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19 Abstract

20 Models and tools are used to estimate greenhouse gas (GHG) emissions in agriculture from 

21 management processes when measurements are not available. The Cool Farm Tool is widely 

22 used by farmers for this purpose. Previously, methods to calculate emissions from crop 

23 production have been presented; this paper focuses on the livestock part of the tool. GHG 

24 emissions from livestock include enteric methane emissions from ruminants, nitrous oxide 

25 and methane emissions from manure management, land use and land-use change, feed 
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26 production, processing and transport. A case study is presented of 10 large-scale egg 

27 producers, who used the Cool Farm Tool over three years to calculate their emissions. The 

28 highest GHG emissions were produced through feed, followed by transport and manure 

29 management. Through using the tool, the farmers became aware of the sources of emissions 

30 in egg production and without targets, took action to reduce emissions. The results show that 

31 the averaged GHG emissions decreased over the three years of the study by nearly 25%.

32

33 Key words: Cool Farm Tool, greenhouse gases, egg production, mitigation

34

35

36 1. Introduction

37 Agriculture and forestry produce around a quarter of all anthropogenic greenhouse gas 

38 (GHG) emissions (IPCC, 2014). This includes emissions from deforestation and agricultural 

39 emissions from livestock, soil and nutrient management. It is crucial to use mitigation 

40 practices and explore new possibilities to reduce GHG emissions in order to keep agricultural 

41 land productive and sustainable over long periods. Identifying GHG emissions from current 

42 practices is the first step in understanding agricultural management and their impact on the 

43 environment. 

44

45 In order to help farmers, consumers and stakeholders to understand the sources of GHG 

46 emissions from production and show opportunities of mitigation potential, several models 

47 and tools have been created. Several GHG calculators exist for different kinds of users, some 

48 of which were reviewed and compared in Colomb et al. (2012) and Whittaker et al. (2013). 

49 The models target different aspects of agricultural emissions, use methods ranging from 

50 IPCC Tier 1 models (IPCC, 2006) to detailed biogeochemical models (DNDC, Li et al., 
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51 2010), and from individual processes such as soil microbial decomposition (RothC, Coleman 

52 and Jenkinson, 1999) to the regional scale (Ex-Ante Carbon-balance Tool, EX-ACT 2010), 

53 Comet-planner for USA (Comet-planner, 2012), GHGProtocal – Agricultura for Brazil (GHG 

54 Protocol, 2003).

55

56 This paper presents a case study using the Cool Farm Tool (CFT) (Hillier et al. 2011) which 

57 is a GHG emissions calculator developed for use by farmers, and has been widely used and 

58 adopted by farmers and other supply chain actors. It consists of a generic set of empirical 

59 models to estimate full farm-gate product emissions, constituting a mix of Tier 1, Tier 2, and 

60 simple Tier 3 approaches (see IPCC, 1997 for definition of tiers for GHG estimation in 

61 national greenhouse gas inventories). 

62

63 Livestock production is a large contributor to global anthropogenic non-carbon dioxide (CO2) 

64 GHGs through enteric methane (CH4) emissions from ruminants, and nitrous oxide (N2O) 

65 emissions from pasture fertilization and manure management. The non-CO2 GHGs, CH4 and 

66 N2O, have a higher global warming potential (GWP) some 25-34 and 298-310 times more 

67 potent than CO2, respectively, over a 100 year horizon (IPCC, 2007, 2014). Further sources 

68 of GHGs from livestock are land use and land-use change, feed production, processing and 

69 transport. Land-use change from forest or other natural vegetation to pasture and arable land 

70 for feed production can have a large impact on the GHG emissions through carbon release 

71 from soils and vegetation (Steinfeld et al., 2006).

72

73 GHG emissions from livestock differ widely for different animal types and range from very 

74 high emissions for ruminant products like beef (ca. 20 – 60 kg CO2eq kg-1), sheep and goat 

75 meat (ca. 20 – 50 kg CO2eq kg-1), through pork (ca. 3 – 11 kg CO2eq kg-1) to much lower 
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76 emissions for poultry products like poultry meat (ca. 2 – 7 kg CO2eq kg-1) and eggs (ca. 1 - 5 

77 kg CO2eq kg-1) (Bellarby et al. 2013, Dudley et al., 2014, Ripple et al. 2014). Reducing GHG 

78 emissions intensity in the livestock sector (emissions per unit of product) is mainly linked to 

79 an increase in production, but it is often unclear if this really does decrease emissions per 

80 animal because of additional feed production and related land use change (Audsley and 

81 Wilkinson, 2014, Flysjö et al., 2012). The studies general vary in their life cycle assessment 

82 (LCA) boundaries, which makes it difficult to compare the study outcomes.

83

84 Egg production is a fast growing industry with an increase globally from 51 million tonne 

85 eggs in 2000 to 68 million tonnes in 2013 (FAOSTAT, 2016). Egg and poultry systems 

86 generally emit less GHG emissions than ruminants since there is no enteric fermentation 

87 (Bellarby et al., 2013, Herrero et al., 2013). There are a few studies analyzing the impact of 

88 egg production and these studies vary in terms of LCA boundaries and the production 

89 systems. The studies include egg production in Sweden (1.4 kg CO2eq kg-1 egg, Cederberg et 

90 al., 2009), Australia (1.3 – 1.6 kg CO2eq kg-1 egg, Wiedemann and McGahan, 2010), the UK 

91 (2.92 – 6.18 kg CO2eq kg-1 egg, Leinonen et al., 2012, Williams et al., 2006), the Netherlands 

92 (2.2 - 2.7 kg CO2eq kg-1 egg, Dekker et al., 2011) and the USA (5 kg CO2eq kg-1 egg, 

93 Pelletier et al., 2013) for intensive and free-range egg production, but less for organic 

94 production (2.5 - 3.42 kg CO2eq kg-1 egg, Dekker et al., 2011, Leinonen et al., 2012). 

95

96 The 10 large-scale egg suppliers presented in this case study collectively produce over 600 

97 million eggs per year. In our study period from 2010-2012, the farmers used the CFT to 

98 calculate the overall emissions of their operations and receive a breakdown of emissions by 

99 source. The farmers engaged as a group to encourage the processes of learning about carbon 

100 footprinting, collecting comprehensive and accurate data, and understanding which practices 
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101 can reduce emissions - all of which require active participation and engagement. There were 

102 no external targets imposed on the farmers to reduce emissions, but through the annual 

103 assessments and annual meetings, farmers were able to compare their performance to each 

104 other and learn new techniques for reducing their farm’s carbon footprint and improving the 

105 overall sustainability of their operations. 

106

107 This paper presents a revision of the livestock module of the CFT and the results of a case 

108 study of 10 large-scale egg producers, and how the results were used to identify and 

109 implement mitigation options adapted to the specifics of their farm practices and location.  

110

111 2. Material and Methods

112 2.1 Cool Farm Tool 

113 The CFT calculates GHG emissions from multiple sources from agriculture including soil 

114 management, fertilizer and pesticide use, energy use, residue management, irrigation and 

115 livestock management, which produce emissions of CO2, CH4 and N2O (Hillier et al. 2011). 

116 The livestock module of the CFT is an integrated package that incorporates several key 

117 sources of GHGs to produce a GHG profile for a given product, as a function of location and 

118 management practice.

119

120 2.2 Cool Farm Tool livestock module

121 The model integrates several established “off-the-shelf” empirical models for GHG emissions 

122 with data input broken down into several sections. In the following section the module for 

123 livestock and farm management is explained. 

124

125 2.2.1 Livestock
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126 The CFT module is derived in large part from the IPCC Tier 1 and 2 methods. The Tier 1 

127 inventory method for emissions from livestock is a function of animal numbers (IPCC, 2006), 

128 but for beef and dairy cattle and other ruminant species, the IPCC also offers Tier 2 methods 

129 to estimate feed requirements as a function of management and production, through which 

130 emission factors for enteric fermentation can be refined. The CFT implementation allows 

131 options for the user depending on the level of data available and detail required for their 

132 assessment. For dairy cows, the tool allows dry matter intake to be estimated as a function of 

133 milk production, and the option to correct for fat and protein content.

134

135 Manure

136 Emission factors for manure management (Table 1) of the different animal types are based on 

137 IPCC (2006, Table 10.18) with the exception of composting, for which non-forced aeration 

138 composting is substituted for passive windrows, and relative figures for forced-aeration 

139 composting were determined according to Brown et al. (2009). The figures for methane and 

140 direct nitrous oxide emissions for composting are given in Table 2.

141

142 Feed

143 Emissions from feed depend on the feed mix, and the specifics of cultivation of the feed 

144 constituents. For specific assessments where there is good knowledge of the suppliers’ 

145 practices, the tool can be used to determine embedded emissions in feed components. Failing 

146 this, a model derived from Lal (2004), Hillier et al. (2009) and IFA (IFA, 2016) management 

147 statistics is used for a range of crops commonly used in livestock feed: 

148

149 𝐸𝐸 𝑘𝑔𝐶𝑂2𝑒𝑞 𝑡 𝑑.𝑚. = (160.4 + 20.5 × 𝐶𝑝 + 4.95 × 𝑁 + 0.73 × 𝑃 + 0.545 × 𝐾) 𝑌 

150
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151 where EE is the embedded emissions in each feed constituent, Cp is the number of doses of 

152 pesticide (herbicide, insecticide, fungicide, nematicide, etc.), N is the applied nitrogen, P is 

153 the applied phosphorous, and K is the applied potassium, all in kg ha-1, and Y is the yield in 

154 tonnes per ha. The value of 160.4 kg ha-1 is an estimate of emissions per ha from the fuel 

155 used for common agricultural machinery operations such as tillage, cultivation, and 

156 harvesting according to Hillier et al. (2009), derived from the average across the 54 farms in 

157 that study. The value of 20.5 is an emissions factor estimated for pesticide or herbicide use, 

158 per application/ha, as noted above, following Audsley (1997). The values: 4.95, 0.73, and 

159 0.545 are the averages of low and high emissions factors for the production of elemental N, 

160 P, and K respectively in fertilizer from Lal (2004). 

161

162 For the default values embedded in the tool given in Table 3, we obtained fertilizer use 

163 statistics from the IFA (IFA, 2016), and assumed 2.5 doses of pesticide/herbicide per growing 

164 season as an average across crops. These assumptions and coefficients are explicit in the CFT 

165 and can be modified by the user to produce a more regionally accurate list of crop emission 

166 estimates, even if no specific field level management practice information is available.

167 There is currently no dataset of GHG emissions from feed publically available for North 

168 America or organic feed. When available, it will be included in the tool. The results therefore 

169 provide an estimate of total absolute feed emissions, but the changes are over the three years 

170 are robust, as they reflect the changes in management by the farmers, irrespective of the 

171 absolute values.

172

173 2.2.2 Direct energy use

174 Emissions from on-site machinery and other direct energy use are described in Hillier et al. 

175 (2011). This includes a model for fuel use from farm machinery operations (mostly derived 
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176 from ASABE, 2006). For other energy use, most figures come from GHG Protocol (2003), or 

177 from Ecoinvent (2007) for renewable electricity emissions. Electricity emissions are country 

178 specific for 133 countries and 50 US states plus the District of Columbia. Data for emissions 

179 from electricity production are from the IEA (2011) and the USEPA (2007).

180

181 2.2.3 Transport

182 Transport of feed, produce, or other materials off the farm is also incorporated. The options 

183 of road, rail, air or ship are provided using the formula:

184

185 Emissions (kg CO2 eq) = cVEH × cVW × distance (KM) × mass transported (t)

186

187 with cVEH  (GHG Protocol, 2003) and cVW a coefficient accounting for truck weight set to 4/3 

188 for single journeys and 5/3 if the vehicle is returning empty, assuming that an empty truck 

189 weighs 1/3 of a fully laden truck.

190

191 2.3 Egg production – case study

192 Data was collected from 10 organic egg farms across the USA in September from 2010-2012. 

193 Farmers were asked to provide specific information on all aspects of hen and egg production 

194 to estimate their GHG emissions associated with: (1) the production of feed components, 

195 such as maize and soy, for both pullets and adult hens; (2) transportation of feed components 

196 from the field to the mill, and from the mill to the poultry farms; (3) energy used by the mill 

197 for processing grains and other components into feed; (4) energy used in the brooder building 

198 for care of new chicks, including electricity and heating fuel; (5) transportation of pullets to 

199 the layer houses, and transport of eggs to processing for those farms that did not use conveyor 

200 belts to transport eggs to processing (washing, grading, packing). In 2011, the project added 
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201 transport of eggs from the farm or processing facility to the final retail outlet; (6) energy used 

202 for lighting, ventilation, heating and other in-house machinery on the farm; (7) manure 

203 management for all life phases of the hens; (8) energy used for processing (washing and 

204 packing eggs); and (9) composting or incineration of spent hens.

205

206 In 2010, 8 farms participated in the study and from 2011, 10 farms calculated their annual 

207 emissions from egg production. One of the 8 farms underwent changes in their management 

208 in 2010 to increase production, which resulted in variable emissions over the years. In order 

209 to apply a consistent baseline, the results are therefore given totals for 7 farms over the 3 

210 years, and for all farms only in the years 2011 and 2012. In 2011 data from one of the two 

211 new farms was extrapolated for the year from 3 months of actual data. 

212

213 3. Results and Discussion

214 GHG emissions of egg management were calculated with the CFT for the different sections 

215 of management and are presented in the following in kg CO2eq per kg of product (in this case 

216 egg). For this conversion the weight of an average egg is assumed to be 60 g. 

217

218 3.1 GHG emissions by source 

219 3.1.1 Manure

220 Emissions from manure management were highly variable between farms with rates from 

221 close to 0 kg CO2eq kg-1 egg (when the farmer exports manure off farm immediately) up to 

222 around 0.24 kg CO2eq kg-1 egg (Table 4, Figure 1). In this case study, emissions from manure 

223 management essentially depend on the duration for which the manure is held with nearly all 

224 farms storing manure with litter as is typically the case for poultry breeder flocks (IPCC, 

225 2006). Some farms also employed uncovered anaerobic lagoons, characterizing flush systems 



ACCEPTED MANUSCRIPT

10

226 that use water to transport manure to the lagoons, or a daily spread of the manure, where it is 

227 collected in solid form and applied to fields regularly (IPCC, 2006). 

228  

229 A small reduction in emissions from manure management was registered over the 3 observed 

230 years (Table 4, Figure 1). One farm reduced emissions from poultry manure by over 30% by 

231 storing less manure in an anaerobic lagoon. Another achieved a reduction in poultry manure 

232 emissions by having neighboring organic farms pick up the manure earlier in the season 

233 although it is worth noting that if the same storage facility is used on the neighboring farm 

234 this only represents displaced emissions rather than a net reduction. 

235

236 Manure management practices account for 8 to 10% of total emissions on average, and 

237 avoiding prolonged manure build-up can help decrease emissions. The emissions accounted 

238 for in this study are from CH4 and direct and indirect N2O, with methods based on the IPCC 

239 (2006) guidelines for manure management, which have uncertainty ranges of around ±10% to 

240 ±50% (IPCC, 2006). This includes direct emissions N2O of between 0.1% and 1% depending 

241 on the manure management system. Recent studies (Chadwick et al., 2011) show evidence 

242 that between 0.2 and 0.8% of total N is lost as N2O from stored poultry manure heaps – so in 

243 the same range as assumed in the CFT. In addition, Meda et al. (2011) also identified poultry 

244 as a major producer of ammonia (NH3) compared to other livestock systems, whilst relatively 

245 less important for other GHGs. In our method indirect emissions of volatilized N of between 

246 40% and 55% which supports this finding.

247

248 The effect of manure management in egg or poultry production differs for production systems 

249 and depends on handling (Leinonen et al., 2012, Xin et al., 2011). Covering of heaps can 

250 lower NH3 emissions but has no observable effect on N2O emissions (Chadwick et al., 2011). 
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251 The frequency of manure removal can also affect NH3 emissions, and emissions from manure 

252 storage are largely affected by storage conditions (including ventilation rate, manure 

253 moisture, air temperature, stacking profile) (Xin et al., 2011). However, these factors, 

254 although not included in the CFT, have the greatest influence in caged and housing systems, 

255 but do not apply to the farms examined here. Production of manure and its handling on the 

256 farm can be used to reduce emissions by selling poultry manure raw as fertilizer or as a 

257 feedstock for anaerobic digestion, and the production of renewable electricity (Taylor et al., 

258 2014).

259

260 3.1.2 Feed

261 The most important source of GHG emissions in the footprint of eggs according to our study 

262 was for feed production. Emissions from feed were between 0.4 kg CO2eq kg-1 egg and 1 kg 

263 CO2eq kg-1 egg (Table 4, Figure 1). Emissions from feed production include full crop 

264 production including fertilizer use, machinery, emissions from soil and further processing. 

265 The dry matter intake (DMI) ranged from 40 to 72 g day-1 for pullets and 100 to 190 g day-1 

266 for adults. 

267

268 Over the 3 years there was, on average, a decrease in emissions from feed production (Table 

269 4). This reduction was as a result of changes in the components of the feed mix during this 

270 period, usually with a reduction in maize.

271

272 The main feed source is maize with around 50% for adult hens and 55% for pullets (Figure 

273 2). Other feed sources are soybean and wheat and - in smaller amounts - calcium supplement, 

274 fodder legume and oilseed rape. In this study, the range of standard feed types was limited to 

275 that used in the CFT – which provides emission factors for different feed types based on 
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276 average yield and fertilizer use. These generic data are for global averages of inputs across a 

277 broad range of crops and therefore do not consider regional or management based variations 

278 in embedded emissions. As embedded emissions in feed are in reality likely to be quite 

279 variable in relation to the above, a more regionally disaggregated estimate of inputs for main 

280 feed components would be beneficial. 

281

282 We therefore repeated our calculations using more recent and regionally disaggregated data 

283 (Animalchange: Mogensen, 2013). In general, emissions in this database are slightly higher 

284 than those in the CFT (Table 4, Figures 1 and 3). For our comparison, the values for Europe 

285 were used (Table 3) since no data were available for North America, and we considered that 

286 this provided the most comparable set of conditions.  There is no dataset of GHG emissions 

287 from feed available for North America or organic feed; as soon as it exists, it will be included 

288 in the tool to give a more specific estimates in such cases. In spite of an observable difference 

289 in the values (Figure 1), both calculation methods show a substantial reduction in GHG 

290 emissions from feed over the observed years, providing evidence the estimates of changes in 

291 emissions are robust, irrespective of the absolute starting emissions estimates.

292

293 Studies (Meier et al. 2015, Tuomisto et al. 2012) concentrating on the differences between 

294 conventional and organic agriculture showed that the impact on a per area bases organic 

295 systems show lower impacts but higher impacts on a per product bases than conventional 

296 agriculture. Tuomisto et al. (2012) found that organic farms tend to have higher SOC and 

297 lower nutrient loss per unit area. The organic systems have generally lower energy 

298 requirements but a higher land use than conventional agriculture. Considering models which 

299 calculate nitrogen fluxes, Meier et al. (2015) found that they are not well adapted to organic 
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300 fertilizer and build on assumptions of conventional agriculture; improvements in this area is 

301 needed. 

302

303 Over the three years in our study, several farms made relatively simple adjustments to feed 

304 components. For instance, some suppliers decreased the amount of maize and increased the 

305 amount of wheat used in their feed. In North America, wheat is generally grown with lower 

306 inputs of nitrogen fertilizer than maize, resulting in a lower emissions intensity (141 kg 

307 CO2eq per tonne of wheat compared to 271 kg CO2eq per tonne of maize). N.B. we do not 

308 state that this difference between maize and wheat will always be the case, but this effect 

309 highlights the importance of identifying mitigation options which are adapted to farming 

310 practices and location. This substitution reduced livestock feed emissions for one farmer by 

311 32% and enabled them to achieve overall emissions reductions of 30% since 2010. Similarly, 

312 another supplier achieved a 28% reduction in feed-related emissions within the first year by 

313 adopting a higher portion of alfalfa, with an emissions intensity of 20 kg CO2eq per tonne.

314 The transportation of feed from the field to the mill and from the mill to the poultry farm 

315 represents the second most significant source of emissions, after feed production. While some 

316 farmers were located in regions amenable to growing feed crops and with organic feed mills 

317 nearby, others were reliant on having to transport organic feed long distances by road and rail 

318 – sometimes more than 1,600 km. With generally improving trends in vehicle fuel use 

319 efficiency it is to be expected that emissions from these sources, although largely beyond the 

320 influence of the farmer, will decrease over time. 

321

322 Finally, Figure 4 indicates a possible relation between the size of the farm (number of 

323 animals) and the emissions from production and sourcing of feed. It is not possible to 



ACCEPTED MANUSCRIPT

14

324 conclude that such an effect – indicative of an economy of scale – is robust, however, given 

325 the logistical overhead of sourcing large volumes of feed it would not be surprising.

326

327 3.1.3 Field energy use and primary processing

328 Field energy included electricity for housing and feed mill energy as well as field fuel energy 

329 (diesel and propane). The emissions for field energy use per kg egg showed a clear relation to 

330 the number of pullets (Figure 5) with emissions decreasing with number of pullets. This ratio 

331 between pullets and adults reflected whether the farm was growing in size or holding steady. 

332 If the farm was growing, the number of pullets was higher relative to the adults. The energy 

333 on the farms, needed mainly to provide additional heat in the juvenile phase, was less intense 

334 with a larger number of pullets. 

335

336 Energy for primary processing included electricity, gas, diesel and propane with energy 

337 sources for both field energy use and primary processing, and differed across farms 

338 contributing to a range of emissions. Emissions for field energy use ranged from around 0 to 

339 0.5 kg CO2eq kg-1 egg, and emissions for primary processing were between 0.01 and 0.16 kg 

340 CO2eq kg-1 egg. There was, on average, a decreasing trend over the three years. Only one 

341 farm was able to show a dramatic 48% decrease in primary processing and a 12% reduction 

342 in housing energy. Nevertheless the ranking of the farms was preserved and farms with 

343 relatively high emissions for primary processing in the first year were still so in year 3. The 

344 same result can be seen for the field energy use, and is indicative, that in spite of the efforts 

345 of the farmers, some farms had intrinsically higher emissions than others due to exogenous 

346 variables, or else were dependent on agricultural and processing machinery that would be 

347 costly to replace, meaning that barriers to reduction were high. 

348
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349 Energy provision is known to be a major source of GHG emissions in egg production 

350 (Leinonen et al. 2012, Xin et al. 2011). Energy sources differ between processes and can 

351 influence the GHGs produced. For example, Cederberg et al. (2009) reported that oil for 

352 heating is mostly used in slaughter chicken production; in chicken stables mostly bio-fuel is 

353 used and heating in the first weeks after hatching is provided mostly by electricity. The farms 

354 in the case study use different sources, or a combination between fuel (diesel or petrol) and 

355 electricity sources. The correlation between electricity use and pullets suggests that there is a 

356 minimum scale required to make it more economically viable to use electricity. For example 

357 those farms that use conveyor belt to transport the eggs from hen houses to processing are 

358 locked into a higher level of electricity use.

359

360 3.1.4 Transport

361 We included both transport of the animals and feed in our analysis. Since emissions are 

362 proportional to fuel use, and fuel use is primarily a function of distance travelled, emissions 

363 from transport reflected the distance to the mills or the shops. There is little scope, therefore, 

364 for a farmer to change them unilaterally. Lack of availability of local organic feed was a 

365 major challenge for some farmers and caused one farm in particular to have more than twice 

366 the average transport-related emissions of the others. However, other farms were able to 

367 achieve transportation-related emission reductions, with one farm reducing transport 

368 emissions by 30% as a result of sourcing a higher percentage of feed more locally. These 

369 effects illustrate that the consequences of adhering to ideologies of “organic” and “locally-

370 sourced” as proxies for “environmentally friendly” are not always evident, and may indeed 

371 lead to contradictory effects. One very significant observation from our case study which 

372 perhaps demonstrates the effectiveness of the peer group approach to mitigation, via the use 

373 of decision support tools, is that at least two of the farms are now planning to build their own 
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374 onsite feed mills. Such a measure, although requiring significant investment and up-front 

375 carbon cost, would be projected to cut their transport related emissions by nearly a third.

376

377 3.2 Total GHG emissions

378 Total GHG emissions of egg production ranged from around 0.7 to 1.8 kg CO2eq kg-1 egg 

379 including manure management, feed, energy use, primary processing and off-farm transport 

380 (Figure 1 and 3, Table 4). The highest emissions came from feed, field energy use and 

381 transport. Using the Animalchange data (Mogensen, 2013) for feed resulted in an increase of 

382 ~20% in estimated total GHG emissions. The highest emissions are recorded in the first year 

383 for most farms and the biggest differences from farm to farm resulted from field energy use 

384 and transport. The biggest reduction in GHG emissions came via reduced emissions from 

385 feed production and transport. Emissions from “spent hen management” (disposal of 

386 carcasses) were reported only for a few farms and therefore, not included in the totals. The 

387 GHG emissions from this process were very low on average, around 0.001 kg CO2eq kg-1 

388 egg.

389

390 In general, there are limited studies which focus on GHG emissions from egg production with 

391 which to compare our findings. These studies vary in terms of the life cycle assessment LCA 

392 boundaries, and the production systems: In 2009 a Swedish study calculated 1.4 kg CO2eq kg-

393 1 egg to the farm gate (Cederberg et al., 2009), which is within the range of the calculated 

394 GHG emissions of this study. A summary of GHG emissions from livestock (Bellarby et al., 

395 2013) show generally higher emissions compared to this study from 4.4 – 6.18 kg CO2eq kg-1 

396 egg for UK (Williams et al., 2006), 3.9 – 4.9 kg CO2eq kg-1 egg for European countries (De 

397 Vries and De Boer, 2010) and 1.6 – 2.9 kg CO2eq kg-1 egg for EU27 (Lesschen et al., 2011, 

398 Weiss and Leip, 2012). One study estimated a global average for poultry meat and egg of 3.7 
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399 kg CO2eq kg-1 edible protein, equating to 0.411 kg CO2eq kg-1 (Herrero et al., 2013) which 

400 gives therefore, a much lower estimate for egg production. A report on Australian egg 

401 production made the distinction between caged housing and free range egg production, 

402 resulting in 1.3 kg CO2eq kg-1 egg and 1.6 kg CO2eq kg-1 egg, respectively (Wiedemann and 

403 McGahan, 2010). There are two studies comparing the total GHG emissions from different 

404 egg production systems including organic egg production, which have slightly different 

405 outcomes. Leinonen et al. (2012) found the lowest GHG emissions for caged production in 

406 the UK (2.92 kg CO2eq kg-1 egg), followed by free range (3.38 kg CO2eq kg-1 egg) and 

407 highest emissions for organic (3.42 kg CO2eq kg-1 egg) and barn (3.45 kg CO2eq kg-1 egg) 

408 eggs. Dekker et al. (2011) in a Netherlands-based study, also found the lowest emissions for 

409 caged production (2.2 kg CO2eq kg-1 egg), but highest emissions for barn (2.6 kg CO2eq kg-1 

410 egg) and free range (2.7 kg CO2eq kg-1 egg) production; organic egg production (2.5 kg 

411 CO2eq kg-1 egg) is in-between. Both studies included transport, and embedded emissions in 

412 feed had the highest impact on the results. Organic production showed higher GHG emissions 

413 than caged production due to higher use of feed resources. As a consequence, each egg 

414 production system has different impacts on the environment and need to be investigated 

415 separately to focus on different economic aspects or sustainability, and therefore potentially 

416 requires a different set of mitigation options (Xin et al., 2011). 

417

418 The above studies differ not only in terms of the egg production systems and the different 

419 LCA approaches, but also in terms of the geographic regions studied. Notably, emissions 

420 were much smaller for Australia than for European countries. Results from the Australian 

421 study should mainly be compared with the findings for other organic egg production systems, 

422 however, the results for the UK and the Netherlands also differ by around 1 kg CO2eq kg-1 

423 egg, so such comparison is not straightforward. As a consequence of similar constraints due 
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424 to EU restrictions, the latter studies result in substantially higher emissions than in the 

425 Australian example. A comparable study to ours is one from the U.S., where 5 kg CO2eq kg-1 

426 egg is estimated for intensive egg production for the Midwest (Pelletier et al., 2013). These 

427 high emissions result from feed concentrate including ruminant by-product meal and 

428 ruminant fat. The same study concludes that by changing the protein source to non-animal 

429 by-products, total GHG emissions could be reduced to 1.5 kg CO2eq kg-1 egg, which is in the 

430 range of this study (0.9 – 1.5 kg CO2eq kg-1 egg on average).

431

432 In all studies, feed is the most influential factor. Feed not only produces the highest GHG 

433 emissions in the LCA of egg production, but the opportunities for reducing the emissions 

434 from feed are numerous. One of the biggest factors is the feed source. As shown above, GHG 

435 emissions from animal by-products are much higher than from other plant sources. This is 

436 especially true for ruminants where emissions are some 19-48 times higher than other high 

437 protein foods. Total emissions from non-ruminants average between 3-10 times higher than 

438 high-protein plant food plans (Ripple et al., 2014). This consideration includes both direct 

439 and indirect environmental effects for enteric fermentation, manure, feed, fertilizer, 

440 processing, transportation and land-use change. So changing the feed source to non-animal 

441 by-products has a large impact on the total GHG emissions. Other protein sources for poultry 

442 include worms produced by organic waste and algae produced in biological CO2-absorption 

443 systems (Taylor et al., 2014). Such systems perhaps offer significant potential to dramatically 

444 reduce total GHG emissions from poultry, if such practices can achieve sufficient scale.

445

446 The feed sources in this study and the majority of the above studies are plant based and 

447 include maize, wheat, soy and other crop products. There are opportunities in the production 

448 process of these feed sources to reduce GHGs, for example through fertilizer management to 
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449 reduce N2O emissions, or change of soil management to increase soil carbon (Smith et al., 

450 2008). Also, the transport for feed production can be minimized if the feed can be sourced 

451 locally.

452

453 Additional improvements to production processes can bring about significant emissions 

454 reductions. For example, that farm that decreased emissions from energy used in its 

455 processing facilities by 48% did so by consolidating two buildings and introducing more 

456 efficient technology, including simple fixes such as installing skylights for increased heat.

457

458 Emissions were estimated using production practices on surveyed working farms, and a 

459 widely employed GHG calculator which has been designed to be usable by farmers. The 

460 main findings of the case studies were that (1) there is substantial variability across the farms 

461 due to differences in various aspects of management, and (2), a consistent decrease in 

462 emissions occurred between Year 1 and Year 3 of the study.

463

464 Overall, our study showed no relation between the GHG emissions per unit product and the 

465 farm size (number of animals/ production of eggs). There has been a study by Yue et al. 

466 (2017) that showed the effect of the farm scale on GHG emissions with higher emissions for 

467 small-scaled farms (< 1000 head) and lower emissions for medium- and large-scaled (> 

468 10000 head) farms in China. Such a trend could not be found in this study beside the relation 

469 between energy use and number of pullets.

470

471 The totals per product showed, for nearly all farms, a large to modest reduction of GHG 

472 emissions. On average, the total emissions decreased for the 7 farms from 2010 to 2011 by 

473 23% (13% with feed update) and from 2011 to 2012 by 2% (10% with feed update). Overall, 
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474 the GHG emissions decreased by nearly 25% over the 3 observed years. Considering all 8 

475 farms, which were involved in the study from 2010, the average reduction in GHG emissions 

476 was 14.6% over the 3 years. For the single farms the reduction in GHG emissions range 

477 between 4% and 33% over the time of the study. For all 10 farms, the GHG emissions 

478 decreased from 2011 to 2012 by 2% (7% with feed update). The smaller reduction on average 

479 between the second and third years resulted since more essential management changes were 

480 implemented between years 1 and 2. This occurs without the explicit setting of emission 

481 reduction targets, but simply through use of a practical decision support tool quantifying 

482 emission sources and allowing efficiency gains to be identified and then realized. The fact 

483 that some farmers attitudes shifted during the 3 years as far as having the intention to adopt 

484 measures requiring significant upfront cost, such as the development of on-site feed mills, is 

485 evidence that the process adopted in the case study is effective in overcoming one of the main 

486 barriers to adoption of behavioral change.

487

488 4. Conclusion

489 The main source of GHG emissions in egg production is feed, followed by transport, energy 

490 use and manure management. All of these processes are accounted for in the CFT. Since 

491 livestock feed is the most significant contributing factor to emissions on most poultry farms, 

492 it should be a priority for further investigation as a mitigation option as well as a priority to 

493 continue to develop regional databases for feed emissions to include in and improve such 

494 tools as the CFT. The use of the CFT for egg farmers to calculate the GHG emissions helped 

495 farmers identify effective mitigation options and the process by which the tool was trialed, 

496 and learnings shared among the peer group appears effective at enabling behavior change. 

497 The detail provided by the CFT about emission sources, along with training from the 
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498 Sustainable Food Lab and demand signal from the buyer for environmentally improved 

499 product, inspired the supplier interest and encouraged the farmers to reduce GHGs.

500

501 Acknowledgments

502 The case study in this paper includes 10 large-scale organic egg suppliers of Costco, who 

503 engaged its entire supply base to measure the GHG emissions associated with the production 

504 of organic eggs. Working in collaboration with the Sustainable Food Lab and using the CFT, 

505 the project seeks to spur reductions in emissions and introduce more sustainable production 

506 practices – from farm to shelf. We thank Costco and the 10 farmers for participating and for 

507 providing the data used in this study.

508

509

510 References

511 ASABE, 2006. Agricultural machinery management data. American Society of Agricultural 

512 and Biological Engineers Standard ASAE EP496.3 ASABE, St Joseph, MI, USA (2006) pp. 

513 385–390. 

514

515 Audsley, E., 1997. Harmonisation of environmental life cycle assessment for agriculture. 

516 Final Report, Concerted Action AIR3-CT94-2028. European Commission, DG VI 

517 Agriculture, 139 p. 

518

519 Audsley, E., Wilkinson, M., 2014. What is the potential for reducing national greenhouse gas 

520 emissions from crop and livestock production systems? J. Clean. Prod. 73, 263-268.

521



ACCEPTED MANUSCRIPT

22

522 Bellarby, J., Tirado, R., Leip, A., Weiss, F., Lesschen, J.P., Smith, P., 2013. Livestock 

523 greenhouse gas emissions and mitigation potential in Europe. Global Change Biol. 19, 3-18. 

524

525 Brown, S., Cotton, M., Messner, S., Berry, F., Norem, D., 2009. Methane avoidance from 

526 composting. Issue paper for the Climate Action Reserve. 

527

528 Cederberg, C., Sonesson, U., Henriksson, M., Sund, V., Davis, J., 2009. Greenhouse gas 

529 emissions from Swedish production of meat, milk and eggs 1990 and 2005. SIK Report No 

530 793, SIK-Institutet för livsmedel och bioteknik.

531

532 Chadwick, D., Sommer, S., Thorman, R., Fangueiro, D., Cardenas, L., Amon, B., 

533 Misselbrook, T., 2011. Manure management: Implications for greenhouse gas emissions. 

534 Anim. Feed Sci. Technol. 166-167, 514-531. 

535

536 CFT, 2016. http://www.coolfarmtool.org [accessed 20/09/2016].

537

538 Coleman, K., Jenkinson, D., 1999. ROTHC-26.3. A Model for the Turnover of Carbon in 

539 Soil. Model Description and Windows Users Guide. Harpenden. 

540

541 Colomb, V., Bernoux, M., Bockel, L., Chotte, J., Martin, S., Martin-Phipps, C., Mousset, J., 

542 Tinlot, M., Touchemoulin, O., 2012. Review of GHG calculators in agriculture and forestry 

543 sectors. A guideline for appropriate choice and use of landscape based tools. ADEME, IRD, 

544 FAO

545

546 Comet-planner 2012. http://www.comet-planner.com/ [accessed 20/09/2016].

http://www.coolfarmtool.org
file:///C:/Users/s03sv2/My_work/CostCo%20Eggs/paper/www.comet-planner.com/


ACCEPTED MANUSCRIPT

23

547

548 De Vries, M., De Boer, I., 2010. Comparing environmental impacts for livestock products: A 

549 review of life cycle assessments. Livestock science. 128, 1-11.

550

551 Dekker, S.E.M., de Boer, I.J.M., Vermeij, I., Aarnink, A.J.A., Koerkamp, P.W.G.G., 2011. 

552 Ecological and economic evaluation of Dutch egg production systems. Livestock Science. 

553 139, 109-121. 

554

555 Dudley, Q.M., Liska, A.J., Watson, A.K., Erickson, G.E., 2014. Uncertainties in life cycle 

556 greenhouse gas emissions from U.S. beef cattle. J. Clean. Prod. 75, 31-39.

557

558 Ecoinvent, 2007. Ecoinvent data v2.0. Ecoinvent reports No. 1e25, Swiss

559 Centre for Life Cycle Inventories, Dübendorf, 2007. http://www.

560 ecoinvent.org [accessed 09/09/2016].

561

562 EX-ACT 2010. http://www.fao.org/tc/exact/ex-act-home/jp/ [accessed 20/09/2016].

563

564 FAOSTAT, 2016. http://faostat3.fao.org/ [accessed 20/09/2016].

565

566 Flysjö, A., Cederberg, C., Henriksson, M., Ledgard, S., 2012. The interaction between milk 

567 and beef production and emissions from land use change – critical considerations in life cycle 

568 assessment and carbon footprint studies of milk. J. Clean. Prod. 28, 134-142.

569

570 GHG Protocol, 2003. Emissions Factors from Cross-Sector Tools. December 2010. 

571 http://www.ghgprotocol.org [accessed 20/09/2016].

file:///C:/Users/s03sv2/My_work/CostCo%20Eggs/paper/www.fao.org/tc/exact/ex-act-home/jp/
http://faostat3.fao.org/
http://www.ghgprotocol.org


ACCEPTED MANUSCRIPT

24

572

573 Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M.C., Thornton, P.K., Blümmel, 

574 M., Weiss, F., Grace, D., Obersteiner, M., 2013. Biomass use, production, feed efficiencies, 

575 and greenhouse gas emissions from global livestock systems. Proceedings of the National 

576 Academy of Sciences. 110, 20888-20893. 

577

578 Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S., Smith, P., 2009. The carbon footprints 

579 of food crop production. International Journal of Agricultural Sustainability. 7, 107-118. 

580

581 Hillier, J., Walter, C., Malin, D., Garcia-Suarez, T., Mila-i-Canals, L., Smith, P., 2011. A 

582 farm-focused calculator for emissions from crop and livestock production. Environmental 

583 Modelling & Software. 26, 1070-1078.

584

585 IEA, 2011. CO2 Emissions from Fuel Combustion. International Energy Agency, Paris, 

586 available at www.iea.org/media/statistics/co2highlights.pdf [last accessed 09/09/2016].

587

588 IFA, 2016. http://www.fertilizer.org/ifa/Home-Page/LIBRARY/Our-selection2/World-

589 Fertilizer-Use-Manual/by-type-of-crops [accessed 20/09/2016].

590

591 IPCC, 1997. An Introduction to Simple Climate Models, in: Houghton, J. T., Filho, L. G. M., 

592 Griggs, D. J., Maskell, K. (Eds.) IPCC Second Assessment Report. Intergovernmental Panel 

593 on Climate Change.

594

file:///C:/Users/s03sv2/My_work/CostCo%20Eggs/paper/www.iea.org/media/statistics/co2highlights.pdf
file:///C:/Users/s03sv2/My_work/CostCo%20Eggs/paper/www.fertilizer.org/ifa/Home-Page/LIBRARY/Our-selection2/World-Fertilizer-Use-Manual/by-type-of-crops
file:///C:/Users/s03sv2/My_work/CostCo%20Eggs/paper/www.fertilizer.org/ifa/Home-Page/LIBRARY/Our-selection2/World-Fertilizer-Use-Manual/by-type-of-crops


ACCEPTED MANUSCRIPT

25

595 IPCC, 2006. IPCC 2006 Revised Good Practice Guidelines for Greenhouse Gas Inventories. 

596 Intergovernmental Panel on Climate Change (IPCC), Institute for Global Environmental 

597 Strategies, Tokyo, Japan. 

598

599 IPCC, 2007. Climate Change 2007: The Physical Science Basis. Contribution of the Working 

600 Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 

601 Cambridge University Press, Cambridge, UK and New York, USA.

602

603 IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working 

604 Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 

605 [Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, 

606 A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlömer, S., von 

607 Stechow, C., Zwickel, T.,Minx, J.C. (eds.)]. 

608

609 Lal, R., 2004. Carbon emission from farm operations. Environ. Int. 7, 981-990. 

610

611 Leinonen, I., Williams, A.G., Wiseman, J., Guy, J., Kyriazakis, I., 2012. Predicting the 

612 environmental impacts of chicken systems in the United Kingdom through a life cycle 

613 assessment: Egg production systems. Poultry Science. 91, 26-40. 

614

615 Lesschen, J.P., van den Berg, M., Westhoek, H.J., Witzke, H.P., Oenema, O., 2011. 

616 Greenhouse gas emission profiles of European livestock sectors. Anim. Feed Sci. Technol. 

617 166-167, 16-28. 

618



ACCEPTED MANUSCRIPT

26

619 Li, H., Qiu, J., Wang, L., Tang, H., Li, C., Van Ranst, E., 2010. Modelling impacts of 

620 alternative farming management practices on greenhouse gas emissions from a winter wheat-

621 maize rotation system in China. Agric. Ecosyst. Environ. 135, 24-33. 

622

623 Meda, B., Hassouna, M., Aubert, C., Robin, P., Dourmad, J.Y., 2011. Influence of rearing 

624 conditions and manure management practices on ammonia and greenhouse gas emissions 

625 from poultry houses. Worlds Poult. Sci. J. 67, 441-456. 

626

627 Meier, M.S., Stoessel, F., Jungbluth, N., Juraske, R., Schader, C., Stolze, M., 2015. 

628 Environmental impacts of organic and conventional agricultural products – Are the 

629 differences captured by life cycle assessment? J. Environ. Manage. 149, 193-208.

630

631 Mogensen, L., Lesschen, J. P., Klumpp, K., Hutchings, N., Stienezen, M., Eory, V., Lecomte, 

632 P., Olesen, J., 2013. Compiled database on LCA (Life Cycle Assessment) coefficients for 

633 including pre-chain emissions in LCA of animal products. Deliverable 10.2. Animal Change 

634 project. Theme 2: Food, Agriculture and Fisheries, and Biotechnologies. Seventh Framework 

635 Programme. Available at: www.animalchange.eu/Content/deliverables.html [accessed 

636 09/09/2016].

637

638 Pelletier, N., Ibarburu, M., Xin, H., 2013. A carbon footprint analysis of egg production and 

639 processing supply chains in the Midwestern United States. J. Clean. Prod. 54, 108-114. 

640

641 Ripple, W.J., Smith, P., Haberl, H., Montzka, S.A., McAlpine, C., Boucher, D.H., 2014. 

642 Ruminants, climate change and climate policy. Nature Clim. Change. 4, 2-5. 

643

http://www.animalchange.eu/Content/deliverables.html


ACCEPTED MANUSCRIPT

27

644

645 Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., 

646 O'Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., 

647 Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J., 2008. 

648 Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society B: 

649 Biological Sciences 363, 789-813. 

650

651 Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., de Haan, C., 2006. 

652 Livestock’s long shadow – Environmental issues and options, FAO, Rome. 

653

654 Taylor, R.C., Omed, H., Edwards-Jones, G., 2014. The greenhouse emissions footprint of 

655 free-range eggs. Poultry Science 93, 231-237. 

656

657 Tuomisto, H.L., Hodge, I.D., Riordan, P., Macdonald, D.W., 2012. Does organic farming 

658 reduce environmental impacts? – A meta-analysis of European research. J. Environ. Manage. 

659 112, 309-320.

660

661 USEPA, 2007. http://www.epa.gov/energy/egrid [accessed 09/09/2016].

662

663

664 Weiss, F., Leip, A., 2012. Greenhouse gas emissions from the EU livestock sector: A life 

665 cycle assessment carried out with the CAPRI model. Agric. Ecosyst. Environ. 149, 124-134. 

666

667 Whittaker, C., McManus, M.C., Smith, P., 2013. A comparison of carbon accounting tools 

668 for arable crops in the United Kingdom. Environmental Modelling & Software 46, 228-239. 

file:///C:/Users/s03sv2/My_work/CostCo%20Eggs/paper/www.epa.gov/energy/egrid


ACCEPTED MANUSCRIPT

28

669

670 Wiedemann, S.G., McGahan, E.J., 2010. Environmental Assessment of an Egg Production 

671 Supply Chain using Life Cycle Assessment. A report for the Australian Egg Corporation 

672 Limited, Sydney, Australia. 

673

674 Williams, A.G., Audsley, E., Sandars, D.L., 2006. Determining the Environmental Burdens 

675 and Resource Use in the Production of Agricultural and Horticultural Commodities, Bedford, 

676 UK. 

677

678 Xin, H., Gates, R.S., Green, A.R., Mitloehner, F.M., Moore, P.A., Wathes, C.M., 2011. 

679 Environmental impacts and sustainability of egg production systems. Poultry Science. 90, 

680 263-277. 

681

682 Yue, Q., Xu, X., Hillier, J., Cheng K., Pan, G., 2017. Mitigating greenhouse gas emissions in 

683 agriculture: From farm production to food consumption. J. Clean. Prod. 149, 1011 – 1019.

684



ACCEPTED MANUSCRIPT

Figures 

Figure 1: Comparison of average GHG emissions of organic egg production shown for 

different sources for CFT feed calculation and feed calculation updated. Error bars show 

variation over all 7 farms for total GHG emissions per kg egg.

Figure 2: Averaged feed rations over all farms and years for adults and pullets  

Figure 3: Average GHG emissions of organic egg production shown for different sources for 

CFT feed calculation and feed calculation updated. Error bars show variation over all 10 

farms for total GHG emissions per kg egg.

Figure 4: Relation between farm size (number of animals) and GHG emissions from feed.

Figure 5: Relation between number of pullets and GHG emissions from field energy.
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Highlights

 Cool Farm Tool can be used to calculate greenhouse gas emissions from farm 

products

 Farmers get informed by the Cool Farm Tool about sources of emissions

 Farmers can explore the options to reduce greenhouse gas emissions

 A case study of organic egg farms showed a reductions in emissions by 25%
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Tables

Table 1: Manure management options in CFT
Manure management options
Daily spread
Solid storage
Dry lot
Liquid slurry with natural crust cover
Liquid slurry without natural crust 
cover
Uncovered anaerobic lagoon
Pit storage below animal confinements
Deep bedding - no mixing
Deep bedding - active mixing
Composting in vessel
Composting - static pile
Composting - forced aeration
Composting - non-forced aeration
Poultry manure with litter
Poultry manure without litter
Aerobic treatment - natural aeration
Aerobic treatment - forced aeration
Grazing

Table 2: Emissions from composting.

 
Composting - 
forced aeration

Composting - 
non-forced 
aeration

methane conversion factor (10-14 ºC) 0.33 0.5
methane conversion factor (15-25 ºC) 0.67 1
methane conversion factor (> 25 ºC) 1.00 1.5
nitrous oxide (kg N2O-N/kg N 
excreted) 0.01 0.0067

Table 3: Default GHG emissions from a range of crops as a function of fertilizer usage (d.m. 
refers to dry matter) as used in the CFT and from the Animalchange project (Mogensen, 
2013).
kg CO2eq per t d.m.
Feed crop numbers in 

CFT
Animalchange 

 Europe Africa Latin 
America

Bananas   83 204
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Barley  307 281 283
Cassava   72 256
Chickpea 189    
Cotton 387    
Field Bean [Broad 
Bean, Faba Bean] 42 227 108 321

Field Pea 35    
Fodder Legumes 20    
Fodderbeet 142    
Groundnut [Peanut] 89    
Lentil 177    
Maize 271 285 274 268
Millet 305 536 144 322
Oats 208 462 221 402
Oilseed Rape 428 679 779 473
Pigeon 
pea/cowpea/mungbean 226    

Potato 91 254 200 780
Rice 183 1272 2064 1515
Rye 274 434 344 306
Safflower 432    
Sorghum 151 367 190 293
Soybean 99 330 106 174
Spring barley 335    
Sugarbeet 10 261 429 358
Sugarcane  74 46 52
Sunflower 287 600 637 376
Sweet Potato 98 388 103 315
Temperate Grassland: 
Grass/Legume Swards 31 266 223 579

Temperate Grassland: 
Permanent Grass and 
Sown Grass or Leys

432    

Tropical Grasses 45    
Vegetables  417 535 1054
Wheat 141 318  330
Winter barley 271    
Yams and Cocoyams 38    
Other Cereals  446 115 462
Other Pulses  205 143 259
Other Root Crops  166 32 178
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Table 4: GHG emissions of organic egg farms for single sources and in total. Totals are given without spent hen management and retail 
transport. Emissions from feed were calculated with the old version in the CFT and with updated data from Animalchange (2013)

   

spent 
hen 
manage
ment

livestock 
manure 
manageme
nt

Feed 
(CFT 
now)

feed 
update
d

field 
energ
y use

primary 
processin
g

off-farm 
transpor
t

retail 
transpor
t

total 
GHG 
emissions 
(with 
feed, CFT 
now)

total 
GHG 
emission
s (feed 
updated)

   kg CO2eq kg -1 egg
2010 Average 0.008 0.081 0.644 0.826 0.135 0.073 0.364  1.300 1.479
 std dev 0.005 0.077 0.210 0.223 0.165 0.067 0.363  0.432 0.495
2011 Average 0.007 0.069 0.511 0.804 0.120 0.058 0.240 0.103 1.001 1.292
 std dev 0.003 0.069 0.111 0.126 0.161 0.050 0.192 0.107 0.319 0.291
2012 Average 0.010 0.066 0.492 0.668 0.109 0.055 0.266 0.057 0.989 1.164

7 
Farms

 std dev  0.066 0.099 0.263 0.152 0.057 0.184 0.048 0.311 0.419
2011 Average 0.007 0.084 0.537 0.812 0.139 0.068 0.258 0.097 1.087 1.361
 std dev 0.003 0.080 0.113 0.116 0.138 0.047 0.182 0.091 0.310 0.271
2012 Average  0.080 0.531 0.724 0.135 0.062 0.266 0.069 1.075 1.268

10 
Farms

 std dev  0.073 0.107 0.238 0.131 0.051 0.176 0.050 0.296 0.384


