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Summary 

1. Long time-series of primary production are rarely available, restricting our mechanistic 

understanding of vegetation and ecosystem dynamics under climate change. 

Dendrochronological tools are increasingly used instead, particularly in the Arctic – the world’s 

most rapidly warming biome. Yet, high-latitude plant species are subject to strong energy 

allocation trade-offs, and whether annual allocations to secondary growth (e.g. ‘tree-rings’) 

actually reflects primary production above-ground remains unknown. Taking advantage of a 

unique ground-based monitoring time-series of annual vascular plant biomass in high Arctic 

Svalbard (78N), we evaluated how well retrospective ring growth of the widespread dwarf 

shrub Salix polaris represents above-ground biomass production of vascular plants.  

2. Using a balanced design in permanent plots for plant biomass monitoring, we collected 30 S. 

polaris shrubs across five sites in each of two habitats. We established annual ring growth time-

series using linear mixed-effects models and related them to local weather records and 13 years 

of above-ground biomass production in six habitats.  

3. Annual ring growth was positively correlated with above-ground biomass production of both 

S. polaris (r = 0.56) and the vascular plant community as a whole (r = 0.70). As for above-

ground biomass, summer temperature was the main driver of ring growth, with this ecological 

signal becoming particularly clear when accounting for plant, site and habitat heterogeneity. The 

results suggest that ring growth measurements performed on this dominating shrub can be used 

to track fluctuations in past vascular plant production of high-arctic tundra.  
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4. Synthesis. Dendrochronological tools are increasingly used on arctic shrubs to enhance our 

understanding of vegetation dynamics in the world’s most rapidly warming biome. Fundamental 

to such applications is the assumption that annual ring growth reflects between-year variation in 

above-ground biomass production. Here we showed that ring growth indeed was a robust proxy 

for the annual above-ground productivity of both the focal shrub and the vascular plant 

community as a whole. Despite the challenges of constructing ring growth chronologies from 

irregularly growing arctic shrubs, our findings confirm that shrub dendrochronology can open 

new opportunities for community-dynamic studies under climate change, including in remote 

places where annual field sampling is difficult to achieve.  

 

Keywords: dendrochronology; permanent plots; plant population and community dynamics, 

polar willow; Salix polaris; secondary growth, Svalbard; temperature; tundra ecosystem; 

vegetation production.  

 

Introduction 

Primary producers form the foundation of the Eltonian pyramid, fuelling higher trophic levels of 

the ecosystem (Elton 1927; Lindeman 1942; Field 1998). In the terrestrial Arctic, where primary 

productivity is low and food webs are often bottom-up controlled (Legagneux et al. 2014), 

temperatures are rising faster than anywhere else on Earth (Larsen et al. 2014; Nordli et al. 

2014). Consequently, primary productivity across a large part of this biome has been increasing – 

a phenomenon known as ‘arctic greening’ (Elmendorf et al. 2012; Epstein et al. 2012; Macias-

Fauria et al. 2012) – with potential cascading effects on the population dynamics of animals as 
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well as on carbon and nutrient cycling (Stenseth et al. 2002; Post et al. 2009; Wookey et al. 

2009). Recent field observations and remote sensing also indicate a contrasting trend of declining 

primary productivity in some areas, known as the “browning of the Arctic” (Phoenix & Bjerke 

2016), which further stresses the importance of a mechanistic and predictive understanding of 

climate change impacts in this realm. However, identifying mechanisms behind vegetation and 

ecosystem change requires long-term, high-quality and continuous data across trophic levels. 

Field-based monitoring time-series are still extremely rare for primary producers, particularly in 

the remote Arctic biome (Ims & Fuglei 2005; Van der Wal & Stien 2014). Accordingly, annual 

measures of secondary growth, such as tree-ring growth chronologies, have the potential to fill 

this knowledge gap retrospectively, if proven to represent a proxy for above-ground plant 

productivity.  

  The field of dendrochronology consists of reconstructing woody plant growth, typically 

through the measurement of ring-widths growth, both in trees and shrubs. Forestry studies 

regularly use dendrochronology to assess net primary production for the purpose of e.g. 

estimating stand development or carbon sequestration rates (Metsaranta & Lieffers 2009; Babst 

et al. 2014; Dye et al. 2016; Klesse, Etzold & Frank 2016). Such studies compare tree-ring 

readings to in situ measures of woody biomass in permanent forest plots, often sampled every 

five to ten years, to improve precision of primary productivity measures. Dendrochronological 

tools are also increasingly used on arctic shrubs for purposes such as understanding climate-ring 

growth relationships, carbon cycle dynamics, or even geomorphological processes (Owczarek et 

al. 2014; Myers-Smith et al. 2015a). These applications followed recent methodological 

developments which overcome the difficulties associated with high irregularity of ring growth in 

tundra shrubs (Wilmking et al. 2012; Myers-Smith et al. 2015b). During the last few decades, 
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the development of remote sensing products has been an alternative route through which 

measures of overall annual vegetation productivity can be obtained (Pettorelli et al. 2005; 

Vickers et al. 2016; Karlsen et al. 2018). Some studies using these tools, have related e.g. 

Normalized Difference Vegetation Index (NDVI) to shrub expansion and growth traits (Babst et 

al. 2010; Forbes, Macias-Fauria & Zetterberg 2010; Blok et al. 2011; Macias-Fauria et al. 2012; 

Weijers et al. 2018). However, especially at high latitudes, remotely sensed vegetation 

production maps with sufficiently high spatial resolution are relatively recent, and obtaining 

sufficiently cloud-free images during the plant growing season remains a major challenge 

(Karlsen et al. 2018). Moreover, soil moisture levels and extensive bryophyte and lichen cover 

may limit the validity of NDVI measurements as estimations of vascular plant productivity, since 

no effective techniques to separate their signals exist so far (Fang, Yu & Qi 2015; Raynolds & 

Walker 2016. Here, dendrochronological tools provide potentially much more fine-scaled and 

precise information, available at the individual, species or community level, which could 

complement restrictions of remote sensing. It remains unknown, however, to what extent shrub 

ring growth actually reflects above-ground vascular plant biomass, likely because long-term in 

situ biomass monitoring is rare. 

A key challenge for ecological inference from arctic shrub dendrochronology is the 

substantial heterogeneity in growth (and associated ring growth irregularities) within and 

between individual, as well as across the landscape, due to a great variety of factors. Plants face 

trade-offs in resource allocation between e.g. stem growth, leaf production, defence against 

herbivores or reproductive structures, especially in harsh high-latitude environments where the 

growing season is just a few weeks long (Skarpe & Van der Wal 2002; Milner et al. 2016; 

Ropars et al. 2017). In different parts of the landscape, biotic and abiotic conditions introduce 
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variation in arctic plant growth and allocation patterns (Armbruster, Rae & Edwards 2007), 

which include starkly differential levels of, herbivory (Babst, Esper & Parlow 2010; Speed et al. 

2013), interspecific competition (Dormann, Van der Wal & Woodin 2004), pathogen load (Tojo 

& Newsham 2012), soil movement and frost damage (Bokhorst et al. 2008; Crawford 2008). In 

addition, individual shrubs may respond differently to environmental conditions according to 

their genetic make-up or phenotypic plasticity (Albert et al. 2011; Housset et al. 2016). Arctic 

woody plants can even prioritise growth investment differentially among plant parts, e.g. roots 

versus branches, according to their phenological growth stage (Sloan, Fletcher & Phoenix 2016) 

or with lagged responses (i.e. carry-over effects, Skarpe & Van der Wal 2002; Wu et al. 2015). 

Some studies have investigated trade-offs in growth allocation within above-ground structures of 

arctic shrubs, i.e. between primary (apical) and secondary (radial) growth (Bret-Harte, Shaver & 

Chapin 2002; Campioli et al. 2013; Magnin, Puntieri & Villalba 2014; Berner et al. 2015). They 

typically use retrospective measures of shoot primary growth (i.e. length and number of shoots 

per year) and relates it to the secondary growth, which can be measured as basal stem diameters, 

annual stem mass standardised by its length or ring growth. Nonetheless, the relationship 

between above-ground primary growth (including new green biomass), and below-ground 

secondary growth, on an annual basis, remains to be studied and is therefore far from clear. 

Recent studies have shown high inter-annual variability in arctic plant biomass 

production and a strong direct effect of summer temperatures (Gauthier et al. 2011; Elmendorf et 

al. 2012; Van der Wal & Stien 2014; Karlsen et al. 2018). The same pattern appears to 

characterise annual shrub ring growth (Myers-Smith et al. 2015a; Weijers et al. 2017). On the 

archipelago of Svalbard, Van der Wal and Stien (2014) used the only continuous and long-term 

monitoring location for high-arctic biomass measurements to demonstrate that summer 
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temperature was indeed driving above-ground vascular plant biomass production across habitats, 

plant functional types and species, and without strong carry-over effects from the previous year’s 

biomass production. At another location in Svalbard, ring-widths of the polar willow Salix 

polaris Wahlenb., a common dwarf shrub with most of its biomass below-ground, was also 

shown to be primarily driven by the current year’s summer temperature (Buchwal et al. 2013). 

Here, we take the unique opportunity of combining the existing plant biomass monitoring time-

series (Van der Wal & Stien 2014) with the established methodology for dendrochronology on S. 

polaris shrubs sampled in the same permanent plots. This allows us to test whether retrospective 

shrub ring growth represents an adequate proxy for annual variation in above-ground biomass 

production of the species itself and the vascular plant community as a whole.  

 

Methods 

Study area 

The study area was in Semmeldalen (77°90’ N, 15°20’ E, 100 m a.s.l.), central Spitsbergen, 

Svalbard, were a long-term above-ground plant biomass monitoring set-up was established in 

1998 (Van der Wal & Stien 2014). This wide U-shaped inland valley has a relatively high 

primary productivity for such a northern location (bioclimatic zone C: middle arctic tundra, 

Jónsdóttir 2005). We focused on two widespread habitat types: dry ridge and moist heath (Fig. 

1). Ridge habitat was dominated by the dwarf shrubs Dryas octopetala and S. polaris, and heath 

habitat by S. polaris, the wood rush Luzula confusa and the grass Alopecurus borealis. In 

Semmeldalen, the herbivore community comprises the wild and non-herding Svalbard reindeer 

(Rangifer tarandus platyrhynchus), with a doubling population size throughout the study period 
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(Lee et al. 2015), rock ptarmigan (Lagopus muta hyperborea) and geese. The increasingly 

abundant pink-footed goose (Anser brachyrhynchus, Madsen et al. 2017) notably disrupts wet 

habitats by pulling out moss to gain access to the extensive below-ground parts of forage species 

like the grass Dupontia fisheri,  the rush Eriophorum scheuzeri and the forb Bistorta vivipara 

(Anderson et al. 2012). From 1985 to 2014 (i.e. our study period), the annual temperature 

recorded at Svalbard airport (78°25 N, 15°46 E, 30 km from the study area) was on average -

4.7°C (min: -8.9°C in 1988, max: -1.7°C in 2006) and the annual precipitation sum was on 

average 192 mm (min: 92 mm in 1998, max: 265 mm in 2012).  

Study species 

S. polaris has a circumpolar distribution (http://www.flora.dempstercountry.org/) and is the most 

widespread shrub species found across Svalbard, in habitats ranging from arctic meadow to polar 

desert (http://svalbardflora.no/, Rønning 1996; Nakatsubo et al. 2010). Its abundance and high 

digestibility make it an important food resource for herbivores, and especially reindeer (Van der 

Wal et al. 2000; Bjørkvoll et al. 2009). The species has been reported to live for many decades, 

with a mean plant age of around 40 years (Buchwal et al. 2013; Owczarek & Opała 2016). The 

oldest known individual was 120 years old (A. Buchwal, pers. obs.). Therefore, S. polaris 

represents a potential key species for reconstructing long-term, large-scale primary productivity 

information relevant for studying arctic vegetation and ecosystem dynamics. The above-ground 

parts of S. polaris (i.e. branch tips, leaves and reproductive structures) grow to a height of 2-5 cm 

and represent a very small proportion of the plant (Fig. 1d). Overall, no more than 5-6% of 

Svalbard’s live vascular plant biomass is above the moss layer (Bardgett et al. 2007). The below-

ground structure of S. polaris can extend several decimetres into the ground and is composed of 

a root collar (i.e. the oldest part of the shrub) from which develop a network of branches and 
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roots. Generally, those roots consist of a core root with several thinner lateral roots, but in moist 

habitats such as meadows and snow beds much more complex or fine-rooted individuals seem to 

dominate. The reproductive system can be asexual (i.e. cloning through rhizomes) or sexual with 

both wind and insect pollination (i.e. ambophily, Rønning 1996; Dormann & Skarpe 2002).  

Study design 

Biomass sampling 

In each of the two focal habitats, i.e. ridge and heath, above-ground biomass was sampled in 

early August in the years 1998-2009 and 2013. In each habitat, five replicated sites were 

followed over time. Sites were distributed across the landscape within an area of ca. 4.4 km
2
 and 

did not exclude herbivory (see Van der Wal and Stien (2014) for further detail). Above-ground 

biomass of S. polaris and that of all other vascular plant species was estimated for those 10 sites 

(2 habitats × 5 sites) by counting shoots of all species in small permanent quadrats (25 cm × 25 

cm; 10 quadrats per site) in all 13 years (Fig. S1). Shoot densities were multiplied with site-

specific shoot mass estimates, obtained through destructive sampling at each site at such distance 

from the small squares to represent the permanent plots well whilst not impacting plant 

performance therein. In the current study, we used three measures of above-ground biomass: i) S. 

polaris biomass in the two focal habitats, separately and combined; ii) total community biomass, 

comprising all vascular plant species, in the two focal habitats combined; and iii) total 

community biomass on a larger scale, i.e. including four other habitats: wet moss, moist grass-

dominated and dry Luzula-Salix tundra sampled until 2002, and Dupontia marsh sampled until 

2013. 

Shrub sampling and processing  

In early August 2015, complete S. polaris shrubs (i.e., both above- and below-ground structures) 
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were carefully excavated from the soil in close vicinity to all heath and ridge biomass sampling 

sites (Fig. S1). Sampled individuals were separated by a minimum distance of 5 m to avoid 

sampling of clones. Of all sampled individuals, we selected three shrubs per site, i.e. n = 30 

shrubs in total, suitable for dendrochronological analysis, i.e. of healthy appearance, with clearly 

distinguishable root collar, branches and roots, and with fairly straight plant sections appropriate 

for serial sectioning (Kolishchuk 1990; Myers-Smith et al. 2015b, Fig. S1d). We used a GLS-1 

sledge microtome (Gärtner, Lucchinetti & Schweingruber 2014) to cut five to six cross-sections 

per individual shrub: two to three sections from the main root and/or side roots; one section from 

the root collar; and two sections from the branches. The sectioning was spread along the shrub’s 

parts to avoid bias of e.g. larger ring growth in juvenile branches (Büntgen & Schweingruber 

2010). The detailed laboratory preparation of the 15-20    thick thin-sections is described in 

Appendix I. 

Chronology building  

Ring-widths of each shrub were measured on digital images captured from the thin sections 

prepared. Each cross-section of a particular part of the shrub was divided into four quarters and 

within each quarter we randomly drew a radius, excluding injured xylem parts (Fig. S2). Along 

each radius, we manually measured ring-widths (i.e. the shortest distance between adjacent ring 

boundaries) starting from the outermost ring to the pith in ImageJ 1.48 (Schindelin et al. 2015). 

Additionally, we visually inspected the entire cross-section for irregular, partially missing rings 

(i.e. wedging rings, Buchwal 2014). We stopped ring-width measurements at the innermost 

clearly developed ring and assessed the number of the remaining (usually highly wedging) rings 

located close to the pith. This step allowed us to correct for an age effect (see below). Because 

the eccentricity of our cross-sections was moderate, we believe that our four-radii readings of 
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ring-widths captured individual growth of the specimen well (Buras & Wilmking 2014, Fig. S2).  

Cross-dating 

Arctic shrubs, and in particular S. polaris, are known to restrict their growth under harsh 

conditions, forming irregular, wedging rings that can be absent in part of the shrub or, more 

rarely, entirely missing (Buchwal et al. 2013). Given these challenges and to ensure correctly 

established ring growth chronologies, we adopted the serial sectioning method (Kolishchuk 

1990) to allow multilevel cross-dating (Buchwal 2014; Myers-Smith et al. 2015b). We 

conducted three levels of cross-dating: 1) cross-dating between the four radial measurements 

within a single cross-section; 2) cross-dating between all five to six cross-sections of one shrub, 

to obtain a mean growth curve for an individual shrub; and 3) cross-dating between individual 

shrubs’ mean growth curves within a site, to obtain site-specific mean growth curves (obtained 

with linear mixed-effects models, see below). To ensure the highest quality of cross-dating, we 

moved back and forth between these three levels of cross-dating to detect all missing rings. The 

three levels of cross-dating are detailed in Appendix I and Fig. S2.  

Chronology standardisation 

Tree-ring standardisation aims to remove biological trends from growth time-series that are 

caused by e.g. age and/or geometry. A variety of methods exists to account for age-driven mean 

growth variation (Fritts 1976; Cook & Kairiukstis 1990; Helama et al. 2004; Sullivan et al. 

2016). We first investigated the effect of age on raw ring-widths by plotting mean growth curves 

of all cross-sections aligned by cambial age (i.e. biological age) in R version 3.3.2 (R Core Team 

2016), package ‘dplR’ (Bunn 2008). The cambial age curve showed a typical juvenile effect, 

with higher ring-widths at a young age (Fig. S3a). This pattern was caused by geometry, i.e. the 

further away from the pith a ring is formed, the greater area has to be covered by the xylem, so 
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that, inevitably, ring widths become thinner and thus may seemingly decrease with age (Cook & 

Kairiukstis 1990; Biondi & Qeadan 2008). We accounted for this geometric constraint by 

transforming ring-width measures to basal area increments (   ) (Biondi & Qeadan 2008; Buras 

& Wilmking 2014), using the mean growth curve constructed for each cross-section. Plotting 

basal area increments series against cambial age, we observed a slight but constant increase with 

age (Fig. S3b). Therefore, the final standardisation step consisted of detrending basal area 

increment series using the regional curve standardisation method (Briffa & Melvin 2008) with a 

20-year-windows cut-off. Combined, those standardisation approaches ensured that all possible 

age effects were eliminated, which in turn resulted in a dimensionless Ring-Width Index (RWI; 

hereafter simply called ‘ring growth’, Fig. S3c). We additionally ran our analyses with other 

standardisation methods leading to similar results (Table S1). The year of sample collection 

(2015), i.e. the outermost ring, was excluded from the analyses since the secondary growth of 

this particular year had not always completed at the time of sampling (Fig. 1e). Growth curves 

were also truncated to ensure a sufficient number of cross-sections for each year, resulting in 

maximum number of chronologies  over the period 1985-2014 (Appendix I). To calculate 

standard dendrochronology statistics (see below), we combined all individual shrubs’ mean 

growth curves to derive an overall mean S. polaris chronology for the study area. We computed 

this final chronology with the ‘chron’ function in R package ‘dplR’ using arithmetic means. 

However, note that in all other analyses (i.e. related to above-ground biomass and climate), we 

used mean growth curves (at the habitat or study area level) obtained from linear mixed-effects 

models, which enabled us to account for spatial dependency and random variation due to the 

nested structure of the study design (see below and Fig. S1). 

Descriptive statistics, commonly used in dendrochronology, of the truncated ring growth 
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time-series were computed with the functions ‘rwi.stats’ (R package ‘dplR’) and ‘RwlInfo’ (R 

package ‘detrendeR’, Campelo, García-González & Nabais 2012). We reported the mean 

correlation between individual growth curves (rbar.tot), the mean correlation between cross-

sectional growth curves within individual shrub (rbar.wt), and the mean inter-series correlation 

between growth curves of all shrubs (rbar.bt). Additionally, we evaluated how closely the 

constructed mean S. polaris chronology represents a hypothetical chronology based on an 

infinitive number of cross-sections, with the so-called Expressed Population Signal statistic 

(EPS, Wigley, Briffa & Jones 1984; Cook & Kairiukstis 1990). 

Statistics  

Estimating ring growth and above-ground biomass 

Standardised ring growth (see above) and above-ground biomass had similar (right-skewed) 

distributions with only a few large values (Fig. S4). To obtain normal distribution and constant 

variance in the model residuals, both measures were square-root transformed for analysis.  

We ran linear-mixed effects models using the ‘lmer’ function (R package ‘lme4’, Bates et 

al. 2015). This modelling approach is recommended when analysing replicated data collected in 

a nested design (Cnaan, Laird & Slasor 1997, Grafen & Hails 2002, Zuur et al. 2009); first, to 

account for the non-independency of replicates within a nested level; second, to correctly 

partition the within- and between- variation in the different ecological levels sampled (Fig. S1); 

third, to give the correct weight to each observations when the sampling design is unbalanced 

(for instance, this applies here to sampling of total biomass across habitats, since the six habitats 

were not all monitored over exactly the same period). Using ordinary linear models based on all 

measurements would violate assumptions of measurements independence, resulting in too small 

standard errors. Instead, using linear mixed-effects models, we included a random intercept 
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structure (i.e. variation in mean between replicated units) composed of year and individual shrub 

(for ring growth estimations) or plot (for biomass estimations) nested within site, which in turn 

was nested within habitat. We used linear mixed-effects models in two types of analysis. First, to 

estimate mean ring growth (1985-2014) and mean biomass production (1998-2009, 2013) over 

the study period, both in total and by habitat, we only included the intercept and the hierarchical 

structure as random effect (variance partitioning reported). Second, to estimate  annual ring 

growth and biomass time-series for the study area, we included year as a fixed factor and 

extracted yearly coefficient estimates. By a similar way, we added the interaction year × habitat 

to obtain annual estimates per habitat. Factors included as fixed effects were excluded from the 

random intercept structure described above. From these models, we reported mean estimates 

with associated 95 % confidence intervals, obtained from 1000 bootstrap iterations (‘bootMer’ 

function in R package ‘lme4’). In further analyses (see below) we used the time-series estimates 

obtained from these linear mixed-effects models.  

Trends over time were fitted with linear models, and 95 % confidence intervals were 

obtained from 1000 bootstrap iterations with the ‘Boot’ function within the R package ‘car’ (Fox 

& Weisberg 2011). Trend coefficients and annual biomass estimates were reported on the back-

transformed scale (using the delta method) for ease of interpretation of effect size. However, 

Pearson’s correlations (r) and t-tests were always calculated and reported on the square-root 

scale. 

Estimating climate effects on ring growth 

The closest weather station with long-term temperature and precipitation data is located 30 km 

north of the study site, at Svalbard airport (78°25 N, 15°46 E), at the coast. Daily mean 

temperature (°C) and total precipitation sum (mm) data for this station were obtained from the 
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Norwegian Meteorological institute (http://eklima.met.no). We considered the following six 

weather variables: onset of winter (Julian day); end of winter (Julian day); snowfall (mm); rain-

on-snow (mm); summer temperature (C); and summer precipitation (mm). We defined the onset 

of winter as the (Julian) day when a 10-day forward moving window averaged below 0°C for the 

first time in autumn (and stayed below 0°C for ≥ 10 days); for the end of winter (and therefore 

onset of spring) the opposite was used. For the winter period (i.e. from November to April), we 

defined snowfall (mm) and rainfall [‘rain-on-snow’, log(mm)] as the precipitation falling at 

temperatures < 1°C and ≥ 1°C, respectively (Hansen et al. 2013). 

The model selection was performed using linear mixed-effects models to identify the 

main climatic variables driving shrub ring growth. The full model contained the six weather 

variables listed above and previous year’s ring growth to detect possible carry-over effects. In 

addition, the interaction between the previous year’s ring growth and summer temperature and 

precipitation was included. To test for possible habitat effects we proposed an interaction of 

habitat with the previous predictors presented (i.e. up to three-ways interactions, see summary of 

all proposed predictors in Table S2). The hierarchical study design was accounted for in the 

random effect structure described above. 

Pearson’s correlation is commonly used in climate-ring growth relationship analysis, 

covering climate variables for all months of the year and even including prior years. However, 

including numerous predictors can, by chance, select one or several as statistically significant 

without a priori biological support (Peres-Neto 1999). Thus, we only adopted this hypothesis 

based procedure (using the function ‘dcc’ from the R package ‘treeclim’, Zang & Biondi 2015) 

to investigate preliminarily, for temperature and precipitation, which combination of summer 

months (June, July, August, June-July, July-August, June-July-August) best captured ring 
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growth (Fig. S5). For the full period 1985-2014, June-July-August mean temperature (hereafter 

referred to as ‘summer temperature’) best explained S. polaris ring growth . None of the summer 

month combinations for precipitation sum were significantly correlated to ring growth, and in the 

model selection (below) we therefore decided to use the same summer month combination as for 

temperature (Fig. S5). For this period, the mean summer temperature was 5.2°C (min: 3.6°C in 

1987, max: 6.4°C in 2007, Fig. 2) with a significantly increasing rate of 0.06 [0.03:0.08] °C per 

year (t = 4.27, P < 0.001). The summer precipitation sum was on average 48.7 mm (min: 14.4 

mm in 1998, max: 122.7 mm in 2013) and did not change significantly over time (0.13 [-

0.70:1.59] mm/year, t = 0.26, P = 0.80).  

The function ‘dredge’ from the R package ‘MuMIn’ (Barton 2013) was used for model 

ranking based on the parsimony principle of the corrected Akaike Information Criteron (AICc, 

Burnham & Anderson 2002). This ranking approach utilises maximum likelihood, as opposed to 

hypotheses testing, and therefore is not subject to issues of multiple testing like in Pearson’s 

correlation (see above). All predictors’ pairwise correlations were relatively low (r < 0.5) and all 

proposed interactions were considered to be biologically meaningful. Estimates from the top 

model were obtained using restricted maximum likelihood. Residual distributions were 

investigated for normality and homoscedasticity.  
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Results 

Ring growth in time and space 

Robust S. polaris ring growth curves were constructed for the period 1985-2014 in 

Semmeldalen, central Spitsbergen, Svalbard (Fig. 2). Because above-ground biomass 

measurements were taken in 1998-2009 and 2013, this resulted in an overlap of 13 years for 

which the two measurements could be compared for the same study area (Fig 2). The ridge 

habitat tended to have younger plants (25 ± 7 years, mean ± sd) than the heath habitat (30 ± 8 

years). Both ring growth and vegetation biomass time-series demonstrated high inter-annual 

variation, with 1998 and 2007 standing out as highly productive years and 1999 and 2008 as 

relatively unproductive years. Descriptive chronology statistics revealed limited annual growth 

variability within an individual shrub (rbar.wt = 0.65), but rather high growth variability between 

shrubs (rbar.bt = 0.21). Mean correlation between individual growth curves was relatively low 

(rbar.tot = 0.22), but despite this the Expressed Population Signal for the period 1985-2014 was 

high (EPS = 0.90). Thus, the chronology was considered highly applicable for reliable 

comparison with above-ground biomass measures.  

In line with the small stature of the species, S. polaris had very small root-collars, 

between 1.5 and 4.1 mm in diameter (bark excluded). Annual mean raw ring-widths were 

therefore likewise small (0.045 [0.035:0.053] mm, mean [95 % confidence interval], Table 1), 

and there was no significant difference in annual ring growth pattern between heath and ridge 

habitat (t = 1.55, d.f = 55, P = 0.13). Over the period 1985-2014 ring growth increased over time; 

yet, this positive trend was only found for heath habitat (Table 1). Despite this difference in 

trends between the habitats, ring growth in heath and ridge co-fluctuated over time (r = 0.42 

[0.04:0.69], t = 2.29, d.f = 25, P < 0.05, Fig. S6), indicating shared drivers of annual growth.  
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Above-ground biomass in time and space 

The estimated annual mean above-ground biomass production of S. polaris was 17.9 [10.7:27.3] 

g/m
2
 (Table 1), and larger in heath than ridge habitat (t = 3.58, d.f =22, P < 0.01, Fig. S6). From 

1998 to 2013, the overall tendency for a positive trend was non-significant; yet, biomass in ridge 

habitat increased over time (Table 1, Fig. S6). Ridge and heath biomass co-fluctuated during the 

period 1998-2009 (r = 0.61 [0.05:0.88], t = 2.41, d.f = 10, P < 0.05), but not significantly when 

also including 2013 (no biomass monitoring took place in 2010-2012, Fig. S6). 

About half of the total vascular plant above-ground biomass in heath and ridge habitat 

was composed of S. polaris (Table 1). Like for S. polaris biomass, the annual biomass 

production of vascular plants differed between these two habitats (t = -5.45, d.f = 24, P < 0.001). 

Total biomass in ridge habitat increased over time (Table 1). Over all six habitats monitored, the 

mean above-ground vascular plant biomass was 37.0 [29.9:45.1] g/m
2
 and showed no clear trend 

over time (Table 1).  

Ring growth versus above-ground biomass production 

When combining measurements from ridge and heath, ring growth and above-ground biomass of 

S. polaris were positively correlated (r = 0.56 [0.01:0.85]), demonstrating that variation in ring 

growth reflects variation in above-ground biomass in this high-arctic shrub (Figs. 3c and 4). Both 

measures were significantly positively related to summer temperature, suggesting this climate 

variable as the overall driver of S. polaris growth (Table 2, Figs. 3a and 3b). When inspecting 

patterns by habitat, the strength of these relationships dropped. The relationship between S. 

polaris above-ground biomass and summer temperature for heath habitat was no longer 

significant due to an outlying point (year 2013, Fig. 3h), whilst for ridge habitat this relation 

remained strong (Fig. 3e). The opposite was the case for the relationship between ring growth 
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and summer temperature, which weakened for ridge but remained strong for heath (Figs. 4d and 

4g). Thus, habitat-specific correlations between ring growth and biomass of S. polaris were 

weakened (Figs. 4f and 4i).  

Indeed, when partitioning variance across the different nested ecological scales (i.e. 

random effects, Table 3), greatest variability in ring growth and above-ground biomass 

measurements of S. polaris was found at the smallest spatial sampling scale, i.e. at individual 

plant and plot level, respectively. Although S. polaris biomass variability was still considerable 

at the site level, random variation (i.e. in intercept) at the habitat level was small (Table 3).  

When accounting for heterogeneity emerging across these different levels, and thus 

moving to higher levels of the hierarchical sampling design, the relationships between S. polaris 

ring growth and above-ground biomass are clear. Interestingly, when replacing S. polaris above-

ground biomass with that of the total vascular plant community, first for ridge and heath habitat 

combined (r = 0.67 [0.19:0.89]), and then for all six habitats combined (r = 0.70 [0.25:0.90]), S. 

polaris ring growth reflected vascular plant biomass increasingly well (Fig. 4). Even when 

removing S. polaris from the biomass of all habitats, the correlation remained strong (r = 0.68 

[0.21:0.90]). 

Climate effects on ring growth 

Model selection retained summer temperature as the main weather variable (positively) 

associated with ring growth, being selected in all models with ΔAICc < 2 (Table S3). 

Additionally, the summer temperature effect interacted with last year’s ring growth (Table 2, Fig. 

S7a). In warm summers, growth was less influenced by the previous years’ ring growth 

compared to in cold summers. In other words, after a year of low ring growth, the positive effect 
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of summer temperature was more pronounced than when the previous year had a large ring 

growth. The top ranked model also suggested that the positive effect of previous year’s ring 

growth was less pronounced in ridge than in heath habitat (Table 2, Fig. S7b). 

 

Discussion: 

By constructing shrub chronologies and combining those with existing long-term time-series of 

in situ plant biomass production, we were able to reveal on an annual bases, how well 

retrospective ring growth represents above-ground production of not only the focal shrub but 

also the vascular plant community as a whole (Figs. 2 and 4). By doing this, we demonstrated 

that, with sufficient replication across spatial scales and successful stepwise cross-dating, ring 

growth of the widespread and highly abundant polar willow S. polaris can adequately capture 

patterns of local above-ground primary production. Accordingly, both ring growth and above-

ground biomass fluctuations of S. polaris were controlled by the same climate driver, i.e. 

summer temperature, and no evidence was found for opposing investment in secondary growth 

versus above-ground biomass, as could be expected under strong energy allocation trade-offs. 

Multilevel sampling over successive years enabled us to partition out plant trait variation 

that exists at different spatiotemporal scales (Messier, McGill & Lechowicz 2010; Galván et al. 

2014; Van der Wal & Stien 2014, Table 3). Shrub ring growth and above-ground biomass were 

highly variable at the smallest spatial sampling scale, i.e. among individual plants or sampling 

plots within sites, respectively. These levels were the sampling units and thus also included 

variation due to measurement error. However, with the high level of replication of ring growth 

measures within plants (i.e. four radii within each five to six cross-sections per shrub) and high 
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shoot densities of S. polaris within ‘biomass plots’, we expect the effect of measurement errors 

to be small. By contrast, variability due to micro-habitat conditions will be great, as large 

differences in plant cover in the high Arctic typically occur already within metres (Armbruster et 

al. 2007). Consequently, this likely increased the variance within a site when correlating ring 

growth and above-ground biomass of S. polaris, since a shrub sampled for dendrochronological 

measurements was several metres away from the plots sampled for biomass measurements. 

Accounting for multilevel spatial variation (i.e. plot or individual nested within site, nested 

within habitat) captured to a considerable extent micro- and macro-habitat variation arising from 

a patchy topography with different biotic and abiotic characteristics. Acknowledging such 

multiple sources of variation strengthens the ecological insight and inference, and allowed us to 

reveal a remarkably high correlation between ring growth of a single shrub species and the 

annual biomass production of the total vascular plant community (r = 0.70 [0.25:0.90]). 

Although insufficiently researched, current evidence suggests that ring growth may well be a 

proxy of primary production throughout the alpine and Arctic biome. For instance, in the Alps, 

Anadon-Rosell et al. (2014) reported a positive correlation between ring growth and biomass of 

new shoots in three shrub species, although based on a single year and single location of 

measurements only. Furthermore, studies utilising remotely sensed vegetation production maps 

found positive correlations between NDVI-based plant productivity and ring growth across the 

low Arctic: Salix lanata from the Russian Arctic (Forbes et al. 2010, Macias-Fauria et al. 2012); 

Betula pubescens from Northern Sweden (Babst et al. 2010); and Salix pulchra and Cassiope 

tetragona from Northwest Canada (Weijers et al. 2018).  

While our results confirm dendrochronology as a promising tool to reconstruct fine-scale 

past vascular plant biomass of tundra ecosystems, constructing a ring growth curve from small 
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and highly irregularly growing shrubs in a harsh arctic environment is challenging (Wilmking et 

al. 2012; Buchwal 2014). Buchwal et al. (2013) estimated that in their dendrochronological 

study on S. polaris in another Svalbard location, on average 14 % of the rings were partially 

missing from cross-sections, while 11 % were completely missing. Despite these common 

irregularities, a persistent search for missing rings, which included their detection and 

verification during a stepwise cross-dating procedure (i.e. within and between shrubs, Fig. S2), 

enabled us to develop a reliable chronology with an EPS-value above the commonly accepted 

threshold of 0.85 (Wigley et al. 1984). The mean within- and between-plant correlation (rbar.tot = 

0.22) was lower than in another Svalbard species with a more regular growth pattern such as C. 

tetragona (rbar.tot = 0.32, Weijers et al. 2012). In accordance with the variance partitioning of the 

linear mixed-effects models at the individual plant level, the low correlation between individual 

plant growth curves (rbar.bt = 0.21) also reflects the numerous disturbances that the shrubs have to 

cope with during their lives in this stressful environment located at the distributional margin of 

woody plants (Crawford 2008; Wilmking et al. 2012).  

In this harsh environment for woody plants growth, we found one weather variable – 

summer temperature – that stands out as main driver of both the vascular plant community’s 

above-ground biomass  and S. polaris below-ground ring growth. This is in line with previous 

findings across arctic and alpine shrubs (Forbes et al. 2010; Elmendorf et al. 2012; Buchwal et 

al. 2013; Van der Wal & Stien 2014; Myers-Smith et al. 2015a; Weijers et al. 2017; Ackerman 

et al. 2018; Weijers et al. 2018). Sun exposure has also been suggested to potentially influence S. 

polaris ring growth on Svalbard (Owczarek & Opała 2016), and that of the net above-ground 

production of tundra vascular plants in general (Wiegolaski et al. 1981; Muraoka et al. 2008; 

Van der Wal & Hessen 2009). Van der Wal and Stien (2014) found a negative relationship 
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between cloud cover and summer temperature in our study area, suggesting that temperature 

could be a good index of photon flux density necessary for carbohydrate production in the 

photosynthetic process (Muraoka et al. 2008). Nonetheless, in addition to carbohydrates, 

favourable tissue temperature and the presence of auxin hormones trigger xylogenesis, i.e. the 

cambial activity that leads to the formation of annual ring growth. More specifically, temperature 

influences the flux of auxins, which in cold or short summers likely does not reach all parts of 

the shrub (Sundberg, Uggla & Tuominen 2000; Wilmking et al. 2012). Air temperature is thus 

tightly connected to the physiological processes required for ring growth, and therefore, not 

surprisingly, a driver of shrub growth.  

More surprisingly, recent dendrochronology studies from Greenland and Svalbard report 

on a deviation from the aforementioned clear and positive summer temperature responses 

(Forchhammer 2017; Gamm et al. 2017; Opała-Owczarek et al. 2018). In a coastal site in 

Svalbard, with twice as high precipitation levels as our inland site, Opała-Owczarek et al. (2018) 

proposed that soil moisture and soil structure have a larger influence on S. polaris ring growth 

than temperature. Water availability through precipitation did not appear to influence S. polaris 

growth in our study, with the possible exception that the extremely rainy summer in 2013 

resulted in a prominent reduction in heath habitat’s above-ground biomass. Furthermore, in spite 

of increasing summer temperatures, Gamm et al. (2017) observed a temporal decline in ring 

growth in continental Western Greenland for Betula nana and Salix glauca. They suggested this 

could be due to increased defoliation from herbivory and increasing moisture limitation. 

Likewise, Forchhammer (2017) reported an overall decline in B. nana ring growth but related 

this to a decrease in June sea ice extent instead. While the latter study implicates summer 

temperature effects only indirectly through correlation with sea ice extent, the reported effects 
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were weak on Svalbard, possibly because of carry-over effects (i.e. previous year’s growth). 

Accordingly, we show that ring growth was less (positively) influenced by the previous years’ 

ring growth during warm summers, compared to cold summers. This indicates an increased 

likelihood of using available storage resources (i.e. from last year’s growth) when conditions are 

unfavourable.  

Secondary growth in biomass production of shrubs is often overlooked. Especially 

shrubs’ below-ground growth – the “hidden part of the iceberg” – has received little attention so 

far (Bret-Harte et al. 2002; Iversen et al. 2015). However, a substantial proportion of the biomass 

of our study species is situated below-ground, even branches are nested into the ground (Fig. 1). 

Woody tissues have much higher C:N ratio than leaves, and especially in the High-Arctic, are 

mostly located below-ground and are represented by strong positive root-to-shoot ratio (> 4, 

Mokany, Raison & Prokushkin 2006; Iversen et al. 2015). Therefore, shrubs’ below-ground 

growth importantly contribute to the large storage of carbon. Considering only above-ground 

woody structures may result in an underestimation of carbon storage in tundra soils (Iversen et 

al. 2015). According to our results, below-ground carbon storage may vary greatly annually as a 

function of temperature. A recent study by Berner et al. (2018) roughly estimated large-scale 

tundra below-ground biomass from above-ground measurements, but clearly, further studies are 

needed to establish which mechanisms control below-ground growth dynamics including both 

primary (length and ramification architecture) and secondary growth (but see Wang et al. 2016; 

Blume-Werry et al. 2018). Starting to fill up this knowledge gap, our work on secondary growth 

(i.e. below-ground) inform on the annual green biomass available for higher trophic levels (i.e. 

above-ground). Therefore, this can make the link to more extensively studied topics like plant-

herbivore interaction, were robust annual vegetation production time-series are too often 
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missing.  

Given that S. polaris forms a major component of the diet of Svalbard reindeer (Van der 

Wal et al. 2000; Bjørkvoll et al. 2009), it could well be that herbivory influences ring growth in 

this dwarf shrub, with possible carry-over effects. Simulated grazing was shown to reduce leaf 

biomass production in the following summer (Skarpe & Van der Wal 2002). Although S. polaris 

constitutes around half of the total above-ground vascular plant community biomass at our study 

location, the browsing impact on the sampled shrub is expected to be highly stochastic, in space 

and between years. Thus, when including annual reindeer numbers (Lee et al. 2015), 

corresponding to approximately 6 animals/km
2
, in our model testing for climate effects 

(truncated to the reindeer abundance time-series 1994-2014), we found no strong evidence for a 

reindeer density effect on S. polaris ring growth (Table S4). Conversely, in this bottom up 

system, we do expect our measurements of S. polaris annual growth to represent the plane of 

nutrition for reindeer and other herbivores at a larger scale. In line with that expectation, Albon 

et al. (2017) found that reindeer body mass in autumn was positively related to annual total 

above-ground biomass estimates from our sampling sites. Accordingly, there is not only 

considerable potential to use S. polaris ring growth as a proxy for large-scale biomass 

production, but also to inform ecosystem ecological questions such as carbon and nutrient 

cycling, and energy flow through high-arctic food webs. Ring growth proxies may therefore 

complement other data types in community-dynamic studies but are also particularly useful in 

remote places where climate or vegetation data are not available. 

In conclusion, while shrub dendrochronology is increasingly used across the circumpolar 

Arctic to compensate for the lack of local climate or vegetation productivity time-series, this 
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study demonstrates in situ that annual ring growth curves can indeed reliably track past vascular 

plant productivity. This opens new opportunities for ecosystem-based monitoring and 

retrospective studies of community dynamics under climate change, particularly in study areas 

where time-series are available for higher trophic levels. However, detecting ecological signals 

of climate (change) using shrub dendrochronology clearly requires rigorous search of wedging or 

missing rings, as well as sampling replication across the landscape, thereby accounting for the 

large habitat variation characterising high-arctic landscapes. 
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Tables & Figures 

Table 1. Summary of mean ring growth and plant biomass estimates [and 95 % confidence intervals] and their trends over the time 

period studied; for the two focal habitats (Heath and Ridge) separately and combined, and for plant biomass of six habitats together. 

Mean estimates of S. polaris ring growth are based on (raw) ring-widths (in mm), whilst trends in S. polaris ring growth are based on 

Ring-Width Index (RWI) corrected for age and geometry effects. Reported estimates were square-root back-transformed. Trend 

coefficients (Trend) and their associated 95% confidence intervals (from 1000 bootstrap iterations) were calculated with linear models 

fitted to back-transformed mean-estimate time-series.  

 

 Heath Ridge Both heath and ridge All habitats 

S. polaris 

ring-width 

1985-2014 

Mean estimates 

(mm) 

0.04 [0.03:0.05] 0.05 [0.04:0.06] 0.05 [0.04:0.05] 

- 

Trend 

(RWI/year) 

0.03 [0.02:0.04] 

 

<0.01 [-0.01:0.02] a 0.02 [0.01:0.03]* 

 

- 

S. polaris 

biomass 

1998-2013 

Mean estimates 

(g.m-2) 

21.3 [10.3:35.6] 14.7 [5.6:26.6] 17.9 [10.7:27.3] 17.1 [11.2:24.7] 

Trend 

(g.m-2/year) 

0.1 [-0.8:1.0] 

 

0.6 [0.3:1.2] 

 

0.4 [-0.3:1.1] 

 

0.2 [-0.3:1.0] 
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All vascular 

plants 

biomass 

1998-2013 

Mean estimates 

(g.m-2) 

36.8 [26.7:49.4] 24.0 [15.7:33.9] 30.1 [19.3:43.5] 37.0 [29.9:45.1] 

Trend 

(g.m-2/year) 

0.4 [-1.2:1.7] 

 

0.9 [0.2:1.6] 

 

0.7 [-0.4:1.7] 

 

0.8 [-0.6:2.1] 

 

a
1988-2014 

* Still increasing trend when considering the same time scale as the biomass measurements 1998-2013 
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Table 2. Parameter estimates β with their associated 95% confidence interval (from 1000 

bootstrap iterations) and test statistics (t and P values) of the top ranked model (using restricted 

maximum-likelihood) from model selection, of S. polaris Ring-Width Index (RWI) during the 

period 1985-2014. The response variable RWI (and the explanatory variable RWt-1, previous 

years’ ring growth) is on the square-root scale.  

Parameter β t P 

Intercept (heath as reference) -0.52 [-1.07:0.02] -1.88 0.06 

Summer temperature (°C) 0.23 [0.13:0.33] 4.52 <0.001 

Habitat (ridge) 0.16 [-0.07:0.39] 1.26 0.23 

RWIt-1 0.67 [0.15:1.20] 2.59 <0.01 

Habitat (ridge) × RWIt-1 -0.17 [-0.33:-0.03] -2.32 <0.05 

Summer temperature × RWIt-1 -0.08 [-0.18:0.01] -1.82 0.07 
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Table 3. Variance partitioning across the different nested ecological factor (i.e. random effects) 

in a linear mixed-effects model where no fixed effects (other than the intercept) were included. 

All three response variables, S. polaris Ring-Width Index (RWI, 1985-2014), S. polaris above-

ground biomass (from heath and ridge habitats combined) and total plant community above-

ground biomass (1998-2009, 2013), were analysed on the square root scale. Numbers in 

parentheses represent the number of levels associated with each ecological factor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Ecological factor Variance 

S. polaris RWI S. polaris biomass Community biomass 

Plant or Plot 0.04 

(30) 

0.12 

(94) 

0.08 

(272) 

Site 0.01 

(10) 

0.15 

(10) 

0.05 

(28) 

Habitat <0.001 

(2) 

<0.001 

(2) 

0.02 

(6) 

Year 0.03 

(30) 

0.01 

(13) 

0.02 

(13) 

Residuals 0.09 

(673) 

0.08 

(1159) 

0.04 

(2158) 
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Figure 1. The study system. (a) The valley of Semmeldalen, central Spitsbergen, Svalbard, in 

early August 2015. (b) Ridge habitat. (c) Heath habitat. (d) An entire S. polaris individual 

extracted from the ground, illustrating the substantial below-ground part composed of a core 

root, a root collar and nested branches in the ground. (e) The cross-sectional view of a S. polaris 

root (stained thin-section of 20 µm thickness) with an on average radius of 1.125 mm. Note the 

outermost darker ring that represents mid-growing season of year 2015, where the cells are not 

yet fully lignified.  
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Figure 2. Time-series of (a) the mean S. polaris Ring-Width Index (blue line) for the 

Semmeldalen study location in central Spitsbergen, Svalbard, plotted together with the mean 

above-ground biomass of the total vascular plant community (green line) and mean summer 

temperature (June-July-August) (black line). The grey shades represent the standard error of the 

back-transformed estimates, obtained by fitting linear mixed-effects models that account for the 

hierarchical sampling structure. (b) The number of S. polaris cross-sections (i.e. sample depth) 

used to establish a chronology across years.  
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Figure 3. Pairwise relationships between Ring-Width Index of S. polaris, above-ground S. 

polaris biomass and summer temperature (June-July-August) for (a-c) both habitats combined 

and for (d-f) ridge and (g-j) heath separately. Plotted mean values (circles) and associated 

standard errors (whiskers) were estimates from linear mixed-effects models accounting for the 

nested structure of the data and back-transformed from the square-root scale. However, note that 

the correlation coefficients (r) and associated 95% confidence intervals given in each panel were 

calculated from square-root transformed values.   
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Figure 4. Relationships between S. polaris Ring-Width Index (RWI) and above-ground plant 

biomass. (a) S. polaris above-ground biomass versus S. polaris RWI in ridge and heath habitats 

combined (triangles): r = 0.56 [0.01:0.85]. (b) Total vascular plant above-ground biomass versus 

S. polaris RWI in ridge and heath habitats combined (open circles): r = 0.67 [0.19:0.89]. (c) 

Total vascular plant above-ground biomass in all six habitats versus S. polaris RWI: r = 0.70 

[0.25:0.90]. Plotted values were estimates from linear mixed-effects models accounting for the 

nested structure of the data, back-transformed from the square-root scale. The correlation 

coefficients and 95% confidence intervals reported were calculated from square-root transformed 

values. 
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Supporting information 

Additional supporting information is provided in a separated document: 

Appendix I. Building the Salix polaris ring growth chronology. 

Table S1. Comparison of different methods of ring-width standardisation.  

Table S2. List of all predictors and their interactions proposed in the model selection step 

Table S3. Summary table of the top models (Δ AICc < 2) from the model selection.  

Table S4. Summary table of the top ranked models (Δ AICc < 2) from the model selection 

including reindeer abundance. 

Fig. S1. Graphical summary of the balanced sampling design. 

Fig. S2. Graphical presentation of the three cross-dating steps performed on Salix polaris. 

Fig. S3. Salix polaris tree-ring chronology standardisation steps. 

Fig. S4. Frequency distributions of the data. 

Fig. S5. Pearson’s correlation coefficients between the S. polaris ring growth chronology and 

summer monthly temperature and precipitation. 

Fig. S6. Time-series from the ring growth curves and above-ground biomass of S. polaris 
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estimated for the ridge and heath habitat.  

Fig. S7. Graphical representation of interaction effects.  


