluxes. REV is assumed to be obtained when the computed

variable (in this case porosity) plotted against increasing

sample size (Fig. 2d) does not change significantly at a

plateau value (e.g. Figure 1). This is particularly useful

when determining what sample to be used in modelling and

simulating fluid flow through them.

In order to evaluate deterministic REV, each sample was

further incrementally cropped into seven subsamples using

corner point reference technique (see Fig. 2d). From the

origin (at x, y, z = 0), we extract seven (7) three-dimen-

sional subsample image windows of 50, 100, 200, 300,

400, 500 and 600 lm pixel lengths. The length of each

subsample is denoted by lx where x 2 1; 2; 3; 4; . . .; nf g and

total length; L ¼
Pn

x¼1 lx (Fig. 2d). Similar REV data to the

conceptual diagram shown in Fig. 1 were obtained for each

sample, for porosity variable. REV was determined using

the approaches of Costanza-Robinson et al. (2011) and was

taken as the minimum window length scale (l) at which the

absolute value of the relative gradient error (eg) in the

porosity (;) remained below 0.003:

eg ¼
;lxþ1 � ;lx�1

;lxþ1 þ ;lx�1

�
�
�
�

�
�
�
�
1

d
ð4Þ

where l is the window increment identity/number and d is

the magnitude of lx. In physical terms, the relative gradient

error REV criterion requires changes in the measured

variable over a given length-scale increment to be rela-

tively small proportional to the increment size.

The choice of the e criterion (e.g.\0.002) depends on

region II analysis given by (Bear 1972). Costanza-Robin-

son (2011) states that the semi-quantitative e approach used

here is advantageous because it makes REV estimation to

be automated and reproducible across numerous images.

This allows quantitative relationships between REV and

other variables to be readily evaluated; however, it is not

applicable to shale rocks which are highly heterogeneous.

Image processing and heterogeneity analysis technique

In order to investigate the degree of sample heterogeneity,

each image sample was subdivided into

1 mm 9 1 mm 9 1 mm as shown in Fig. 2e. Hence, x, y,

z represent row (R), layer (L), and column number (N),

respectively. Pore volume was measured for each of the

subcropped samples after processing (Fig. 3).

Each of the subcropped images was morphologically

processed. A morphological filtering algorithm opens up

holes and gaps in a mask to get rid of small and potentially

spurious features. This is to enhance component segmen-

tation (foreground from background as the case may be,

Fig. 4a, b).

In order to estimate physical properties and identify pore

space as well as other components of each of the Eagle

Ford parallel shale rock samples, manual greyscale

thresholding was used to segment the images and to dis-

tinguish all its entities. Thresholding is a common tech-

nique used in segmentation; it assigns all the pixels that

belong to the object based on their grey colour or bright-

ness (represented by grey values) into individual group

(Young et al. 1998). This option selects a window of

greyscale values and is useful where segmentation can be

achieved based on greyscale intensities. Only pixels that

have a greyscale value within the lower value and upper

value were included in segmentation created by the

thresholding tool. Starting with the darkest sections (i.e. the

lowest density material, typically pores) to the brightest

sections (i.e. highest density material, typically shale

grains, organic matter and mineral components), eight (8)

components were segmented. These eight (8) entities were

identified with the names pores, organic matter, Shale grain

1 (SG1), Shale grain 2 (SG2), Shale grain 3 (SG3), Shale

grain 4 (SG4), Shale grain 5 (SG5) and Minerals. The

range of greyscale values used in the thresholding of the

main sample is shown in histogram (Fig. 5). However, the

L 

Fig. 3 Illustration of calculation of absolute value of the relative

gradient error

756 J Petrol Explor Prod Technol (2018) 8:753–765

123



major mineral identified is pyrite because of its high den-

sity compared to other possible constituent minerals in a

typical shale rock sample. Its identification is also in

agreement with the previous research (Drillskill et al. 2013;

Joe et al. 2007). Each entity surface is captured using

marching cube algorithm (see ‘‘Polygon surface represen-

tation: Marching cubes algorithm’’ section for further

description of the marching cube algorithm). Marching

cube is used to capture an isosurface by a divide-and-

conquer approach of a region of space into 3D. The cube is

created logically from eight pixels/vertices of a cell. Each

of the vertices is assigned a value. The value at each ver-

tices of each box is compared to the designated minimum

value, and any value less than or equal to the minimum is

inside the surface (Lorensen and Cline 1987). Figure 6

shows 3D and 2D of pores, organic matter and minerals for

subsample L1R1N1.

Statistical tools for the analysis of pore geometry

Descriptive analyses were employed in order to estimate

statistical measure of central tendency and dispersion

necessary to organise and summarise pore information.

Mean and standard deviation of pore volume

The mean of pores is computed using Eq. 5. Pores volume

was labelled in each sample as x1; x2; . . . . . . . . .; xN ; where

x1 is the first pore volume, x2 is the second and so on until

the last pore which is xN, where N is the population size.

Hence, the population mean l can be calculated as (Keller

2014):

l ¼
PN

i�1 xi

N
ð5Þ

The standard deviation r is thus calculated to measure

variability of the pore volume in the sample:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i�1 xi � lð Þ2

N
;

s

ð6Þ

Measure of dispersion: population skewness and kurtosis

For further characterisation of the pore volume distribution

data, the population skewness (b1) is thus calculated:

b1 ¼
1
N

PN
i�1 xi � lð Þ3

1
N�1

PN
i�1 xi � lð Þ2

h i3
2

; ð7Þ

and kurtosis G2 is calculated as:

G2 ¼
N þ 1ð ÞN

N � 1ð Þ N � 2ð Þ N � 3ð Þ

PN
i�1 xi � lð Þ4

k22

� 3
N � 1ð Þ2

N � 2ð Þ N � 3ð Þ ; ð8Þ

where k2 is the unbiased estimate of the second cumulant

(i.e. sample variance) (Joanes and Gill 1998).

Unlike skewness which was used to measure lack of

symmetry of the frequency curve of the pore volume dis-

tribution, we used kurtosis to evaluate the degree of flatness

of pore volume distribution near its centre. This will be the

extent to which the sample pore volume tails, lighter or

heavier, in relation to a normal distribution. Sample pore

Fig. 4 Micro-CT image of Eagle Ford shale rock sample obtained

parallel to the bedding plane at resolution of 6.7 lm and physical

extent is 1 mm 9 1 mm. a 2D view of typical subsample before

morphological processing. b 2D view of typical subsample after

morphological processing

Fig. 5 A typical histogram showing the thresholding greyscale

values of identified components

Fig. 6 Micro-CT image of Eagle Ford shale rock subsample L1R1N1

at resolution of 6.7 lm and physical extent of

1 mm 9 1 mm 9 1 mm. Subsample with a segmented three-dimen-

sional CT images showing pores (red), organic matter(turquoise) and

minerals (green), e.g. pyrite. b Segmented two-dimensional CT

images showing pores (red), organic matter (turquoise) and minerals

(green), e.g. pyrite
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volume data may show heavy tail (long tails) or light tail

(short tails) depending on the presence or lack of microc-

racks. Hence, kurtosis could be classified as platykurtic,

mesokurtic and leptokurtic when the value is less than 3,

equal to 3 and greater than 3, respectively.

Results and discussion

Pore volume characterisation

In this section, we compare two algorithms for the com-

putation of pore volume in order to determine the accuracy

of the applied methods to be adopted in the computation of

the properties on all the samples. The two methods avail-

able for pore volume computation are voxel method (VOX)

and object-oriented bounding box (OBB). Voxel method is

computed using the equation:

Vxel ¼ f � g; ð9Þ

where Vxel is pore volume, f is the frequency and g is the

voxel size, while the OBB method is computed using

marching cube algorithm presented in ‘‘Statistical tools for

the analysis of pore geometry’’ section.

In order to further evaluate the degree of accuracy of the

two numerical algorithms, pore volume computation using

simulation-based OBB and simulation-based VOX was

compared with analytically calculated method (ANA). The

computation of the pore volumes using ANA is similar to

the VOX method, but, unlike the VOX method where the

voxels were selected for computation numerically, the

voxels count in ANA method was identified manually.

Figures 7 and 8 show the pore volume distribution for

subsamples L2R2N3, L3R2N3, L5R2N3 and L6R2N3

using VOX and OBB methods. It can be seen that small

pore volumes have higher frequency while big pore vol-

umes have lower frequency. This observation is consistent

in both methods. However, comparing the two methods, it

is evident that OBB method over-predicted the number of

pores with reference to a specific pore volume. For

instance, for the class of pores with volume of

8000–8500 lm3 as shown in both Figs. 7 and 8, OBB over-

predicted by up to a factor of 5 compared to the VOX

method. This overestimation can be attributed to the result

of marching cube algorithm over-circumscribing the pore

volume especially as the voxel sizes increase.

Similar analysis was conducted to evaluate the degree of

accuracy for the computation of three (3) entities: pore

volume fraction (Fig. 9), organic matter volume fraction

(Fig. 10) and minerals volume fraction (Fig. 11). For this

purpose, the total volume of voxel was plotted against

voxel number for each of the three (3) entities for the

subsample L1R1N1. Figure 9 shows that the results of pore

volume computation were the same and consistent for the

simulation-based pore volume OBB, simulation-based pore

volume VOX and the analytically calculated method ANA
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Fig. 7 Pore volume distribution of subsamples L2R2N3 (green),

L3R2N3 (pink), L5R2N3 (black) and L6R2N3 (cyan) obtained from

voxel method
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Fig. 8 Pore volume distribution of subsamples L2R2N3 (green),

L3R2N3 (pink), L5R2N3 (black) and L6R2N3 (cyan) obtained from

object-oriented bounding box method
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Fig. 9 Comparison of methods of computing pore volume fraction

using ANA, VOX and OBB methods
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only when the voxel number is not more than 3. However,

appreciable deviation of simulation-based pore volume

(from OBB method) was observed from voxel number 3

and above. For instance, when voxel number is 95, simu-

lation-based pore volume result was about seven (7) times

more than the other two methods. Similar variation is

observed in Figs. 10 and 11; however, the difference was

observed much earlier starting from voxel number 3

(Fig. 10).

In general, Table 1 summarises the comparison of the

three methods explained above for the computation of

volume fraction of pores (pore volume), organic matter and

minerals using the total volume of voxel. It shows that

object-oriented bounding box method always over-predicts

bigger entity. From this investigation, it is therefore evident

that the two numerical algorithms diverge in cases where

the sample is much more in mineral components. To this

end, the descriptive statistics will be done with simulation-

based pore volume voxel (VOX) method.

Histogram of the pore volume distribution for subsam-

ples L1R4N4, L2R1N1, L2R1N2, L2R2N2, L4R1N3,

L4R2N3 and L6R1N1 is shown in Figs. 12, 13 and 14.

They all have exponential decay trend similar to pore-size

distribution presented by (Curtis et al. 2012; Chen et al.

2013). The results of subsample analysis for Eagle Ford

parallel indicated varying range of pore volume distribu-

tion. Figure 12 shows subsamples L2R1N1 and L6R1N1 as

the lower boundary and the upper boundary of pore volume

distribution across the layers, respectively, while in

Fig. 13, the subsamples L1R4N4 and L6R4N4 are the

lower boundary and the upper boundary of pore volume

distribution across the layers, respectively. However, in

Fig. 14, subsamples L2R1N2 and L2R2N2 are the lower

boundary and the upper boundary of pore volume distri-

bution within the layer 2, respectively. Also, subsamples

L4R1N3 and L4R2N3 are the lower boundary and the

upper boundary of pore volume distribution within the four

(4), respectively.

Figures 12, 13 and 14 show that not only do pore

diameters have wide range of values but also that their

quantities vary immensely across the subsamples

considered.

For subsample L2R1N1 shown in Fig. 12, the fre-

quency of pore volume within the range 1–500 is less

than 10 but in L6R1N1 (Fig. 12), magnitude order of 2

was recorded. If we consider volume distribution plots for

subsamples L1R4N4 and L6R1N1 in Fig. 13, it can be

seen that more different pore volumes are recorded and

also the frequency of pore volume for subsample L6R1N1

has increased by an order of magnitude. Similar trend

with similar magnitude is observed for subsamples

L2R1N2, L2R2N2, L4R1N3 and L4R2N3 obtained using

voxel method (Fig. 14). Figure 14 further establishes the

heterogeneity across rows in layers 2 and 4. Pore volume
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Fig. 10 Comparison of methods of computing organic matter volume

fraction using ANA, VOX and OBB methods
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Fig. 11 Comparison of methods of computing minerals volume

fraction using ANA, VOX and OBB methods

Table 1 Comparison of methods of computing volume fraction of pores, organic matter and minerals using voxel and object-oriented bounding

box methods

A: Volume of a

voxel (lm3)

B: Total number of

voxel count

C: Analytical calculation

(ANA method) (lm3)

A 9 B

Simulation-based pore volume

(VOX method) (lm3)

Simulation-based pore volume

(OBB method) (lm3)

Pores 307 245 7.52E?04 7.53E?04 3.18E?05

Organic 307 595 1.83E?05 1.83E?05 6.76E?05

Minerals 307 231,926 7.12E?07 7.13E?07 5.52E?08
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distribution increased exponentially from R1N2 to R4N2

in layer 2; similar result was obtained in layer 4, though

not as noticeable as in layer 2.

Analysis of computed porosity and comparison

with other methods

To further evaluate the effect of heterogeneity on pore

volume distribution as discussed in ‘‘Pore volume charac-

terisation’’ section, we analyse the computed porosity

across each of the layers in the sample. Within the whole of

the ninety-six subsamples analysed, porosity range of

4.44E-04 (L2R1N1) to 1.00255% (L6R2N2) was recorded

(see Table 2). The existence and significance of hetero-

geneity are clearly evident at this scale of computation. We

compare our results with other available data estimated

using other destructive numerical approaches such as Focus

Ion Beam (FIB) milling and Scanning Electron (FIBSEM).

The average porosity estimated using our non-destructive

micro-CT scanning approach for the Eagle ford parallel

was 0.173%, while Curtis et al. (2012) and Shabro et al.

(2014) reported 0.4 and 13.2%, respectively, using

destructive FIBSEM approach.

These differences in the computed porosities cannot be

exclusively attributed to differences in the imaging tech-

niques; as Curtis et al. (2012) reported, a porosity of 0.4%

calculated from 125 lm3 3D domain at a resolution of

10 nm, while Shabro et al. (2014) reported a porosity of

13.2% for a 4.4 lm3 domain sample volume at a lower

resolution of 6 nm. In this work, we computed an average

porosity of 0.173% on a 6700 lm3 3D domain sample at a

much lower resolution of 6.7 lm. It can, however, be seen

that the estimated porosity increases as the sample size

reduces (see Table 3). This suggests that the ratio of grains

to pore is being compromised, as the number of grains

present becomes scanty when scanning is done on very

small sample. The resulting porosity (/) in relation to the

pore volume (vp), grain volume (vg) and bulk volume (vb)

can be evaluated from the equation:

/ ¼ vp

vb
¼ vb � vg

vb
¼ 1� vg

vb
ð10Þ

Furthermore, although higher resolution is desirable for

the determination of pore-size distribution, this analysis

underscores the difficulties involved in comparing

computed porosities where the sample size domains are

at different scales.

Analysis of heterogeneity

The pore volume results for each subsample were statisti-

cally analysed. The results of the mean, standard deviation,

skewness and kurtosis values (all greater than three—see

‘‘Measure of dispersion: population skewness and kurto-

sis’’ section) confirmed that there is high degree of varia-

tion of pore volume within each subsample. In Figs. 15a,

16a, 17a, 18a, 19a and 20a, the huge standard deviation
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shows how much individual pore volume within the same

subsample differs from the subsample mean. The smallest

and highest mean values of 307 and 6105 are recorded

from samples L1R1N1 and L3R4N1, respectively. The

smallest pore volume of 307 lm3 implies that bigger pores

or microcracks are relatively fewer in cell L1R1N1,

whereas the highest mean value in cell L3R4N1 signifies

that there are more of very large pores (microcracks).

Looking at the differences between mean and standard

deviation in each cell (Figs. 15a, 16a, 17a, 18a, 19a and

20a), high fluctuations of pore volume can be observed in

this sample. The least variation is noticed in sample

L4R3N3 and the highest in cell L4R2N2. This can also be

confirmed pictorially as shown in Fig. 5.

Furthermore, to justify the observed variance in

Figs. 15a, 16a, 17a, 18a, 19a and 20a, we measured dis-

persion. Skewness and kurtosis data were used to analyse

the degree of dispersity. It was noticed that none of the

pore volume distributions was symmetrical as they all

skewed to the right (see pore volume distribution in

Figs. 7, 8, 12, 13 and 14). The calculated kurtosis is greater

than 3 (i.e. leptokurtic in all cases). This observed lep-

tokurtic further underlines the cause of high standard

deviation observable in all the samples, as the values show

that there is visible presence of very large pores in each

subsample.

Determination and analyses of REV for shale rock

samples

Samples were obtained parallel and perpendicular to the

bedding plane. In order to investigate the influence of

parallel and perpendicular direction to bedding plane on

porosity and also to establish the REV estimate, porosities

were compared at 50, 100, 200, 300, 400, 500 and 600 lm
voxel length. Figure 21a and b shows the plots of porosity

and relative gradient error (RGE) versus length scale for

the Eagle Ford parallel and Eagle Ford perpendicular

samples, respectively. It can be seen that at 50 lm voxel

length Eagle Ford perpendicular porosity is 0.002%, which

is lower than Eagle Ford parallel with porosity of 0.0712%.

Similarly, at 100 lm voxel length, Eagle Ford perpendic-

ular porosity is 0.001% compare to Eagle Ford parallel

porosity of 0.0228%. An order of magnitude difference is

observed in both cases. However, from 200 to 600 lm
voxel length, Eagle Ford parallel porosities are lower than

Eagle Ford perpendicular porosities by up to 2 orders of

magnitude.

Figure 21a and 21b shows porosity values and relative

gradient errors, RGE (eg) using the corner point reference

technique as described in ‘‘Representative elementary

Table 2 Estimates of porosity for the three-dimensional volume of 96 subsamples of the Eagle Ford parallel

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

R1N1 7.26E-03 4.44E-04 1.87E-03 4.56E-03 9.75E-03 1.90E-02

R1N2 1.75E-03 5.01E-03 1.23E-02 2.51E-02 6.94E-02 0.13781

R1N3 6.12E-02 6.02E-02 0.11633 0.13923 0.33997 0.39413

R1N4 5.87E-03 3.79E-03 6.58E-03 1.07E-02 4.91E-02 5.70E-02

R2N1 7.41E-03 6.76E-03 8.68E-03 2.08E-02 6.19E-02 0.10898

R2N2 0.19653 6.78E-02 0.11781 0.82667 0.60367 1.00255

R2N3 0.15526 0.16693 0.15161 0.18924 0.57476 0.80732

R2N4 3.76E-03 3.67E-03 2.11E-02 3.99E-02 0.14139 0.28892

R3N1 3.02E-03 5.48E-03 1.17E-02 2.61E-02 6.22E-02 0.19049

R3N2 0.23437 0.26981 0.4728 0.79004 0.6835 0.83271

R3N3 2.82E-02 6.11E-02 7.65E-02 0.16201 0.3485 0.82492

R3N4 2.43E-02 7.10E-02 6.36E-02 0.15724 0.44764 0.70569

R4N1 3.93E-02 4.69E-02 0.11704 0.11135 0.16839 0.21686

R4N2 5.85E-02 3.77E-02 0.10056 8.85E-02 0.18113 0.28871

R4N3 9.10E-03 2.88E-02 3.49E-02 0.10219 0.22139 0.35751

R4N4 2.44E-02 4.80E-02 5.82E-02 6.13E-02 0.18557 0.32886

Average porosity = 0.173%

Table 3 Comparison of imaging resolution, sample size and com-

puted porosity

Approach Imaging

resolution

Volume

(voxels)

Porosity

(%)

Curtis et al. (2012) 10 nm 125 lm3 0.4

Shabro et al. (2014) 6 nm 4.4 lm3 13.2

This work 6.7 lm 6700 lm3 0.173
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volume (REV) approach’’ section. In Fig. 21a, erratic

variation in porosity was observed for small incremental

growth in subcropped sample, which is consistent with

region I in Fig. 1. At larger length scale between 320 and

600 lm voxel, porosity shows the characteristics REV

region II. Conversely, eg keeps on decreasing below 0.003

REV criterion as the subcropped volume increases. In

Fig. 21b, the behaviour is quite different as the variation of

porosity is linear and very small for small incremental

growth. There was gentle porosity increase at 300 lm
voxel, which tends to flatten up and increase sharply after

400 lm voxel, and a slight increase after 400 lm voxel

length is also noticed in Fig. 21a. However, eg follows the
same trend in Fig. 21a. This increase in porosity after
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400 lm voxel length in Fig. 21a, b can be taken as the

beginning of region III in Fig. 1. If porosity REV estimate

is taken based on 0.003 REV criterion, it means that vol-

ume length will be 300 lm voxel for both samples

presented here, but the sharp increase in porosity at that

criterion in Fig. 21b will negate the region II in Fig. 1.

These findings further revealed the complexity and

heterogeneity of shale rocks.
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Conclusion

The data and image analysed revealed important insights

into the microstructure of Eagle Ford unconventional

rocks. Pores have been quantitatively and qualitatively

estimated from micro-CT images. From the pore volume

distribution, it was established that there is a wide range of

pore volume observable by simply traversing subsamples at

pore scale. Estimates of pore-size distributions suggest that

pore volume between 1 and 500 lm3 dominates. This

evidently suggests that heterogeneity at this scale exists in

shale rocks and can therefore not be neglected in numerical

characterisation.

Descriptive statistical analysis was further applied to

investigate the correspondence/influence of pore volume

variation on heterogeneity. The results of this analysis

show that very large pores and/or microcracks predomi-

nantly contributed to the high degree of heterogeneity.

Furthermore, this experiment also allows us to extract

necessary information for the modelling and simulation of

fluid flow through shale rocks at pore scale.

The REV as quantified by porosity is at 300 lm voxel

edge for both samples, though REV curves are different

due to inherent heterogeneity characteristics of shale.

Further re-evaluation and analysis at much higher image

resolution are therefore recommended to exploit the full

limit of these observations, but without necessarily com-

promising the REV required when the samples are used in

fluid flow simulation.
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